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15.1 Introduction 
Phytoremediation is a novel green technology that uses 
specialized plants and associated soil microbes to remove, 
destroy, sequester or reduce the concentrations or toxic 
effects of contaminant in polluted environment especially 
soil and water. It refers to a group of plant-based technologies 
that use either naturally occurring or genetically 
engineered plants to clean contaminated environments. This 
technology depends on the ability of both the plant and associated 
microorganisms to adapt to or survive in high-metal 
environments. Polluted soil poses a severe problem to both 
ecosystem health and land development. Soil pollution 
threatens the health of human, plant and animal. Soil pollution 
can spread to other parts of the natural environment 
because soil is at the confl uence of many natural systems. For 
instance, groundwater that percolates through a polluted soil 
can carry soil contaminants into streams, rivers, wells and 
drinking water. Plants growing on polluted soil may contain 
harmful levels of pollutants that can be passed on to the animals 
and people that eat them. Dust blown from polluted soil 
can be inhaled directly by passers-by. Additionally, polluted 
soil renders valuable open land unusable for parks, recreation 
or commercial development. The fact that both soil minerals 
and soil pollutants carry small electric charges that cause 
each to bond with each other makes polluted soil very hard to 
clean. A range of technologies such as fi xation, leaching, soil 
excavation, chemical treatment, vitrifi cation, electrokinetics 
and landfi ll of the top contaminated soil, bioventing, thermal 
desorption, soil vapour extraction, biopiles, etc., have been 
used for the removal of metals. Many of these methods have 
high maintenance costs and may cause secondary pollution 
(Haque et al. 2008 ). Excavation of p olluted soil for off-site 
treatment or disposal is labour intensive, consumes a lot of 
time and requires the use of heavy machinery hence very 
expensive (Danh et al. 2009 ). Therefore, cheaper on-site, or 
in situ, remediation techniques have recently become the 
focus of research. One of the most interesting and promising 
of these in situ techniques is phytoremediation. Using plants 
to remediate soil pollution comprised of two components, 
one by the root-colonizing microbes and the other by plants 
themselves which absorb, accumulate, translocate, sequester 
and detoxify toxic compounds to non-toxic metabolites. 
Plants frequently lack metabolic capacity for the degradation 
of many pollutants hence the need to utilize degradation ability 
of soil organisms. Metal tolerance of plants is generally 
increased by symbiotic, root-colonizing, arbuscular mycorrhizal 
fungi (AMF), through metal sequestration in the AMF 
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hyphae. More also excretion of the glycoprotein glomalin by 
AMF hyphae can form complex metals in the soil. Exposure 
of plants to microorganisms within the rhizoplane protects 
the plants from the toxic effect of the contaminants and also 
takes part in phytoremediation. Resistant plants can thrive on 
sites that are too toxic for other plants to grow. They in turn 
give the microbial processes the boost they need to remove 
organic pollution more quickly from the soil. 
The mechanism responsible for the phytoremediation 
of contaminated soil has been proved to be as a result of 
increase in microbial activity. Organic toxins, those that 
contain carbon such as the hydrocarbons found in gasoline 
and other fuels, can be broken down by microbial processes. 
Soil fungi, for example, improve phytoremediation 
ability of plants by increasing the absorptive area of the 
roots of plants. The effi ciency of Tithonia diversifolia and 
Helianthus annuus in remediating soils contaminated with 
zinc and lead nitrates could be improved by introducing 
mycorrhizal fungi in order to increase the absorptive area of 
the roots of these plants ( Adesodun et al. 2010 ). Plants on 
the other hand play a key role in determining the size and 
health of soil microbial populations. All plant roots secrete 
organic materials that can be used as food for microbes, 
and this creates a healthier, larger, more diverse and active 
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microbial population, which in turn causes a faster breakdown of pollutants. Phytoremediation 
reduces contaminant levels through microbial degradation in the rhizosphere. Phytoremediation 
systems increase the catabolic potential 
of rhizosphere soil by altering the functional composition 
of the microbial community (Siciliano et al. 2003 ). Plants, 
through their “rhizosphere effects”, support hydrocarbondegrading 
microbes that assist in phytoremediation in the 
root zone (Nie et al. 2009 ). For example, root activities in 
perennial ryegrass and alfalfa increase the number of rhizobacteria 
capable of petroleum degradation in the soil 
(Kirk et al. 2005 ). In turn, healthy microbial communities 
enhance soil nutrient availability to the plants (Wenzel 
2009 ). Phytoremediation process can also be enhanced by 
the addition of specifi c inocula of microorganism to contaminated 
soils (bioaugmentation). Also, plants that are relatively 
tolerant to various environmental contaminants are 
often stunted in the presence of the contaminant. Therefore, 
plant growth-promoting microorganisms can be added to the roots of plants to remedy this situation. 
The best bioaugmentation performance can be achieved by the use of microorganisms that are 
already present in the soil, since indigenous microorganisms are well adjusted to their own 
environment. Inoculating plants with genetically engineered 
strains of bacteria that degrade a specifi c contaminant has 
shown promising results. Biostimulation, a process which 
involves manipulating the nutrient and pH levels of the 
soil to increase microbial populations, can also be used to 
amplify the population of soil organism responsible for biodegradation. 
Hence, fertilizers can be used together with 
bioaugmentation to facilitate degradation of pollutants. 

15.2 Advantages of Phytoremediation 
Using Microbes 
1. Low-cost: It is less expensive than alternative 
engineering- based solutions such as soil excavation, 
incineration or land fi lling of the contaminated 
materials. 
2. Aesthetically pleasing and appealing to the public. Trees 



and smaller plants used in phytoremediation make a site 
more attractive, reduce noise and improve surrounding 
air quality. 
3. Site use and remediation can occur simultaneously. 
4. In situ approach: It treats the contamination in place so 
that large quantities of soil, sediment or water do not have 
to be dug up or pumped out of the ground for treatment. 
5. Environmentally friendly: Poses no health risk to neither 
plant, human nor animal. 
6. Enhance soil nutrient availability to the plants. 
7. It takes advantage of natural plant processes and requires 
less equipment and labour than other methods since 
plants do most of the work. 
8. Saves energy since the site can be cleaned up without 
digging up and hauling soil or pumping groundwater. 
9. Trees and smaller plants used in phytoremediation help 
control soil erosion. 
10. Creates a more fertile soil as soil organic matter is 
increased as a result of root secretions and falling stems 
and leaves. 
11. Phytoremediation does not degrade the physical or 
chemical health of the soil as compared to soil excavation 
method that removes the organic-matter-rich topsoil 
and, because of the use of heavy machinery, compacts 
the soil that is left behind. 
12. Its by-product can fi nd a range of other uses. Some of 
the plants used for phytoremediation produce metabolites 
or phenolic compounds that are of commercial 
value in the pharmaceutical industry. 
13. The roots of plants used create pores through which 
water and oxygen can fl ow. 

15.3 Limitations of Phytoremediation 
Using Microbes 
1. A long time period is required for remediation. It is a slow 
process that may take many growing seasons before an 
adequate reduction of pollution is achieved, whereas soil 
excavation and treatment clean up the site quickly. 
Multiple metal-contaminated soils require specifi c metal 
accumulator species and therefore require a wide range of 
research prior to the application. The cadmium/zinc 
model hyperaccumulator Thlaspi caerulescens , for example, 
is sensitive towards copper (Cu) toxicity, which is a 
problem in remediation of Cd/Zn from soils in the presence 
of Cu by application of this species. 
2. Scientifi c understanding of mechanisms is still limited; 
this is because the technique is still in its infancy state. 
3. Hyperaccumulators can be a pollution hazard themselves. 
For instance, animals can eat the hyperaccumulators and 
cause the toxins to enter the food chain. If the concentration 
of contaminant in the plants is high enough to cause 
toxicity, there must be a way to segregate the plants from 
humans and wildlife, which may not be an easy task. 

15.4 Environmental Contaminants 
The following compounds have been reported as contaminants 
in soil and water: 
Pesticides; explosives; oil; heavy metal such as arsenic 
(As), cadmium (Cd), chromium (Cr), mercury (Hg), nickel 
(Ni), lead (Pb), selenium (Se), uranium (U), vanadium (V) 
and wolfram (W); polychlorinated biphenyls; polycyclic aromatic 
hydrocarbons (PAHs); chlorinated solvents; xenobiotics; 



munitions; semi-coke solid wastes (which contain several 
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organic and inorganic compounds such as oil products, 
asphaltenes, phenols, PAHs, sulphuric compounds); oil 
shale; and organic synthetic compounds. 

15.5 Factors that Affect Phytoremediation 
Certain factors affect the uptake, distribution and transformation 
of contaminants. Some of these factors include the 
following: 
1. Level of contamination: They work best where contaminant 
levels are low because high concentrations may 
limit plant growth and take too long to clean up. 
2. Plant species used for phytoremediation: Certain plants 
are better at removing contaminants than others. This 
may be due to differences in root exudate patterns, differences 
in root architecture as well as differences in 
genetic composition of the plant. Tall fescue with fi brous 
root system, for example, increases the potential of soil 
microbial community to degrade hydrocarbons, whereas 
rose clover with a coarse, woody root system decreases 
it (Siciliano et al. 2003 ). Plants used for phytoremediation 
must be able to tolerate the types and concentrations 
of contaminants present. They also must be able to grow 
and survive in the local climate. Chemical, physical and 
microbiological plants with low biomass yield and 
reduced root systems do not support effi cient phytoremediation 
and most likely do not prevent the leaching of 
contaminants into the aquatic system. 
3. Depth of contamination: Small plants like ferns and 
grasses have been used where contamination is shallow. 
Because tree roots grow deeper, trees such as 
poplars and willows are used for hydraulic control or to 
clean up deeper soil contamination and contaminated 
groundwater. 
4. Plant growth and development stage. Phytoremediation 
is most effective during the vegetative growth stages of 
plants. Plant vegetative growth stage is the most important 
phase for phytoremediation (Nie et al. 2011 ). 
5. Type and properties of inoculum used for 
bioaugmentation. 
6. Soil condition: Soil abiotic and biotic factors may determine 
the survival and activity of the introduced microorganisms 
(Juhanson et al. 2007 ). Some of the abiotic 
factors include temperature, soil pH, soil organic matter, 
soil moisture, cation exchange capacity, etc. 
7. Bioavailability of contaminant to the microbial community 
is another factor infl uencing biodegradation of 
pollutants. 
8. Age of the contaminants. 
9. Physical and chemical properties of the contaminant. 
Contaminants that are soluble in water may pass by the 
root system without being accumulated. 
10. Climatic factors. Plant survival and growth are adversely 
affected by extreme climatic factors. 
11. Toxicity of soil. 
12. Bioavailability of contaminant to plants. Metal that is 
tightly bound to the organic portions of the soil may not 
be available to plants. 
13. Contaminant source. 



15.6 Phytoremediation Strategies 
These technologies to be discussed below are based on the 
plant’s ability to absorb, accumulate, sequester and detoxify 
toxic metals: 
1. Hydraulic control : In this process of phytoremediation, 
plants act like a pump, drawing the groundwater up through 
their roots to keep it from moving. It reduces the movement 
of contaminated groundwater towards clean areas off-site. 

2. Phytoaccumulation ( phytoextraction ) : Plants absorb, 

accumulate and transport pollutants from the soil to 
aboveground plant parts (shoots). Removing the metals is 
as simple as pruning or cutting the plant aboveground 
mass. Plants, and their associated soil microbes, can release 
chemicals that act as biosurfactants in the soil that increase 
the uptake of contaminants. The aboveground plant parts 
rich in accumulated metal can be easily and safely processed 
by drying, ashing or composting. The plants used in 
a phytoextraction scheme should ideally have large biomass 
production and accumulate high concentration of 
metals in the aboveground portions (Adesodun et al. 2010 ). 
Over 500 plant species (101 families) and approximately 
0.2 % of angiosperms have been reported to possess metal 
hyperaccumulation ability (Krämer 2010 ). 
3. Phytostabilization involves the use of plants to reduce the 
mobility and bioavailability of contaminants in soil either 
through precipitation or adsorption onto roots. Plants 
adsorb contaminants onto their roots where microorganisms 
that live in the soil break down the adsorbed contaminants 
to less harmful chemicals. Mycorrhizal 
association, for example, is known to inhibit transport of 
metallic cations into plant roots. Some plant species such 
as Combretum and Rhus (Anacardiaceae) have the ability 
of in situ stabilization of some metals (Regnier et al. 
2009 ; Mokgalaka-Matlala et al. 2010 ). 
4. Phytodegradation is the breaking down of contaminants 
into less toxic substances in the soil through the activities of 
microorganisms in the rhizosphere of plant roots or externally 
through metabolites produced by plants. For instance, 
exudates (peptides) from the bacterium Pseudomonas 
putida can decrease cadmium (Cd) toxicity in plants. 
Natural exudates such as siderophores, organic acids and 
phenolics released by the roots of certain plants can form 
complexes (chelates) with metals in the rhizosphere. 



 
 
 
 
 
 
 



 
 
6. High level of tolerance to waterlogging and extreme 
drought condition. 
7. High level of accumulation, translocation and uptake 
potential of contaminant. 
8. Habitat preference of plant, e.g. terrestrial aquatic or semiaquatic. 



15.9 Effects of the Metals 
on the Phytoremediators 
Plants that have been successfully used as phytoremediators 
were able to tolerate, accumulate or translocate the metals by 
reasons of the following effects of the metals on the plants: 
1. The plant physiology: Metals affect the physiology of 
plants either by promoting or inhibiting the growth of the 
plant. Some develop metal tolerance characteristics 
through apoplastic or symplastic detoxifi cation mechanisms 
(Pilon-Smits et al. 2009 ). Some are absorbed from 
soil solution through passive transport. Hg, for example, 
may preferentially bind with sulphur- and nitrogen-rich 
ligands (amino acids) and enter inside the cells. Cd can 
induce changes in lipid profi le (Ouariti et al. 1997 ) and 
can also affect the enzymatic activities associated with 
membranes such as the H + ATPase (Fodor et al. 1995 ). 
2. Biomass production of the plants that have been successfully 
used as phytoremediators. 

15.10 Responses of Microbial Communities 
to Phytoremediation 
Different plant species have different effects on microorganisms 
in the soil. For instance, Alyssum corsicum , Alyssum 
murale and Brassica juncea (Ni hyperaccumulators) have 
been reported to increase both the population and biomass of 
soil microorganisms. By absorbing nickel from the soil and 
excreting root exudates, the plants reduced nickel toxicity 
and improved the living environment of the microbes (Cai 
et al. 2007 ). Phytoremediation increased the number of 
phenol- degrading bacteria as well as metabolic diversity of 
microbial community in semi-coke polluted soil (Truu et al. 
2003 ). Perennial ryegrass supports a general increase in 
microbial activity and numbers in the rhizosphere, some of 
which have catabolic activity towards petroleum hydrocarbons 
in petroleum-contaminated soil. Alfalfa, on the other 
hand, seems to specifi cally increase the number of microorganisms 
capable of degrading more complex hydrocarbons 
(Kirk et al. 2005 ). Plant-dependent changes in microbial 
functionality are the result of some form of communication 
between the associated microorganisms and the plant. For 
example, bacterial products, such as lumichrome, stimulate 
root respiration and thereby increase the availability of root 
exudates for bacteria (Phillips et al. 2009 ). 

15.11 Sources of Environmental Pollution 
1. Increased toxic waste from increased population 
2. Anthropogenic activities such as agriculture 
3. Metal purifi cation procedure, which includes mining, 
smelting and the tailings from industries 
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