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Abstract — An efficient two-point intervalwise partitioning
technique (IPT) is formulated in this study for the solution of
ordinary differential systems. The technique consists of two methods
namely two-step adaptive hybrid block Adams method (TSAHBAM)
and two-step adaptive block backward differentiation formula
(TSAHBBDF). To solve a problem, the IPT will initially treat such
problem as non-stiff and solve it with the aid of TSAHBAM. If a
failure step is encountered as a result of stiffness, the IPT
automatically switches to TSAHBBDF to handle the stiffness.
Summary of analysis of the IPT was presented and the technique was
applied in solving some problems. The results obtained showed that
the IPT is computationally efficient and more accurate than some
existing methods.
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. INTRODUCTION

Ordinary differential systems find applications in
many fields of human endeavours. These systems may be non-
stiff or stiff in nature. The non-stiff systems are easier to solve
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than their stiff counterparts. Stiff differential systems equations
are a class of differential equations that exhibit varying
timescales. These systems possess fast-changing components
that require very small time-steps to be accurately captured,
alongside slow-changing components that evolve more
gradually. This disparity can cause severe numerical instability
when using traditional explicit methods in solving them. Thus
stiff systems are better solved using implicit methods like the
backward differentiation formula (BDF).

In this research, an efficient IPT shall be formulated
for the solutions of first-order differential system of the form,

y =t (t,\?),\?(a):;}, i=12,..,5 )
where ¥ (0) =Yy, Ypron Vs )and 7 ()= (1, 70y ).

The IPT shall be formulated using partitioning strategy. This is
a procedure where a system such as (1) is divided into two
subsystems, that is the non-stiff subsystem and the stiff
subsystem, when instability occurs, [1]. The non-stiff parts of
the system are solved using Adams-type methods while the stiff
parts are solved using BDF-type methods.
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A lot of researches have been carried out in formulating
different partitioning methods. The authors in [2] were the first
to introduce the partitioning strategy which was later extended
by [3]. Ref. [4] formulated partitioning techniques in Runge-
Kutta type methods. Refs. [5] and [1] developed 2-point and 3-
point intervalwise block partitioning methods respectively for
the solutions of differential systems of the form (1). The
following authors also developed different methods for the
solutions of non-stiff and stiff differential equations, [6], [7], [8],
[9], [10] and [11].

Il. MATHEMATICAL FORMULATION OF THE IPT

In this section, an efficient IPT shall be formulated for the
solutions of differential systems of the form (1). The IPT shall
consist of two methods, namely the TSAHBAM and the
TSAHBBDF. Consider the general k-step linear multistep
method (LMM),

k k
DY =02 B )
i—0 =0

where 's and ﬂj 's are real constants. The proposed IPT

shall be implemented in block mode by developing a system of
LMMs at the discrete points t.,, t,,5, and t,,. The step

n+l’ n+2 *
size between t, and t ., is taken as rh, where I is the
stepsize ratio. In order to obtain an efficient IPT, I' is selected
at three points. These are I =1/ 2 (corresponding to doubling
the stepsize), r =1 (corresponding to maintaining the

stepsize), and I = 2 (corresponding to halving the stepsize).
See [12], [13], [14] and [15] for more details on adaptive
stepsize and intervalwise partitioning.

A. Derivation of the TSAHBAM
The TSAHBAM is derived by integrating the differential
system (1) over the interval (t,,t,. ), for £=13/2 and 2.

n’*n+e

This gives,

n+.r‘

j y;(t)dt = J f (LY (®)dt ©)
tn
The function f, (t,?(t)) in equation (1) is approximated at

the interpolation t,,y,) . (tml,ynﬂ) ,

(tn+3/2!yn+3/2) and (tn+21yn+2) USing the
interpolating polynomial,

points

Lagrange

(t tn )(t _tn+1)(t _tn+3/2)
( ni2 ~ by )(tn+2 n+1)(tn+2 n+3/2
()t te)
( nia2 by )(tn+3/2 n+l)( ni32 " laia ) 'Hg @
( tn)(t n+3/2)( n+2)
( n+1 tn )(tn+l n+3/2 )( n+1 _tn+2

(t=ta)(t =t ) (t=t,0)

- o
(tn _tn+l)(tn _tn+3/2)(tn _tn+2)

The integral equation (3) is evaluated with respect to S for

s=(t—t,,,)/h. The integration limits are carefully chosen

as (-2, -1), (-2, -1/2) and (-2, 0) and substituting hds for dt
gives the TSAHBAM,

yo—y 4 2h f
I r@r+)r+y )| "

{(h)(l9r—12j_

Hiz = || fou

6 r

__(gh)(lor—7j_f ®)
3 )\ 2r+l )| 0

j( +1
s (63hj 1 f
ni_y” 2 \r@r+)(r+)) )|
o (

P (t) - ) yn+2

+

+

) yn+l

[ 12r-7
| == fn+1
1\ 32 r
(3h\(16r =13
=l ——|If 1 (6)
8 )\ 2r+l )| m
[(9h)\( 4r-3
Ll vl | R fn+2’
)\ r+1
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n 2h f 1 0 0 yn+l O 0 1 yn—Z
yn+2 - yn (2r+1 ) " 0 1 0 yn+3/2 = O 0 1 yn—l
i 2h 5r 3 001 yn+2 001 yn
' gj } f A 5B
n+l (11)
16h +h 131 ﬂz ﬂB 1:n+3/2
f ] (7) f
2I’-|-1 i 181 ﬂz 183 n+2
+[(2hj o — 1 }f Sgﬁ;tii(;)r? (11)_can be rewritten in matrix finite difference
3\ r+l ¢ ’ -
IYn=AYmna1+hBFn (12)
At I =1, equations (5)-(7) give, 100 ) Yo ) Yoo,
=010 Ym= Ymi=
yn+1 = yn + h[% fn +% fn+1 _g f 3 +% fn+2j1 O O 1 yn+3/2 ' yn_l
H+E yn+2 yn
20, 45, 3, 9 001 A be by £
y 3:yn+h _fn+_fn+1__f 3+_fn+2 ! .
N 64 ° 32 8 . 64 (8) A=(001|,B= ﬂl ,82 ,83 . Fo=|f.0l
1 001 ﬂl 182 183 fn+2
yn+2 yn+h f t- fn+1 (0) fn+§+§fn+2 '
2 - -
At T = 2, equations (5)-(7) give, B. Derivation of the TSAHBBDF
113 2% 1 To derive the TSAHBBDF, we let S=(t—t,,,)/h, sothaton
Yoa = yn+h( fi+ E nsd 15fn+3+2fn+2j' substituting t =t ., +Sh into the interpolating polynomial
: (4), we obtain
57 15
folr© r+s+l1
[320 foa - 40 02 1T “*2] P(t)=P(t,.,+sh)= (S+1)(28+1)(ij”*2
yn+2 yn+h[1]:,:-> n n+1 15 n++§fn+2j' r+s+1
-8s(s+1) y ,
Atr=1/2, equatlons (5)- (7) give, 2r+1 n,
4 1
Yo = h( fn ~ n+1 3_fn+2J' r+3+1
3 "2 B +5(25 1)( J You 13
(21 5. 3 J (10) r
1 n_ . n+1 n+§_E n+2 |
’ 25+1
2 4 s(sl) 2y
Y2 = Yn +h 5 f g fn+l+§ fn+g +(O) fn+2 : r(r-l—l) (zr -|-1)

Equations (8)-(10) form the TSAHBAM. This method can be

written in general form as,

Differentiating equation (13) with respect to S, gives
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3r +10s +4rs+65° +4
(r+1)

8(r+4s+2rs+332+1)
(2r+1)

r+65+4rs+6s2+1
r n+l

(632+6s+1)
Ly
r(2r +3r+1)

(14)

n+2

Substituting s=-1,—-1/2 and S=0 in equation (14)
respectively gives,

ht

n+l

ht

n+2

LS T
Tl o

_(Ej 1t
e r(2r2+3r+1) 4

+(1/2)
r+1

r+(/2)

ar+d)  (8(r+)
r+l Yoz 2r+1 Vs

JE .
ro)™ r(2r2+3r+1) "

Solving equation (15) for Y, ;. Y,.s, and Y, ,, respectively

leads to,

r ' 2r(2r2 +3r+1) 4

(15)
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r+1)° "2 (2r+1)"n3

1
oty
[r(2r2+3r+1)}yn it
yn+1= [3" _1]
.

(r+(1/2)jym2_(r+(1/2)jyn+1
r+1 r

1
+{2r(2r2 +3r +1)J s

Y2 = _( > j
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At I =1, equation (16) is

Vos =2 Yot o AR 3 Yo~ 2t
n+l 12 n 3 4 n+2 2 n+1?
yn+2 = _§ Yot i Yo~ 8 yn+2 + g hfn%’
1 4 32 2
Yoz =50 Y "7 Yt 51 Vs +ohf,
At I = 2, equation (16) is given by
1 32 4 2
You = _7_5 Y +2_5 ynJ% _E Yo _gh n+l?
Y, =—iy 25y By h
n+E nt n+l 12 n+2 2 g’
36
Yoi2 :myn _2_0 n+l 2_5y”+§ +E n+2°

At r=1/2, equation (16) becomes

(16)

(A7)

(18)
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2 1
Youa=—ZYnt 2yn+§ — Y2 ™ hfn+l'
2

3 3
1 2
=—Zy +2y ,—— +hf ,, 19
ym% 3yn yn+l 3yn+2 n+§ ( )
oz = Yo Yy by bt
n+2 11 n 11 n+1 11 n+§ 11 n+2"*

2
Equations (17)-(19) collectively form the TSAHBBDF. This
method can be written in general form as,

You = ‘91yn+§ + @Yoo +aihfo +uy,

2

Y 5= 6,Y, 1+ P Yo+ ozzhfn+§ +¥3, (20)
2

2 2

Yniz = O Y + 0 Y 37 ahf .+,
2

where v/, , ¥, and v, are back values. In matrix-vector
form, equation (20) is equivalent to,

(I —A)Ym =hBFm+§, (21)
where ~

100 0 6 ¢ Ynn
I = 0 1 O y A: 02 O (02 ’ Ym = yn+3/2 !

0 0 1 93 (03 O _yn+2

al 0 0 fn+1 l//l ]
B=10 a, 0 || Fo=|fi| &=|vy,

0 0 o f2 v, |

The TSAHBAM in equations (8)-(10) and TSAHBBDF in
equations (17)-(19) collectively form the IPT.

I1l. IMPLEMENTATION STRATEGY OF THE IPT

To implement the IPT, the differential system (1) is initially
treated as non-stiff and solved using the newly derived
TSAHBAM in equations (8)-(10). Once a failure step is noticed
due to suspected presence of stiffness, a stronger test is carried
out. This test involves computing the trace of the Jacobian, that
is of /8y If the trace is negative, the system (1) is treated as
stiff and then solved using the newly derived TSAHBBDF in
equations (17)-(19). However, if the trace is positive, the
iteration is continued using the TSAHBAM with half of the
step-size.
According to [16], the error control algorithm is as follows:

o if the error control is less than tolerance limit, then the

step-size h is increased to gain computation speed,

e in the case of step failure, the step-size h is halved
and the step repeated.
For more on the implementation strategies of the partitioning
technique, see the works of [1], [5] and [6].

IV. ANALYSIS OF THE IPT

In this section, summary of analysis of basic properties of the
two methods that made up the IPT shall be investigated.
Definition 4.1: The general k-step LMM (2) and its associated

linear difference operator L given by
[

L{y(t);h} =Z[a,-y(t+ iN-hgy't+in] @
are said 7 to be of order p if
(_30:61:(_:2:...:6;,:0, 6p+1¢0 , [17]. The term
(_:p+1 # 0 is called the error constant. The constants C,are

defined as

k
¢ =4

j=0

°1=Z(j“j‘ﬂj)

-0

(23)
LS8 1 ..
c.=)|—jfai——— "B ,p=23,..
i ,Z(; pr™ " (p-prt
Specifically, for the TSAHBAM at r =1,
O T
(_302(_312622...264: 0|, (24)
0
with error constant
~1.0764x107% ]
s =| -9.9609x107° | . (25)
-1.1111x107?
On the other hand, for the TSAHBBDF at r =1,
0
(_)o=61=(_32=(_33= 0|, (26)
0

with error constant
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1.0417x107 |
2.3438x10™
~1.1905x107

This implies that the TSAHBAM is of order four while the
TSAHBBDF is of the third order. Similarly, the stability

polynomial of the TSAHBAM at r =1, r=2 and r=1/2
are respectively given by,

1 13 9
t,H)=—t}| S H*-==H?+>H -1
R(LH) (8 24 8 j

(27)

(28)

—t(lH +—H2+ H+1J
24
R (t,H) = -t 67 87 s 1273 H2 4 169 1
240 1440 120 (29)
_tz( 15 198, 71 j
120 1440 120

5 s 17 5
t,H) =t ——H?’-=H+1
Ria(t H) (48 288 48 J
—tz(lH3 L2474 9L +1)
6 288 48
Substituting H =0 in equations (28)-(30), we obtain
R (t,0) =R, (t,0) =R, (t,0) =t*-t*.  (31)

Solving equations (31) gives 0,0 and 1, which shows that the
TSAHBAM is zero-stable. For the TSAHBBDF, the stability

polynomials at r =1, r=2 and r=1/2 are respectively
given by

(30)

13 1

Rl(t,H)=3t3H3——t3H2+ t°H?
14 28 28
3 3, 3 (32
+—tPH+ —t*H - =t* + =%,
14 77
Rz(t,H):iPHS—3—7t3H2+it2H2
10 100 100 33)
SRR RCT —it3+it2,
10 50 25 25
Rl,z(t,H):ite’H?'—tst+£t2H2
24 5., 12, 124 24 , (39
+—tH+ > tH - —t* + 1%,
11 11 1 1

Substituting H = 0 into equations (32)-(34), we obtain

3

R0 -2t +2¢,
(35)
3 3
R,(t,0 =——13 —t 36
(1,0) 25 +25 (39)
24 ,
t,0 ———t =t 37
R (t,0) 11 (37)

Solving each of the polynomlals in equations (35)-(37) give
0,0 and 1, which also shows that the TSAHBBDF is zero-
stable, [18].

Tables 1 and 2 present the summary of basic properties of the
IPT made up of TSAHBAM and TSAHBBDF. Similarly Fig. 1
and Fig. 2 show the stability regions of the TSAHBAM and
TSAHBBDF at the three step-size ratios.

10
10,
-]

p— - )
/ \ —-1))

m )
> o
N

/

7

20 15 A0 5 0 5 10
Re(®

Fig. 1. Regions of absolute stability of the TSAHBAM

! ;[ -]
3 — -2
T— -
2
~
1 BalS N\
[ » \
P! ) / )
1 & s /
\ l/ ",
2
3 \ g™
|
|

=
&
=y
=
B
—
—
o
~

25 3 35 4 45
Refg

Fig. 2. Regions of absolute stability of the TSAHBBDF

From Fig. 1, the exterior part of the blue- and red-coloured
contours are the stability regions of the TSAHBAM at r = 2
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and r =1 respectively. On the other hand, the interior part of
the black-coloured contour is the stability region of the
TSAHBAM at r =1/ 2. This implies that the TSAHBAM at
r=2 has the largest region of stability, followed by
TSAHBAM at r=1 and then r=1/2 has the smallest
stability region. The instability intervals of the TSAHBAM are
given in Table 2. In Fig. 2, the regions of absolute stability of
the TSAHBBDF are the exterior of the blue-, red-, and black-
coloured contours for step-size ratios r=2, r=1 and
r =1/ 2 respectively. This implies that the TSAHBBDF at
I = 2 has the largest stability region, then the TSAHBBDF at

r=1 and then TSAHBBDF at I =1/2 has the smallest
region of stability. Table 2 also shows the intervals of instability
of the TSAHBBDF. It is clear that the TSAHBAM is A-stable

at r=1and r=2 but is not A-stable atr =1/2. On the
other hand, the TSAHBBDF is A-stable at all the three step-
size ratios.

V. NUMERICAL EXPERIMENTS

The newly formulated IPT shall be adopted in solving some test
problems. This is aimed at testing its efficiency as well as
accuracy over existing methods. The following notations shall
be used in presenting the results.

hinie - Initial step-size

TOL: Tolerance level/limit

TS: Total number of steps taken

TAS: Total number of accepted steps

TFS: Total number of failure steps

MAXE: Maximum absolute error

TIME: Execution time (in seconds)

odel5s: Matlab inbuilt variable order solver based on BDF
IBP: 3-point intervalwise block partitioning method developed
by [1]

IPT: newly formulated intervalwise partitioning technique

Problem 5.1
Consider the nonlinear differential system,

y,'=-2y,+Y,+2sint,y,(0) =2, }
y," =998y, —999y, +999(cost -sint), y,(0) =3, (38)

defined over t €[0,5]. The exact solution of the system is

t) = 2e™" +sint,
y:(t) (39)
y,(t) =2e™" +cost.
Source: [12]
Problem 5.2
Consider the linear differential system
Y1 = _21Y1 +19yz - 20y31 yl(o) =1,
y, =19y, — 21y, + 20y,, y,(0) =0,
y3I:40y1_40y2_40y3’y3(0):_1' (40)
defined for t €[0,10], with the exact solution
i(t)=(1/2) e ™ +e™ (cos40t +sin40t) |,
Y,(t)=(1/ 2)[e‘2t —e* (cos40t +sin 40t)], (41)

Y;(t) = (1/2)[ 2e™ (sin 40t - cos 40t) |

The Jacobian matrix of the system (40) has Eigen values
A =-2, A, =—40+40i and A, = —40—40i .
Source: [19]

Table 1. Summary of analysis of basic properties of TSAHBAM and TSAHBBDF

Method Order Zero-stability Consistence Convergence
TSAHBAM 4 Zero-stable Consistent Convergent
TSAHBBDF 3 Zero-stable Consistent Convergent

Table 2. Summary of analysis of TSAHBAM and TSAHBBDF showing roots stability polynomials and intervals of

instability at different step-size ratios

Method Step-size ratio Roots of  Stability | Intervals of Instability
Polynomial
TSAHBAM r=1 0,0,1 (0,9.941075)
r=2 0,0,1 (0,3.500023)
r=1/2 0,0,1 (—00,—15.927177) U (0, )
TSAHBBDF r=1 0,0,1 (0,2.238034)
r=2 0,0,1 (0,1.168105)
r=1/2 0,0,1 (0,4.273441)

Table 3. Numerical results for Problem 5.1 at h;,,;; = 107!
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TOL Method TS TAS TFS MAXE TIME
1073  odel5s 29 28 1 2.40e — 03 0.7938
IPT 21 19 2 1.2314e — 09 0.0021
10™*  odel5s 38 38 0 2.41e — 04 2.5669
IPT 27 25 2 7.0025e — 10 0.0033
107>  odel5s 55 54 1 5.30e — 05 52.4463
IPT 45 41 4 4.5119e — 12 0.0078
2 T T T T T T T T T
-3 _——_—_——-_-4

5 -

o -6 |
X
2
s 7 ]
j=2)
S -8 |
-
-10— - - i
-
11 - - -
- =@ = odel5s
-12 ! L I i I ; . [ :
& -4.8 -4.6 4.4 -4.2 4 38 3.6 3.4 3.2 3

Log-(TOL)
Fig. 3. Accuracy curves for Problem 5.1

Table 4. Numerical results for Problem 5.2

TOL  Method TS MAXE TIME
1072  odel5s 37 7.92983e — 03 0.009659
IBP 26 2.15015e — 01 0.000224
IPT 20 1.23172e — 05 0.000101
10™*  odelbs 86 1.16049e — 04 0.018109
IBP 36 8.24059¢ — 03 0.000344
IPT 28 3.77241e — 07 0.000171
107  odelbs 162 1.77877e — 06 0.028360
IBP 58 4.71831e — 05 0.000919
IPT 40 1.62001e — 10 0.000544
1078  odelbs 305 3.83010e — 08 0.073445
IBP 139 1.45542e — 09 0.001936
IPT 108 7.26503e — 12 0.001032
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Log (MAXE)

"

-K-Im
=@ odel5s ||

wiilm | BP
8 -7 6 -5 -4 -3 -2
Log (TOL)
Fig. 3. Accuracy curves for Problem 5.2
Mathematical Software, 5(4), 374-385, 1979.

The newly formulated IPT was applied in solving two
differential systems of the form (1). The results obtained in
Table 3 showed that the method is efficient as well as accurate.
This is because the maximum absolute errors of the IPT are
smaller than those of odel5s. The IPT also had smaller
execution time than the odel5s implying that it is more
efficient. The accuracy curves obtained in Fig. 3 clearly showed
that the IPT is more computationally reliable. It was also
observed in Table 3 that the IPT took fewer numbers of steps to
achieve accuracy in comparison with odel5s. Similarly the
numerical and graphical results obtained in Table 4 and Fig. 4
respectively showed that the IPT is accurate and efficient than
the odel5s and IBP developed by [1]. Further study could
explore the performance of the IPT on problems discussed in
[20], [21] and [22-28].

V1. CONCLUSSIONS

The new partitioning strategy, which is the IPT proposed in this
research has been proven to be more efficient than the other
methods we compared our results with. This is in addition to
the improved accuracy exhibited by the new technique.
Analysis of basic properties of the IPT showed that the
technique is consistent, zero-stable and convergent. Thus, the
IPT has proven to be computationally reliable in solving
differential systems of the form (1).
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