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The literature has shown that ordinary least squares estimator (OLSE) is not best when the explanatory variables are related, that is,
when multicollinearity is present. This estimator becomes unstable and gives a misleading conclusion. In this study, a modified
new two-parameter estimator based on prior information for the vector of parameters is proposed to circumvent the problem of
multicollinearity. This new estimator includes the special cases of the ordinary least squares estimator (OLSE), the ridge estimator
(RRE), the Liu estimator (LE), the modified ridge estimator (MRE), and the modified Liu estimator (MLE). Furthermore, the
superiority of the new estimator over OLSE, RRE, LE, MRE, MLE, and the two-parameter estimator proposed by Ozkale and
Kaciranlar (2007) was obtained by using the mean squared error matrix criterion. In conclusion, a numerical example and a

simulation study were conducted to illustrate the theoretical results.

1. Introduction

The general linear regression model in matrix form is de-
fined as

y=XB+e (1)

where y is a n x 1 vector of the dependent variable, X is a
known n x p full-rank matrix of explanatory variables, f3 is a
p x 1 vector of regression coeflicients, and e is n x 1 vector of
disturbance such that E (&) = 0 and Cov(e) = o*I. The or-
dinary least squares estimator (OLSE) of 8 in model (1) is
defined as

Bovs = (X,X)_IXIJ’- (2)

According to the Gauss—Markov theorem, the OLS es-
timator is considered best, linear, and unbiased, possessing
minimum variance in the class of all linear unbiased esti-
mators. However, different studies have shown that the OLS
estimator is not best when the explanatory variables are

related, that is, when multicollinearity is present [1]. This
estimator becomes unstable and gives a misleading con-
clusion. Many biased estimators have been proposed as an
alternative to OLSE to circumvent this problem. These in-
clude Stein estimator [2], principal components estimator
[3], ridge estimator (RRE) estimator [1], contraction esti-
mator [4], modified ridge regression estimator (MRRE) [5],
and Liu estimator [6].

Hoerl and Kennard [1] proposed a ridge estimator (RRE)

BRRE(k) = (XIX + kl)ilX,XBOLs;V = TkEOLS’ k>0, (3)

where T, = (X'X +kI)'X'X. Bggg (k) was obtained by
augmenting the equation 0=k?B+¢' to the original
equation (1) and then applying the OLS estimator. Mayer
and Willke [4] defined the contraction estimator

B(p)=(1+p)'B, p>0. (4)

Liu [6] combined the Stein estimator with a ridge es-
timator to combat the problem of multicollinearity. f3; ; (d)
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was obtained by augmenting the equation df =  + ¢ to the
original equation (1) and then applying OLS. This is defined
as follows:

ELE (d)=(X'X + I)il X'y + dI)BOLS = TdBOLS’ 0<d<l,
(5

where T; = (X'X + ! (X'y +dI).

Swindel [5] modified the ridge estimator (MRRE) by
adding a prior information. The estimator is defined as
follows:

Buree (o b) = (X' X + kI) ™ (X' y + kb), (6)

where b represent the prior information on . MRRE tends
to b as k tends to infinity. Also, MRRE returns the estimates
of the OLS estimator when k=0.

Based on prior information, Li and Yang [7] proposed a
modified Liu estimator (MLE):

Brie (i b) = (X'X + 1) [(X'X +dI)Boys + (1-d)b].
(7)

MLE includes OLS and Liu as special cases. In recent
times, different researchers have suggested the use of two-
parameter estimators to handle multicollinearity. Ozkale
and Kaciranlar [8] proposed the two-parameter estimator
(TPE), which is defined as

Brox (ko d) = (X'X + kI) ™ (X'Y + kdBoys) ©
= (X'X +kI) " (X' X + kd)Boys = TraP>

where k>0,0<d < 1. TPE includes OLS, RRE, LE, and the
contraction estimators as special cases.

The primary focus of this study is to provide an al-
ternative method in a linear regression model to circum-
vent the problem of multicollinearity. A modified two-
parameter (MTP) estimator is proposed based on prior
information and is compared with OLS, LE, RRE, MRRE,
MLE, and TPE, respectively, using the mean squared error
matrix (MSEM) criterion. The article is structured as fol-
lows: We introduce the new estimator in Section 2. In
Section 3, we discuss the superiority of the new estimator.
Section 4 consists of a numerical example and a simulation
study. Concluding remarks are provided in Section 5.

2. Modified Two-Parameter Estimator

LetT, = (X'X +kI)'X'X = I -k(X'X + kI)™', and MRRE
in equation (6) can be re-expressed as

Baire (ko) = (X' X + k) ' X'y + k(X' X + kI) b
= (X'X +kI) " X' XBors + k(X' X +kI)"'b
= TiBows + (= Te)b.
9)

Similarly, T; = (X'X +I)"'(X'X +dI), and then the
modified Liu estimator in equation (7) can be written as
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Buig (dsb) = TyBors + (I-T,)b
= (X'X+1) " [(X'X +dI)Boys + (1-d)b].
(10)

MRRE and MLE are the convex combination of the
prior information b and the OLS estimator. From equation
®), Tyy= (X'X+kD) (X'X+kdl) =T-k(1-d)(X'X +
kI)™'; therefore, the modified two-parameter based on the
prior information can be defined as follows:

Brirvr (k. d,b) = TigPors = (1= Tia)b
= (X'X +kI) " (X' X + kdI)Boys
+ (I-(X'X +kI)" (X' X + kdI))b
= (X'X +kI) " (X' X + kdI)Boys
+ (k(1-d)(X'X +kI) )b

= (X'X +kI) " [(X'X + kdI)Boys + k(1 - d)b].
(11)
Also, MTPE is a convex combination of the prior in-

formation and OLSE. It includes the special cases of OLSE,
RRE, MRE, LE, and MLE. The following cases are possible:

Buirpe (k> 1,by) = Bagrpg (0, ds by) = Boyss ordinary least

squares estimator

Burpe (1,d,0) = By (d); Liu estimator

Buirpr (6 0,b0) = Byre (ks by); modified ridge estimator

Buirpe (k> 0,0) = Brgg (K); ridge estimator

Buerpe (L, dyby) = Bays (d, by); modified Liu estimator

Suppose there exist an orthogonal matrix T such that

T'X'XT = A = diag (A, A,, ..., 1,), where }; is the ith ei-
genvalue of X'X. A and T are the matrices of eigenvalues
and eigenvectors of X' X, respectively. Substituting Z = XQ,
a=Q'B in model (1), then the equivalent model can be

rewritten as
y=Za+e (12)

The following representations of the estimators are as
follows:

Ao =A'Z'Y,
ap(d)=A+D(A+dDAZy,
agpe (k) = (A+ k)" Z'y,
e (k. b) = (A + kD)7 (Z'y + kb),
e (dsb) = (A+ D7 [(A+dDAT Z'y + (1-d)b),
appp (k,d) = (A +KI) " (A +kdD)A ™' Z' y,

Gyrrpe (ko d,b) = (A+ kD)7 [(A + kdD)A™' Z'y + k(1= d)b].
(13)
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The following notations and lemmas are needful to prove
the statistical property of Byrpg (k d, by).

Lemma 1. Let M be an n x n positive definite matrix, that is,
M >0, and « be some vector, then M — aa’ >0 if and only if
o M'a<1 [9].

Lemma 2. Let B, = A, i¥,1=1,2 be two linear estimators of f3.
Suppose that D = Cov (B,) — Cov (B,) > 0, where Cov ([31) i=
1,2 denotes the covariance matrix of B; and

b; = Bias (B;) = (A, X - I)B,i = 1,2. Consequently, ’
A(B, - B,) = MSEM (B, ) - MSEM (B,) "
=0’D+b,b] -b,by >0,

if and only if by[0®D +b,b{]7'b, <1, where MSEM (B;) =
Cov(B;) + b;b; [10].

3. Establishing Superiority of Modified Two-
Parameter Estimator Using MSEM Criterion

In this section, MTPE is compared with the following es-
timators: OLS, RRE, LE, MRRE, MLE, and TPE.

3.1. Comparison between the MTPE and OLS Using MSEM
Criterion. From  the representation  ®ypg (k,d,b) =
(A+ kDA + kdD)A™'Z'y + k(1-d)b], the bias vector
and covariance matrix of MTPE are obtained as follows:

E(@yppg (k,d, 1)) = E((A+ kD) [(A+ kdDA™' Z' y
+k(1-d)b])
=(A+kD)[(A+kdDA ' Z' Za
+k(1-d)b]
= (A + kD) [(A + kdD)a + k(1 - d)b]
= (A+kD) (A +kdDa
+(A+KkI) 'k (1-d)b,
(15)

where E(y) =
Recall that k(1—d) = (A+kI)— (A +kdl) and let
Brgp = (A+ kI)™ (A + kdI). Therefore,

E (@yrpg (K, d, b)) = By gyt + (1= By gy )by

(16)
bias (aMTPE (k, d, b)) = Bk’d,b(x + (I - Bk,d,b)b - a,
Cov (@yrrpg (k. d, b)) = 0° By g, A" By (17)
Hence,
MSEM (Gyrpp (k. d, b)) = 0" By gy A Bi gy,

~I)(a=b)(a=b) (B, -1).
(18)

+(Brap

From the representation, @ = A™' Z'Y, the MSEM of OLS
is given as

MSEM (Ggys) = oA (19)
Comparing (18) and (19),
MSEM (@q;5) - MSEM (@yrpg (k, d, b))
= 02(1\71 - Bk,d,bAilBl,c,d,b) (20)
+(Byap—T)(a=b)(a=b)' (Byap 1)

Let k>0 and 0<d<1. Thus, the following theorem
holds.

Theorem 3. Consider two biased competing homogenous
linear estimators Qpps and Qpppp(k,d,b). If k>0 and
0<d <1, the estimator Qyrrpg(kqp) i Superior to estimator &
using the MSEM criterion, that is, MSEM (Q¢;g) —
MSEM (@yrpg (k, d, b)) >0 if and only if

(a—b)’ (Bk,d,b —1)'[0* (A" =By gy A" Biyy )|
. (Bk,d,b - I) (OC - b) <1.

-1
(21)

Proof. Using (17) and (19), the following was obtained:
Cov (&) - Cov (@yrpg (kb)) = 0> (A" = By 4, A" By )

1 (L +kd)? )’
_ad1ag{)L m}

(22)

A'-Byy bA !By 4 will be positive definite (pd) if and only
if (A +k)? - (A; +kd)* >0 or (A; + k)= (A, + kd) > 0. Tt was
observed that (A; + k) — (A; + kd) =k(1-d)>0for0<d<1
and k > 0. Therefore, A™! - Bk)d)bA_lB,'c,d,b is pd. By Lemma 2,
the proof is completed.

3.2. Comparison between the MTPE and RRE Using MSEM
Criterion. From the representation, dggy (k) = (A +kI)™
Z'y, the bias vector and covariance matrix of RRE is given as
follows:

bias (Gggg (k) = —k (A + kI) ',

(23)
Cov (dgpz (k) = 0> (A + kI) ' A(A + kD)7
Hence,
MSEM (aggg (k) = 0° B AB;. + k*Byaa B, (24)

where By, = (A + kI)™". The difference between Gygg; (k) and
Ayrpe (k, d,b) in the MSEM sense is as follows:

MSEM (aggg; (k) = MSEM (@ (k, d, b))
= 0°(BuAB, — By 4, A ' By gy ) + K’ Braa' By (25)
~(Bray—1) (@=b) (a=b)' (B~ 1) -



Let k>0 and 0<d< 1. Thus, the following theorem
holds.

Theorem 4. Consider two biased competing homogenous
linear estimators Gppg (k) and &yrpg (k,d,b). If k>0 and
0<d<1, the estimator Qyrpgkap) iS superior to estimator
Oppp (k) using  the  MSEM  criterion,  that i,
MSEM (tipgg (k)) = MSEM (®yirpg (k, d, b)) >0 if and only if
(a=b)'(Brap—T)'[0°(BABy— BapA™ Biap) 26)

+ szkOCa,Bk]71 (Bk,d,b - I) (0( - b) <1

3.3. Comparison between the MTPE and LE Using MSEM
Criterion. From the representation, oy (d) = (A+D)7!
(A+dDA'Z y, the bias vector and covariance matrix of
RRE are provided as follows:

bias (@, (d)) = (B —I)a, (27)
Cov (&5 (d)) = o B,A" By (28)
Hence,
MSEM (&5 (d)) = 0*B,A™' B + (B; - Iaa’ (B; - 1),
(29)

where B; = (A + D7HA +dD). Considering the difference
between (18) and (29),

MSEM (&, (d)) — MSEM (@ygpp, (k, d, b))

, (30)
= 0*(D) + b,b! — b,b),

where D = BdA_lB[;_Bk,d,bA_lB;c,d,b’ bl = (Bd —I)(X, and
by = (Bap—1)(a=b).

Theorem 5. Consider two biased competing homogenous
linear estimators a;;(d) and @ypppg (k,d,b). If k>0 and
0<d<1, the estimator Qyrpgap) i Superior to estimator
a;p(d) using the MSEM  criterion, that i,
MSEM (0 (d)) = MSEM (@pprpg (k, d, b)) > 0 if and only if
(a=b)'(Byap—1)'[0°(BsA " Bj— BrapA ' Bigy)
(31)
+(By~I)aa (By~1)'] ' (Begp—1)(a=b) < 1.

Proof. Using (17) and (28), the following was obtained:
By computation,

o> (D) = 0*(B4A™' By = By gy By )

 ding ] Qv Ourkd)? ] (32)
LG +1)7 4+ k)

B;A'Bj— By 4, A7 By 4, will be positive definite (pd) if
and only if, (A; + d)? W\ + k) - W\ + 1)? W\ + kd)* > 0. For
0<d<1l and k>1, it was observed that (A;+ d)?
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A+ k)= (A +1)*(A; + kd)* >0. Therefore, B A™'B)-
By A" Bi gy, is pd. By Lemma 2, the proof is completed.

3.4. Comparison between the MTPE and MRRE Using MSEM
Criterion. From  the  representation,  @yggpp (k,b) =
(A+ kD)7 (Z y + kb), the bias vector and covariance matrix
of MRRE are provided as follows:

bias (Ayrpg (kb)) = (B —1I) (a—D), (33)

Cov (Gypee (k. b)) = o* B, A" BY. (34)

Hence,
MSEM (&MRRE (k, b)) =

(35)
o*B,A'B. + (B~ 1) (a—b)(a—b) (B, 1),

where B, = (A + kI )L Considering the difference between
(18) and (35),

MSEM (@ypgg (k) — MSEM (@yrpg; (k. d, b))
= (BkA_lBIL - Bk,d,bA_lBl,c,d,b)

(36)
+(Be—I)(a=b)(a=b) (B, -I)

- (Bk,d,b - 1) (a—Db) (a—b)’(Bk,d,b —1)’.

Theorem 6. Consider two biased competing homogenous linear
estimators  Qyppp (K, b) and  Qpppp (k,d,b). If k>0 and
0<d <1, the estimator yyrpg x4y is superior to the estimator
Aprre (k, b) using the MSEM criterion, that is, MSEM
(@prre (k, b)) = MSEM (& rpg (k, d, b)) > 0 if and only if

(Bk,d,b - I)’ (a=b)' [UZ(BkAilBIQ - Bk,d,bAilBIL,d,b)

+(Be=1)(a=b)(a=b) (Be—1)'] " (Byay—1)(a-b)< 1.
(37)

Proof. Using (17) and (34), the following was obtained:
o*(BA™ B{ = By gy, A" By gy

(38)
Cding] M i kd)*
A+ k) A (A + k)’

Evidently, for 0<d<1 and k>0, BLA™'B;— By 4, A"
By 4, will be positive definite (pd). By Lemma 2, the proof is
completed.

3.5. Comparison between the MTPE and MLE Using MSEM
Criterion. From the representation, &y (d,b) = (A +1)™"
(A +dI)A™Z'y + (1—d)b], the bias vector and covariance
matrix of MLE are provided as follows:
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bias (A (d)) = (By—I) (a—D), (39)
Cov (&yz (d)) = 0*B,A™' B}, (40)
Hence,
MSEM (aMLE (d)) = (41)

0*By;A "B+ (By;—I)(a-b)(a—b) (B;~1)',

where B; = (A +I)"' (A + dI). The mean square error dif-
ference between (18) and (41) is given as

A, = MSEM (&yy 5 (d)) — MSEM (@ygppi. (K, d, b))

i (42)
= 0*(D) + b,b! — b,b),

where D = B;A™'Bj— By ;,A"' By 4y, by = (By—I)(a—b),
b, = (Biap— 1) (a—b).

Theorem 7. Consider two biased competing homogenous
linear estimators @y (d,b) and &g (k, d, b). If k>0 and
0 <d < 1, the estimator Qrpg x4, 1S Superior to the estimator
Aypp(d,b)  using  the MSEM  criterion, that s,
MSEM (@5 (d, b)) = MSEM (@yppg (k, d, b)) > 0 if and only
if by[0* (D) + b,b17'b, <1, where D = ByA™'Bj— B 4,A™"
Bl’(,d,b’ bl = (Bd - I) (OC - b), and b2 = (Bk,d,b - I) ((X - b)
Proof. Using (17) and (40), the following was obtained:
By computation,
-1 -1 :
D = By4A"' By~ By 4, A" ' By 4, = Qdiag (7,,...,7,)Q.
(43)

By computation,

0 (D) = 0*(B4A™' By = Brap™ Biay)

g [ (D Ouvkad)?) (44)
L +1)° A+ k)

(7 (BdA le BkdbA lBkdb) will be pOSlthe definite if
and only if (A, +d)2()t +k)* = (A + kd)* (A, + 1)* > 0.

3.6. Comparison between the MTPE and TPE Using MSEM
Criterion. From the representation d&ypg (k,d) = (A +kI)™
(A +kdI)A™'Z'y, the bias vector and covariance matrix of
TPE are provided as follows:

bias (&rp; (k, d)) = (Bygpa—1I ) (45)
Cov (&TPE (k, d)) = Usz)d)bAilBL,d)b. (46)

Hence,
MSEM (&TPE (k, d))

= Usz,d,bA_lBllc,d,b + (Bk,d,b - I)(Xa, (Bk,d,b - I),

Considering the matrix difference between (18) and (47)

(47)

A, = MSEM (@ypg (K, d)) — MSEM (Gyrpg (K, d, b))
= (Bk,d,b - I) [(XOC, - ((X - b) ((X - b)/] (Bk,d,l’) - I),

Obviously, A, >0 if and only if aa’ — (a—b) (a —b)' >0;
thus, the following results hold.

48)

Theorem 8. The modified two-parameter estimator
Ayrpe (k, d,b) is superior to the two-parameter estimator
Qppp(k,d) in the MSEM sense if and only if
ao’ — (a—b)(a—b) >0.

4. Selection of Bias Parameters

Selecting an appropriate parameter is crucial in this study.
The use of the Ridge estimator largely depends on the ridge
parameter, k. Several methods for estimating this ridge
parameter have been proposed. This includes Hoerl and
Kennard [1], Kibria [11], Muniz and Kibria [12], Aslam [13],
Dorugade [14], Kibria and Banik [15], Lukman and Ayinde
[16], Lukman et al. [17], and others. For the purpose of
practical application of this new estimator, the optimum
values of k and d are obtained. In order to obtain an op-
timum value of k, we assume the value of d is fixed.
Recall from equation (18),

A = MSEM (@yrpg (k, d, b)) = 0° By A Blogy

+(Bap—1) (a=b) (a=b)' (Bigp—1)' (49)

;2 (A+kd) 2 2o (a
Z k(d—)zA k).

Differentiating equation (49) with respect to k gives the
following result:

oA >4 (1 =d) (A + kd))
— =20 3
ok i=1 A (4 + k)

(50)
2 A (@ - b)’
+2k(d-1)
,; /\1 + k
Let (0A/0k) = 0, the value of k is as follows:
%A,
k= : ) (51)

A (o= b)* = d(X; (o, - b)* + 0?)
02 and «, are replaced by their unbiased estimators 5> and &;.
The harmonic mean version is defined as

kv = (52)

_P

YLK

where k = (°1),/ (A, (&, —b)* —d (A, (&; - b)* + 32)).
Recall that @yrpg (k,0,0) = Gggg (k), considering this

special case implies that k in equation (51) will become



. g2
k==, 53
2 (53)

which is the estimated value of k introduced by Hoerl and
Kennard [1]. Hoerl et al. [18] defined the harmonic version
of the ridge parameter, k, as follows:
~2
~ o
Kexp = —pra;- (54)
The optimum value of d is obtained by differentiating
equation (49) with respect to d with fixed k. The result is as
follows:

ZA(?HWZ 2R z((x b) =)

Let (0A/0d) = 0, the value of d is as follows:

(kA (a=)?) = (02))]

z£1(02k+k/\,-((x—b)2) (56)

dMTPE =

02 and a; are replaced by their unbiased estimators 5* and &;.

Recall that &ypg (1,d,0) = & (k), considering this special

case implies that d in equation (54) will become
P2 az)x

57
P (0% + Mo &7

dliu =

Equation (57) is the same as the optimum value of d
proposed by Liu [6], which is defined as follows:

_ P ((a2—0 ) (4 + 1)2)
ot Zi=1((02 +La?)/h (A +1)%)

(58)

Theorem 9. If

;l<min<

for all i, then k are always positive.

2
M) (59
A (o; =) + 02

Proof. The values of k in (51) are always positive
it ((6®°A)/ (A (a; = b)* —d (A; (a; —b)* + ¢%))) >0.  Since
0?4, > 0,4, (a; —b)* —d (A (a; = b)* + 0*) must be positive
for all 4, it is observed that d < ((A; (a; —b)*)/ (A; (a; — b)* +
0?)) for all i. This inequality depends on the unknown
parameters o> and «; which is replaced by their unbiased
estimators & and @

The selection of the estimator of the parameters d and k
in @yrpg (k, d,b) can be obtained iteratively as follows:

Step 1: calculate d from (59).

Step 2: estimate EHKB by using d in step 1.

Step 3: estimate dyerpg, from (56) by using the estimator
kygp in step 2.

Step 4: if HMTPE is negative use HMTPE =d, ElMTPE can
take negative value. However, d takes value between 0
and 1.
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5. Numerical Example and
Monte-Carlo Simulation

Hussain dataset which was originally adopted by
Eledum and Zahri [19] is used in this study to illustrate the
performance of the new estimator. The dataset was also
adopted in the study of Lukman et al. [20]. This is
provided in Table 1. The regression model is defined as
follows:

Vi =PBot+ BiXy + B Xy + B X5 &, (60)

where y; represents the product value in the manufacturing
sector, X, the values of the imported intermediate com-
modities, X, imported capital commodities, X; represents
the value of imported raw materials. The variance inflation
factors are VIF, = 128.29, VIF, = 103.43, and VIF; = 70.87.
A, = 105.419 and the condition number of X'X is ap-
proximately 5660049. The variance inflation factor and the
condition number both indicate the presence of severe
multicollinearity.

The prior information of b = 0.95 f as used in the study of
Li and Yang [7] is adopted. The estimated mean square
values of the estimators OLSE, RRE, LE, MRRE, MLE, TPE,
and MTPE are provided in Table 2. The values of k and d
were computed using the estimators of k and d proposed in
this study. k and d in equations (52) and (56) are obtained to
be 1036.427 and 0.0043, respectively. From both tables,
OLSE has the least performance among all the estimators. It
was observed from Table 2 that the modified estimators
(MLE, MRRE, and MTPE) outperform their counterparts.
However, the proposed estimator MTPE outperforms other
estimators.

Also, we conducted a Monte-Carlo simulation study to
examine the performances of the estimators further. The
simulation procedure used by Lukman and Ayinde [16] was
also used to generate the explanatory variables in this study.
This is given as

2\1/2 . .
Xijz(l—y) Zij + VYZips i=12,...,nj=12,...,p,
(61)

where z;; is independent standard normal distribution
with mean zero and unit variance, y* is the correlation
between any two explanatory variables, and p is the
number of explanatory variables. The values of y were taken
as 0.85, 0.9, and 0.99, respectively. In this study, the
number of explanatory variable (p) was taken to be four.

The dependent variable is generated as follows:

v =B X, + X, + By X5 + X, + & (62)

where ¢; ~ (0,0?). The parameter values were chosen such
that f'/f=1 which is a common restriction in simulation
studies of this type [16]. The values of f3 are taken to be
B1=0.8, 5,=0.1, and 35 =0.6. Sample sizes 50 and 100 were
used. Three different values of o (0.01, 0.1, and 1) were also
used. The experiment is replicated 5000 times. The estimated
MSE is calculated as
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TaBLE 1
J X X5 X3
115.20 38.10 30.40 7.00
134.30 39.20 32.40 12.50
151.00 36.30 31.40 2.30
169.00 31.10 28.40 3.60
170.80 40.00 31.40 7.00
187.50 55.00 37.00 6.00
205.20 55.00 50.00 4.00
235.70 47.00 42.00 8.00
257.70 47.00 28.10 8.70
276.70 50.00 44.70 4.50
327.00 69.00 50.00 8.50
353.80 85.00 61.40 39.20
419.50 88.00 76.10 17.70
489.00 91.00 88.70 32.90
594.90 285.00 203.30 121.00
807.60 448.00 615.90 133.90
1014.00 324.00 562.10 82.50
1208.00 281.00 716.00 99.30
1380.00 349.00 771.30 103.90
1518.00 508.40 807.40 87.70
1763.00 533.20 1222.00 217.10
1914.00 592.80 1188.00 184.90
2338.00 726.40 1478.00 227.90
2275.00 706.30 1434.00 221.40
2562.00 796.70 1630.00 250.50
2750.00 856.00 1759.00 269.50
3000.00 934.90 1930.00 294.90
2859.00 890.30 1833.00 280.60
3794.00 1185.00 2472.00 375.20
4848.00 1696.00 3581.00 539.50
4048.00 1458.00 3065.00 463.00
TaBLE 2: Estimated regression coeflicients and mean square error of estimators.
. Estimators
Estimates
OLSE RRE LE MRRE MLE TPE MTPE

Bo 208.87 207.12 191.96 198.54 208.87 207.13 195.81
Bl -1.314 -1.314 -1.314 -1.314 -1.314 -1.314 -1.314
P> 1.515 1.515 1.515 1.514 1.515 1.515 1.514
B -2.017 -2.017 —-2.006 —-2.006 -2.017 -2.017 —-2.004
MSE 1850.48 1822.65 1849.39 109.08 1564.06 1822.76 108.37

R ] S0 L prior information. The results of the simulation study support

MSE(f) = ——— (ﬂ,-j —ﬁ,-) (ﬁ,-j —ﬁi), (63)  the real-life analysis in this paper.

5000 4
j=1

where B, j denotes the estimate of the ith parameter in the jth
replication and f; is the true parameter values. The estimated
MSEs of the estimators for different values of n, p, 0, and y are
shown in Tables 3-6. The results from the simulation study
show that the estimated MSE increases as the level of error
variance increases. We observed that as the degree of mul-
ticollinearity (p) increases, the estimated MSEs also increase.
Also, RRE, MRRE, LE, MLE, TPE, and MTPE have smaller
MSE than the OLS estimator. The proposed estimator MTPE
outperforms other estimators depending on the choice of

6. Conclusions

In this article, we proposed a modified two-parameter
estimator to overcome the multicollinearity problem in a
linear regression model. Also, we established the superi-
ority of this new estimator over other existing estimators in
terms of matrix mean squared error criterion. This new
estimator is considered to include the ordinary least
squares estimator (OLSE), the ridge estimator (RRE), the
Liu estimator (LE), the modified ridge estimator (MRE),
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TaBLE 3: Estimated MSE values of the OLSE, RRE, MRRE, LE, and MLE when 7 = 50.

p=0.85
Estimators k=0.01 k=0.05 k=0.1
0=0.01 0=0.1 o=1 0=0.01 0=0.1 o=1 0=0.01 0=0.1 o=1
OLS 3.46E - 05 0.003874 0.333639 3.46E-05 0.003874 0.333639 3.46E-05 0.003874 0.333639
RRE 2.52E-05 0.003185 0.311938 3.14E-05 0.003145 0.319639 3.08E-05 0.002959 0.297564
MRRE 1.57E-05 1.98E-03 1.87E-01 1.95E-05 1.95E-03 1.99E - 01 1.91E-05 1.84E-03 2.37E-01
p=09
OLS 7.76E - 05 0.007438 0.719922 7.76E — 05 0.007438 0.719922 7.76E - 05 0.007438 0.719922
RRE 6.79E - 05 0.006505 0.629549 6.26E — 05 0.006321 0.629699 5.89E-05 0.00608 0.579048
MRRE 422E-05 4.04E-03 3.78E-01 3.89E-05 3.93E-03 391E-01 366E-05 3.78E-03 4.61E-01
p=0.99
OLS 0.004043 0.408836 40.89173 0.004043 0.408836 40.89173 0.004043 0.408836 40.89173
RRE 0.002534 0.26822 24.79705 0.001099 0.109383 10.50059 0.00064 0.062891 6.359499
MRRE 0.001571 0.166296 15.37417 0.000681 0.067817 6.510364 0.000397 0.038992 3.942889
p=0.85
Estimators d=0.01 d=0.05 d=0.1
0.01 0.1 1 0.01 0.1 1 0.01 0.1 1
OLS 3.46E-05 0.003874 0.333639 3.46E-05 0.003874 0.333639 3.46E-05 0.003874 0.333639
LE 315E-05 2.02E-03 1.92E-01 297E-05 2.00E-03 211E-01 3.03E-05 218E-03 1.96E - 01
MLE 1.96E - 05 1.25E-03 1.20E-01 1.85E-05 1.25E-03 1.31E-01 1.88E—-05 1.35E-03 1.22E-01
p=09
OLS 7.76E — 05 0.007438 0.719922 7.76E — 05 0.007438 0.719922 7.76E — 05 0.007438 0.719922
LE 475E-05 3.31E-03 3.30E-01 4.66E—-05 3.43E-03 323E-01 425E-05 3.39E-03 343E-01
MLE 295E-05 2.05E-03 1.98E-01 2.89E-05 2.13E-03 2.01E-01 2.64E-05 211E-03 2.73E-01
p=0.99
OLS 0.004043 0.408836 40.89173 0.004043 0.408836 40.89173 0.004043 0.408836 40.89173
LE 445E—-05 3.00E-03 2.79E-01 6.72E—-05 5.84E—-03 525E-01 1.00E-04 896E-03 9.42E-01
MLE 2.76E—-05 1.86E - 03 1.68E - 01 417E-05 3.63E-03 3.26E-01 6.22E-05 5.57E-03 7.50E-01

TaBLE 4: Estimated MSE values of the OLSE, TPE, and MTPE when #n = 50.

Rho 0.85 0.9 0.99
d k Sigma OLSE TPE MTPE OLSE TPE MTPE OLSE TPE MTPE

0.01 3.46E-05 2E-05 913E-06 7.76E-05 4.14E-05 19E-05 0.004043 0.00212  0.000969
0.01 0.1 0.003874 0.001977 0.000181 0.007438 0.003827 0.00035  0.408836  0.22438  0.020514
1 0.333639 0.188943 0.001727 0.719922 0.382846 0.0035 40.89173  20.74408  0.189653

0.01 346E-05 199E-05 9.09E-06 7.76E-05 3.78E-05 1.7E-05 0.004043 0.000919  0.00042
0.01 0.05 0.1 0.003874 0.00189 0.000173 0.007438 0.003928 0.00036  0.408836  0.091505  0.008366
1 0.333639 0.190314 0.00174 0.719922 0.384937 0.00352  40.89173  8.784307  0.080311
0.01 3.46E-05 1.86E-05 8.52E-06 7.76E-05 3.73E-05 1.7E-05 0.004043 0.000535 0.000245

0.1 0.1 0.003874 0.002014 0.000184 0.007438 0.003826 0.00035  0.408836  0.052611  0.00481
1 0.333639 0.196492 0.001796 0.719922 0.367537 0.00336  40.89173  5.320063  0.048639

0.01 346E—-05 1.89E-05 8.64E-06 7.76E-05 4.08E-05 19E-05 0.004043 0.002114 0.000966
0.01 0.1 0.003874 0.001943 0.000178 0.007438 0.003912 0.00036  0.408836  0.224209  0.020498
1 0.333639 0.205892 0.001882 0.719922 0.368826 0.00337  40.89173  20.64197  0.18872
0.01 346E—-05 198E-05 9.03E-06 7.76E-05 3.78E-05 1.7E-05 0.004043 0.000961 0.000439
0.05 0.05 0.1 0.003874 0.001967 0.00018 0.007438 0.003769 0.00034  0.408836  0.09861  0.009015
1 0.333639 0.186682 0.001707 0.719922 0.397967 0.00364  40.89173  9.495418  0.086812
0.01 346E-05 197E-05 9.02E-06 7.76E-05 3.96E-05 1.8E-05 0.004043 0.000585 0.000267
0.1 0.1 0.003874 0.001951 0.000178 0.007438 0.003655 0.00033  0.408836  0.060326  0.005515
1 0.333639 0.205296 0.001877 0.719922 0.353004 0.00323  40.89173  5.839301 0.053386

0.01 346E-05 1.84E-05 84E-06 7.76E-05 3.69E-05 1.7E-05 0.004043 0.002045 0.000935
0.01 0.1 0.003874 0.001917 0.000175 0.007438 0.003819 0.00035  0.408836  0.209985  0.019198
1 0.333639 0.191645 0.001752 0.719922 0.385686 0.00353  40.89173  22.09732  0.202026
0.01 346E-05 195E-05 891E-06 7.76E-05 3.84E-05 1.8E-05 0.004043 0.001 0.000457
0.1 0.05 0.1 0.003874 0.001859 0.00017 0.007438 0.003834 0.00035  0.408836  0.102129  0.009337
1 0.333639 0.192989 0.001764 0.719922 0.365375 0.00334  40.89173  10.09752  0.092317
0.01 346E-05 2.01E-05 9.19E-06 7.76E-05 3.56E-05 1.6E-05 0.004043 0.000656 0.0003
0.1 0.1 0.003874 0.002062 0.000189 0.007438 0.003699 0.00034  0.408836  0.058421  0.005341
1 0.333639 0.18755 0.001715 0.719922 0.366358 0.00335  40.89173  6.172316  0.056431
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TaBLE 5: Estimated MSE values of the OLSE, RRE, MRRE, LE, and MLE when 7 = 100.
p=0.85
k=0.01 k=0.05 k=0.1
0=0.01 0=0.1 o=1 0=0.01 0=0.1 o=1 0=0.01 0=0.1 o=1
OLS 0.00578 0.54722 0.57255 0.00578 0.547223 0.57255 0.005784 0.547223 0.572553
RRE 1.77E-05 0.00176 0.16786 1.77E-05 0.001679 0.16908 1.66E— 05 0.001789 0.174567
MRRE 1.63E-05 0.0017 0.07039 7.42E — 06 0.000254 0.07131 8.04E - 06 0.000848 0.066346
p=09
OLS 9.19887 8.5034 8.50041 9.19887 8.5034 8.50041 9.198873 8.5034 8.500411
RRE 3.68E—-05 0.0034 0.34013 3.36E—-05 0.00349 0.34198 3.31E-05 0.003399 0.326526
MRRE 2.76E—05 2.55E-03 2.55E—-01 2.52E-05 2.62E-03 2.56E-01 2.48E—05 2.55E—-03 2.45E-01
p=0.99
OLS 1.80265 171.595 169.891 1.80265 171.595 169.891 1.802645 171.595 169.8914
RRE 0.00188 0.19934 18.4294 0.00082 0.081294 7.80411 0.000476 0.046741 4.726424
MRRE 0.00117 0.12359 11.4262 0.00051 0.050402 4.83855 0.000295 0.028979 2.930383
p=0.85
Sigma d=0.01 d=0.05 d=0.1
0.01 0.1 0.01 0.1 1 0.01 0.1 1
OLSE 0.00578 0.54722 0.57255 0.00578 0.547223 0.57255 0.005784 0.547223 0.572553
LE 2.34E-05 1.50E-03 1.43E-01 2.21E-05 1.49E-03 1.57E-01 2.25E—-05 1.62E-03 1.46E—01
MLE 1.45E-05 9.32E—-04 8.88E—02 1.37E-05 9.25E—04 9.75E-02 1.40E-05 1.01E-03 9.07E—-02
p=0.9
OLSE 9.19887 8.5034 8.50041 9.19887 8.5034 8.50041 9.198873 8.5034 8.500411
LE 3.53E-05 2.46E—03 2.45E-01 3.46E—05 2.55E-03 2.40E-01 3.16E-05 2.52E-03 2.55E—-01
MLE 2.19E-05 1.53E-03 1.47E-01 2.15E-05 1.58E—-03 1.49E - 01 1.96E — 05 1.57E-03 2.03E-01
p=0.99
OLSE 1.80265 171.595 169.891 1.80265 171.595 169.891 1.802645 171.595 169.8914
LE 3.31E-05 2.23E-03 2.08E-01 499E - 05 4.34E-03 3.90E-01 7.44E — 05 6.66E—03 7.00E - 01
MLE 2.05E—-05 1.39E-03 1.25E-01 3.10E-05 2.70E—-03 242E-01 4.62E - 05 4.14E-03 5.57E-01
TaBLE 6: Estimated MSE values of the OLSE, TPE, and MTPE when n =100.
J L p=0.85 p=09 p=0.99
OLSE TPE MTPE OLSE TPE MTPE OLSE TPE MTPE
001 578E-03 177E—05 811E—06  9.20E+00 3.68E—05 168E—05 1.80E+00 1.88E—03 8.61E—04
001 01 547E-01 176E-03 161E-04 850E+00 340E—03 3.11E-04 172E+02 199E—-01 1.82E—02
1 573E-01 1.68E—01 154E—03  8.50E+00 340E-01 311E—03 170E+02 1.84E+01 1.68E—01
001 578E-03 177E—05 8.08E—E-06 9.20E+00 3.36E-05 1.54E—05 180E+00 8.16E—04 3.73E—04
001 005 01 547E-01 168E—03 153E-04 850E+00 349E—03 3.19E-04 172E+02 813E—02 7.43E-03
1 573E-01 1.69E—01  155E—03  850E+00 3.42E—01 3.13E—03 170E+02 7.80E+00 7.13E-02
001 578E-03 166E—05 757E-06  9.20E+00 3.31E-05 151E—05 180E+00 4.76E-04 217E—04
0.1 0.1 547E-01 1.79E-03 1.64E—-04 8.50E+00 3.40E-03 3.11E-04 1.72E+02 4.67E—-02 4.27E-03
1 573E-01 1.75E-01 1.60E-03 8.50E+00 3.27E—-01 299E-03 1.70E+02 4.73E+00 4.32E—-02
001 578E—03 1.68E—05 7.68E-06  9.20E+00 3.63E-05 1.66E—05 180E+00 1.88E—03 8.58E—04
001 01 547E—-01 173E—03 158E—04  8.50E+00 348E-03 318E-04 172E+02 1.99E—01 1.82E—02
1 573E-01 183E-01 167E—-03 850E+00 3.28E-01 3.00E-03 170E+02 1.83E+0l 1.68E—0l
0.0l 578E-03 176E—05 8.03E-06  9.20E+00 3.36E-05 154E—05 1.80E+00 8.54E—04 3.90E-04
005 005 01 547E-01 175E-03 160E—04 850E+00 3.35E—03 3.06E-04 172E+02 8.76E—02 8.01E-03
1 573E-01 166E—01 152E-03  850E+00 3.54E-01 323E—03 170E+02 8.44E+00 7.71E—02
001 578E—-03 175E—05 801E—06  9.20E+00 3.52E-05 1.61E-05 1.80E+00 520E—04 2.38E—04
01 01 547E-01 173E-03 158E-04  850E+00 325E-03 297E—04 172E+02 536E—02 4.90E-03
1 573E-01 1.82E-01 1.67E—03  8.50E+00 314E-01 2.87E-03 170E+02 5.19E+00 4.74E—02
0.01 5.78E-03 1.63E-05 7.46E — 06 9.20E+00 3.28E-05 1.50E-05 1.80E+00 1.82E-03 8.30E-04
0.01 0.1 547E-01 1.70E-03 1.56E - 04 8.50E+00 3.39E—03 3.10E-04 1.72E+02 187E-01 1.71E-02
1 5.73E—-01 1.70E-01 1.56E -03 8.50E+00 343E-01 3.13E-03 1.70E+02 196E+01 1.79E-01
0.01 5.78E-03 1.73E-05 7.91E - 06 9.20E+00 341E-05 1.56E—-05 1.80E+00 8.88E-04 4.06E-04
0.1 0.05 0.1 547E-01 1.65E-03 1.51E-04 8.50E+00 341E-03 3.11E-04 1.72E+02 9.07E—02 8.30E-03
1 5.73E-01 1.71E-01 1.57E-03 8.50E+00 3.25E-01 297E-03 1.70E+02 8.97E+00 8.20E-02
0.01 5.78E-03 1.79E-05 8.16E—06 9.20E+00 3.16E-05 144E-05 1.80E+00 5.83E—-04 2.66E-04
0.1 0.1 547E-01 1.83E-03 1.68E - 04 8.50E+00 3.29E-03 3.00E—04 1.72E+02 5.19E-02 4.75E-03
1 5.73E-01 1.67E-01 1.52E-03 8.50E+00 3.25E—-01 298E-03 1.70E+02 5.48E+00 5.01E-02
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and the modified Liu estimator (MLE) as special cases.
Finally, a numerical example and a simulation study were
conducted to illustrate the theoretical results. Results show
that the performance of the proposed estimator (MTPE) is
superior to others.
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