IRI-2016 evaluation of African low-latitude ionosphere during 2015 St. Patrick’s Day storm main phase

S.O. Ikubanni
(stevewde1@yahoo.com/ ikubanni.Stephen@lmu.edu.ng)
(0703 226 1146)

Landmark University, P.M.B. 1001, Omu-Aran, Nigeria
(www.lmu.edu.ng)
OUTLINE

• INTRODUCTION
 ✓ International Reference Ionosphere (IRI) overview
 ✓ Description of 2015 St. Patrick’s Day storm
 ✓ Some geospace response to the storm

• DATA AND METHOD

• RESULTS
 ✓ African southern low-latitude TEC response to Main Phase event
 ✓ IRI storm-time model validation

• CONCLUSION
INTRODUCTION

• IRI is a data-based/empirical model.
• Limitations of theory-based models such as evolving theoretical understanding.
• Based on most of the available and reliable observations.
• About 50 international experts “Working Group” - IRI development & improvement.
• Extensive and excellent results.
• Standard Ionospheric Climatological model (ISO 16457:2014)
• Improvement on transient and near-real-time values.

• March 17, 2015 storm
 - Most intense in the 24th solar cycle, although underestimated by forecasters
 (Astafyeva et al. 2015, Jacobsen and Andalsvik 2016)
 - Severe scintillation in GNSS signal (Jacobsen and Andalsvik 2016)
 - Absence of PRE around the equator during main phase (Hairston et al. 2016, Kalita et al. 2016)
INTRODUCTION cont’d

Global map of IRTAM-foF2 and GIRO-foF2 deviation from IRI at 21:52UT on St. Patrick Day storm – March 17, 2015 (Galkin et al. 2016)

(giro.uml.edu)
METHOD

- March 17, 2015
 - $F_{10.7} = 113 \times 10^{-22} Wm^{-2}Hz^{-1}$
 - Minimum $SYM - H = -234nT$ (around 2300 UT)
 - Peak AE = 1570nT (at 1400 UT)
 - Daily $ap = 108nT$

List of Stations used for this work

<table>
<thead>
<tr>
<th>Location</th>
<th>Station ID</th>
<th>Country</th>
<th>Geographic</th>
<th>Geomagnetic</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
<td>Latitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.35° N</td>
<td>9.67° E</td>
<td>8.05° S</td>
</tr>
<tr>
<td>Libreville</td>
<td>NKLG</td>
<td>Gabon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbarara</td>
<td>MBAR</td>
<td>Uganda</td>
<td>0.60° S</td>
<td>30.74° E</td>
<td>10.25° S</td>
</tr>
<tr>
<td>Malindi</td>
<td>MAL2</td>
<td>Kenya</td>
<td>2.70° S</td>
<td>40.19° E</td>
<td>12.10° S</td>
</tr>
</tbody>
</table>

- **IRI-2016**
 - Topside options - NeQuick
 - - IRI01corr
 - - IRI2001

 Bottomside options - URSI

Sept. 26, 2017

JOASEI-2017: Service to God and Humanity
RESULTS

Morphology of observed and modelled TEC data at the three African low latitude stations.

%Deviation of TEC from quiet time value during the Storm Main Phase at the three African low latitude stations.
% Deviation of modelled TEC values from Observed TEC values on 17 March 2015

Deviation of modelled TEC values from Observed TEC values on 17 March 2015
RESULTS cont'd

RMSE for the three IRI topside options during the period of high deviation from observation

<table>
<thead>
<tr>
<th></th>
<th>NKLG</th>
<th>MBAR</th>
<th>MAL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 - 0800 UT</td>
<td>1800 - 2300 UT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRI-NeQuick</td>
<td>21.9</td>
<td>13.3</td>
<td>21.3</td>
</tr>
<tr>
<td>IRI-01corr</td>
<td>29.3</td>
<td>20.0</td>
<td>27.5</td>
</tr>
<tr>
<td>IRI-2001</td>
<td>53.5</td>
<td>53.5</td>
<td>52.9</td>
</tr>
</tbody>
</table>

RMSE for the three IRI topside options during the storm main phase

<table>
<thead>
<tr>
<th></th>
<th>NKLG</th>
<th>MBAR</th>
<th>MAL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI-NeQuick</td>
<td>3.5</td>
<td>9.2</td>
<td>12.4</td>
</tr>
<tr>
<td>IRI-01corr</td>
<td>7.9</td>
<td>20.5</td>
<td>22.9</td>
</tr>
<tr>
<td>IRI-2001</td>
<td>63.6</td>
<td>77.7</td>
<td>75.8</td>
</tr>
</tbody>
</table>

RDMM for the three IRI topside options during the storm main phase

<table>
<thead>
<tr>
<th></th>
<th>NKLG</th>
<th>MBAR</th>
<th>MAL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRI-NeQuick</td>
<td>0.48</td>
<td>0.47</td>
<td>0.59</td>
</tr>
<tr>
<td>IRI-01corr</td>
<td>0.64</td>
<td>0.61</td>
<td>0.75</td>
</tr>
<tr>
<td>IRI-2001</td>
<td>1.15</td>
<td>1.13</td>
<td>1.32</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- TEC response to the storm main phase is inconsiderable except towards the period of minimum SYM-H, which falls towards 2200UT.

- The three IRI options presented the general morphology, but could not reproduce the signature of the storm event as reflected on the observed TEC.

- The three model options overestimated for the larger part of the day except between 0900 and 1700 UT, where there is underestimation.

- Deviation of modelled from observed TEC values is higher around the SSC and the minimum SYM-H, which falls around post-midnight and post sunset periods respectively.

- The NeQuick option performed better than others across the three low-latitude stations with a Root-Mean-Square Error (RMSE) value of 3.5TECU and Relative Deviation Module Mean (RDMM) of 0.48 at NKLG.

- With the lowest RDMM of 0.48, which is >0.06, even the best of the IRI options has poor agreement with observations.
Professor J.O. Adeniyi

-Father
-Mentor
-Role model
-Giant
-Angel

THANK YOU!
References