A Modified New Two-Parameter Estimator in a Linear Regression Model

Lukman, A. F. and Ayinde, K. and Kun, S. S. and Adewuyi, E. T. (2019) A Modified New Two-Parameter Estimator in a Linear Regression Model. Modelling and Simulation in Engineering, 2019. ISSN Article ID 6342702

[img] Text
6342702.pdf - Published Version

Download (1MB)
Official URL: http://www.isi2019.org/wp-content/uploads/2019/03/...

Abstract

The literature has shown that ordinary least squares estimator (OLSE) is not best when the explanatory variables are related, that is, when multicollinearity is present. This estimator becomes unstable and gives a misleading conclusion. In this study, a modified new two-parameter estimator based on prior information for the vector of parameters is proposed to circumvent the problem of multicollinearity. This new estimator includes the special cases of the ordinary least squares estimator (OLSE), the ridge estimator (RRE), the Liu estimator (LE), the modified ridge estimator (MRE), and the modified Liu estimator (MLE). Furthermore, the superiority of the new estimator over OLSE, RRE, LE, MRE, MLE, and the two-parameter estimator proposed by Ozkale and Kaciranlar (2007) was obtained by using the mean squared error matrix criterion. In conclusion, a numerical example and a simulation study were conducted to illustrate the theoretical results.

Item Type: Article
Subjects: H Social Sciences > HA Statistics
Q Science > QC Physics
Depositing User: Mr DIGITAL CONTENT CREATOR LMU
Date Deposited: 20 Sep 2019 11:55
Last Modified: 20 Sep 2019 11:55
URI: https://eprints.lmu.edu.ng/id/eprint/2328

Actions (login required)

View Item View Item