Oladejo, N. K. and Oduro, F. T. and Amponsah, S. K. (2014) AN INVERSE EIGEN VALUE PROBLEM FOR OPTIMAL LINEAR QUADRATIC CONTROL. International Journal of Mathematical Archive, 5 (4). pp. 306-314. ISSN ISSN 2229 – 5046
Text
09_0669_Epidemiology_Chlamydia_am0504.pdf Download (167kB) |
Abstract
This paper considers linear quadratic optimal control from the perspective of a matrix inverse eigenvalue problem. The approach employed uses a Newton’s method for solving the Inverse Eigenvalue problem for a class of Hermitian/Hamiltonian matrices in the neighborhood of a related singular matrix of rank 1.A few numerical examples are presented to illustrate the result.
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics |
Depositing User: | ELDER OGUNTAYO SUNDAY ADEBISI |
Date Deposited: | 26 Nov 2018 09:54 |
Last Modified: | 26 Nov 2018 09:54 |
URI: | https://eprints.lmu.edu.ng/id/eprint/1357 |
Actions (login required)
View Item |