Synthesis and crystal structures of zinc(II) coordination polymers of trimethylenedipyridine (tmdp), 4-nitrobenzoic (Hnba) and 4-biphenylcarboxylic acid (Hbiphen) for adsorptive removal of methyl orange from aqueous solution

Tella, A.C. and Oladipo, A. C. and Adimula, V. O and Olayemi, V. T. and Dembaremba, T. O and Ogunlaja, A. S. and Clarkson, G. J. and Walton, R. I. (2020) Synthesis and crystal structures of zinc(II) coordination polymers of trimethylenedipyridine (tmdp), 4-nitrobenzoic (Hnba) and 4-biphenylcarboxylic acid (Hbiphen) for adsorptive removal of methyl orange from aqueous solution. Polyhedron, 192.

Full text not available from this repository. (Request a copy)
Official URL: https://www.sciencedirect.com/science/article/pii/...

Abstract

Two novel Zn(II) coordination polymers (CPs), [Zn(nba)2(tmdp)]n (1) and [Zn(biphen)2(tmdp)]n (2), were synthesised by reacting Zn(NO3)2�6H2O and 4,40-trimethylenedipyridine (tmdp) with corresponding carboxylates: 4-nitrobenzoic (Hnba) and 4-biphenylcarboxylic acid (Hbiphen). Their structures were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compounds 1 and 2 are one-dimensional CPs with the zinc(II) carboxylate units bridged through the N-donor spacer ligand. The zinc (II) atom adopts a tetrahedral arrangement in 1 and 2 coordinated by two nitrogen atoms from two tmdp ligand molecules and two deprotonated oxygen atoms from two carboxylate ligand molecules. The adsorption capacities of MO in this study was found to be 546.31 mg/g and 22.67 mg/g for 1 and 2, respectively. DFT studies confirmed that adsorption is primarily due to p-p stacking and electrostatic interactions between MO and 1. It is noteworthy that binding energy (BE) values for 1 (-74.14 KJ/mol) and 2 (-61.11 KJ/mol) correlate reasonably well with the observed adsorption capacities of MO. The study demonstrated that 1 has higher adsorption efficiency in comparison to 2 and could be an effective and easily reusable adsorbent for the removal of MO from wastewater.

Item Type: Article
Subjects: Q Science > QD Chemistry
Depositing User: Mrs Adetola Oladipo
Date Deposited: 13 Jul 2021 15:56
Last Modified: 13 Jul 2021 15:56
URI: https://eprints.lmu.edu.ng/id/eprint/3437

Actions (login required)

View Item View Item