

International Journal of Emerging Technology and Advanced Engineering Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

Application of Linear Programming in optimization of parking slot: A case study of Tamale-Bolgatanga lorry station in Ghana

N.K Oladejo¹, B D Awuley²

University for Development Studies, Ghana

Abstract-- This paper deals with optimization of parking slot via linear programming of Tamale/Bolgatanga main lorry station at the Tamale Metropolis in the Northern region of Ghana. It examined the maximum parking capacity of the Terminal and how it will be optimized to avoid traffic congestion in the metropolis and determined the best parking slot allocation to be distributed among different types of vehicle on limited parking space.

Key word-- Optimization, Parking slot, Linear, Programming,

I. MODEL FORMULATION

Proportionality of average parking accumulation is computed out of the daily data obtained for each type of vehicle. This implies that proportion of vehicle average parking accumulation daily for each type of vehicle is computed from the vehicle average parking accumulation divided by total average parking accumulation for each vehicles and then multiplied by parking space capacity of the form:

$$\frac{q_{1}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{q_{2}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{q_{3}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{q_{4}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{q_{5}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{4})$$
(1)

Where

 q_1 is taxi average parking accumulation (number of vehicles daily)

 q_2 is 207 Benz Bus average parking accumulation (number of vehicles daily)

 q_3 is Sprinter Benz Bus average parking accumulation (number of vehicle daily)

 q_4 is Benz Bus average parking accumulation (number of vehicle daily)

 q_5 is Yutong Bus average parking accumulation (number of vehicle daily)

While $(y_1 + y_2 + y_3 + y_4 + y_5)$ is parking space capacity allocated with

- y_1 is the parking space capacity Taxi
- y_2 is parking space capacity for 207 Benz Bus
- y_3 is parking space capacity for Sprinter Benz Bus
- y_4 is parking space capacity for Benz Bus
- y_5 is parking space capacity for Yutong Bus

Which represent the proportionality to average on-thescale parking duration/time (in minutes) for Taxi, 207 Benz Bus, Sprinter Benz Bus, Benz Bus and Yutong Bus. This is computed from the vehicle average on-the-scale parking duration divided by total average on-the-scale parking duration for all vehicles in a day and then multiplied by parking space capacity mathematically written as:

$$\frac{t_{1}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{t_{2}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{t_{3}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{t_{4}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{5})$$

$$\frac{t_{5}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}}(y_{1}+y_{2}+y_{3}+y_{4}+y_{4})$$

$$(2)$$

Where

 t_1 is average on-the-scale parking duration for taxi in minutes,

 t_2 is average on-the-scale parking duration for 207 Benz Bus in minutes,

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

 t_3 is average on-the-scale parking duration for Sprinter Benz Bus in minutes,

 t_4 is average on-the-scale parking duration for Benz Bus in minutes,

 t_5 is average on-the-scale parking duration for Yutong Bus in minutes

While $(y_1 + y_2 + y_3 + y_4 + y_5)$ is the parking space capacity allocated to each vehicles.

II. PARKING CHARACTERISTICS

We adopt the following Parking characteristics/parameters in the model formulation

- 1. *Parking volume:* The number of vehicle entering a parking site.
- 2. *Parking accumulation:* A number of vehicles parked at a parking site at a certain time.
- 3. *Parking index:* The percentage of the vehicle occupying the parking area.
- 4. *Parking duration:* The time interval (minute/hour) for a certain vehicle parked at a parking site. Percentage amount of parking duration is formulated as ratio between the amount of vehicle parked during certain time interval and total number of vehicle observed.

- 5. Average parking duration: Total number of vehicle parked during certain time interval compared to vehicle enter parking site.
- 6. *Parking exchanges:* Measurement of parking occupation calculated as ratio between the numbers of vehicle parked compared to parking capacity available.
- 7. Parking utilization level, computed from the ratio between average parking and parking space capacity.

Here we want to maximize the parking space capacity at Tamale/Bolgatanga main lorry station subject to available parking land, and at the same time meet the demand of parking for each type of vehicle Average parking is obtained from the ratio between sum of parking accumulation for all observation time and number of observation. The parking demand is based on proportionality of average parking accumulation and average on-the-scale parking duration.

Table 1 show the packing control unit (PCU) which depend on vehicle dimension with additional space needed for a vehicle to manoeuvre whose value depending on the parking angle showing the allocated parking space without additional space (PSWoAS) and parking space with additional space (PSWAS) of 0.5m² for all five types of vehicle is shown the table below.

S/N	Type of Vehicle	Width/m	Parking Width/m	Length/m	Parking Length/m	PSWoAS /meter sqr	PSWAS/ meter sqr
1	Taxi	1.90	2.40	4.42	4.92	8.40	11.81
2	Urvan	2.07	2.57	4.96	5.46	10.27	14.03
3	Ssang Young	2.07	2.57	5.49	5.99	11.36	15.39
4	207 Bus	2.20	2.70	5.57	6.07	12.25	16.39
5	Sprinter Bus	2.14	2.64	5.87	6.37	12.56	16.82
6	Benz Bus	2.20	2.70	7.22	7.72	15.88	20.84
7	Yutong Bus	2.44	2.94	11.89	12.39	29.01	36.43

Table 1

From the table, the allocated parking space for all five types of vehicle is as follows:

- a. Parking space for Taxi is 11.81m².
- b. Parking space for 207 Benz Bus is 16.39m².
- c. Parking space for Sprinter Benz Bus is 16.82m².
- d. Parking space for Benz Bus is 20.84m².
- e. Parking space for Yutong Bus is 36.43m²

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

Table 2 shows the structure of decision making for maximization of parking capacity

		Activity	
		y_1 y_2 y_3 y_4 y_5	
No	Coefficient of objective functions	$w_1 w_2 w_3 w_4 w_5$	Limitation factors
1 2	Parking space area	u_{11} u_{12} u_{13} u_{14}	$\leq v_1$
3	Taxi parking accumulation	$u_{15} u_{21} u_{22} u_{23} u_{24}$	$\geq v_2$
4	207 Benz Bus parking accum	<i>u</i> ₂₅	> v
5	Sprinter Benz Bus parking	u_{31} u_{32} u_{33} u_{34} u_{35}	$\leq V_3$
6	Benz Bus parking accumulation	u_{A1} u_{A2} u_{A3} u_{A4} u_{A5}	$\geq v_4$
7	Yutong Bus parking accumulation	41 42 45 44 45	$\geq v_5$
	Proportional average on-the-scale parking duration for Taxi	u_{51} u_{52} u_{53} u_{54} u_{55}	$\geq v_6$
8	Proportional average on-the-scale parking	u_{61} u_{62} u_{63} u_{64} u_{65}	$\geq v_7$
9	duration for 207 Bus	u_{71} u_{72} u_{73} u_{74} u_{75}	~
	duration for Sprinter Bus	u_{81} u_{82} u_{83} u_{84} u_{85}	$\leq V_8$
10	Proportional average on-the-scale parking duration for Benz Bus	u_{91} u_{92} u_{93} u_{94} u_{95}	$\geq v_9$
11	Proportional average on-the-scale parking		> v.
	duration for Yutong Bus	u_{101} u_{102} u_{103} u_{104} u_{105}	$\leq v_{10}$
			$\geq v_{11}$
		u_{111} u_{112} u_{113} u_{114} u_{115}	

Table 2

III. LINEAR PROGRAMMING PROCESSING MODEL

We set our objective function and its constraints as followed

Maximize: $y_1 + y_2 + y_3 + y_4 + y_5$

 $11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \le PSArea$

$$y_1 \ge \frac{q_1}{q_1 + q_2 + q_3 + q_4 + q_5} (y_1 + y_2 + y_3 + y_4 + y_5) \beta$$

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

$$y_{2} \geq \frac{q_{2}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}} (y_{1}+y_{2}+y_{3}+y_{4}+y_{5})\beta$$

$$y_{3} \geq \frac{q_{3}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}} (y_{1}+y_{2}+y_{3}+y_{4}+y_{5})\beta$$

$$y_{4} \geq \frac{q_{4}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}} (y_{1}+y_{2}+y_{3}+y_{4}+y_{5})\beta$$

$$y_{5} \geq \frac{q_{5}}{q_{1}+q_{2}+q_{3}+q_{4}+q_{5}} (y_{1}+y_{2}+y_{3}+y_{4}+y_{5})\beta$$

$$y_{1} \geq \frac{t_{1}}{t_{1}+t_{2}+t_{3}+t_{4}+t_{5}} (y_{1}+y_{2}+y_{3}+y_{4}+y_{5})\beta$$

$$y_{2} \geq \frac{t_{2}}{t_{1} + t_{2} + t_{3} + t_{4} + t_{5}} (y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$$

$$y_{3} \geq \frac{t_{3}}{t_{1} + t_{2} + t_{3} + t_{4} + t_{5}} (y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$$

$$y_{4} \geq \frac{t_{4}}{t_{1} + t_{2} + t_{3} + t_{4} + t_{5}} (y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$$

$$y_{5} \geq \frac{t_{5}}{t_{1} + t_{2} + t_{3} + t_{4} + t_{5}} (y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$$

Non-negativity constraints:

Substituting

$$y_1, y_2, y_3, y_4, y_5, q_1, q_2, q_3, q_4, q_5, t_1, t_2, t_3, t_4, t_5, \ge 0 : 0 \le \beta \le 1$$

Table.3 shows the total on-the-scale parking duration/time and exit daily () in minutes.

values

	Table 3						
Day	Taxi	Urvan	Ssang Yo	207 Benz	Sprinter	Benz	Yutong
1	515 (55)	229 (8)	95(2)	269(10)	124(3)	195(4)	434(4)
2	590 (65)	177(8)	267(2)	564(23)	289(3)	242(4)	570(4)
3	709 (62)	201(4)	41(1)	895(24)	662(7)	198(3)	401(3)
4	596 (55)	120(3)	99(2)	932(21)	629(7)	119(2)	434(3)
5	288 (33)	133(6)	22(1)	524(17)	461(6)	107(3)	278(3)
Tot.	2698 (270)	860(29)	524(8)	3184(995)	2165 (26)	861 (16)	2117 (17)

of

 $q_1, q_2, q_3, q_4, q_5, t_1, t_2, t_3, t_4, t_5$ and solve equations (1) and (2) with parking space area of 1163m² into the optimization problem yields:

the

Maximize: $Z = y_1 + y_2 + y_3 + y_4 + y_5$ Subject to:

for

 $11.81y_{1} + 16.39y_{2} + 16.82y_{3} + 20.84y_{4} + 36.43y_{5} \le 1163$ $y_{1} \ge 0.51(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{2} \ge 0.20(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{4} \ge 0.11(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{5} \ge 0.04(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{1} \geq 0.03(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{2} \geq 0.11(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{3} \geq 0.27(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{4} \geq 0.18(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ $y_{5} \geq 0.41(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})\beta$ Where $y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geq 0$ and $0 \leq \beta \leq 1$ When

 $\beta_{=0.80}$ Maximize: $Z = y_1 + y_2 + y_3 + y_4 + y_5$

Subject to:

 $11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \le 1163$

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

 $\begin{array}{l} 0.592\,y_1-0.408\,y_2-0.408\,y_3-0.408\,y_4-0.408\,y_5\geq 0\\ 0.840\,y_2-0.160\,y_1-0.160\,y_3-0.160\,y_4-0.160\,y_5\geq 0\\ 0.888\,y_3-0.112\,y_1-0.112\,y_2-0.112\,y_4-0.112\,y_5\geq 0\\ 0.912\,y_4-0.088\,y_1-0.088\,y_2-0.088\,y_3-0.088\,y_5\geq 0\\ 0.968\,y_5-0.024\,y_1-0.024\,y_2-0.024\,y_3-0.024\,y_4\geq 0\\ 0.976\,y_1-0.024\,y_2-0.024\,y_3-0.024\,y_4-0.024\,y_5\geq 0\\ 0.888\,y_2-0.112\,y_1-0.112\,y_3-0.112\,y_4-0.112\,y_5\geq 0\\ 0.784\,y_3-0.216\,y_1-0.216\,y_2-0.216\,y_4-0.216\,y_5\geq 0\\ 0.856\,y_4-0.144\,y_1-0.144\,y_2-0.144\,y_3-0.144\,y_5\geq 0 \end{array}$

IV. ANALYSIS OF OPTIMIZATION/RESULTS

Considering average parking accumulation and average on-the-scale parking duration at $\beta = 0.70, 0.80, 0.90$ and 1.00.

When $\beta = 0.70$ Maximize: $Z = y_1 + y_2 + y_3 + y_4 + y_5$

Subject to:

$$\begin{split} &11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \leq &1163 \\ &0.643y_1 - 0.357y_2 - 0.357y_3 - 0.357y_4 - 0.357y_5 \geq &0 \\ &0.860y_2 - 0.140y_1 - 0.140y_3 - 0.140y_4 - 0.140y_5 \geq &0 \\ &0.902y_3 - 0.098y_1 - 0.098y_2 - 0.098y_4 - 0.098y_5 \geq &0 \\ &0.923y_4 - 0.077y_1 - 0.077y_2 - 0.077y_3 - 0.077y_5 \geq &0 \\ &0.979y_1 - 0.021y_2 - 0.021y_3 - 0.021y_4 - 0.021y_5 \geq &0 \end{split}$$

 $0.923 y_2 - 0.077 y_1 - 0.077 y_3 - 0.077 y_4 - 0.077 y_5 \ge 0$

 $0.811y_3 - 0.189y_1 - 0.189y_2 - 0.189y_4 - 0.189y_5 \ge 0$

 $0.672y_5 - 0.328y_1 - 0.328y_2 - 0.328y_3 - 0.328y_4 \ge 0$ Where $y_1, y_2, y_3, y_4, y_5 \ge 0$ & $\beta = 0.80$

When $\beta_{=0.90}$

Maximize: $Z = y_1 + y_2 + y_3 + y_4 + y_5$

Subject to:

$$\begin{split} & 11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \leq & 1163 \\ & 0.541y_1 - 0.459y_2 - 0.459y_3 - 0.459y_4 - 0.459y_5 \geq & 0 \\ & 0.820y_2 - 0.180y_1 - 0.180y_3 - 0.180y_4 - 0.180y_5 \geq & 0 \end{split}$$

 $0.874y_3 - 0.126y_1 - 0.126y_2 - 0.126y_4 - 0.126y_5 \ge 0$ $0.901y_4 - 0.099y_1 - 0.099y_2 - 0.099y_3 - 0.099y_5 \ge 0$

 $0.964y_5 - 0.036y_1 - 0.036y_2 - 0.036y_3 - 0.036y_4 \ge 0$

 $0.973y_1 - 0.027y_2 - 0.027y_3 - 0.027y_4 - 0.027y_5 \ge 0$

$$y_1, y_2, y_3, y_4, y_5 \ge 0 \ \beta = 0.70$$

 $0.901y_2 - 0.099y_1 - 0.099y_3 - 0.099y_4 - 0.099y_5 \ge 0$

 $0.757 y_3 - 0.243 y_1 - 0.243 y_2 - 0.243 y_4 - 0.243 y_5 \ge 0$

 $0.838y_4 - 0.162y_1 - 0.162y_2 - 0.162y_3 - 0.162y_5 \ge 0$

 $0.631y_5 - 0.369y_1 - 0.369y_2 - 0.369y_3 - 0.369y_4 \ge 0$

 $y_1, y_2, y_3, y_4, y_5 \ge 0 \ \beta = 0.90$ When $\beta_{=1.00}$

Maximize: $Z = y_1 + y_2 + y_3 + y_4 + y_5$

Subject to

$$\begin{split} &11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \leq 1163 \\ &0.49y_1 - 0.51y_2 - 0.51y_3 - 0.51y_4 - 0.51y_5 \geq 0 \\ &0.80y_2 - 0.20y_1 - 0.20y_3 - 0.20y_4 - 0.20y_5 \geq 0 \\ &0.86y_3 - 0.14y_1 - 0.14y_2 - 0.14y_4 - 0.14y_5 \geq 0 \\ &0.89y_4 - 0.11y_1 - 0.11y_2 - 0.11y_3 - 0.11y_5 \geq 0 \\ &0.96y_5 - 0.04y_1 - 0.04y_2 - 0.04y_3 - 0.04y_4 \geq 0 \\ &0.97y_1 - 0.03y_2 - 0.03y_3 - 0.03y_4 - 0.03y_5 \geq 0 \\ &0.89y_2 - 0.11y_1 - 0.11y_3 - 0.11y_4 - 0.11y_5 \geq 0 \\ &0.73y_3 - 0.27y_1 - 0.27y_2 - 0.27y_4 - 0.27y_5 \geq 0 \\ &0.82y_4 - 0.18y_1 - 0.18y_2 - 0.18y_3 - 0.18y_5 \geq 0 \end{split}$$

$$0.59y_5 - 0.41y_1 - 0.41y_2 - 0.41y_3 - 0.41y_4 \ge 0$$

Where $y_1, y_2, y_3, y_4, y_5 \ge 0 \& \beta = 1.00$ Optimization considering both parking Accumulation and parking duration at β values from 0.5 and 0.6

When
$$\beta_{=0.50}$$

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

Maximize:
$$Z = y_1 + y_2 + y_3 + y_4 + y_5$$

Subject to:

$$\begin{split} & 11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \leq 1163 \\ & 0.745y_1 - 0.255y_2 - 0.255y_3 - 0.255y_4 - 0.255y_5 \geq 0 \\ & 0.90y_2 - 0.10y_1 - 0.10y_3 - 0.10y_4 - 0.10y_5 \geq 0 \\ & 0.93y_3 - 0.07y_1 - 0.07y_2 - 0.07y_4 - 0.07y_5 \geq 0 \\ & 0.945y_4 - 0.055y_1 - 0.055y_2 - 0.055y_3 - 0.055y_5 \geq 0 \end{split}$$

 $\begin{array}{l} 0.98y_5 - 0.02y_1 - 0.02y_2 - 0.02y_3 - 0.02y_4 \geq 0 \\ 0.985y_1 - 0.015y_2 - 0.015y_3 - 0.015y_4 - 0.015y_5 \geq 0 \\ 0.945y_2 - 0.055y_1 - 0.055y_3 - 0.055y_4 - 0.055y_5 \geq 0 \\ 0.865y_3 - 0.135y_1 - 0.135y_2 - 0.135y_4 - 0.135y_5 \geq 0 \\ 0.91y_4 - 0.09y_1 - 0.09y_2 - 0.09y_3 - 0.09y_5 \geq 0 \end{array}$

 $0.795y_5 - 0.205y_1 - 0.205y_2 - 0.205y_3 - 0.205y_4 \ge 0$ Where $y_1, y_2, y_3, y_4, y_5 \ge 0 & \beta = 0.50$

When $\beta_{=0.60}$

Maximize:
$$Z = y_1 + y_2 + y_3 + y_4 + y_5$$

Subject to:

$$\begin{split} &11.81y_1 + 16.39y_2 + 16.82y_3 + 20.84y_4 + 36.43y_5 \leq &1163 \\ &0.694y_1 - 0.306y_2 - 0.306y_3 - 0.306y_4 - 0.306y_5 \geq &0 \\ &0.88y_2 - 0.12y_1 - 0.12y_3 - 0.12y_4 - 0.12y_5 \geq &0 \\ &0.916y_3 - 0.084y_1 - 0.084y_2 - 0.084y_4 - 0.084y_5 \geq &0 \\ &0.934y_4 - 0.066y_1 - 0.066y_2 - 0.066y_3 - 0.066y_5 \geq &0 \end{split}$$

 $0.976y_5 - 0.024y_1 - 0.024y_2 - 0.024y_3 - 0.024y_4 \ge 0$

 $0.982y_1 - 0.018y_2 - 0.018y_3 - 0.018y_4 - 0.018y_5 \ge 0$

 $\begin{array}{l} 0.934y_2-0.066y_1-0.066y_3-0.066y_4-0.066y_5\geq 0\\ 0.838y_3-0.162y_1-0.162y_2-0.162y_4-0.162y_5\geq 0\\ 0.892y_4-0.108y_1-0.108y_2-0.108y_3-0.108y_5\geq 0\\ 0.754y_5-0.246y_1-0.246y_2-0.246y_3-0.246y_4\geq 0 \end{array}$

Where $y_1, y_2, y_3, y_4, y_5 \ge 0 \& \beta = 0.60$

V. RESULTS

The model was tested for β value ranging from 0.70 to

1 with an interval of 0.10 using Management Scientist Version 5, (2000) to find the optimal solutions with respect to the various constraints and results as tabulated below

- 1. Optimization considering average parking accumulation constraints with β value of 0.70- 1.00.
- 2. Optimization considering only average on-the-scale parking duration constraints with values β from 0.70 to 1.00.
- 3. Optimization considering both constraints of average parking duration and average parking accumulation with values of β 0.50 and 0.60

Formulation Considering Parking Accumulation Only

Table 4 Results of Optimization considering average parking accumulation only

		Table 4		
Variable	$\beta = 0.70$	$\beta = 0.80$	$\beta = 0.90$	$\beta = 1.00$
<i>y</i> ₁	53.333	48.147	43.207	38.501
<i>y</i> ₂	11.365	12.670	13.913	15.099
<i>y</i> ₃	7.955	8.869	9.739	10.569
<i>Y</i> ₄	6.251	6.969	7.652	8.304
<i>Y</i> ₅	2.273	2.534	2.783	3.020
Z	81.176	79.189	77.297	75.493

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

From the above table, the result indicate that the higher the value of β (level of satisfaction), the smaller the parking slot obtained with Taxi having the highest

accumulation and Yutong bus in(y_5) having the lowest accumulation in comparison to the others.

Table 5 shows Optimization considering average on-thescale parking duration only

Variable	$\beta = 0.70$	$\beta = 0.80$	$\beta = 0.90$	$\beta = 1.00$
<i>y</i> ₁	17.514	12.496	6.147	1.374
<i>y</i> ₂	4.202	5.772	4.792	5.039
<i>y</i> ₃	10.313	8.942	11.761	12.369
${\mathcal Y}_4$	6.875	7.421	7.841	8.246
<i>Y</i> ₅	15.661	16.903	17.860	18.783
Z	54.567	51.533	48.401	45.812

From the table, it shows that the higher the value of β (level of satisfaction) the smaller the parking slot obtained. Here Yutong buses (y_5) having highest average on-the-scale parking duration in comparison to the others. However, as average on-the-scale parking duration for all vehicles almost closed, the differences were not very extreme and the resulting parking slot allocations were also closed among all five types of vehicle.

Table.6 Shows Optimization considering both parking accumulation and parking duration.

Variable	$\beta = 0.50$	$\beta = 0.60$
<i>Y</i> ₁	29.069	20.954
<i>y</i> ₂	6.185	6.908
<i>y</i> ₃	8.349	9.326
<i>Y</i> ₄	5.566	6.217
<i>Y</i> ₅	12.679	14.161
Z	61.848	57.566

Table 6

From the table, it shows that the higher the value of β (level of satisfaction) the smaller the parking slot obtained especially,

Taxi (y_1) having the highest average parking accumulation and parking duration in comparison to the others.

Table 5	

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 11, November 2016)

In contrast, parking slots for the remaining types of vehicle increased with the increase of the β value (i.e. level of satisfaction). Comparison of all three procedures suggest that the formulation considering parking accumulation only is the best option if the total number of optimal parking slot is used as a performance measurement and the formulation considering average on-the-scale parking duration only is clearly less preferable as it gives the result of less number of optimal parking slot and it does not relate significantly with the customer satisfaction practically.

VI. CONCLUSION

This paper deal with optimization of parking slot using linear programming at the Tamale Metropolis in the Northern Region of Ghana with particular emphasis at the Savelugu Terminal (i.e. Tamale/Bolgatanga main lorry station) where we examine the maximum parking capacity of the Terminal and how it will be optimized to avoid traffic congestion in the metropolis and determine the best parking slot allocation to distribute among different types of vehicle on limited parking space. It shows that the higher the value of β (level of satisfaction) the smaller the parking slot obtained as the formulation considering parking accumulation only is the best option if the total number of optimal parking slot is used as a performance measurement.

REFERENCES

- Abdullah, K. (2012). Optimization of the parking spaces: A case study of Dataran Mawar, UiTM Shah Alam, Humanities, Science and Engineering (CHUSER), 2012 IEEE Colloquium, pp 684-687.
- [2] Anderson, D. R, Sweeney, D. J. and Williams, T. A. (2000). The Management Scientist: for Windows 98, and Windows NT. Version 5, Cincinnati: South-Western College Pub.
- [3] Arnott, R. and Rowse, J. (2009). Downtown parking in auto city. Reg Sci Urban Econ. 39, pp 1–14.
- [4] Banerjee, S. and Al-Qaheri, H.(2011). An Intelligent Hybrid Scheme for Optimizing Parking Space: A Tabu metaphor and rough set based approach. Egyptian informatics Journal. 12 (1), pp 9-17.
- [5] Bruglieri, M., Colorni, A. and Lu'e, A. (2009). The Parking Warden Tour Problem. Proceeding of CTW. pp 11-15.
- [6] Caicedo, F. (2010). Real-time parking information management to reduce search time, vehicle displacement and emissions. Transp Res Part D. 15, pp 34-228.
- [7] Chang, G. and Ping, G. (2012). Research on parking space optimal design method in parking lots. Advanced Science Letters. 11(1), pp 698-701.
- [8] Chen, C. S. and Schonfeld, P. (1988). Optimum stall angle for large parking lots. Journal of Transportation Engineering. 114 (5), pp 574-583.
- [9] Davis, A. Y., Pijanowskia, B. C., Robinson, K. D. and Kidwellb, P. B. (2010). Estimating parking lot footprints in the Upper Great Lakes Region of the USA. Landscape Urban Plan. 96, pp 68–77.
- [10] Just, F. A F. et a (2014). Automatic parking lot occupancy computation using motion tracking Proc. SPIE 9026, Video Surveillance and Transportation Imaging Applications 2014, 90260Q.