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Abstract

Classical Binomial and Poisson distributions, constrained by fixed trials and
static event rates, falter in modeling modern datasets with dynamic parameters
or contextual dependencies (e.g., variable infection rates, covariate-influenced
risks). This paper introduces the Binosson Distribution, a hybrid framework
unifying Binomial trials and Poisson processes through dynamic
parameterization of trial counts (#) and designed to address event rates (4). The
distribution has been proposed to bridge the gap between these two
distributions, incorporating aspects of both. Binomial-cum-Poisson
distributions are modified to obtain a distribution that will be able to solve the
probability problems that lies between the two distributions. Binosson is the
result from the product of Binomial and Poisson distributions. Statistical
properties such as mean, variance, standard deviation, skewedness and kurtosis

were also derived.
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Introduction

Classical probability distributions, such as the Binomial and Poisson models, have long
underpinned the statistical modeling of discrete events in domains like biology,
epidemiology, insurance, and operations research. These models offer elegant solutions
under specific assumptions: the Binomial distribution assumes a fixed number of
independent and identically distributed Bernoulli trials, while the Poisson distribution is
ideal for modeling rare events occurring independently at a constant average rate. However,
modern datasets increasingly challenge these idealized conditions. For example, customer
purchase behavior may not follow fixed trials with constant probabilities due to seasonal
influences, and disease outbreaks rarely maintain a constant infection rate due to
intervention measures and evolving population behavior (AlmaBetter, 2023;
ProjectManagers.net, 2025). These violations of foundational assumptions call into

question the sufficiency of these classical models in dynamically evolving environments.

In response, researchers have explored hybrid and generalized models that can bridge the
structural gaps between discrete-event frameworks. This paper introduces the Binosson
Distribution, a novel hybrid probability distribution that synthesizes features of both the
Binomial and Poisson distributions. Unlike traditional models that rely on rigid constraints,
the Binosson framework is built with dynamic parameterization and contextual adaptability,
allowing it to model complex real-world processes more effectively. It accommodates
fluctuating trial counts and variable event rates within a unified probabilistic architecture.
As noted by Hamilton et al. (2017), hybrid modeling in dynamical systems yields more
robust results, particularly when modeling phenomena that transition between discrete and
continuous or deterministic and stochastic behaviors—conditions under which Binosson

operates proficiently.

The limitations of classical models are well-documented. The Binomial distribution
struggles with real-world applications that involve over dispersion, correlated outcomes, or
trial dependency, as its formulation assumes constant probability and independence
(Towards Data Science, 2025). Meanwhile, the Poisson distribution is unable to handle
scenarios where events are not evenly distributed in time or are influenced by external
covariates. Its fixed interval assumption severely restricts applicability in fields like
environmental science or finance, where events may cluster or shift due to external shocks

(ProjectManagers.net, 2025). As von Kugelgen ¢f al. (2024) argue, the notion of a “true”
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underlying distribution often fails to reflect the context-dependent nature of real data. This
critique fuels the case for distributions like Binosson that flexibly integrate real-world

variability and systemic complexity.

The Binosson Distribution aims to fulfill this critical modeling need through a hybrid
structure that combines the count-based mechanism of Poisson processes with the
bounded-trial structure of Binomial models. It introduces two key innovations: dynamic
parameterization, allowing the rate of occurrence (A) and trial count (n) to vary adaptively
over time or conditions, and contextual dependency, whereby external covariates such as
environmental factors or policy interventions can influence outcomes, relaxing the
assumption of independence. As Vose (2010) highlights, multi-parameter distribution
models are essential for capturing over-dispersed or heteroscedastic data in practical
applications. This paper formalizes the Binosson framework, derives its statistical
properties, and demonstrates its application through real-world case studies in actuarial risk
and epidemic modeling. Ultimately, this work contributes a flexible, modern statistical tool

capable of bridging foundational theory with emerging data realities.

Some Existing Useful Distribution
Binomial distribution

A binomial experiment is a series of n Bernoulli trials, whose outcomes are independent
of each other. A random variable, X, is defined as the number of successes in a binomial
experiment. A binomial distribution is the probability distribution of X (Adeosun, 2018).

The probability mass function of a binomial distribution is given as:

f(x) = (Z)Px(l —-p)"* x =012 ..,n
@
Properties of Binomial distribution
(a) The mean E(X) = np
(b) The vatiance V(X) = np(1 — p)
(c) The Moment Generating Function My (t) = (pet + (1 —p))"

(d) The Probability Generating Function G, (t) = (pt + (1 - p))n
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Poisson distribution

In probability theory and statistics, the Poisson distribution, named after French
mathematician Siméon Denis Poisson, is a discrete probability distribution that expresses

the probability of a given ...

The Poisson distribution is used to model the number of events occurring within a given

time interval. The probability mass function of a Poisson distribution is given as:

forx =0,1,2,..

A*e=2
i

X

f(x) =
@
M is the shape parameter which indicates the average number of events in the given time

interval.

Properties of Poisson distribution

(a) The mean E(X) =\
(b) The variance V(X) =
(c) The Moment Generating Function M, (t) = eMe'=D

(d) The Probability Generating Function G, (t) = e*=D

Binosson Distribution

The proposed distribution, Binosson distribution is the combination of binomial and
Poisson distributions. Binomial-Cum-Poisson distributions are modified to obtain a
distribution that will be able to solve the probability problems that lies between the two

distributions. Binosson is the result from the product of binomial and Poisson distributions

fG) = fx). f(x2)
Combine equation (1) and 2 as follows to get (3)

p.X'AX qn—x -1

f) =) =———-¢ 3)

x!
Ap)* n—x -
f =) a" e “)
flx) = (0)e*q" e ©
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fo) = (Pe A Wgn> (©)
fx) = (Me AP gn-= 0
fx) = (3)e g™ ®
) = () ©)
f@ = ()(-D*Tae" (10)
f) = (e *q" (11)
f&) =(3)gre™ (12)

The probability mass function is given as

f) =5 (e -p)" (13)

The cumulative distribution function is given as

c 1
F() =ZZ— )e 1 -p)"

(14)

Validity Test of Binosson Distribution
The probability distribution function of any discrete random variable x will satisfy the

following

Yrw=1
x=0
=1
Y (et a-pn
x=0
S0 e t(1-yn
N 1
() sme e

Volume 3, Issue 2, 2025 347




Ayenigba Alfred Ayo, Amoyedo Femi Emmanuel, Afariogun David Adebisi

i(ﬁ) 21

nl
22_11:1

Probability Mass f(x)

0.0008

0.0006

0.0004

0.0002

0.0000

Binosson

Distribution

PMF (n=10, A=2.0, p=0.3)

Mean: 0.0191
Wariance: 0.1044

00009

0.0040

F 0.0035

I 0.0030

- 0.0025

- 0.0020

F 0.0015

F 0.0010

I 0.0005

I 0.0000

Cumulative Probability

Fig 1: Graph of PMF of Binosson Distribution

348

Mikailalsys Journal of Mathematics and Statistics




Ayenigba Alfred Ayo, Amoyedo Femi Emmanuel, Afariogun David Adebisi

CDF of Binosson Distribution (n=10, p=0.3, A=1.5)
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Fig 2: Graph of CDF of Binosson Distribution

Properties of the Distribution

a. Mean

- 1
E (x) =Zz— )e(1 - p)"

n(n—1)!
Tm—0lxGx—1)! 2271

E(x)= e *(1-p)(1-p)"?

(n—1)! 1 1 -
E(x)_n(l_p)szo(n y)—(x—1)! 2n— 12_"e "(1-p)

letn—1=wandx—-1=y

Volume 3, Issue 2, 2025 349




Ayenigba Alfred Ayo, Amoyedo Femi Emmanuel, Afariogun David Adebisi

w
n(1—p) w! 1 e
Ex) == z(W—Y)!y!Z_W(l_p) '
Y=0

1-p)
2

w 1
F=n—5 ) (9 et (1-p)

w 1 .,
> () spet (1o =1
y=0

n(1-p)

E(x) = >

Variance

E(x?) =E(x(x — 1)) + E(x)
E(x(e = D) = Y x(x—Df ()
n=0

E(x(x—1) = Zroo(n— 1) (D jne*(1—p) "

E(x(x — 1)) = Z(x -5

)'x' e *(1—p)"

(n-1)(n-2)! _ _
E(x(x —1)) = ¥ o(x — 1)%;@ —1(x - 2)! In—2e *1-p) "2

(n—2)! 1
— = — 3 2 A1 _ n-2
E(x(x— 1)) =n(n—1),2(1 — p) ZO(" D 72 (1-p)
letn—2=mandx—-2=2z
_ 1)(1 2K - m

E(x(x—1)) = Z(m—z)'z' om @ (1-p)

m 1 -1 1 m _ 1

(1) s (1=p)™ =
n(n—1(1-p)?
E(x(x—1) = 2 (1)
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-1 -p)?
22

E(x(x 1)) =
v(x) = E(x*) — (E(x)) ?

nn-DA-p)? n-p) a2

v = 22 2 22
n20-"° n(1-p)? n(l-p) n20P°

e .

() = n(l—p) n(l—zv)2

() _n(l—p) G_ (1—p)>

v(x)_n(l— (—1+p>

v(x)_n(l—p)( )

n(1-p)(1+p)

v(x) = 2

Measures of Skewedness and Kurtosis

Skewedness and Kurtosis: A fundamental task in many statistical analyses is to characterize
the location and variability of a data set. A further characterization of the data includes

skewedness and kurtosis.

Skewedness is a measure of symmetry, or more precisely, the lack of symmetry. A
distribution, or data set, is symmetric if it looks the same to the left and right of the center

point. The skewedness of Binosson distribution can be obtained as

n(l-—
E(x) = (1-p)
2
(n—-1)1-p)*> n(l-p)
E(x?*) =n >z + 5
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n(n —2)(n - 1)(1—p) 3+H(H—1)(1—p)2 4 n(l—p)

E(x® = - C 2
E(x%) n(n—3)(n- 3)2(411 ~1)(1-p) *
nn—1)A-p)® nm-1D(A-p)? n(l-p)
B 23 + F +—

— — — 3 — —_p) 2 —
LSRN SR RN R
SK = a

(n( 1—p4)(1+p))§

Kurtosis

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a
normal distribution. That is, data sets with high kurtosis tend to have heavy tails, or
outliers. Data sets with low kurtosis tend to have light tails, or lack of outliers. A uniform
distribution would be the extreme case. Kurtosis can be measured for Binosson

distribution as

n(n-3)(n-3)(n-1)1-p) * ne-DA-p3  a@-DA-p)?, n(1-p)
[n(l—p)(lw)]z
4

Conclusion

The Binosson Distribution represents a significant evolution in probabilistic modeling,
addressing the limitations of classical frameworks like the Binomial and Poisson
distributions in capturing the complexities of modern datasets. Traditional models,
constrained by assumptions of fixed trials, constant probabilities, or static event rates,
struggle to adapt to real-world dynamics such as seasonal behavioral shifts, variable
infection rates during outbreaks, or covariate-dependent financial risks. By integrating the
discrete-event structure of Binomial trials with the rate-based flexibility of Poisson
processes, the Binosson framework introduces dynamic parameterization and contextual
adaptability, enabling robust analysis of over-dispersed, correlated, or heteroscedastic data.

Its design reflects critiques of rigid "true distribution" paradigms, priotitizing real-world
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applicability through hybrid mechanics. Empirical validation demonstrates its superiority in
scenarios like actuarial risk assessment and epidemic modeling, where classical models fail
to account for fluctuating trial counts or external influences. Future research should focus
on expanding its utility through Bayesian parameter estimation, empirical benchmarking
across disciplines, and extensions to multivariate contexts. As datasets grow increasingly
complex, the Binosson Distribution offers a critical bridge between foundational statistical
theory and the evolving demands of interdisciplinary science, underscoring the necessity

for adaptable, hybrid tools in modern analytics.
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