AN INVERSE EIGEN VALUE PROBLEM FOR OPTIMAL LINEAR QUADRATIC CONTROL

Oladejo, N. K. and Oduro, F. T. and Amponsah, S. K. (2014) AN INVERSE EIGEN VALUE PROBLEM FOR OPTIMAL LINEAR QUADRATIC CONTROL. International Journal of Mathematical Archive, 5 (4). pp. 306-314. ISSN ISSN 2229 – 5046

[img] Text
09_0669_Epidemiology_Chlamydia_am0504.pdf

Download (167kB)

Abstract

This paper considers linear quadratic optimal control from the perspective of a matrix inverse eigenvalue problem. The approach employed uses a Newton’s method for solving the Inverse Eigenvalue problem for a class of Hermitian/Hamiltonian matrices in the neighborhood of a related singular matrix of rank 1.A few numerical examples are presented to illustrate the result.

Item Type: Article
Subjects: Q Science > QA Mathematics
Depositing User: ELDER OGUNTAYO SUNDAY ADEBISI
Date Deposited: 26 Nov 2018 09:54
Last Modified: 26 Nov 2018 09:54
URI: https://eprints.lmu.edu.ng/id/eprint/1357

Actions (login required)

View Item View Item