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ABSTRACT 

Manipulation of the AM fungal symbiosis for minimum input agricultural system provides an 
alternative to use of chemical inputs which have been associated with pollution and degradation of 
soil. The diversity, characteristics and distribution of AMF indigenous to the southern Guinea 
savanna of Nigeria were observed in this study. AMF spores were extracted from four soils from 
the zone, using the wet-sieving and decanting/density gradient centrifugation method.  Thereafter, 
spores were enumerated with the aid of  a stereomicroscope. Characterization of the AMF spores 
was carried out using reaction to Mezler’s reagent and microscopic morphological features. The 
soil pH, Effective Cation Exchange Capacity (ECEC), Organic Matter (OM), Nitrogen and 
Available Phosphorus contents of the soil were determined. Characterization of the AMF spores 
were carried out using morphological (scan electron microscopy and light microscopy). Fungal 
spores encountered varied in colour (white, orange, reddish brown and black), size (188.16 µm - 
412.66µm) and shape (globose, subglobose, and oblong). Thirteen Arbuscular mycorrhizal species: 
Scutellospora reticulata, Acalospora laevis,Glomus intraradices, Scutellospora calospora, 
Gigaspora margarita, Enthrophosphora infrequens, Glomus pansihalos, Glomus tortuosum, 
Paraglomus brasilianum, Paraglomus occultum, Glomus manihotis, Gigaspora decipien and 
Scutellospora pellucida were identified in the soil samples. The spores of Glomus and 
Scutellospora species were abundant in soils of this zone (30.77% and 23.08% respectively). S. 
reticulata and G. pansihalos predominated the soils studied. Significant negative correlations were 
observed between AMF spore population and soil factors: Soil pH (r = -0.70*); %OM content (r = -
0.98*); ECEC (r = -0.79*); % Nitrogen (r = -0.95*) and available Phosphorus (r = -0.74*) 
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    CHAPTER ONE 

                                                    INTRODUCTION 

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of an estimated 80-90% of vascular 

plants and some nonvascular plants, such as mosses (Smith and Read, 1997). Compared to other 

diversity of endomycorrhizal associations, this symbiosis is the most prevalent and is a type of 

endomycorrhiza in which the fungus penetrates cortical cell walls. (Hennigan, 2009) The hyphae 

develop mycelium, arbuscules and in most fungal genera, vesicles in roots (Sharif and Moawad, 

2006). Arbuscular mycorrhizal (AM) used to be classified as Vesicular Arbuscular Mycorrhizal 

(VAM) but research uncovered that a major suborder did not form thin-walled, lipid –filled 

vesicles, so they are referred to as AM association today (Hennigan, 2009). They represent the 

most widespread and probably most ancient type of association in which the large majority of 

terrestrial plants must have evolved with compatibility. Both fossil (Remy et al., 1994) and 

molecular phylogenetic evidence (Simon et al., 1993) support the hypothesis that terrestrial plants 

evolved with the existing Arbuscular mycorrhiza relationship (Jeffries et al., 2003). AMF receive 

3-20% of photosynthate from their host plants in exchange for the transfer of soil-derived nutrient 

to roots (Treseder and Cross, 2006). Dense AM infections are common in most species of 

leguminoseae and gramineae. Most of the economically important crops are infected by AMF 

(Sharif and Moawad, 2006). Morton and Benny (1990) categorized species of AMF in order 

Glomales encompassing six genera namely; Glomus, Sclerocytis, Entrophosphora, Acaulospora, 

Gigaspora and Scutellospora and few species about one hundred fifty (150) have also been 

identified based on the method of spore formation (Mortoa and Benny, 1990; Jeffries et al., 2003). 

AMF are probably the most abundant fungi in agricultural soils. Mycorrhizal fungi play 

important roles in defining the ecological niches occupied by plants and determination of 

plant composition (Francis and Read, 1995). They have also been reported to regulate 
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ecosystem responses to environmental change at local to global scales (Treseder and Cross, 

2006). Mycorrhizas take over an important role in the survival of plants and additionally 

enlarge the ecological width of plant species. Cardoso and Kuper (2006) pointed out that 

Arbuscular Mycorrhizas have the ability to enhance host plant uptake of relatively 

immobile nutrients in particular P and several micronutrients. The transfer of soil-derived 

nutrients to roots by AM fungi in exchange for photosynthate from their host plants 

influence carbon (C) fluxes and nutrient dynamics among plants, soils and atmosphere 

(Treseder and Cross 2006). Jeffries et al. (2003) documented the fact that mycorrhizal 

plants provide the fungus with photosynthetic C, which in turn is delivered to the soil via 

fungal hyphae. The extra radical hyphae of AMF therefore act as a direct conduit for host 

C in the soil and contribute directly to its C pools by passing the decomposition process. 

 
Phosphorus nutrition of plants through Arbuscular Mycorrhiza involves metabolically 

dependent processes (Smith and Gianinazzi-Pearson, 1988). One enzyme that has been 

identified as active in Arbuscular Mycorrhiza is fungal alkaline phosphatase (Oliver et al., 

1983). It has been suggested that this enzyme may somehow be involved in the processes 

of phosphorus acquisition in mycorrhiza plants (Gianinazzi et al., 1992). Tisserant et al. 

(1993) have shown that the quantity of enzymically active fungal biomass increases 

sharply prior to growth stimulation, and then decreases with age of the infection. 

 
Rhizosphere interactions occur between AMF and other soil microorganisms such as 

nitrogen fixing bacteria with effects on plant nutrient balances (Paula et al., 1993). AM 

fungi interact with heavy metals/micro nutrients. They can restore the equilibrium of 

nutrient uptake that is misbalanced by heavy metals (Carneiro et al., 2000). Jeffries et al. 
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(2003) reported that Arbuscular mycorrhiza has the ability to ameliorate the toxic effect of 

heavy metals and organic xenobiotics. AMF can alleviate Aluminium (Al) toxicity 

(Cardoso and Kuyper, 2006). Furthermore, AMF can accelerate revegetation of severely 

degraded lands such as coalmines or waste site containing high level of heavy metals, 

(Marx and Altman, 1979). They can also form an integral component of successful 

revegetated flue-gas desulphurization sludge ponds (Wilson et al., 1991). Decrease in 

plants susceptibility to disease as a result of AM infection was reported by Olsen et al. 

(1991) and Cardoso and Kuyper (2006). Striga (parasitic weed) infestation on cowpea was 

delayed by AM (Gworgor, 1992) and the emergence of Striga in Sorghum was absolutely 

controlled by AM (Gworgwor and Weber 1992) 

 
AMF aid early establishment and growth of nursery seedlings and prevent soil erosion. 

These fungi also impart resistance to stress conditions such as drought and high salt 

concentration. Mycorrhizal colonization of roots has been shown to increase drought 

tolerance of maize (Subramanian et al., 2006); wheat (Al-Karaki, 1998); soybean (Bethlen 

Falvay et al., 1998); onion and lettuce (Azcon and Tobar, 1998) and redclover (Fitter, 

1998). AM symbiosis also improved leaf water potential (Ruiz-Lozano, 2003). Leaf water 

potential was higher in stressed soybean with AM than that in corresponding non-AM 

plants. The potential mechanisms include extensive absorption of water by external hyphae 

(Auge, 2003) stomata regulation through hormonal signals (Goicoechea, et al., 1997), an 

indirect effect of improved P nutrition upon water relations (Fitter, 1998) and greater 

osmotic adjustment in mycorrhizal plant (Auge et al., 1994). 
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Non-mycorrhizal plants occur in habitats where the soils are very dry, saline, water logged, 

severely disturbed and where soil fertility is extremely high or low (Brundrett, 1991). 

Climatic factors play important role in the establishment of Arbuscular mycorrhiza since 

they act on soil characteristics and control the physiology of host plants. Illumination is 

one of the required factors by mycorrhizal plants to allow optimum photosynthesis. In 

darkness, the plant may not have extra sugars available to give to the fungus. Inoculation 

attempts often fail during the winter, even in greenhouses, because the day length is too 

short to allow optimum photosynthesis (St. John, 1985).  

 
Justification and objectives of the study 

The Southern Guinea Savanna (SGS) of Nigeria is generally characterized by coarse 

textured surface soils which are low in organic matter and chemical fertility. These soils 

have, therefore, been classified (FAO Classification) as Luvisols, Ferrasols and Lithosols 

(Salako, 2003). None of the soils in the zone was rated as class 1 with high productivity. 

Most of the Southern Guinea Savanna soils fall into class 4. Crop productivity in the 

Southern Guinea Savanna agro ecological zone of Nigeria has reduced over the years dueto 

some characteristics of the soil. Sanchez et al. (2003) identified these characteristics in 

tropical soils as low soil moisture, low nutrient capital, erosion risk, low pH, high 

phosphorus fixation, low levels of soil organic matter, Aluminum toxicity and loss of soil 

biodiversity. Eroarome (2005) also reported that the soils of the zone usually have low 

productivity due to inadequate moisture retention capacity and low organic matter. They 

are physically fragile and prone to degradation because the topsoil contains large 

proportion of sand and with weak aggregation, because of the low level of organic matter 
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in this layer. The physical constraints are further compounded in gravelly soils or soils 

with shallow depth overlying plinthic or hardpan layer (Salako et al., 2002). Effects of 

parasitic organisms and weeds are not left out (Gworgwor, 1992 and Gworgwor and 

Weber 1992). 

 

In the last century, Green Revolution Technology such as the use of pesticides, synthetic 

fertilizers and high yielding cultivars were used to overcome these constraints (Dalgaard et 

al., 2003). With this technology, food supply in this zone increased, reducing hunger and 

improving nutrition. Nevertheless, numberless people have no food security (Stocking, 

2003). The Green Revolution techniques increased natural resource degradation, raising 

question about the sustainability of current agricultural practices (Dalgaard et al., 2003). 

Furthermore, these conventional agricultural systems contribute to loss of plant diversity. 

In conventional high – input systems, for example the addition of chemicals are continual 

disturbances to the soil system which may affect intrinsic abiotic and biotic soil factors 

possibly leading to long-term soil degradation (Bethlenfalvay and Linderman, 1992). The 

use of machines and fertilizers are considered to be responsible for degradation (Rosa 

Junior, 1984; Gaur and Adholeya, 2004). Chemicals used under these systems pollute both 

the soil and the atmosphere and also jeopardize the health of both farm workers and 

consumers. The ecosystem is contaminated with heavy metals. This refers to elements with 

specific mass higher than 5g cm-3, able to form sulphides (Gaur and Adholeya, 2004). Soil 

degradation produces change in the diversity and abundance of AM fungal populations 

(Koomen et al; 1990). This is critical because of the role of mycorrhizal fungi in plant 
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establishment and survival. Such elimination of arbuscular mycorrhizal fungal population 

can lead to problems with plant establishment and survival. 

 

Even if AM fungi are ubiquitous in terrestrial ecosystem, mechanical or chemical 

disturbance of the soil can substantially reduce their population, vigor and functioning. The 

number of spores and root colonization of plants occurring at sites are often reduced by 

soil disturbance. 

 

The conventional systems of agriculture are too expensive for smallholder farmers in a 

developing country like Nigeria. The benefits of soil additives are usually short-lived, 

unless slow release formulations are used and are not sustainable in low input or natural 

ecosystem. The challenge for the next 50 years is to double food production in a way that 

does not compromise environmental integrity and public health (Tilman et al., 2002). For 

better nutrient management in Southern Guinea Savanna of Nigeria, an increase in use of 

biological potential is important.  

 

The soil of Southern Guinea Savanna (SGS) has been classified by Kogbe and Adediran 

(2003) to be Typic Paleustalf (USDA), and loamy sand Alfisol with moderate pH and 

sandy loam texture in some other areas. Total P has been reported to be higher in forest 

soil than in Savanna (Adepetu, 1970; Adepetu and Corey, 1975) hence cropping requires 

additional fertilizer input to maintain good yields. However application, of high rate of P 

fertilizer was reported to be capable of causing nutrient imbalance and consequently yield 

depression of western yellow maize (Osiname, 1979). Aduloju and Olaniran (2001) 
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presented experimental evidences that the soil of Southern Guinea Savanna soils of Nigeria 

is low in organic matter content, available P and effective cation exchange capacity. Obi et 

al. (2008) also reported high infestation of termite in the soil of SGS of Nigeria. The 

termites feed, build and repair their nest and galleries out of soil fabrics and organic 

material therefore influencing soil fertility. Poor fertility of SGS soils can be overcome by 

management strategies. Critical level of Aluminium saturation can be kept deep in the 

profile by management techniques. Phosphate fixation that also characterized SGS soil 

needs to be decreased. (Montegomery, 1988). Most of the soils are acid (pH ≤5.5) in 

nature; having high aluminium (Al), iron (Fe) and manganese (Mn) ions levels that readily 

fix nutrient element in soils (Akinrinde, 2006). He also stated that the use of Arbuscular 

mycorrhiza fungi can provide possibility for improvement of the use-efficiency of applied 

nutrient in the face of increasing fertilizer costs, infinite resources, as well as 

environmental contamination and /or pollution hazards. Low available nutrients, 

particularly P deficiency, as well as drought and water stress in most tropical soils is one of 

the important environmental limiting factors for plant growth   (Atayese et al., 1993 ). In 

these conditions, plant growth is largely reliant upon AM symbiosis for nutrients and water 

uptake (Querejeta et al.,2003), which could significantly reduce the use of conventional 

fertilizers in soils (Raja, 2006). A more effective method of phosphate fertilization such as 

the use of Arbuscular mycorrhiza is necessary. The AM association has received attention 

as part of an increasingly popular paradigm that considers active and diverse soil biological 

community as essential for increasing the sustainability of agricultural systems (Cardoso 

and Kuyper, 2006). AMF constitute an important functional component of the soil -plant 

system that is critical for sustainable productivity in degraded soils. (Gaur and Adholeya, 
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2004). As suggested by Bethlenfalvay and Lindermann (1992), “The role of AMF may be 

critical if agriculture is to return to the state where luxury levels of farm inputs of 

fertilizers, pesticides and or chemicals are decreased to levels that are still economical, yet 

do not pollute the environment or pose health risk to consumers or handlers”. 

 

A thorough understanding of the ecology of species of AM fungi in Southern Guinea 

Savanna of Nigeria is therefore needed to enable manipulation of the AMF symbiosis for 

the benefit of minimum-input agricultural system and to obtain sustainable environment 

for agricultural purpose through organic agriculture. Many biotic and abiotic interactions 

around roots are probably mediated by AMF.  A successful shift in emphasis from 

chemicals to natural methods, such as crop rotation and the rational use of beneficial soil 

microorganisms, such as AMF, requires better knowledge on the dynamic relationships 

between agricultural practices and   interactions between cultivated crops, AMF and other 

soil biota. 

 

There is a dearth of information on the ranges of specific soil variables under which 

specific AM fungal species occur and thus on conditions, which may be tolerable or 

optimum for them in the Southern Guinea Savannah. Very limited information is available 

on the incidence of AM in Southern Guinea Savanna of Nigeria. Redhead (1977) 

established the occurrence of spores of endogonaceae spp in the soils of Southern Guinea 

Savanna of Nigeria. Several recent reviews have dealt with role of mycorrhizal 

associations in soil quality and sustainable agriculture (Dodd, 2002; Barea et al., 2002; 

Harrier and Watson, 2003). These reviews generally focused on temperate soils. However, 
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Cardoso and Kuyper (2006) reviewed the role of mycorrhizas in tropical soil fertility. No 

detailed and systematic studies have been conducted on the distribution of mycorrhizal 

fungi in Southern Guinea Savanna zone of Nigeria.  Therefore, this research work is aimed 

at:   

i evaluating the incidence of AMF in soils formed over basement complex and soils 

formed over sedimentary rock in the Southern Guinea Savanna of Nigeria; 

ii assessing the effects of some soil factors on AM fungi in soils of Southern Guinea 

Savanna of Nigeria;     

iii   Morphological  characterization of indigenous AMF of the soils of Southern Guinea     

    Savanna of   Nigeria. 
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 CHAPTER TWO                                                                               

                                                  LITERATURE REVIEW 

Characteristics, Occurrence and Distribution of Arbuscular Mycorrhizal Fungi 

Arbuscular Mychorizal (AM) aassociation involves primitive fungi in the Glomeromycota. In soil, 

Arbuscular mycorryzal fungi (AMF) produce a network of hyphae which form thicker hyphae that 

function as conduits and thin highly branched hyphae which are thought to absorb nutrients. Spores 

(large for a fungus), asexual spherical structures (20-1000 µm diameters) are formed on hyphae in 

soil, or in roots. (Brundrett et al., 1996). Spores are thick walled multi-nucleate resting structures 

(Miller et al., 1995). Hyphae (non-septate when young and ramify within the cortex). (Brundrett et 

al., 1996). Arbuscular mycorrhizae are characterized by the formation of unique structures such as 

arbuscules and vesicules (Wikipedia, the free encyclopedia). Arbuscules (intricately branched 

haustoria in cortex cell) and vesicles (storage structures formed by many fungi) are structures 

formed in roots (Brundrett et al., 1996).  

 

Mycorrhizal roots and the associated networks of hyphae are a major component of most soils, but 

cannot normally be seen with the naked eye. Mycorrhizal structures within root are normally not 

visible, unless roots have been cleared in hot alkali to make them transparent and stained with a 

dye that binds to fungal hyphae. According to Brundrett. (2008) mycorrhizal associations start 

when soil hyphae respond to the presence of a root by growing towards it, establishing contact and 

growing along its surface. Next, one or more hyphae produce swellings called appressoria between 

epidermal cells. Root penetration occurs when hyphae from the appressoria penetrate epidermal or 

cortical cells to enter the root. These hyphae cross the hypodermis (through passage cells, if these 

are present in an exodermis) and start branching in the outer cortex. Spores contain lipids, 

cytoplasm and many nuclei. They usually develop thick walls with more than one layer and can 

function as propagules. Spores may be aggregated into groups called sporocarps. Sporocarps may 

contain specialized hyphae and can be encased in an outer layer (peridium). Spores apparently form 

when nutrients are remobilized from roots where associations are senescing. They function as 

storage structures, resting stages and propagules. Spores may form specialized germination 

structure or hyphae may emerge through the subtending hyphae or grow directly through the wall.  
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AMF are the most wide spread type and ecologically important root fungal symbionts with more 

than 90% of higher plant species, including crop and fruit tree species, and are essential to the 

survival of many tropical plants (Strack et al., 2003). About 95% of the world’s plant species 

belong to characteristically mycorrhizal families (Smith and Read, 1997) and potentially benefit 

from AM fungus- mediated mineral nutrition due to the fundamental role played by these 

glomalean fungi in biogeochemical element cycling (Jeffries and Barea, 1994). AM symbiosis 

occurs in almost all habitats and climates (Barea et al., 1997), including disturbed soils (Enkhtuya 

et al., 2002) and those derived from mine activities (Bi et al., 2003).  

 

AM is the most abundant kind of mycorrhiza described as ‘a universal plant symbioses. They occur 

in a wide variety of hosts, different habitats and also vary in quality and quantity (Bhaskar, 2004). 

Miller and Jastrow (2000) reported that AMF are found in practically every taxonomic group of 

plants and the list of species not infected is probably far shorter than the infected ones. These 

microsymbionts occur widely under various environmental conditions with beneficial effects on 

soil structure. Arbuscular mycorrhizal fungi are recognized as an important, widespread component 

of most terrestrial ecosystems.  The best predictor of AM abundance was standing fine root length. 

As such, AM abundance tended to be much greater in grasslands than in other biomes (Treseder 

and Cross, 2006). NIIR Board (2004) stated that AM is found associated with majority of 

agricultural crops. They are ubiquitous in geographic distribution, occurring with plants growing in 

arctic, temperate and tropical regions alike.  

 

According to St. John (1985) the fungi that infect more plant tissue than any other kind are the 

beneficial mycorrhizal fungi. This little appreciated and inconspicuous microorganisms live partly 

inside the roots. They are allies of both wild and domesticated plants. Mycorrhizae are present in a 

great variety of cultivated plants. They can be found in almost every soil in the world, except where 

human activities have suppressed the symbiosis. AMF survive in soil as spores, root fragments and 

mycelia (Brundrett, 2000).  

 

The majority of herbaceous plant roots in natural ecosystems all over the world are colonised by 

AMF (Allen et al., 1995). In Poaceae, this association is widespread and occurs, with few 
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exceptions, in both annual and perennial species. Colonization of AM is common in infertile 

habitats (Newsham and Watkinson, 1998) and typical grassland soils with low phosphorus level 

(McNaughton and Oesterheld, 1990). Arbuscular Mycorrhizal fungi are major components of 

rhizosphere microflora in natural ecosystems (Tarafdar and Panwar, 2006).  AMF are distributed 

worldwide (Sharif and Moawad, 2006). On a global basis, mycorrhizae occur in 83% of dicots and 

79% monocots, whereas all gymnosperms are mycorrhizal (Wilcox, 1991). They are common in 

most habitats but AMF are dominant in grasslands and tropical ecosystems.  

 

Most species of plants are capable of associating with fungi of a single family, Endogonaceae, to 

form V-A mycorrhizae (Gerdemann, 1968). According to Leake et al. (2004), a substantial part of 

microbial communities in the soil belong to the AM Fungi, an ancient group of fungi that 

establishes mutualistic symbiosis with a great majority of plant species. They account for 5-50% of 

the biomass of soil microbes (Olsson et al., 1999). Biomass of hyphae of Vesicular Arbuscular 

Mycorrhizal (VAM) fungi may amount to 54 –900Kgha-1 (Zhu and Miller, 2003), and some 

products formed by them may account for another 300Kg (Lovelock et al., 2004). Pools of organic 

carbon such as glomalin produced by AM fungi may even exceed soil microbial biomass by a 

factor of 10- 20 (Rillig et al., 2001).  

 

The most ancient and widespread mycorrrhizal relationships are formed by AMF. More than 80% 

of plant species can form AM yet relatively few fungal species (120) from restricted taxon, the 

Glomales, are involved. This reflects the evolutionary history of the relationship (Jeffries et al., 

2003). Almost all tropical crops are strongly responsive to Arbuscular mycorrhizas. A substantial 

number are also strongly dependent on Arbuscular mycorrhizas (Jaizme and Azcon, 1995). 

Biodiversity and conservation of AMF 

The diversity of AMF has significant ecological consequences because individual species or 

isolates vary in their potential to promote plant growth and adaptation to biotic and abiotic factors. 

Thus, the composition and dynamics of populations of AMF have a marked impact on the structure 

and diversity of the associated plant communities, both in natural and agricultural ecosystems 

(Grime et al., 1987; Gange et al., 1990). An important prerequisite to the analysis of populations of 

AMF in ecological studies is the correct identification of individual isolates. In addition, 
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physiological studies as well as field inoculation experiments may benefit from genetic and 

functional analysis of selected isolates. 

 

Until recently, the markers identifying AMF for population and phylogenetic studies were solely 

morphological or biochemical (Giovannetti and Gianinazzi-pearson, 1994). Studies of the macro- 

and micro anatomy of fungi yield characters that form the historical bedrock in fungal taxonomy 

(Kohn, 1992) have been used to build the taxonomy of AMF (Morton and Benny 1990). However, 

many structures needed for morphological identification and species differentiation are lost during 

the symbiosis. The arbuscules produced by AMF in plants, for example, are very similar from one 

species to another. Allozymes have been helpful in providing diagnostic biochemical markers to 

identify species of AMF, even in colonised roots (Sen and Hepper, 1996).  

 

However, the most powerful tools to study the evolution and population genetics of AMF are 

molecular techniques that analyse deoxyribonucleic acid (DNA) sequences. These techniques have 

been used in combination with morphological or biochemical data to investigate specific groups. 

For example, combined morphological data were used to define relationships among ancient 

species within Glomales (Redecker et al.2000) as well as to provide diagnostic primers important 

in the classification of these species (Morton and Redecker, 2001). With a similar approach, 

isolates of uncertain taxonomic position within the family Gigasporaceae could be assigned to 

known species (Lanfranco et al., 2001). The combination of isozyme profiles and ribosomal gene 

sequences has also proved useful in defining groups in the genus Gigaspora (Bago et al.,1998). 

A wide variety of techniques can be employed to detect DNA sequence variation in populations of 

AMF (Lanfranco et al., 1998). Polymerase chain reaction (PCR) amplification of targeted genomic 

sequences followed by restriction fragment length polymorphism (RFLP), allele-specific 

hybridisation, direct sequencing, or single –strand conformation polymorphisms are increasingly 

used to detect AMF in natural ecosystems (Sanders et al., 1996). Polymerase chain reaction  

primers based on highly conserved regions of nuclear and mitochondrial ribosomal DNA have been 

designed (White et al., 1990; Sanders et al., 1996;  Schussler et al., 2001). To amplify two variable 

non-coding regions namely the internal transcribed spacers (ITS) and the intergenic spacers (IGS). 

Microsatellite-primed PCR, random amplified polymorphonuclear DNA (RAPD) and repeated 
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DNA probes are highly efficient approaches for the identification of distinct genotypes (Wyss and 

Bonfante, 1993; Longato and Bonfante, 1997) and have been employed to determine the genetic 

structure of populations of AMF. DNA markers have been successfully employed to track specific 

AMF from agricultural and natural ecosystems (Antoniolli et al., 2000).  

One aspect that has recently received attention in the evaluation of diversity of AMF is their 

unusual association with endosymbiotic bacteria and the degree of their intraspecific diversity. 

Bacteria-like organisms in the cytoplasm of AMF were first observed by transmission electron 

microscopy in the early 1970s (Scannerini and Bonfante, 1991) but confirmation of their 

prokaryotic nature was impeded by their inability to grow on cell-free media. A combined 

morphological and molecular approach has now shown that the cytoplasm of Gigaspora margarita 

spores harbours a homogeneous population of bacteria identified, from the sequence of their 16S 

ribosomal ribonucleic acid (RNA) gene, as close to the genus Burkholderia (Bianciotto et al., 

1996). More recent phylogenetic studies suggest that these endobacteria probably represent a new 

bacterial taxon (Bianciotto et al., 2002).  

Polymerase chain reaction assays with oligonucleotides specific for this 16S sequence have 

revealed these bacteria in all stages of the fungal life cycle (spores and symbiotic mycelia). In 

addition, isolates of different origin from three Glomalean families (Glomaceae, Gigasporaceae and 

Acaulosporaceae) display bacteria when observed by confocal microscopy using a fluorescent dye 

specific for bacterial staining. The endobacteria of Gigasporaceae seem to be distinct from those 

found in other fungal taxa in terms of density, morphology and PCR amplification with specific 

primers (Bianciotto et al., 2000).  

It should be noted, however that different situations exist within this genus:  Gigaspora rosea was 

the only species to be completely devoid of endobacteria, an observation supported both by 

morphological observation of several isolates and by PCR experiments whereas Gigaspora 

gigantea harboured genetically and morphologically distinct bacteria (Bianciotto et al., 2000). 

These intracellular bacteria seem therefore to be a genera feature of spores of AMF and not a 

sporadic component.  
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Given their importance in ecosystems, conservation of AMF both in situ and ex situ is expedient. 

Germplasm collections have been developed to acquire, characterise and maintain AMF in living 

cultures. The two main collections, the BEG (Dodd et al. 1994; http://w.w.w.ukc.ac.uk/bio/beg/) 

and INVAM (http://invam.caf.wvu.edu/) play a crucial role in the preservation and distribution of 

fungal isolates for research.  

 Factors Influencing the Distribution of AM Fungi. 

In the tropics, germination of AM fungi spores in soil and hyphal penetration of root cortex 

have been reported to be influenced by certain factors such as climatic, physico-chemical, 

biological and host genotype. Physico-chemical soil factors affecting the establishment of 

fungal spores include: soil water content (Cardoso and Kuyper, 2006); organic matter and 

plant residues (Read, 1991; Treseder and Cross, 2006). Organic soil amendments, such as 

manure, should be well aged. Fresh organic materials may encourage large microbial 

populations that can be inhibitory to mycorrhizal fungi. According to Hayman (1974) 

pesticide treatments also decrease the number of AMF. Also, heavy fertilizer application 

may lead to faster growth or a larger yield over a short term, and can compensate for a lack 

of mycorrhizae, but creates an addiction from which there is no easy return (St. John, 

1985).  

Biological factors that affect fungi establishment include the interaction of AM fungi with 

other soil organisms such as plant parasitic nematodes (`O` Banno et al., 1979). Read 

(1991) hypothesized that community composition of mycorrhizal fungi would vary as a 

function of the organic matter in the soil. Specifically, AM plants should be more abundant 

in ecosystems with smaller pools of organic nutrients in the soil, since this group possesses 

limited ability to degrade organic matter. However, Treseder and Cross (2006) discovered 
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that percent root length colonized (RLC), AM abundance and host plant availability were 

not related to the size, influx, or turnover rate of soil organic matter pools. AM fungal 

abundance may simply vary in proportion to belowground net primary productivity 

(BNPP) of AM plants (Harley, 1971). Isotope tracer in laboratory and field studies 

indicates that AM fungi consistently receive 37-47% of C delivered belowground by host 

plants. (Johnson et al., 2002).  

 
Treseder and Cross (2006) stated that because fine roots provide a substrate for 

colonization by AM fungi, fine root length determine AM biomass. In their work to 

examine potential large-scale controls over the distribution of AM, abundance was 

positively correlated with standing stocks of fine roots. AMF are thought to play a 

particular important role in P acquisition; hence abundance may be greater where plants 

are more limited by P, as indicated by high N: P ratios of plant tissue. Treseder and Cross 

(2006) also noted that regions harbouring the largest stocks of AMF are also particularly 

vulnerable to anthropogenic nitrogen deposition. Other factors reported by St John (1985) 

include heavy chemical fertilization, heavy and indiscriminate use of pesticides, 

disturbance of soil by human activities such as handling and treatment of soil, removal of 

the plant cover and inversion of soil profiles. According to Jeffries et al. (2003), a number 

of abiotic factors such as climate change, drought stress, pollution and heavy metal 

contamination can influence the development of mycorrhizal relationships. He reported 

that excess levels of chemical components in the soil, inefficient mining processes, and 

treatment of soil with sewage sludge or industrial effluents, overuse of heavy metal 

containing fertilizers or gas exhausts have among other factors, contributed to the creation 
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of large areas contaminated by heavy metals, radionuclides and persistent organic 

pollutants. even though the presence of AMF can alleviate the stresses to plants caused by 

these external influences. Such areas may jeopardise human health and ecology (Adriano 

et al., 1998) and therefore should not only be under strict control, but should also be 

managed in a way which attenuates the possibility of any risk concerning the 

contamination of the food chain and ground water or air by wind erosion.  

Soil degradation produces changes in the diversity and abundance of AM fungal 

population (Koomen et al., 1990). Variation in soil pH and temperature seem to be the 

decisive factors in tropical soils influencing distribution of AMF (Mahesh and Selvaraj, 

2008).  It has been a common experience that although chemical fertilizers have doubled 

the agricultural productivity, the mycorrhizal infection together with spore production have 

decreased (Bhardwaj et al., 1997). Studies on the natural occurrence of AMF in Haryana 

soils showed that the fungal sporulation was more intensive in the rhizosphere of 

nonlegumes than of legumes. Maximum number of spores (342 spores per 50 g of soil) 

was observed in the rhizosphere of mustard, followed by chickpea, wheat, pearl millet and 

pigeon pea (Bhardwaj et al., 1997). Soil pH, total soil P, available P, type of soil, soil 

moisture and cropping season are all variables that influenced the Arbuscular mycorrhizal 

population in the natural ecosystem. Numbers of AM spores highly correlated with the 

presence of total soil P and soil pH indirectly affected the AM population through the total 

soil P. The spore population was abundant in sandy soils as compared to loamy sands. 

Drier soils had higher number of AM spores. In summer, the AM population in soil was 

less as compared to winter season. The jhum fallow contained lower AM fungal population 

and number of species than the natural forest. Shifting cultivation in the humid tropical 
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soils causes reduction of AM fungal species. (Singh et al., 2003). Kormanik et al., (1982) 

stated that high-quality seedling stock of hardwood tree species can be obtained in 

nurseries where cultural practices in the nursery encourage AM development.  

Importance of AM Fungi 

Effect on plant Nutrient uptake 

In most cases of P-deficient soils, the growth of cultivated plants is highly dependent to 

mycorrhizal status (Diop et al., 2003). Inoculation with AMF usually enhanced growth and 

shoot biomass of plants (Diop et al., 2003; Ndiaye et al., 2009). St John (1985) reported 

that mycorrhizae have been clearly shown to improve plant growth over that of non 

mycorrhizal control. Cassava (Manihot esculenta Crantz) is highly dependent on AMF 

association for plant growth (Howeler and Sieverding, 1983). The main effect of AM is to 

enhance P uptake of cassava grown on acid soils low in available P (Howeler and 

Sieverding, 1982).  They greatly improve uptake of phosphorus and micronutrients, 

especially zinc and copper. According to Khalafallah and Abo-Ghalia (2008) AMF have 

higher capacity to increase growth and yield through efficient uptake in infertile soils. This 

effect is most marked when crops are grown in phosphorus deficient soils.  Prakash et al. 

(2008) recorded increase in fruit yield and enhancement in fruit quality due to higher 

uptake of nutrients by the plants as influenced by arbuscular mycorrhizae in root zone of 

the plants.  

 

According to Kormanik et al., (1982), AM development increased stem weight of 

seedlings of eight hardwood tree species by 2- to 80-fold over non mycorrhizal controls. 

Root weight of all seedlings was increased by 4- to 70-fold by AM. Mycorrhiza is 
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undoubtedly of extraordinary importance in plant production, plant soil ecology and plays 

a key role in sustainable agriculture (Bethlenfalvay and Linderman, 1992; Gianinazzi and 

Scheuepp, 1994). In marginal soils fertilized with rock phosphate, combined application of 

AMF with N2 – fixing microorganisms and other organic materials may substantially 

increase P availability and crop yield (Sharif, 1999, Dey et al., 2004).  According to 

Jeffries et al. (2003), mycorrhizal symbiosis is a keystone to the productivity and diversity 

of natural plant ecosystems. AM fungi are of importance as they play vital role in metal 

tolerance (del Val et al., 1999) and accumulation (Jamal et al., 2002). External mycelium 

of AMF provides a wider exploration of soil volumes by spreading beyond the root 

exploration zone (Malcova et al., 2003), thus providing access to greater volume of heavy 

metals present in the rhizosphere. A greater volume of metals is also stored in the 

mycorrhizal structures in the root and in spores, for example, concentrations of over 

1200mg kg-1 in G.versiforme (Chen et al.,2001). Another important feature of this 

symbiosis is that AMF can increase plant establishment and growth despite high levels of 

soil heavy metals (Enkhtuya et al., 2002), due to better nutrition (Feng et al., 2003), water 

availability (Auge, 2001) and soil aggregation properties (Rillig and Steinberg, 2002) as 

associated with this symbiosis.  

 

The stimulation of microorganisms by the plant root system has now attracted attention. 

Microbial activity has been found to be an important factor influencing metal solubility 

and an immobilization of soil metals due to precipitation of sulphides and hydrated ferric 

oxides or by exudation of polysaccharides (Lodenius and Autio, 1989; Ernst, 

1996).Organic functional groups on the surface of bacterial cell walls play an important 
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role in adsorption of metals from the soil solution (Fein et al., 1997). Under other 

conditions Pb, Zn and Cu may be mobilised from the carbonates and oxides by microbial 

activity (Bloom-field, 1981). Biological methods to remove pollutants have mainly 

employed bacteria and saprobic fungi, while the role of mycorrhizal fungi has been almost 

completely neglected. A well-developed mycorrhizal symbiosis may enhance the survival 

of plants in polluted areas by better nutrient acquisition, water relations pathogenic 

resistance, phytohormone production, contribution to soil aggregation, amelioration of soil 

structure, and thus improved success of all kinds of bioremediation. For example, AMF 

have been found to decrease caesium uptake by plants (Berreck and Haselwandter, 2001), 

and thus could be used in the establishment of plant vegetation on soil contaminated with 

radio nuclides. They therefore have the potential to reduce environmental risks. Effective 

mycorrhiza may attenuate deleterious soil conditions (Haselwandter and Bowen, 1996).   

 

Arbuscular mycorrhizal fungi also have a potential role in the monitoring of site toxicity 

(Weissenhorn et al., 1993, 1995; Gucwa-Przepiora and Turnau, 2001) and the efficiency of 

restoration techniques (Orlowska et al., 2002). The use of mycorrhizal parameters as an 

indicator of changes occurring during soil quality has already been addressed by Lovera 

and Cuenca (1996), Haselwandter (1997) and Jacquot et al. (2000). Levels of colonisation 

of grasses in polluted field soils have shown to correlate with heavy metal contamination 

(Mikanova et al., 2001). Plants such as Plantago lanceolata might be of special value for 

biomonitoring (Orlowska et al., 2002). This species is strongly mycorrhizal, suitable for 

use in growth chambers and greenhouses where it easily forms mycorrhizal associations 

(Walker and Vestberg, 1994), and can be vegetatively propagated (Wu and Antonovics, 
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1975), facilitating the avoidance of genetic variability in response to toxic substances. In 

addition, it is widespread and tolerant to a broad range of soil types and pollutants (Wu and 

Antonovics, 1976; Bakker et al., 1999; Baroni et al., 2000).          

  

The impact of AMF on the reduction of soil-borne diseases has mainly been evaluated in 

studies on soil fungal pathogens such as Phytophthora, Aphanomyces, Fusarium and 

Verticillium (Azcon-Agwlar and Barea, 1996) and nematode causing root rots, lesion and 

galls (Guillemin et al., 1993; Pinochet et al., 1997). Some studies have shown that 

mycorrhizal protection could also occur against Erwinia carotovora and Pseudomonas 

syringae (Garcia-Garrido and Ocampo, 1989). Again, mycorrhizal symbiosis selectively 

stimulates the quantity and activities of soil biota having antagonistic activity against soil 

borne pathogens (Linderman, 2000).  Prophylactic effects have been often reported, 

proving in many situations that AM fungi can act as biological control agents by lessening 

proliferation and damage caused by pests and soil-borne diseases (St-Arnaud and Elsen, 

2005). The mechanism involved in the mycorrhiza induced disease tolerance may be the 

changed physiological and biochemical nature of the host plant. Increased production and 

activity of phenolic compounds due to AMF colonization has been reported.  Higher 

phenolic content increases the defence mechanism of host plant and thereby imparts 

resistance to various diseases.   

 

AM colonization could improve the water absorption of host plant, especially under 

nutrient limitation (Cardoso and Kuyper, 2006). Rapid root development and efficient root 

system is observed in mycorrhiza plants (Tisserant et al., 1996). The extra radical hyphae 
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of AMF contribute to soil aggregation and structural stability. Other mechanisms by which 

mycorrhizal fungi contribute to soil structure include creation of conditions that are 

conducive for the formation of micro -aggregate enmeshment by external hyphae and roots 

to form macro-aggregates; and by directly tapping carbon resources of the plant to the soils 

(Miller and Jastrow, 2000). Hyphae of AMF are more important in this regard than hyphae 

of saprotrophic fungi due to their longer residence time in soil, because fungivorous soil 

fauna prefer hyphae of the latter over those of AM fungi (Klironomos and Kendrick., 

1996; Gange, 2000).  

In addition, AMF produce glomalin (a specific soil protein, whose biochemical nature is 

still unknown) that has a longer residence time in soil than hyphae allowing for a long 

persistent contribution of soil aggregate stabilization (Cardoso and Kuyper, 2006). The 

residence time for hyphae is considered to vary from days to months (Staddon et al., 2003) 

and for glomalin from 6-42years (Rilling et al., 2001).Mycorrhizas are thus 

multifunctional in (agro) ecosystem with potentials for improving physical soil quality 

(through the external hyphae), chemical soil quality (through enhanced nutrient uptake) 

and biological soil quality (through the soil food web) (Newsham et al., 1995).  

 

AMF provide efficient nutrient uptake in infertile soils, water uptake and drought 

resistance in plants (Nowak, 2004; Chen et al., 2005). AMF are significant in the 

ecological improvement of rhizosphere (Medina et al., 2003). They contribute to soil C 

sequestration by producing glomalin, a recalcitrant and abundant soil glycoprotein (Rilling 

et al., 2001). Reynolds et al. (2006) reported that AMF restore and improve revegetation. 

AM fungi have been regarded as a boon for agriculture, forestry and restoration of 
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disturbed ecosystems. They are effective in overcoming the stress conditions like draught, 

disease incidences and deficiency of nutrients. Also in forestry, the growth of seedlings 

and productivity was found to be enhanced by AM fungi.  

 

The impact of AMF in management of disturbed ecosystems  

Arbuscular mycorrhizal fungi have been shown to rapidly invade virgin soils at Samphire 

Hoe in the UK (Dodd et al., 2002) and hence accelerate the natural process of plant 

community development. Samphire Hoe is a newly created land plantform comprising the 

sub scabbed material excavated during the construction of the channel tunnel. It represents 

a unique resource where the arrival and establishment of AMF within a sown plant 

community on a low nutrient substrate can be monitored. Invasion by AMF was monitored 

in three ways: by assessing the degree of root colonization within the root of plant on the 

site; by using a successive trap culture technique to determine species richness of AMF 

and by using sterile substrate bins to determine the extent of wind borne and rain dispersed 

immigration of propagules of AMF. Levels of colonisation of indigenous plants by AMF 

were high in May –June (the pre –flowering phase of growth for many plants) reflecting 

the important role of the mycorrhizal symbiosis in dry, low- nutrient siols. Twelve species 

of AMF were identified, representing a relatively high diversity for recent deposited 

subsoil. An on-site experiment indicated that inoculums of AMF could enter the site within 

eight months and that wind dispersal and rain were possible vectors.  

  

A field experiment compared the outplanting performance of commercially – produced 

Elymus pycnanthus seedlings (in commercial compost with added nutrients) with seedlings 
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produced in a low-nutrient substrate and inoculated with AMF insulated from the site (a 

mixture of five species of Glomus) or left uninoculated. After fourteen months in field, 

seedlings inoculated with the indigenous AMF had the same tiller production as the 

commercially produced plants, despite poorer initial growth. In contrast, non-mycorrhizal 

controls grew very poorly, with a greater frequency of plant mortality relative to the other 

treatment. Elymus seedlings inoculated with the indigenous AMF  ultimately produced 

approximately seven times the mean number of seed spikes per surviving plant as the 

commercially produced  seedlings and five times greater weight of seed spike. A 

phytomicrobial approach to the revegetation of nutrient-poor soils has proposed to 

stimulate plant successional processes as an economically viable sustainable input for land 

scaping anthropogenic sites (Dodd et al., 2002). A similar conclusion was reached by 

Greipson and El-Mayas (2001) during soi reclamation in Iceland. 

 

In horticulture and agriculture; The use of AMF in agriculture could lead to a considerable 

decrease in the amount of chemical pollution in soil water, as recently demonstrated for 

maize (Giovannetti, 2001). This clearly indicates the potential of AMF for promoting a low 

chemical input agriculture. A more exhaustive review was made by Atkinson et al. (2002). 

The recent development of molecular probes able to diffentiate AMF within roots and soils 

(Jacquot-Plumey et al., 2001) opens new biotechnological perspective for the defining 

their population biology and therefore management strategies in the use of these symbiotic 

microbes in agriculture. 

 



30 

 

The difficulty in producing a large amount of inoculum of AMF for agricultural practices 

is less of a problem in horticultural crops, where inoculation could take place in seedling or 

cutting beds, over a relatively small surface area. Furthermore, the intensive use of i=]i 

\artificial substrates where AMF are absent facilitate their introduction. The main 

difficulties relate to the choice of substrates and of horticulture practices compatible with 

the development of mycelium of AM. The literature regarding AMF and their application 

in horticulture is extensive (Gianinazzi et al., 2001). Successful inoculation is usually 

achived when AMF are introuduced very early in plant deveplomental process followed by 

the use of low amount of phosphate fertilisers and selective use of pesticides (Guillemin et 

al., 1993). By doing so, colonization by AMF will follow root development of the 

inoculated seedlings or cuttings, with the consequence that plants will already be 

extensively mycorrhizal when transplanted into the field (Gianinazzi et al., 1995). In this 

respect, the case of micropropagated plants is particularly interesting in that inoculation 

with AMF can reduce plant losses during the acclimatisation phase, subsequently stimulate 

plant development (including flowering) and increase productivity after transplantation to 

the field (Estaun et al., 1999) 

 

Following field transplantation, the rhizosphere of a micropropagated plant is usually 

colonised with a variety of other soil microorganisms, some of which are synergistic but 

some of which may be antagonistic to AM development. Therefore the study of multi-

microbial interaction in the rhizosphere of microplants may be a very useful approach for 

developing our understanding of managing AMF in plant production systems (Cordier et 

al., 1999).  
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As a result of the ecosystem degradation processes in desertification-threatened areas, 

disturbance of natural plant communities is often accompanied or preceded by loss of 

physico-chemical and biological soil properties, such as soil structure, plant nutrient 

availability, organic matter content and microbial activity. Therefore, it is becoming 

critical to recover not only the vegetation but also these biological and physico-chemical 

soil qualities (Jeffries and Barea, 2001). There is an increasing interest in using AMF to 

improve revegetation processes for desertified ecosystems, particularly those developed 

under Mediterranean environments, based on the use of shrub plants belonging to the 

natural succession (Herrera et al., 1993).  

 

A proposed approach to combat desertification includes inoculation with symbiotic 

microorganisms including AMF. Experiments have been carried out aimed at assessing the 

long-term benefits of inoculation of shrub legumes with rhizobia and AMF. This has 

included improving the establishment of target legume species as well as the benefits 

induced by the symbiotically tailored seedlings in key physico-chemical soil properties 

(Requena et al., 2001). When a field study was carried out within a desertified semi-arid 

ecosystem in southeastern Spain, the existing natural vegetation was a degraded shrubland 

where Anthyllis cytisoides was the dominant species (Requena et al., 1997). This is a 

drought-tolerant legume able to form symbioses with both rhizobia and AMF. The 

interaction of these microsymbionts on seedling establishment, survival rates, growth, N-

fixation, and N-transfer from N-fixing to non-fixing species associated in the natural 

succession was studied (Requena et al., 2001). In addition, the possible improvement of 
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soil quality in terms of N content, levels of organic matter, and hydrostable soil aggregates 

in the rhizosphere of the target plants were also evaluated.  

 

A long-term improvement in the physic-chemical properties was evident in the soil around 

the Anthyllis plants inoculated with an inoculum of AMF based on indigenous taxa. The 

benefits included an increased N content, and higher amounts of organic matter and soil 

aggregation in the soil around the roots (Requena et al., 2001). It can be assumed that the 

increase in N content in the rhizosphere of the legume can be accounted for by an 

improvement in nodulation and N-fixation rates resulting from inoculation of nodulated 

plants with AMF (Barea et al., 1992). The improvement of soil aggregation will matain 

good water infiltration rates, good tilth and adequate aeration for plant growth, thus 

improving soil quality (Wright an Upadhyaya, 1998). 

 

Inoculation with native AMF also benefited plant growth, N-fixation and P acquisition by 

plants. Improved N status of non-leguminous plants grown in association with legumes has 

previously been described for agricultural crops (Azcon-Aguilar et al., 1979), but this was 

the first demonstration of this phenomenon for natural plant communities in a semi-arid 

ecosystem. The results support the general conclusion that introduction of target 

indigenous species of plants, associated with a managed community of microbial 

symbionts, is a successful biotechnological tool to aid the recovery of desertified 

ecosystems, suggesting that this represents the initial steps in the restoration of a self 

sustaining ecosystem (Requena et al., 2001). 
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Ecosystems have been contaminated with heavy metals due to various human and natural 

activities. The sources of metals in the soil are diverse, including burning of fossil fuels, 

mining and smelting of metalliferous ores, municipal wastes, fertilizers, pesticides sewage 

sludge ainingamendments and the use of pigments and batteries (Gaur and Adholeya, 

2004). Migration of these contaminants into non-contaminated areas as dust or leachates 

through the soil is an example of events that contribute towards contamination of our 

ecosystems. Originally, attention was focused on the potential use of the plant rhizosphere 

to remediate contaminated soil. Plants were considered technically engineers as solar 

driven pumps (Adrianoe et al. 1998) without considering the associated microbiota. 

Remediation attempts were directed towards the application of soil amendments to 

increase the availability of the toxic substances, thus ameliorating the efficiency of 

phytoremediation (Blaylock et al., 1995; Salt et al., 1995). Optimisation of the technology 

included improvement of biomass yield via nutrient supply (Baker et al., 1994) and 

selection of the most efficient plant varieties and genetic engineering (Maiti et al., 1991). 

The capability of plants to produce acid exudates such as carbonic acid (H2CO3) and 

organic substances altering the plant rhizosphere and solubilisation of the adsorbed metals 

were also considered (Krishnamurti et al., 1997). This raised the possibility of using plants 

effective in organic acid production, such as Lupinus spp., as an alternative for chemical 

amendments stimulating the uptake of metals by plants used in the soil cleaning 

technologies. 

 

Irrespective of these early successes, it is now evident that the mycorrhizal symbiosis must 

be taken into account in phytostabilisation. Although initial colonisers of heavily polluted 
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soils tend to be non-mycorrhizal (Shetty et al., 1994), the successful restoration and 

increase in plant community production, as well as improvement of soil structure, strongly 

depend upon the appearance of fungal symbionts. Attenuation of stresses is extremely 

important in sites such as post-flotation wastes, which are often devoid of basic nutrients 

such as N or P, which have poor water-holding capacity, and are vulnerable to wind 

erosion (Gucwa-Przepiora and Turnau, 2001). In places lacking AMF, the introduction of 

inoculums offers an interesting perspective for phytostabilisation techniques. The process 

may be stimulated by appropriately selected fungal strains.  

The source of fungi for production of inoculums is very important, as they should be 

adapted not only to toxicity but also to climatic conditions. Fungal ecotypes from polluted 

places appear to be more successful than those from uncontaminated sites (Leyval et al., 

1995). Extrametrical hyphae developed within the soil may play a role in heavy metal 

sequestration and thus in alleviation of their toxicity. The mycelium of metal-tolerant 

Glomus mosseae was shown to be several times more efficient in heavy metal adsorption 

than non-tolerant fungi and over ten times more effective than Rhizopus orrhizus used as a 

biosorption organism (Joner et al., 2000). Although the G. mosseae strain was shown to 

transport cabium (Cd) from the soil into the fungal structures within the roots of clover, Cd 

was restricted (Joner and Leyval, 1997). Similar results were obtained on the Cd and Zn- 

binding capacity of a fungal strain colonising clover roots isolated from an absolute 

metallophyte plant, Viola calaminaria (Tonin et al., 2001).  

 

Inoculation of maize, incerne (alfalfa), barley and others by the fungal isolate obtained 

from V. calaminaria roots has also been shown to attenuate heavy metal stress 
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(Hildebrandt et al., 1999). This demonstrates the contribution of AMF to the accumulation 

of heavy metals in a non-toxic form within plant roots (Tonin et al., 2001). Differences in 

metal binding capacity exist not only between metal-tolerant and non-tolerant fungi, but 

possibly also between different species or isolates from the same site. This was shown for 

native G. mosseae in mycorrhizal roots from polish zinc wastes. Mycorrhizal fungi of 

Fragaria vesca were identified using molecular tools (nested PCR with taxon-specific 

primers performed on spores and trypan blue stained roots) and cytochemical staining was 

used to visualise the distribution of heavy metals (Turnau et al., 2001b).  

 

The diversity in tolerance mechanisms towards heavy metals transferred by the fungus into 

the root cortical cells also exists between plant species/variety/ecotypes. The plants alone 

react differently to heavy metals (Antosiewicz, 1992) and may also regulate the 

effectiveness of mycorrhizal colonisation (Koide and Schreiner, 1992). 

 

Biological methods of removal/degradation of organic pollutants from the soil have mainly 

employed bacteria and saprobic fungi (Schutzendubel et al., 1999). The positive effect of 

plants on the degradation of polycyclic aromatic hydrocarbons (PAHs) has also been 

reported (Reilley et al., 1996). In such cases plants producing a high root surface area have 

been the most extensively used. Well-developed associations with soil microbiota are 

alternative for using chemicals to increase the availability of toxic substances (Schwab and 

Banks, 1994). Among the organisms that could effectively increase the area of activity are 

mycorrhizal fungi. A range of mycorrhizal fungi were shown to be involved in the 
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degradation of organic pollutants and thus they may be also potentially useful in 

phytodegradation.  

 

Although colonisation by AM was negatively affected by increasing PAH levels in soil 

(Leyval and Binet, 1998). It can still enhance plant survival and growth by decreasing 

phosphorus deficiency (Joner and Leyval, 2001) and water stress (Sanchez-Diaz and 

Honrubia, 1994), improving membrane integrity (Graham et al., 1981) or by stimulation of 

oxidative enzyme production (Salzer et al., 1999). These phenomena are all responsible for 

the attenuation of stress due to pollution.  

 

Arbuscular mycorrhizal fungi can also be helpful in the management of constructed 

wetlands used for detoxification of a broad range of toxic substances. The importance of 

mycorrhiza of plants such as Phragmites communis, widely used to treat effluents, e.g. 

containing nitrophenols (Dias,1998), has been neglected. Oliveira et al. (2001) reported, 

however, the presence of the symbiosis when soils had reduced water content. This might 

play an important role in the initial steps of the establishment of wetland places, and 

subsequently could influence plant biodiversity in later stages, thus encouraging the re-

appearance of mycorrhizal species (Vangronsveld et al., 1996). 

 

For successful bioremediation, symbionts must be selected that can withstand the hostile 

environment of polluted sites. While introduction of new isolates is promising in areas 

devoid of AMF , the proper management of microbial resources, including mycorrhizal 
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fungi and a broad range of rhizosphere bacteria, could be more appropriate where they are 

already present (Jeffries et al., 2003).  

Interactions with other soil micro-organisms 

 Arbuscular mycorrhizal fungi are key components of the soil microbiota and obviously interact 

with other microorganisms in the rhizoshere (Bowen and Rovira, 1999). Formation of AM changes 

plant physiology and certain nutritional and physical properties of the rhizosphere soil. This, in 

turn, affects colonization patterns of this region by soil microorganisms by the so called 

mycorrhizosphere effect (Gryndler, 2000). Arbuscular mycorrhizal fungi thus interact with natural 

and introduced microorganisms in the mycorrhizosphere, hence affecting soil properties and 

quality. Conversely, soil organisms are known to affect AM formation and functioning markedly 

(Barea et al., 2002). Deleterious rhizosphere bacteria (Nehl et al., 1996) and mycoparasitic 

relationships (Jefries, 1997) have been found to interfere with AM development, while many 

microorganisms can simulate AM formation and or functioning (Barea et al., 2002). Soil 

microorganisms can produce compounds that increase root cell permeability, thereby increasing 

root exudation. This in turn, stimulates the growth of hyphae of AMF in the rhizosphere and 

facilitates root penetration by the fungus. In addition, polysaccharide-producing bacteria may have 

a synergistic effect on hydrostable aggregate formation by AMF (Miller and Jastrow, 2000).  

 

Rhizosphere  microorganisms  are also known  to  affect  the  pre-symbiotic stages  of  AM  

development such  as  spore  germination and  germ  tube  growth  (Azcon-Aguilar and Barea, 

1992, 1995). Biologically active substances like amino acids, plant hormones, vitamins, other 

organic compounds and volatile substances {Carbondioxide (Co2)}, produced by soil 

microorganisms, can stimulate the growth rates of AMF (Azcon-Aguilar and Berea, 1995; Barea 

2000). Detrimental effects of soil microorganisms on spore germination and hyphal growth in soil 

have also been reported (Linderman, 1992; Azcon-Aguilar and Berea, 1992). Vazquez et al. (2000) 

reported that antifungal compounds produced by Pseudomonas spp. did not interfere with AM 

formation or functioning, nor did a similar molecule produced by Paenibacillus sp. (Budi et al., 

1999). 
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The well-known activities of Nitrogen-fixing bacteria and Phosphate-solubilising microorganisms 

in improving the bioavailability of the major plant nutrients N and P contribute to the AM role in 

nutrient acquisition (Barea et al., 2002). Management of such interactions is a promising approach 

either for low-input agricultural technologies (Jeffries and Berea, 2001), or for the re-establishment 

of natural vegetation in a degraded area (Miller and Jastrow, 2000; Jeffries and Berea, 2001). It is 

known that certain rhizobial strains improve processes involved in AM formation by Glomus 

mosseae, i.e spore germination, mycelia growth from the mycorrhizal propagules and ‘entry point’ 

formation on the developing root system of the common host legume plant (Barea et al., 1996). 

Measurements of the 15N/14N ratio in plant shoots indicated enhancement of the N fixation rates in 

Rhizobium-inoculated mycorrhizal plants, relative to that achieved by the same Rhizobium strain in 

non-mycorrhizal plants (Toro et al., 1998). 

 

Multi-microbial interactions including AMF, Rhizobium spp. and PGPR have also been 

investigated (Requena et al., 1997). In general, the results demonstrate the importance of 

physiological and genetic adaptation of microbes to environment, and thus the use of local isolates. 

Several microbial combinations were effective in improving plant development, nutrient uptake, N 

fixation (15N) or root system quality, showing that selective and specific functional compatibility 

relationships among the microbial inoculants were evident with respect to plant response. 

Interactions between AMF and Azospirillum may also enhance mycorrhiza formation (Volpin and 

Kapulnik, 1994). 

 

The interactive effect of phosphate solubilising rhizobacteria and AMF on plant use of soil-P 

sources of low bioavailability (endogenous or added as rock phosphate) has been evaluated in soil 

microorganisms using a32P isotopic dilution approach (Toro et al., 1997). The rhizobacteria 

behaved as mycorrhiza-helper bacteria, promoting AM establishment. The dual inoculation 

treatment significantly increased microbial biomass and N and P accumulation in plant tissues and 

these dual-inoculated plants displayed lower specific activity (32P/31P) than their comparable 

controls, suggesting that the mycorrhizal and bacterized plants were using P sources otherwise 

unavailable to the plant. It was concluded that these rhizosphere/mycorhizosphere interactions 

contributed to the biogeochemical cycling of P, thus promoting plant fitness. These effects were 

further validated under field conditions (Barea et al., 2002).    
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There is a positive interaction between AM fungi and nitrogen fixing bacteria such as Rhizobium in 

legumes, Azospirillum and Azotobacter in non legume soils. AMF association remarkably increases 

the multiplication, persistence and nitrogen fixation rate of these bacteria. Nodulation and N-

fixation by legumes in tropical cropping systems show wide variation. This could imply that such 

legumes may either deplete soil nitrogen or add nitrogen. Insufficient nodulation and fixation may 

be both due to lack or scarcity of compatible and effective rhizobia, and to nutrient deficiencies 

coupled with an insufficiency of AM inocula. Hounglnandan et al. (2000) demonstrated that the 

rate of N-fixation of Mucuna pruriens (L) DC, a fallow plant to restore soil fertility and control the 

invasive grass Imperata cylindrical (L) Beauv. in the derived savanna of Benin, was often limited 

by low numbers of effective rhizobia and could be boosted by rhizobial inoculation, except in very 

P-poor soil.  

 

The authors concluded that farmer’s management practices that allow a build up of AM fungal 

inocula would alleviate P-deficiency and hence increase N-fixation. Similar interactions between 

AM fungi and rhizobia have been demonstrated for soybean (Glycine max) in low –P soils of the 

savanna in Nigeria (Nwoko and Sanginga, 1999). It was shown that there was a large variation in 

mycorrhizal responsiveness to soybean inoculation with AM fungi and that this variability should 

be exploited for selecting legumes for growth on marginal soils.  This may be especially relevant 

because improved soybean cultivars have often been selected under conditions of P-sufficiency, a 

situation probably not dissimilar from the selection of Al-resistant maize cultivars from Brazil in 

conditions of P-sufficiency. Cowpea (Vigna unguiculata) breeding lines with higher AM 

colonization showed higher N-fixation in a low P-soil (Sanginga et al., 2000). 

 

AM fungal and rhizobial responses might show positive feedback. Rhizobial inoculation increased 

AM colonization in soybean (Sanginga et al., 2000) and mucuna (Houngnandan et al., 2001). 

Marques et al. (2001) observed that AM fungi improved the performance of the woody legume, 

Centrolobium tomentosum Benth. Ingleby et al. (2001) demonstrated that   AM improved 

nodulation of Calliandra calothyrsus Meissn, an agroforestry tree. In a follow-up, both rhizobia 

and AM fungi were selected from the tree’s native range in Central America and from parts of 
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Africa where the tree was successfully introduced. In both areas, effective microsymbionts were 

obtained. But the interactions between effective rhizobia and effective AM fungi (and between 

plant provenances) have not yet been studied (Lesueur et al., 2001). This may be important because 

interactions between AM fungi and rhizobia cannot be predicted from the behaviour of both 

symbionts individually. It is still not known when the interaction is additive or synergistic, both in 

terms of costs of the symbioses and in terms of nutrient gains.     

 

A similar positive interaction exists between AMF and phosphate solubilizing micro-organisms 

which require the complement of AMF for their activities. Ehteshami et al., (2007) reported a 

significant increase in grain yield , yield components,  harvest index grain N and P, soil available P 

and root colonization percentage  when maize was inoculated with Glomus intraradices (AMF) 

and Pseudomonas fluorescens under water deficit stress and a comparatively poor response when 

inoculated with P.fluorescens alone under the same condition. Phosphate solubilizing 

microorganisms interact positively with AMF in promoting plant growth as well as P uptake of 

maize plant leading to plant tolerance improving under water deficit stress condition. It was found 

that AM fungi interact synergistically with other microorganisms such as phosphate-solubilizing 

bacteria and plant growth promoting microorganisms to enhance plant growth and survival. Also a 

significant effect of bacteria producing plant growth regulators on mycorrhizal development has 

been reported (Azcon, 1989). In addition, it is known that the soil micro-fauna can also affect 

development of AM, but the evidence is fragmentary (Gange, 2000; Gryndler, 2000). Southern 

Guinea Savanna of Nigeria: Climate, Soil and Vegetation. 

The Southern Guinea Savanna agro ecological zone of Nigeria is characterized with 181-210 days 

length of growing period (Jagtab, 1995). The major soils have coarse-textured surface soil, and are 

low in organic matter and chemical fertility. (Salako, 2003). It has 100-150 cm of annual rainfall 

with wet season lasting 6-8 months. According to Ayansina (2008) rainfall variability for a period 

of 20 years was very high around Ilorin with values of coefficient of variation ranging between 26 

and 49 percent. He also documented that rainfall varies both in time and space. As a result, there is 

remarkable fluctuation in yield per decade in this ecological zone. The atmospheric climate falls 

within the group described by Strahler (1970) as low latitude, tropical wet-dry climate.  
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The distinctive characteristics of this climate are marked seasonal contrast, unreliable precipitation 

(both in total quantity, intensity and distribution pattern) and dry harmattan of two to four months. 

Rainfall in this zone is generally between April and October with a break of about two weeks 

occurring either in July or August. Rainfall distribution is highly unpredictable both in terms of 

total rainfall and distribution (quantity and intensity) (Ajiboye, 2007). Rainfall anomalies such as 

decline in annual rainfall, change in the peak and retreat of rainfall and false start of rainfall that are 

sometimes experienced are detrimental to crop germination and yield, resulting in little or no 

harvest at the end of the growing season.The false balsam copaiba (Daniellia oliverii), used for 

carving mortars and pestles for pounding yam, Terminalia, Lophira, Afzeila, Vitex and Khaya 

senegalensis (the poor mahogany) are the major plant species found in the Southern Guinea 

Savanna  (Eroarome, 2005). 

 

Ajiboye (2007) reported that soils of Southern Guinea Savanna of Nigeria are formed on either 

basement complex or upper cretaceous sandstones (Nupe Sandstone). Generally kaolinite and mica 

have been observed to be the dominant clay present in the moist soils of Southern Guinea Savanna 

of Nigeria. Although, traces of montmorilonite and vermiculite-smectite interstratified materials 

were also reported (Adegbite and Ogunwale, 1994). Soils developed on basement complex have 

been reported by Ojanuga (1979) to be predominated by Kaolinite. He also stated the presence of 

mica and other 2:1 silicate clays in trace quantity and appreciable quanties of montmorillonite. He 

therefore concluded that kaolinization was the dominant clay formation process in soils developed 

over basement complex especially in the Guinea Savanna Zone of Nigeria. 

 

On the other hand, kaolinite and mica had been identified by Adegbite and Ogunwale (1994) to be 

the dominant clay in soils developed on Nupe Sandstone in the lowland basin of river Niger in the 

Guinea Savanna Zone of Nigeria, though trace quantities of feldspars, smectite, rutile, goethite, 

ilmenite and gibbsite were also discovered. Kaolinization was also indicated to be the dominant 

clay forming process in this soil. They concluded that the dominant pedogenic processes observed 

in the area of study were, (i) additions of organic matter through flooding and leaf litters, (ii) 

oxidation-reduction processes resulting in mottling through prolonged water-logging from flooding 

and fluctuating water table, (iii) clay translocation through lateral and vertical water movement and 

(iv) transformation of primary minerals into secondary minerals. 
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CHAPTER THREE 

MATERIALS AND METHODS 

Collection of soil samples 

Soil samples were collected from soils formed over basement complex (Ilorin and Malate sites,) 

and soils formed over sedimentary rock (Bacita and Pategi sites) in the Southern Guinea Savanna 

of Nigeria. Using the random sampling method, auger samples were collected from each of the 

sampling units at 0-15cm. The soil samples were transported to the laboratory in well labeled 

polyethylene bags. The core samples were then air dried for 3 days and passed through 2mm sieve 

in preparation for analysis. 

Extraction of AMF spores from soil and enumeration of spores 

AM spores were extracted using the wet- sieving and decanting/density gradient 

entrifugation method of Brundrett et al. (1996). One hundred grams (100g) of soil was 

weighed into 1 liter of water in a beaker. The soil was mixed and washed through series of 

sieves with different mesh sizes (1000µm, 500µm, 200µm and 53µm). The content of the 

bottom sieve (53µm sieve) was washed into a small beaker. Ten ml of the soil solution was 

measured into a 50ml centrifuge tube. Equal volume of 60% (w/v) sucrose in water was 

added to the soil solution. The mixture was then centrifuged for 2 minutes at 3000rpm. The 

supernatant in each tube was quickly decanted into a smaller sieve, washed under tap water 

and transferred into a petri dish. Enumeration of spores was done under the dissecting 

microscope with magnification X40. The number of spores per gram of soil was calculated 

and recorded. AMF isolates were characterized morphologically, biochemically and 

molecularly. 
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Morphological characterization of isolates 

The isolated spores were picked up with a needle under a dissecting microscope and were 

mounted in both polyvinyl lactoglycerol (PVLG), Meltzer’s reagent and PVLG mixed with 

Meltzer’s reagent (1:1 v/v). All spores were examined using a compound microscope. 

Morphological properties of these spores were determined according to the key proposed 

by Trappe (1982). The characteristics used include, shape, size, colour, distinct wall layer, 

attached hyphae, sporocarps, bulbous attachment, clustering and surface ornamentation of 

spores. Spores were coated with gold to enhance observations under the scan electron 

microscope (SEM) at X 500. Characterization was made by using the description provided 

by the international collection of vesicular and arbuscular mycorrhizal fungi (Invam,2001). 

Determination of some physic-chemical properties of soils 

Physico-chemical analysis of soils samples were carried out. The properties that were 

determined include particle size analysis, organic matter (OM) content, pH, available 

phosphorus, nitrogen content and cation exchange capacity (ECEC).  

 
Particle size analysis 

Particle size was analyzed using hydrometer method. Fifty grammes (50g) of air-dried soil 

sample were weighed into one litre beaker. One hundred millilitres of distilled water and 

10ml of 30% hydrogen peroxide (H2O2) were added to the sample, stirred and allowed to 

stand for about 2 hour for complete peroxidation. Thereafter, 50ml of 5.05 sodium 

hexametaphosphate was added. The sample was then stirred with a mechanical stirrer for 

15 minutes. The stirred sample was quantitatively transferred into a 1000ml plastic 
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measuring cylinder and inverted several times in order to mix the content of the cylinder 

properly. The cylinder was immediately placed on a flat table and the time was noted. A 

soil hydrometer was slid gently into the suspension until the hydrometer was afloat. The 

first hydrometer reading was taken 40 seconds after the cylinder was set down. The 

temperature was recorded. Just before 2 hours elapsed, the hydrometer was placed in the 

suspension again and a second hydrometer reading was corrected by adding 0.3 for every 

Celsius that the temperature of the suspension is above caliberation temperature of the 

hydrometer (usually indicated on the stem of the instrument) or by subtracting 0.3 for 

every degree Celsius that the temperature of the suspension is below caliberation 

temperature of the hydrometer. 

 
The first hydrometer reading measured the percentage silt and clay in the suspension.  The 

second reading indicated the percentage clay in the suspension. The percentage sand was 

obtained by subtracting the sum of the percentage clay and silt from 100 (i.e. % sand = 100 

– (% silt + % clay). 

Determination of organic matter content 

In determining the organic matter content, the wet oxidation method (Shamshudin et al., 

1995) was used. The soil sample used for this analysis was ground to pass through a 300-

mesh sieve.  A 0.5g of the finely ground sample was weighed into a 250ml beaker.  Ten 

millilitres (10ml) of 1N potassium dichromate (K2Cr2O7) solution were added and the 

mixture was swirled to mix properly.  Twenty mililiters (20ml) of concentrated sulphuric 

acid (H2SO4) was rapidly added to the mixture, swirled for a minute and then allowed to 

stand for 30 minutes.  The mixture was diluted with about 100ml of distilled water and 5 
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drops of orthophenathrolein indicator was added.  The suspension was titrated with 0.5N 

ferrous sulphate solution to a wine red coloured end point and the volume of ferrous 

sulphate used was recorded.  A blank sample (without soil) was run similar to the above 

procedures to standardize the dichromate.  The milliequivalent of readily oxidizable 

organic carbon in the soil sample was calculated as follows: 

 
 % Organic Carbon = (Blank titre – Sample titre) x AC x  0.003 x 100 
      Weight of soil used 
 
 
 Where A = Normality of Ferrous Sulphate (Fe2SO4) = Vol. of (K2Cr2O7) 
             
                              Titre value for blank 
 
 C = Correction factor = 1.33 
  
 % organic matter in the soil = % organic Carbon x (100/58) 

The pH of the soil was measured at 1:1 (soil: water) using an electronic pH meter.  A 20g 

of soil sample was placed in a 50ml beaker and 20ml of distilled water was added (soil : 

water ratio of 1:1).  The mixture was stirred with a glass rod and allowed to stand for 30 

minutes.  The mixture was stirred again and the electrode and the pH meter reading was 

taken.  Prior to the reading of the sample, the pH meter was calibrated using solution of 

known pH (pH 4, 7 and 9) 

 
Determination of Available P content 
 
Available P was determined by Bray-1 extraction method (Bray and Kurtz, 1945).  Thirty-

seven grammes of Ammonium Fluoride (NH4) was accurately weighed into a beaker and 

40ml of distilled water was added.  The mixture was stirred vigorously to dissolve.  This 

solution was quantitatively transferred to a 1000ml volumetric flask and the solution was 
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made up to mark.  The resulting solution is 1 Molar Ammonium fluoride solution (1M 

NH4F).  To another 100ml beaker containing 80ml of distilled water, 4ml of concentrated 

hydrochloric acid (conc. HCl) was added, shaken together and made up to mark with 

distilled water.  The resulting solution is 0.5M HCl.  To 15ml of 1M NH4F contained in 

500ml volumetric flask, 25ml of 0.5M HCl and 460ml of distilled water were added.  The 

content of the flask was made up to mark with distilled water and mixed thoroughly.  The 

resulting solution is the Bray-1 extractant containing 0.03M NH4F and 0.025M HCl. 

 
Soil – extractant ratio of 1:7 was used for the extraction of available Phosphorous in the 

soils.  Five grammes of soil samples were weighed into extraction bottles and 35ml of 

Bray-1 extractant was added to each sample.  The Mixture was shaken on reciprocating 

shaker for 30 minutes and the suspension was then filtered through a Whatman No. 42 

filter paper.  The resulting filtrate was used in determining the available P after the method 

described by Murphy and Riley (1962).  Murphy and Riley is procedure consist of two 

solutions commonly referred to as stock solution A and B. In preparing stock solution A, 

12g of Ammonium molybdate was dissolved in 250ml of distilled water. In another 100ml 

of distilled water, 0.2908g of Antimony potassium tartrate was dissolved. Both the first 

and the second solution were mixed together and 1000ml of 5N H2HO4 (148ml of conc. 

H2HO4 in 1000ml of distilled water) was added. The solution were well mixed together and 

brought up to 2000ml with distilled water and stored in a pyrex glass bottle in a cool dark 

place.  Stock solution B was prepared only when required, as this solution does not store 

more than 24 hours. It contains 1.056g of ascorbic acid mixed with 200ml of stock 

solution. Available P was determined using spectrophotometry. The soil extract was 
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coloured using the molybdate blue colouring technique and the absorbance of the resulting 

solution was read on Spectronic 21D at 882nm wavelength. In colouring the soil extract, 

2ml of the extract was pipetted into a test tube, 1.6ml of Murphy and Riley reagent and 

6.4ml of distilled water were added. These solutions were thoroughly mixed and were 

allowed to stand for 30 minutes for full colour development before reading the absorbance.  

A calibration curve for the instrument was prepared by reading the absorbance of coloured 

standard solutions of known P concentration at the same 882nm wavelength on the 

Spectronic 21D. The standard solutions contained 0, 0.1, 0.2, 0.4 and 0.5 mgkg-1 P. The 

Spectronic 21D absorbance readings were plotted against the standard P concentrations to 

obtain a standard calibration curve. This curve was used in determining the P concentration 

in the soil extracts and consequently the calculation of available P.   

 
Estimation of Total Nitrogen 
 
Total nitrogen was estimated by macro Kjeldahl method. Air dried soil sample (0.5g) was 

weighed into dry 500ml macro Kjeldahl flask and 20ml of distilled water was then added. 

The flask was swirled for a few minute and then allowed to stand for 30 minutes. This was 

followed by the addition of 1 tablet of Kjeldahl digesting tablets. 0.05,  K2SO4, 0.25g, 

CuSO4, few quantity of selenium powder. Concentrated H2SO4 (30ml) was then added. 

When the water has been removed and the frosting has ceased, the heat was increased until 

the digest cleared. The mixture was then boiled for 5 hours. The heating, during the boiling 

was regulated so that H2SO4 condensed about half way up the neck of the flask. The digest 

was carefully transferred into another clean macro-kjedahl flask (750ml). All sand particles 

was retained in the original digestion flask because sand can cause severe bumping during 
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kjeldahl distillation. The sand residue was washed with 50ml distilled water four times and 

the aliquot was added into 50ml of H3BO3 indicator was added into 500ml erlenmeyer 

flask which was the placed under the condenser of the distillation apparatus. The end of the 

condenser was about 4cm above the surface of boric acid solution. 

 
A 750ml-kjeldahl flask was attached to the distillation apparatus. NaOH (5ml of 405) was 

poured through the distillation flask opening the funnel stop lock. Distillation was then 

commenced. The condenser was kept cool (below 300C), sufficient cold water was allowed 

to flow through and the heat was also regulated to prevent sucking back. Fifty millilitres of 

distillate was collected and distillation was stopped. 

 
To determine the NH4N in the distillate, the distillate was titrated against 0.01N HCl using 

a 25ml burette graduated at 0.1ml intervals. The colour at the end point was from green to 

pink.   

The % N content of the soil was then calculated using formula below, 

  % N = 0.01x 0.014x 100x 100) x t 
   5ml x  weight of sample 
 
           t = sample filtration (ml) 

 
Determination of exchangeable cation exchange capacity (ECEC) 

To determine exchangeable acidity, 5g of air dried soil (sieved through 2mm sieve) were 

weighed into a 250ml conical flask. A 50ml of 1N potassium chloride (KCl) solution was 

added to the soil sample in the conical flask. The flask was shaken on a reciprocating 

shaker for 1 hour and the content was filtered through Whatman No. 42 filter paper. 

Twenty five mls of the filtrate was pipetted into a 100ml conical flask and 50 ml distilled 
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water was added along with 5 drops of phenolphthalein indicator. The resulting solution 

was titrated with 0.01N sodium hydroxide (NaOH) to a permanent pink end point. The 

volume of the base used was recorded and used in the calculation of total exchangeable 

acidity (H+Al).  

 
Exchangeable cations (calcium, magnesium, potassium and sodium) were extracted with 

neutral normal ammonium acetate (NH4OAC at pH 7.0). Calcium and magnesium content 

in the ammonium acetate extract were determined titrimetrically using the versenate 

(EDTA) method. For the determination of calcium and magnesium, 20ml of the soil extract 

was pipetted into a 250ml conical flask and 50ml of distilled water was added. Thereafter, 

20ml of concentrated ammonia solution was added along with 10 drops of 2% sodium 

cyanide and 5ml of 10% hydroxylamine hydrochloride. The sample was titrated with 

0.02N EDTA solution using 5 drops of erichrome black T as indicator with colour changes 

from wine red to pure blue end point. This titre value was used for the calculation of the 

concentration of calcium and magnesium present in the soil. 

 
To determine the amount of calcium present, 20ml of soil extract was placed in 100ml 

conical flask. Twenty millilitres of 20% potassium hydroxide solution was added to the 

extract along with 10 drops of 2% sodium cyanide, 5ml of 10% hydroxylamine 

hydrochloride and 5 drops of calgon indicator. The resulting solution was titrated against 

0.02N versenate (EDTA) until the end point was reached. The titre value obtained here was 

used for calculating the cationic concentration of calcium present in the soil. The 

difference between the titre value obtained here and that obtained from the initial titration 

gives the cationic concentration of magnesium present in the soil.  Potassium and sodium 
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contents were determined by flame photometry. Standard solutions containing 0, 2, 4, 6, 8 

and 10 mg/L (ppm) were prepared for sodium using sodium chloride and normal neutral 

ammonium acetate (1N NH4OAc) were used in the preparation of these standard solutions. 

 
In calibrating the flame photometer, the meter reading was set to zero using the blank 

solution (Normal neutral ammonium acetate and the maximum reading of 100 was set 

using the highest standard solution of 10mg / L (for sodium) or 20 mg / L  (for potassium). 

Other standard solutions were then read (values were between 0 and 100). The samples 

were then aspired and the photometer readings were recorded. Where the sample reading 

exceeded 100, further dilution of the sample with normal neutral ammonium acetate was 

carried out to bring the sample reading to between 0 and 100. The dilution ratios in such 

cases were noted. After every ten readings, the calibration of the flame photometer was 

checked again using the lowest and the highest concentration of the standard solutions. A 

standard calibration curve was plotted each for sodium and potassium and the 

concentrations of each element (Na and K) in the sample was read from their respective 

calibration curves. 

The Effective Cation Exchange Capacity (ECEC) was determined by the summation of the 

exchangeable bases (Ca, Mg, Na and K ) and exchangeable acidity expressed in cmolkg-1. 

Statistical Analysis: 

Percentage frequency of occurrence of varying AM fungal species in the different soil 

sample was estimated. Correlation analysis was used to determine the relationship between 

AM spores population and some soil parameters such as pH, Organic content, Nitrogen 

content ECEC and available P. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Occurence and distribution of AMF spores in selected soils of Southern Guinea Savanna 

The wet sieving and decanting/density gradient centrifugation method of Brundrett et al. (1996) 
used in this study effectively screened out the spores of other types of fungi. In a preliminary study, 
when the supernatant obtained from the wet sieving was plated out and incubated on Potato 
Dextrose Agar (PDA), no fungal isolate was detected.  Some bacteria colonies were however 
observed on the plates after two days (Plate 1). Levy et al. (2003) and Roesti et al. (2005) reported 
the occurrence of bacteria spp on the surface of AMF spores. The bacteria were discovered to be 
feeding on the hyaline outer spore wall layer of the AMF spores. One aspect that has received 
attention in the evaluation of diversity of AMF is their unusual association with endosymbiotic 
bacteria and the degree of their intraspecific diversity. Bacteria-like organisms in the cytoplasm of 
AMF were first observed by transmission electron microscopy in the early 1970s (Scannerini and 
Bonfante, 1991), but confirmation of their prokaryotic nature was impeded by their inability to 
grow on cell-free media.  

A combined morphological and molecular approach has now shown that the cytoplasm of 
Gigaspora margarita spores harbours a homogeneous population of bacteria identified, from the 
sequence of their 16S ribosomal RNA gene, as close to the genus Burkholderia (Bianciotto et al., 
1996). More recent phylogenetic studies suggest that these endobacteria probably represent a new 
bacterial taxon (Bianciotto et al., 2002). Polymerase Chain Reaction (PCR) assays with 
oligonucleotides specific for this 16S sequence have revealed these bacteria in all stages of the 
fungal life cycle (spores and symbiotic mycelia). In addition, isolates of different origin from three 
Glomalean families (Glomaceae, Gigasporaceae and Acaulosporaceae) were reported to display 
bacteria when observed by confocal microscopy using a fluorescent dye specific for bacterial 
staining. The endobacteria of Gigasporaceae seem to be distinct from those found in other fungal 
taxa in terms of density, morphology and PCR amplification with specific primers (Bianciotto et 
al., 2000). It was pointed out, however that different situations exist within this genus:  Gigaspora 
rosea was the only species to be completely devoid of endobacteria, an observation supported both 
by morphological observation of several isolates and by PCR experiments whereas Gigaspora 
gigantea harboured genetically and morphologically distinct bacteria (Bianciotto et al., 2000).  

 

A mixed population of AMF spores encountered in the soil of Southern Guinea Savanna of Nigeria 
is shown in Plate 2. The spores varied in colour, size and shape suggesting that the isolates belong 
to different genera and species. The morphological properties of the AMF spores are shown in 
Tables 1-4. The shapes of the AMF spores varied from globose to oblong; some were cream, white 
or hyaline, while some other ones were brown to orange brown in colour. By comparing the 
features with that from Invam data base, these spores were identified to be spores of Glomus, 
Gigaspora, Acaulospora, Entrophospora, Scutellospora and Paraglomus species. The occurrence 
of the various species varied considerably among the different sampling locations (Tables 1-4). A 
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total of 13 isolates were encountered in all the soils.  Genus Glomus had the highest number of 
isolates. Invam data base has reported the genus Glomus to be the most diverse in glomales. In a 
study from Senegal, the presence of diverse AMF communities in sand dunes including 
Scutellospora and Acaulospora with Glomus having the highest species of isolates was reported 
(Diallo et al., 1999). Likewise, AMF community in the Namibian desert were exclusively 
composed of Glomus and Acaulospora spp (Stutz et al., 2000). Ilorin soil had the highest number 
of isolates (13) (Table 4) while Bacita soil had the least (8) (Table 1). Pategi and Malete soils had 
10 and 11 isolates respectively (Tables 2 and 3). Scutellospora reticulata was found to be the 
predominant AMF species colonizing all the study sites, followed by Glomus pansihalos.  The 
population pattern of AMF varies greatly and their diversity is affected by various factors including 
soil environmental conditions, host plant and agricultural practices (McGonigle and Miller, 1996). 
According to Bever et al. (1996) every phase in the life cycle of AMF (spore germination, hyphal 
development, colonization and sporulation) is influenced by plant roots. AMF colonisation pattern 
is affected by soil pH (Wang et al., 1985) and interaction with other microorganisms (Bagyaraj, 
1984).  

 

Figure 1a shows the mean total AMF spores per kilogram of soil and species variation in soils 
developed over basement complex (Ilorin and Malete soils) and those formed over sedimentary 
rock (Pategi and Bacita soils), while Fig. 1b shows the biodiversity index of AMF in all study sites. 
Soil formed over basement complex had significantly (F1,2 = 57.1; p < 0.05) higher mean AMF 
spore kg-1 soil and higher isolate variation (602 kg-1 soil and 13 species respectively) than soil 
developed over sedimentary rock (213 kg-1 soil and 10 species respectively). The variation in 
number of spores/kg of soil recorded among the study sites could be as a result of many factors, 
some of which may include differences in crops that were cultivated in these sites and the previous 
state of those sites before collection of soil samples. Soil pH, total soil P, available P, type of soil, 
soil moisture and cropping season. 

 

In a study reported by Sharif and Moawad (2006) the number of mycorrhizal spores was markedly 
affected by the crop types and sites. Agricultural management practices might affect AMF 
communities both qualitatively and quantitatively (Miller et al., 1995). Oehl et al. (2003) also 
reported that crop rotation, fertilization, and tillage affect the composition and diversity of AMF 
communities as well as spore and mycelium densities in temperate and tropical agro-ecosystems. In 
the present study, Pategi soil was cropped with Sorghum bicolor intercropped with cassava 
(Manihot esculenta Crantz). Rotation with groundnut (Arachis hypogaea) was also practiced while 
Bacita soil was cropped majorly with sugarcane (Saccharum officinarum), rice (Oriza sativa) and 
tomatoes (Lycopersicum esculentum Mill.) in some other parts. Ilorin soil on the other hand was 
cropped with maize (Zea mays) intercropped with cassava while Malete soil was cropped with okro 
(Abelmoschus esculentus), maize and cowpea (Vigna unguiculataWalp.). Cassava for example has 
been discovered to be highly dependent on a vesicular-arbuscular (VA) mycorrhizal fungi 
association for growth (Howeler and Sieverding, 1983).  
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Plate 1: Supernatant from net sieving screened for spores of other fungi showing bacteria colonies. 
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                  Plate 2: Mixed population of AM spores from soil of Southern Guinea Savanna 
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Table 1: Morphological features of AMF spores isolated from Bacita soil 

 

 

Features
  

AMF ISOLATES 

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 

Colour Black Brown Reddish 
brown 

Orange Pale cream Black Orange 
brown 

Yellow 
brown 

Size (X 
500µm) 

412.66 369.67 256.08 188.16 198.97 232.24 225.42 210.08 

Edge Smooth Smooth Watty Smooth Smooth Watty Smooth Smooth 

Shape Globose Globose Globose Globose Subglobose Subglobose Subglobose Globose 

Special 
feature 

Occurring 
Singly 

Occurring singly Occurring 
singly 

Occurring 
singly 

Occurring 
singly with 
hyphal/filame
nt 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly with 
hyphal/filame
nt 

Identity Scutellospora 
reticulate 

Enthrophospora 
infrequens 

Glomus 
pansihalos 

Glomus 
tortuosum 

Paraglomus 
occultum 

Scutellospora 
pellucid 

Acaulospora 
laevis 

Glomus 
intraradices 
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     Table 2:  Morphological features of AM spores isolated from Pategi soil 

 

 

Features
  

AMF ISOLATES 

PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 

Colour Cream  Orange 
brown 

Black  Yellowish 
brown 

Reddish 
brown 

white Brown Black Orange 
brown 

Pale 
yellow 

Size (X 
500µm) 

247.76 188.16 455.26 351.19 256.08 305.50 389.67 175.84 225.42 259.93 

Edge Smooth Smooth Smooth Smooth Smooth Watty Smooth Watty Smooth Smooth 

Shape Globose Globose Globose Oblong Globose Globose Globose Subglobose Globose Globose 

Special 
features 

Occurring 
Singly 

Occurri
ng 
singly 

Occurring 
singly 

Occurring 
singly 

Occurrin
g singly 

Occurrin
g singly 

Occurring 
singly 

Occurring 
singly 

Occurrin
g singly 

Occurring 
singly 
with 
hypha/ 
filament 

Identity Paraglom
us 
brasilianu
m 

Glomus 
tortuosu
m 

Scutellospo
ra 
reticulata 

Scutellospo
ra 
calospora 

Glomus 
Pansihal
os 

Gigaspor
a 
margarit
a 

Enthrophospo
ra infrequence 

Scutellospor
a pellucida 

Acalospo
ra laevis 

Glomus 
manihotis 
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Table 3:  Morphological features of AM spores isolated from Malete soil 

 

 

 

Features 

AMF ISOLATES 

MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8 MT9 MT10 MT11 

Colour White Brown Black Orange 
brown 

Pale 
yellow 

Cream Orange 
brown 

Black Yellowish 
brown 

Reddish 
brown 

Cream 

Size (X 
500µm) 

305.50 389.67 175.84 225.42 259.93 247.76 188.16 455.26 351.91 308.30 308.30 

Edge Smooth Smooth Watty Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

Shape Globose Globose Subglobose Subglobos
e 

Globose Globose Globose Globose  Oblong Globose Globose  

Special 
features 

Occurri
ng 
Singly 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly 

Occurri
ng 
singly 
hyphal/ 
filament 

Occurring 
singly 

Occurri
ng 
singly 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly  

Occurri
ng 
singly 

Identity Gigaspo
ra 
margari
ta 

Enthrophosph
ora infrequens 

Scutellospo
ra pellucid 

Acalospor
a laevis 

Glomus 
manihot
is 

Paraglom
us 
brasiliamu
m 

Glomus 
tortuosu
m 

Scutellospo
ra 
calospora 

Scutellospo
ra 
reticulata 

Glomus 
pansihalos 

Gigaspo
ra 
decipien 
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Table 4:  Morphological Features of AM spores isolated from Ilorin soil 

 

 

 

Features 

AMF ISOLATES 

IL1 IL2 IL3 IL4 IL5 IL6 IL7 IL8 IL9 IL10 IL11 IL12 IL13 

Colour Black Orange 
brown 

Yellow 
brown 

Yellow 
brown 

White  Black  Brown  Reddish 
brown 

Orange 
brown 

Pale 
cream 

Cream Pale yellow Cream 

Size  
(X500µm
) 

232.24 225.42 210.08 351.91 305.05 412.66 369.67 256.08 188.16 198.97 247.76 259.93 308.30 

Edge Watty Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

Shape Subglobose Subglobos
e 

Globose Oblong  Globose Globose Globose Globose  Globose  Subglobose Globose  Globose Globose 

Special 
features 

Occurring 
Singly 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly 

Occurring 
singly 

Occurring singly Occurring 
singly 

Occurring 
singly 

Occurring 
singly with 
hypha 
filament  

Occurring 
singly 

Occurring 
singly 

Occuring 
singly 

Identity Scutellospor
a pellucida 

Acalospor
a laevis 

Glomus 
intraradice
s 

Scutellospor
a calospora 

Gigaspora 
margarita 

Scutellospor
a reticulata 

Enthrophosphor
a infrequens 

Glomus 
pansihalos 

Gloomus 
tortuosum 

Paraglomu
s occultum 

Paraglomu
s 
brasilianu
m 

Glomus 
manihotis 

Gigaspora 
decipien 
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The ability of some crop types to support high AMF population may be attributed to the root exudates 
of these plants, which stimulate the germination of mycorrhizal spores and increase the infection 
percentage.  According to Osonubi et al. (1994), cassava responded to Vam inoculation significantly. 
Mathimaran et al. (2007) also discovered that spore densities of AMF were significantly affected by 
plant species identity. Mahesh and Selvaraj (2008) reported 82% Vam colonization in Sorghum 
compared to 20% in Saccharum.  Bacita site for example had been under intensive use in the previous 
three to five years. There was a record of the use of heavy machine such as tractor, mounting plough 
and harrow. Substantial use of both urea and NPK fertilizer was also on record. Overhead sprinkler 
and underground irrigation together with the use of chemicals such as gramaxone, (paraquat(R)) and 
Pedimenthalin (stomp(R)) were practiced. Brundrett (2000) observed lower diversity of AMF in 
disturbed sites compared to undisturbed site. While all identified AMF species in this study were 
common to both soil types, Scutellospora calospora and Gigaspora decipien were found only in soils 
formed over basement complex as shown in Tables 1-4.  

 

 

Davies et al. (1994) stated that high levels of available soil nutrients may also affect the species of 
AMF present as a result of differences in their sensitivity to high nutrient, notably P availability. Soil 
and environmental management factors may also be responsible for this variation. According to Sharif 
and Moawad (2006), soils, plants and environmental management factors mainly affect the 
mycorrhizal fungi and their development in an ecosystem. Figures 2-5 show the percentage frequency 
of occurrence of various AMF species encountered in Ilorin, Malete, Pategi and Bacita soils 
respectively. The soils formed over Basement complex (Ilorin and Malete) had 13 and 11 species 
respectively while those formed over sedimentary rock (Bacita and Pategi) had 8 and 10 species 
respectively. Indigenous AM fungal communities generally contain several fungal species (Sharif and 
Moawad, 2006). Panwar and Tarafdar (2006) also reported variation in percentage of AMF spores in 
different location. Sieverding (1989) stated that normally 5-15 VAM species may be found in an agro-
ecosystem. The spatial distribution of AM fungal species can vary and even when the number is the 
same at two different sites, the species composition of the fungal population can be completely 
different. The differences observed in species composition may be due to agricultural management 
practices embarked upon on those sites. The predominant AM species in the soils from the four sites 
were Scutellospora reticulata and Glomus pansihalos. In a study reported by Mathimaran et al. 
(2007), AMF communities in tropical ferrasol under simple crop rotation were also dominated by 
Scutellospora spp. Variation in spore population may be attributed to soil edaphic characters 
particularly to the acidity, high moisture and organic carbon in soil (Mahesh and Selvaraj, 2008). 
Another factor, according to Treseder and Cross (2006) that could influence distribution of AM fungi 
is fine root length. This is because fine roots provide a substrate for colonization by AM fungi. 
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Fig 1a: Average total AMF spores kg-1soil from different sites. Bars are standard error. 

BC1=Soil formed over Basement Complex 1, BC2 = Soil formed over Basement Complex 2, 
SD1= Soil formed over Sedimentary rock 1 and SD2= Soil formed over Sedimentary rock 2.  
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Fig 1b: Biodiversity index of AMF in different sites. Bars are standard error 

 

BC1=Soil formed over Basement Complex 1, BC2 = Soil formed over Basement Complex 2, 
SD1= Soil formed over Sedimentary rock 1 and SD2= Soil formed over Sedimentary rock 2.  
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Fig 2: % Frequency of occurrence of AMF isolates from Ilorin soil. Bars are % error. 
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Fig 3: % Frequency of occurrence of AMF isolates from Pategi soil. Bars are % error. 
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Fig 4: Frequency of occurrence of AMF isolates from Bacita soil. Bars are % error. 
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Fig 5: % Frequency of occurrence of AMF isolates from Malete soil. Bars are % error.  
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Physicochemical properties of soils  

Table 5 shows some physicochemical properties of soils from the four study sites. Soils formed over 
basement complex were more acidic (pH 5.85, 5.88) than those formed over sedimentary rock (pH 
6.10, 6.21). The sedimentary based soils had higher % organic matter(1.10-1.47), higher Phosphorus 
(2.9, 14.20), higher % nitrogen (3.5, 11.2) higher ECEC (4.68, 4.97) than those formed over basement 
complex which had % organic matter value of (0.48, 0.48) soil P (1.88, 2.15) % nitrogen (2.10, 2-80) 
and ECEC (4.08-4.53) The sedimentary based soils were sandy in texture while the soils formed over 
basement complex had loamy sand texture. 

Correlations of some soil factors with AMF spore population in soil 

Figures 6-10 show the correlations between some soil factors and AMF spore population in soil. 
Significant negative correlations were observed between AMF spore population and soil factors 
studied: soil pH, r = - 0.70* (fig. 6); % O.M content, r = -.97* (fig. 7); available P, r = -0.74*(fig. 8); 
% Nitrogen, r = - 0.95* (fig. 9) and ECEC, r = - 0.79* (fig.10). Eason et al. (1999) and Panwar and 
Tarafdar (2006) also reported negative correlation between soil P and AMF population of soil. This 
finding in this study is in line with the report that P application to soil and high available P content 
resulted in a decreased spore number, and suggests that available soil P content affects the production, 
survival and germination of AM fungal spores ( Isobe et al., 2007). These authors also reported a 
decrease in spore density in acid or alkaline soil. The density of AM fungal spores in soil is known to 
vary with the soil environment, such as P content, presence of plant roots and crop species (Isobe et 
al. 2007) However, Panwar and Tarafdar (2006), reported a positive correlation between soil pH and 
spore population. Also, according to these authors, spore densities peaked during summer and reached 
minimal values during raining season. When soil conditions were suitable for spore germination, 
mycorrhizal colonization increasesd and spore abundance decreased (Mason et al., 1992; Ragupathy 
and Mahadevan, 1993). Fontenla et al. (1998) postulated that when number of spores in soil is high, 
the frequency of colonization is low, and vice versa.  

Treseder and Cross (2006) also recorded a negative correlation between AM abundance and soil 
organic matter pools. This agrees with Read’s hypothesis (1991) that the community composition of 
mycorrhizal fungi would vary as a function of the organic matter in the soil. Specifically, AM plants 
should be more abundant in ecosystems with smaller pools of organic nutrients in the soil, since this 
group possesses limited ability to degrade organic matter. AM abundance may be greater where plants 
are more limited by P, as indicated by high N:P ratios of plant tissue (Treseder and Cross, 2006).    
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TABLE 5: SOIL PHYSICOCHEMICAL CHARACTERISTICS.  

 

SOIL 
CHARACTERISTICS 

STUDY SITE 

ILORIN MALETE PATEGI BACITA 

pH (1.1) 

% OM 

P mg/kg 

% N 

Ca(2+) (Cmol kg-1)  

Mg(+) (Cmol kg-1) 

K(+) (Cmol kg-1) 

Na(+) (Cmol kg-1) 

Total Acidity (Cmol kg-1) 

ECEC (mg kg-1) 

Sand % 

Silt % 

Clay % 

Soil Texture 

5.85 

0.48 

1.88 

2.10 

3.20 

0.60 

0.39 

0.14 

0.20 

4.53 

84.8 

8.0 

7.2 

Loamy sand 

5.88 

0.48 

2.15 

2.80 

2.80 

0.40 

0.34 

0.14 

0.40 

4.08 

88.8 

4.0 

7.2 

Loamy sand 

6.61 

1.10 

2.90 

3.50 

3.50 

0.50 

0.49 

0.19 

0.40 

4.68 

90.8 

2.0 

7.2 

Sandy 

6.10 

1.47 

14.20 

11.20 

3.60 

0.80 

0.43 

0.14 

0.40 

4.97 

84.8 

6.0 

9.2 

Sandy 
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Fig 6: Correlation between soil pH and total number of AMF spores kg-1 soil 
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Fig 7: Correlation between % O.M. of soil and total number of AMF spores kg-1 soil  
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Fig 8: Correlation between soil Available P. and total number of AMF spores kg-1 soil  
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Fig 9: Correlation between % N. and total number of AMF spores kg-1 soil  

 

 

 

 

 

 

 

 

 

 

y = -305.48x + 1326.2
R² = 0.895

0

100

200

300

400

500

600

700

800

0 0.5 1 1.5 2 2.5 3 3.5 4

N
o

 o
f 

S
p

o
re

s 
K

g
-1

S
o

il

% Nitrogen



74 

 

 

 

 

Fig 10: Correlation between Soil ECEC and total number of AMF spores kg-1 soil. 
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Morphological characterization of AMF spores 

Plates 3-14 show the Scan Electron Microscopy (SEM) and subcellular structure of the AM spores 
isolated from study sites. The sizes of AMF spores indigenous to Southern Guinea Savanna of Nigeria 
vary from 188µm - 413 µm. Some of the spores obtained were globose while some were subglobose 
and some other ones were oblong in shape. Subcellular structures show spores with one, two and 
some with 3 internal layers designated as L1, L2 and L3.   

 

Paraglomus occultum Morton and Redecker (2001) 

Plate 3 shows a Glomus spore with a long hyphal attachment. L1 had a thin coating of organic debris 
on it’s surface. This layer had no reaction in melzer’s reagent and produced a light yellow reaction in 
melzer’s reagent continuing to the wall of subtending hypha. L3 increased in thickness in the region 
of hyphal attachment and had a yellow reaction in melzer’s reagent.  This was identified as 
Paraglomus occultum based on description in Invam data base. 

 

Glomus tortuosum Scheck and Smith 

The spore shown in Plate 4 is globose with only one layer of spore wall. A subtending hypha is 
evident. This agrees with the description of Glomus tortuosum reported in Invam data base. 

 

Scutellospora calospora Nicolson and Gard 

Plate 5 reveals a spore with prominent germination shield. Two spore wall layers are evident L1 gave 
pale yellow colour with green tint adhering to L2 which gave a pale yellow colour and almost equal to 
L1 in thickness. According to reports from Invam data base and Brundrett (1999) only genus 
Scutellospora produces germination shield in spores. Hence, this spore was identified as S. calospora 
spore based on description in Invam data base.  

 

Entrophospora infrequens 

Plate 6 shows a globose shaped spore, 389.67µm in size at magnification x500µm. It showed 2 
distinguished spore wall layers; L1 covered by a thin sublayer L2 which had orange brown colour in 
PVLG. According to Wu and Lin , this is typical of Entrophospora infrequens. The species is known 
to produce globose or subglobose with a zygospores swollen tips which are reddish brown to brown at 
maturity and are produced singly in soil. 

 

Acaulospora laevis Gerd and Trappe 

Plate 7 shows a globose, orange brown spore. The first layer L1 was smooth L2 showed no reaction in 
Melzer’s reagent and had dark orange brown colour. The third layer, L3 was yellow-brown and 
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showed no reaction in melzer’s reagent. No hyphal attachment was observed. These morphological 
characterization are consistent with characteristics of Acaulospora laevis in Invam data base. 

 

Gigaspora margarita Becker and Hall 

The spore of G. margarita was 3 layered (Plate 8). The L1 was smooth brownish yellow. L2 stained 
dark red brown in Melzer’s reagent while L3 was adherent with the laminate layer. A point of hypha 
attachment was also revealed. This is in harmony with the description of Gi. margarita given in 
invam data base.  
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                              a                                                                         b                                          

                                     Plate 3: Spore of Paraglomus occultum 

     a: SEM morphology 

     b: Subcellular structure  
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                                 a                                                                         b                                                    

                                            Plate 4: Spore of Glomus tortuosum 

    a: SEM morphology 

    b: Subcellular structure  
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                                        a                                                       b                                                

                                        

c 

Plate 5: Spore of Scutellospora calospora 

   a:  Subcellular structure 

   b:  Subcellular structure of spore showing germination shield 

    c:  SEM morphology    
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                                    a                                                                        b         

Plate 6: Spore of Entrophospora infrequens 

                                     a: SEM morphology 

                                     b:  Subcellular structure 
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                                            a                                                        b       

Plate 7: Spore of Acaulospora laevis 

                                           a: SEM morphology  

                                           b: Subcellular structure  
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                                          a                                                                b         

Plate 8: Spore of Gigaspora margarita 

          a: SEM 
morphology 

          b: Subcellular 
structure  
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Paraglomus brasilianum Morton and Redecker 

Plate 9 shows a globose spore with 3 layers of spore wall; a thin L1 almost sloughing and coated with 
organic debris which had no reaction in Melzer’s reagent, L2 which turned dark yellow in Melzer’s 
reagent and a thin third layer, L3. The identification of this species was based on properties reported 
for Paraglomus brasilianum in Invam data base. 

 

Glomus intraradices Schenek and Smith  

Plate 10 shows a spore of Glomus intradices.  The spore was globose, had 3 spore wall layers and an 
hypha filament attachment. L1 stained pinkish in Melzer’s reagent, L2 was thinner and adherent to L1 
while L3 was pale yellow-brown. Invam data base gave this same description for Glomus 
intraradices. 

 

Glomus manihotis Howeler 

A spore of G.. manihotis is shown on plate 11.  The subcellular features revealed a globose spore with 
spore wall layers.  The first layer L1, was thin and light purple in Melzer’s reagent while L2 was 
thicker. Spore appeared squashed rather than cleanly broken. L3 was dark yellow almost of the same 
thickness as L1. The point of hyphal attachment was revealed in SEM structure. This isolate was 
identified as Glomus manihotis based on the description in Invam data base. 

 

Glomus pansihalos 

Plate 12 shows microscopic features of a spore of Glomus pansihalos.  The spore had a globose shape 
and 2 distinctive spore wall layers. L1 was ornamented with cerebriform folds and spins while L2 was 
reddish brown and laminated. None of the wall layers reacted to Melzers reagent. SEM shows point of 
attachment of hyphal filament. This corresponds with the description for Glomus pansihalos by Wu in 
the Glomales of Taiwan. According to this author, the spore of G. pansihalos are borne singly in soil. 
There are globose, (60-) 90- 120 (-180) µm diam, occasionally subglobose, obovoid, ellipsoid, 70-
130x80-140 µm. spores hyaline to pale yellow becoming reddish brown or dark brown with age.    

 

Gigaspora decipiens Hall and Abbott 

The spore of Gi. decipiens shown in plate 13 had 3 spore wall layers. L1 was smooth and adhered to 
L2 which was pale yellow while L3 was thin and darker. A hyphal filament attachment was evident. 
This typifies a Gi. decipiens spore as described in Invam data base. Readhead (1977) also described 
species of Gigaspora from Nigeria soil to be characterized by bulbous based spores. 
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Scutellospora reticulata 

Plate 14 shows the subcellular structure and scan electron microscopy of a spore of S. reticulata.  The 
spore was globose with no distinct inner wall layer. Its outer wall was laminated. It showed no 
reaction with Melzer’s reagent. Brundrett (2008) identified such a spore to be long to Scutellospora 
reticulata 
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                                     a                                                                           b            

Plate 9: Spore of Paraglomus brasilianum 

     a: SEM morphology 

     b: Subcellular structure 
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                                       a                                                                       b 

Plate 10: Spore of Glomus intraradices 

                  a:  SEM morphology     
     b:  Subcellular structure 
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                                         a                                                                        b 

 

                                         Plate 11: Spore of Glomus manihotis 

                                           a : SEM Structure 

                                          b: Subcellular Structure  
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                                      a                                                                     b 

Plate 12: Spore of Glomus pansihalos 

 a: SEM morphology    b: Subcellular structure  
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                                                a                                                                         b   

Plate 13: Spore of Gigaspora decipiens 

a: SEM morphology                                                    b: Subcellular structure  
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                                   a                                                                    b 

Plate 14. Spore of Scutellospora reticulata 

a: SEM morphology 

   b: Subcellular structure  
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