Atoyebi, O. D. and Awolusi, T. F. and Davies, I. E. E. (2018) Artificial neural network evaluation of cement-bonded particle board produced from red ironwood (Lophira alata) sawdust and palm kernel shell residues. Case Studies in Construction Materials, 9. ISSN 2214-5095
Text
1-s2.0-S2214509518300718-main.pdf - Published Version Download (3MB) |
Abstract
As a way of promoting environmental sustainability, it becomes paramount to salvage the quantity of agricultural wastesbeingdestroyedordisposedintotheenvironment.Anovelstrategytoreducethesewastesisbyreusingthem.Inthepresentstudy,thephysicalandmechanicalpropertiesofparticleboardsproducedfromredironwood(Lophiraalata)sawdustandpalmkernelshell(PKS)wasevaluatedbyartificialneuralnetwork(ANN).Theproductionofthisparticleboardsinvolvedthesynergisticcombinationofeffectiveparameterssuchaspercentagecompositionofcement,sawdustandpalmkernelshellvariedbetween25–40,20–50and20–50respectively.Theboardsweretestedforphysicalpropertiessuchaswaterabsorption(WA),thicknessswelling(TS),densityandmechanicalpropertiessuchasmodulusofrupture(MOR)andmodulusofelasticity(MOE).ThenetworkswastrainedandtestedbyMultilayerNormalFeedForwardPerceptron(MNFFP),withaquickpropagationlearningalgorithm.TheperformanceoftheANNnetworkshowsithasahighpotentialforpredictingthepropertiesofcementbondedparticleboard.©2018TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC
Item Type: | Article |
---|---|
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Depositing User: | Mr DIGITAL CONTENT CREATOR LMU |
Date Deposited: | 04 Oct 2019 13:11 |
Last Modified: | 04 Oct 2019 13:11 |
URI: | https://eprints.lmu.edu.ng/id/eprint/2483 |
Actions (login required)
View Item |