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Abstract 
 

Classical Binomial and Poisson distributions, constrained by fixed trials and 

static event rates, falter in modeling modern datasets with dynamic parameters 

or contextual dependencies (e.g., variable infection rates, covariate-influenced 

risks). This paper introduces the Binosson Distribution, a hybrid framework 

unifying Binomial trials and Poisson processes through dynamic 

parameterization of trial counts (n) and designed to address event rates (λ). The 

distribution has been proposed to bridge the gap between these two 

distributions, incorporating aspects of both. Binomial-cum-Poisson 

distributions are modified to obtain a distribution that will be able to solve the 

probability problems that lies between the two distributions. Binosson is the 

result from the product of Binomial and Poisson distributions. Statistical 

properties such as mean, variance, standard deviation, skewedness and kurtosis 

were also derived. 

Keywords: Binomial distribution, Poisson distribution, Probability, Mean and 

Standard deviation  
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Introduction  

Classical probability distributions, such as the Binomial and Poisson models, have long 

underpinned the statistical modeling of discrete events in domains like biology, 

epidemiology, insurance, and operations research. These models offer elegant solutions 

under specific assumptions: the Binomial distribution assumes a fixed number of 

independent and identically distributed Bernoulli trials, while the Poisson distribution is 

ideal for modeling rare events occurring independently at a constant average rate. However, 

modern datasets increasingly challenge these idealized conditions. For example, customer 

purchase behavior may not follow fixed trials with constant probabilities due to seasonal 

influences, and disease outbreaks rarely maintain a constant infection rate due to 

intervention measures and evolving population behavior (AlmaBetter, 2023; 

ProjectManagers.net, 2025). These violations of foundational assumptions call into 

question the sufficiency of these classical models in dynamically evolving environments. 

In response, researchers have explored hybrid and generalized models that can bridge the 

structural gaps between discrete-event frameworks. This paper introduces the Binosson 

Distribution, a novel hybrid probability distribution that synthesizes features of both the 

Binomial and Poisson distributions. Unlike traditional models that rely on rigid constraints, 

the Binosson framework is built with dynamic parameterization and contextual adaptability, 

allowing it to model complex real-world processes more effectively. It accommodates 

fluctuating trial counts and variable event rates within a unified probabilistic architecture. 

As noted by Hamilton et al. (2017), hybrid modeling in dynamical systems yields more 

robust results, particularly when modeling phenomena that transition between discrete and 

continuous or deterministic and stochastic behaviors—conditions under which Binosson 

operates proficiently. 

The limitations of classical models are well-documented. The Binomial distribution 

struggles with real-world applications that involve over dispersion, correlated outcomes, or 

trial dependency, as its formulation assumes constant probability and independence 

(Towards Data Science, 2025). Meanwhile, the Poisson distribution is unable to handle 

scenarios where events are not evenly distributed in time or are influenced by external 

covariates. Its fixed interval assumption severely restricts applicability in fields like 

environmental science or finance, where events may cluster or shift due to external shocks 

(ProjectManagers.net, 2025). As von Kügelgen et al. (2024) argue, the notion of a “true” 
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underlying distribution often fails to reflect the context-dependent nature of real data. This 

critique fuels the case for distributions like Binosson that flexibly integrate real-world 

variability and systemic complexity. 

The Binosson Distribution aims to fulfill this critical modeling need through a hybrid 

structure that combines the count-based mechanism of Poisson processes with the 

bounded-trial structure of Binomial models. It introduces two key innovations: dynamic 

parameterization, allowing the rate of occurrence (λ) and trial count (n) to vary adaptively 

over time or conditions, and  contextual dependency, whereby external covariates such as 

environmental factors or policy interventions can influence outcomes, relaxing the 

assumption of independence. As Vose (2010) highlights, multi-parameter distribution 

models are essential for capturing over-dispersed or heteroscedastic data in practical 

applications. This paper formalizes the Binosson framework, derives its statistical 

properties, and demonstrates its application through real-world case studies in actuarial risk 

and epidemic modeling. Ultimately, this work contributes a flexible, modern statistical tool 

capable of bridging foundational theory with emerging data realities. 

 

Some Existing Useful Distribution 

Binomial distribution 

A binomial experiment is a series of n Bernoulli trials, whose outcomes are independent 

of each other. A random variable, X, is defined as the number of successes in a binomial 

experiment. A binomial distribution is the probability distribution of X (Adeosun, 2018). 

The probability mass function of a binomial distribution is given as: 

𝑓(𝑥1) = (𝑛
𝑥

)𝑃𝑥(1 − 𝑝) 𝑛−𝑥  𝑥 =  0, 1, 2, … , 𝑛    

 (1) 

Properties of Binomial distribution 

(a) The mean 𝐸(𝑋) =  𝑛𝑝 

(b)  The variance 𝑉(𝑋)  =  𝑛𝑝(1 − 𝑝) 

(c) The Moment Generating Function 𝑀𝑥(𝑡) =  (𝑝𝑒𝑡 + (1 − 𝑝))𝑛  

(d) The Probability Generating Function 𝐺𝑥(𝑡) =  (𝑝𝑡 + (1 − 𝑝))
𝑛
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Poisson distribution 

In probability theory and statistics, the Poisson distribution, named after French 

mathematician Siméon Denis Poisson, is a discrete probability distribution that expresses 

the probability of a given ...   

The Poisson distribution is used to model the number of events occurring within a given 

time interval. The probability mass function of a Poisson distribution is given as: 

𝑓(𝑥2) =
𝜆𝑥𝑒−𝜆

𝑥!
        for 𝑥 = 0, 1, 2, …       

 (2) 

λ is the shape parameter which indicates the average number of events in the given time 

interval. 

 

Properties of Poisson distribution 

(a) The mean 𝐸(𝑋) = λ 

(b)  The variance 𝑉(𝑋)  =  λ 

(c) The Moment Generating Function 𝑀𝑥(𝑡) =  𝑒λ(𝑒t−1)  

(d) The Probability Generating Function 𝐺𝑥(𝑡) =  𝑒λ(𝑡−1)  

 

Binosson Distribution 

The proposed distribution, Binosson distribution is the combination of binomial and 

Poisson distributions. Binomial-Cum-Poisson distributions are modified to obtain a 

distribution that will be able to solve the probability problems that lies between the two 

distributions. Binosson is the result from the product of binomial and Poisson distributions  

𝑓(𝑥) = 𝑓(𝑥1). 𝑓(𝑥2) 

Combine equation (1) and 2 as follows to get (3) 

𝑓(𝑥) = (𝑛
𝑥

)
𝑝𝑥𝜆𝑥    𝑞𝑛−𝑥

𝑥! 
𝑒−𝜆       (3) 

𝑓(𝑥) = (𝑛
𝑥

)
(𝜆𝑝)𝑥

𝑥! 
𝑞𝑛−𝑥𝑒−𝜆       (4) 

𝑓(𝑥) = (𝑛
𝑥

)𝑒𝜆𝑝𝑞𝑛−𝑥𝑒−𝜆       (5) 
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𝑓(𝑥) = (𝑛
𝑥

)𝑒−( 𝜆−𝜆𝑝)𝑞𝑛−𝑥        (6) 

𝑓(𝑥) = (𝑛
𝑥

)𝑒−𝜆( 1−𝑝)𝑞𝑛−𝑥        (7) 

𝑓(𝑥) = (𝑛
𝑥

)𝑒−𝜆𝑞𝑞𝑛−𝑥         (8) 

𝑓(𝑥) = (𝑛
𝑥

)
(−1) 𝑥(𝜆𝑞)𝑥

𝑥! 
𝑞𝑛−𝑥        (9) 

𝑓(𝑥) = (𝑛
𝑥

)( −1) 𝑥
𝜆𝑥

𝑥
𝑞𝑥𝑞𝑛 1

𝑞𝑥       (10) 

𝑓(𝑥) = (𝑛
𝑥

)𝑒−𝜆𝑞𝑛         (11) 

𝑓(𝑥) = (𝑛
𝑥

)𝑞𝑛𝑒−𝜆         (12) 

The probability mass function is given as 

𝑓(𝑥) =
1

2𝑛 (𝑛
𝑥

)𝑒−𝜆(1 − 𝑝)𝑛         (13) 

The cumulative distribution function is given as 

𝐹(𝑥) = ∑
1

2𝑛

𝑛

𝑥=0

(
𝑛

𝑥
) 𝑒−𝜆(1 − 𝑝)𝑛 

                                                        (14) 

 

Validity Test of Binosson Distribution 

The probability distribution function of any discrete random variable x will satisfy the 

following 

∑ 𝑓(𝑥) = 1

𝑛

𝑥=0

 

∑
1

2𝑛
( 

𝑛
𝑥

𝑛

𝑥=0

)𝑒−𝜆(1 − 𝑝) 𝑛 

∑( 
𝑛
𝑥

) 
1

2𝑛
𝑒−𝜆( 1 −

𝜆

𝑛 
) 𝑛 

∑( 
𝑛
𝑥

𝑛

𝑥=0

)  
1

2𝑛
𝑒−𝜆𝑒−𝜆 
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∑( 
𝑛
𝑥

𝑛

𝑥=0

)  
1

2𝑛
 

2𝑛
1

2𝑛
= 1 

 

 

Fig 1: Graph of PMF of Binosson Distribution 
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Fig 2: Graph of CDF of  Binosson Distribution 

 

Properties of the Distribution 

a. Mean 

𝐸 (𝑥) = ∑ 𝑥

𝑛

𝑥=0

1

2𝑛
(

𝑛

𝑥
) 𝑒−𝜆(1 − 𝑝)𝑛 

𝐸 (𝑥) = ∑ 𝑥

𝑛

𝑥=0

𝑛! 

(𝑛 −𝑥)! 𝑥 ! 

1

2𝑛
𝑒−𝜆

1

2𝑛
𝑒−𝜆(1 − 𝑝)𝑛 

𝐸 (𝑥) = ∑ 𝑥

𝑛

𝑥=0

𝑛(𝑛 − 1)! 

(𝑛 − 𝑥)! 𝑥(𝑥 − 1) ! 

1

2.2𝑛−1
𝑒−𝜆(1 − 𝑝)( 1 − 𝑝) 𝑛−1 

𝐸 (𝑥) = 𝑛(1 − 𝑝)
1

2
∑

( 𝑛 − 1)!

( 𝑛 − 𝑦) − (𝑥 − 1)! 

1

2𝑛 − 1

𝑛−1

𝑥=0

1

2𝑛
𝑒−𝜆( 1 − 𝑝) 𝑛−1 

𝑙𝑒𝑡 𝑛 − 1 = 𝑤 𝑎𝑛𝑑 𝑥 − 1 = 𝑦 
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𝐸(𝑥) =
𝑛(1 − 𝑝)

2
∑

𝑊! 

(𝑊 − 𝑌)! 𝑦! 

𝑊

𝑌=0

1

2𝑤
( 1 − 𝑝) 𝑛−1 

𝐸(𝑥) = 𝑛
(1 − 𝑝)

2
∑ ( ) 𝑦

𝑤
𝑤

𝑦=0

1

2𝑤
𝑒−𝜆( 1 − 𝑝) 𝑤 

∑ ( ) 𝑦
𝑤

𝑤

𝑦=0

1

2𝑤
𝑒−𝜆( 1 − 𝑝) 𝑤 = 1 

 

𝑬(𝒙) =
𝒏(𝟏 − 𝒑)

𝟐
 

 

Variance 

𝐸(𝑥2) = 𝐸(𝑥(𝑥 − 1)) + 𝐸( 𝑥) 

𝐸(𝑥(𝑥 − 1)) = ∑ 𝑥

𝑛

𝑛=0

(𝑥 − 1)𝑓(𝑛) 

𝐸(𝑥(𝑥 − 1)) = ∑ (𝑛 − 1)𝑛
𝑛=0 ( 

𝑛

𝑥
) 𝑛𝑒−𝜆

2
1 (1 − 𝑝) 𝑛 

𝐸(𝑥(𝑥 − 1)) = ∑(𝑥 − 1)
𝑛! 

(𝑛 − 𝑥)

𝑛

𝑥=0

! 𝑥! 𝑛2
1 𝑒−𝜆(1 − 𝑝) 𝑛 

𝐸(𝑥(𝑥 − 1)) = ∑ (𝑥 − 1)
𝑛(𝑛−1)(𝑛−2)! 

((𝑛−2)−(𝑥−2))! 
𝑥(𝑥 − 1(𝑥 − 2)! 𝑛 − 22

1𝑛
𝑥=0 𝑒−𝜆(1-p) 𝑛−2 

𝐸(𝑥(𝑥 − 1)) = 𝑛(𝑛 − 1) (1 − 𝑝) 222
1 ∑

(𝑛 − 2)! 

(𝑛 − 2) − (𝑥 − 2)! 

𝑛−2

𝑥−2=0

1

2𝑛−2
𝑒−𝜆(1 − 𝑝) 𝑛−2  

𝑙𝑒𝑡 𝑛 − 2 = 𝑚 𝑎𝑛𝑑 𝑥 − 2 = 𝑧 

𝐸(𝑥(𝑥 − 1)) =
𝑛( 𝑛 − 1)(1 − 𝑝) 2

22
∑

𝑚! 

( 𝑚 − 𝑧)! 𝑧!  

𝑚

𝑧=0

1

2𝑚
𝑒−𝜆(1 − 𝑝) 𝑚 

∑( 
𝑚

𝑧
) 

1

2𝑚
𝑒−𝜆 (1 − 𝑝) 𝑚 = 1 

𝐸(𝑥(𝑥 − 1)) =
𝑛( 𝑛 − 1)(1 − 𝑝) 2

22
(1) 
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𝐸(𝑥(𝑥 − 1)) =
𝑛(𝑛 − 1)(1 − 𝑝) 2

22
 

𝑣(𝑥) = 𝐸(𝑥2) − (𝐸(𝑥)) 2 

𝑣(𝑥) =
𝑛(𝑛 − 1)(1 − 𝑝) 2

22
+

𝑛(1 − 𝑝)

2
−

𝑛2(1−𝑝) 2

22
 

𝑣(𝑥) =
𝑛2(1−𝑝) 2

22
−

𝑛( 1 − 𝑝) 2

22
+

𝑛(1 − 𝑝)

2
–

𝑛2(1−𝑝) 2

22
 

 

𝑣(𝑥) =  
𝑛(1 − 𝑝)

2
−

𝑛( 1 − 𝑝) 2

22
 

𝑣(𝑥) =
𝑛(1 − 𝑝)

2
(

1

1
−  

(1 − 𝑝)

2
) 

𝑣(𝑥) =
𝑛( 1 − 𝑝)

2
(

2 − 1 + 𝑝

2
) 

𝑣(𝑥) =
𝑛( 1 − 𝑝)

2
(

1 + 𝑝

2
) 

 

𝑣(𝑥) =
𝑛( 1 − 𝑝)(1 + 𝑝)

4
 

 

Measures of Skewedness and Kurtosis 

Skewedness and Kurtosis: A fundamental task in many statistical analyses is to characterize 

the location and variability of a data set. A further characterization of the data includes 

skewedness and kurtosis. 

Skewedness is a measure of symmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the left and right of the center 

point. The skewedness of Binosson distribution can be obtained as 

𝐸( x) =
n(1 − p)

2 
 

E(x2) = n
(n − 1)(1 − p) 2

22
+ 

n(1 − p)

2
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E( x3) =
n(n − 2)(n − 1)(1 − p)  3

23
+

n(n − 1)(1 − p) 2  

22
+ 

n(1 − p)

2
 

E( x4)          =          
n(n − 3)(n − 3)(n − 1)(1 − p)  4

24

=
n(n − 1)(1 − p) 3  

23
+  

n(n − 1)(1 − p) 2

22
+  

n(1 − p)

2
 

 

SK =

n(n−2)(n−1)(1−p)  3

23 +
n(n−1)(1−p) 2  

22 +  
n(1−p)

2

(
n( 1−p)(1+p)

4
)

3

2
 

 

 

Kurtosis 

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a 

normal distribution. That is, data sets with high kurtosis tend to have heavy tails, or 

outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. A uniform 

distribution would be the extreme case. Kurtosis can be measured for Binosson 

distribution as  

 𝐾 =
𝒏(𝒏−𝟑)(𝒏−𝟑)(𝒏−𝟏)(𝟏−𝒑)  𝟒

𝟐𝟒 +
𝒏(𝒏−𝟏)(𝟏−𝒑) 𝟑  

𝟐𝟑 + 
𝒏(𝒏−𝟏)(𝟏−𝒑) 𝟐

𝟐𝟐 + 
𝒏(𝟏−𝒑)

𝟐

[
𝒏(𝟏−𝒑)(𝟏+𝒑)

𝟒
]

𝟐  

 

Conclusion 

The Binosson Distribution represents a significant evolution in probabilistic modeling, 

addressing the limitations of classical frameworks like the Binomial and Poisson 

distributions in capturing the complexities of modern datasets. Traditional models, 

constrained by assumptions of fixed trials, constant probabilities, or static event rates, 

struggle to adapt to real-world dynamics such as seasonal behavioral shifts, variable 

infection rates during outbreaks, or covariate-dependent financial risks. By integrating the 

discrete-event structure of Binomial trials with the rate-based flexibility of Poisson 

processes, the Binosson framework introduces dynamic parameterization and contextual 

adaptability, enabling robust analysis of over-dispersed, correlated, or heteroscedastic data. 

Its design reflects critiques of rigid "true distribution" paradigms, prioritizing real-world 
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applicability through hybrid mechanics. Empirical validation demonstrates its superiority in 

scenarios like actuarial risk assessment and epidemic modeling, where classical models fail 

to account for fluctuating trial counts or external influences. Future research should focus 

on expanding its utility through Bayesian parameter estimation, empirical benchmarking 

across disciplines, and extensions to multivariate contexts. As datasets grow increasingly 

complex, the Binosson Distribution offers a critical bridge between foundational statistical 

theory and the evolving demands of interdisciplinary science, underscoring the necessity 

for adaptable, hybrid tools in modern analytics. 
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