Abolarinwa, Abimbola and Oladejo, N. K. and Salawu, S. O. and Onate, C.A (2019) Logarithmic-Sobolev and multilinear Hölder’sine qualities via heat flow monotonicity formulas. Applied Mathematics and Computation, 364. ISSN 0096-3003
Text
1-s2.0-S0096300319306320-main.pdf - Published Version Download (380kB) |
Abstract
Heatflowmonotonicityformulashaveevolvedinrecentyearsasapowerfultoolinderiv-ingfunctionalandgeometricinequalitieswhichareinturnusefulinmathematicalanalysisandapplications.ThispaperaimsmainlyatprovingLogarithmicSobolevandmultilinearHölder’sinequalitiesthroughtheheatflowmethod.Precisely,twoentropymonotonicityformulasareconstructedviatheheatflow.Itisshownthatthefirstentropymonotonic-ityformulaisintimatelyrelatedtotheconcavityofthepowerofShannonentropyandFisherInformation,fromwhichtheassociatedlogarithmicSobolevinequalityforprobabil-itymeasureinEuclideansettingisrecovered.Thesecondmonotonicityformulacombinesverywellwithconvolutionanddiffusionsemigrouppropertiesoftheheatkerneltoestab-lishtheproofofthemultilinearHölderinequalities
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics |
Depositing User: | Mr DIGITAL CONTENT CREATOR LMU |
Date Deposited: | 18 Sep 2019 10:07 |
Last Modified: | 18 Sep 2019 10:07 |
URI: | https://eprints.lmu.edu.ng/id/eprint/2236 |
Actions (login required)
View Item |