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Abstract — An efficient two-point intervalwise partitioning 

technique (IPT) is formulated in this study for the solution of 

ordinary differential systems. The technique consists of two methods 

namely two-step adaptive hybrid block Adams method (TSAHBAM) 

and two-step adaptive block backward differentiation formula 

(TSAHBBDF). To solve a problem, the IPT will initially treat such 

problem as non-stiff and solve it with the aid of TSAHBAM. If a 

failure step is encountered as a result of stiffness, the IPT 

automatically switches to TSAHBBDF to handle the stiffness. 

Summary of analysis of the IPT was presented and the technique was 

applied in solving some problems. The results obtained showed that 

the IPT is computationally efficient and more accurate than some 

existing methods. 

Keywords—Adams method, Adaptive method, block backward 

differentiation formula, differential system, intervalwise 

partitioning, stiffness 
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I. INTRODUCTION 

Ordinary differential systems find applications in 

many fields of human endeavours. These systems may be non-

stiff or stiff in nature. The non-stiff systems are easier to solve 

than their stiff counterparts. Stiff differential systems equations 

are a class of differential equations that exhibit varying 

timescales. These systems possess fast-changing components 

that require very small time-steps to be accurately captured, 

alongside slow-changing components that evolve more 

gradually. This disparity can cause severe numerical instability 

when using traditional explicit methods in solving them. Thus 

stiff systems are better solved using implicit methods like the 

backward differentiation formula (BDF).  

In this research, an efficient IPT shall be formulated 

for the solutions of first-order differential system of the form, 

 

( )' , , ( ) , 1, 2,...,i iy f t Y Y a i s= = =      (1) 

where ( )1 2( ) , ,...,
T

sY t y y y= and ( )1 2( ) , ,...,
T

st   = .  

 

The IPT shall be formulated using partitioning strategy. This is 

a procedure where a system such as (1) is divided into two 

subsystems, that is the non-stiff subsystem and the stiff 

subsystem, when instability occurs, [1]. The non-stiff parts of 

the system are solved using Adams-type methods while the stiff 

parts are solved using BDF-type methods. 
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A lot of researches have been carried out in formulating 
different partitioning methods. The authors in [2] were the first 
to introduce the partitioning strategy which was later extended 
by [3]. Ref. [4] formulated partitioning techniques in Runge-
Kutta type methods. Refs. [5] and [1] developed 2-point and 3-
point intervalwise block partitioning methods respectively for 
the solutions of differential systems of the form (1). The 
following authors also developed different methods for the 
solutions of non-stiff and stiff differential equations, [6], [7], [8], 
[9], [10] and [11]. 

 

II. MATHEMATICAL FORMULATION OF THE IPT 

In this section, an efficient IPT shall be formulated for the 

solutions of differential systems of the form (1). The IPT shall 

consist of two methods, namely the TSAHBAM and the 

TSAHBBDF. Consider the general k-step linear multistep 

method (LMM), 

0 0

,
k k

j n j j n j

j j

y h f + +

= =

=      (2) 

where 'j s  and 'j s  are real constants. The proposed IPT 

shall be implemented in block mode by developing a system of 

LMMs at the discrete points 1nt + , 3/2nt +  and 2nt + . The step 

size between nt  and  1nt +  is taken as rh , where r  is the 

stepsize ratio. In order to obtain an efficient IPT, r  is selected 

at three points. These are 1/ 2r = (corresponding to doubling 

the stepsize), 1r =  (corresponding to maintaining the 

stepsize), and 2r =  (corresponding to halving the stepsize). 

See [12], [13], [14] and [15] for more details on adaptive 

stepsize and intervalwise partitioning. 

 

A. Derivation of the TSAHBAM 

The TSAHBAM is derived by integrating the differential 

system (1) over the interval ( ),n nt t + , for 1,3 / 2 =  and 2. 

This gives,  

 

( )' ( ) , ( ) .
n n

n n

t t

i i

t t

y t dt f t Y t dt
 + +

=       (3) 

 

The function ( ), ( )if t Y t  in equation (1) is approximated at 

the interpolation points ( , )n nt y , ( )1 1,n nt y+ + , 

3/2 3/2( , )n nt y+ +  and 2 2( , )n nt y+ +  using the Lagrange 

interpolating polynomial, 

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )

1 3/2

2

2 2 1 2 3/2

1 2

3

3/2 3/2 1 3/2 2 2

3/2 2

1

1 1 3/2 1 2

1 3/2 2

1 3/2

( )
n n n

n

n n n n n n

n n n

n
n n n n n n

n n n

n

n n n n n n

n n n

n n n n n n

t t t t t t
P t y

t t t t t t

t t t t t t
y

t t t t t t

t t t t t t
y

t t t t t t

t t t t t t

t t t t t t

+ +

+

+ + + + +

+ +

+
+ + + + +

+ +

+

+ + + + +

+ + +

+ + +

− − −
=

− − −

− − −
+

− − −

− − −
+

− − −

− − −
+

− − −( )2

.ny

  (4) 

The integral equation (3) is evaluated with respect to s  for 

2( )ns t t h+= − . The integration limits are carefully chosen 

as (-2, -1), (-2, -1/2) and (-2, 0) and substituting hds  for dt
gives the TSAHBAM, 

1

1

3

2

2

2

(2 1)( 1)

19 12

6

2 10 7

3 2 1

7 5
,

6 1

n n n

n

n

n

h
y y f

r r r

h r
f

r

h r
f

r

h r
f

r

+

+

+

+

  
= +   

+ +  

 −  
+    

   

 −  
−    

+   

 −  
+    

+   

  (5) 

3

2

1

3

2

2

63 1

32 (2 1)( 1)

9 12 7

32

3 16 13

8 2 1

9 4 3
,

32 1

n n
n

n

n

n

h
y y f

r r r

h r
f

r

h r
f

r

h r
f

r

+

+

+

+

   
= +    

+ +   

 −  
+    

   

 −  
−    

+   

 −  
+    

+   

 (6) 
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2

1

3

2

2

2

(2 1)( 1)

2 5 3

3

16 1

3 2 1

2 2 1
.

3 1

n n n

n

n

n

h
y y f

r r r

h r
f

r

h r
f

r

h r
f

r

+

+

+

+

  
= +   

+ +  

 −  
+    

   

 −  
−    

+   

 −  
+    

+   

  (7) 

At 1r = , equations (5)-(7) give, 

1 1 3 2

2

3 1 3 2

2 2

2 1 3 2

2

1 7 2 1
,

3 6 3 6

21 45 3 9
,

64 32 8 64

1 4 1
(0) .

3 3 3

n n n n n
n

n n n n
n n

n n n n n
n

y y h f f f f

y y h f f f f

y y h f f f f

+ + +
+

+ +
+ +

+ + +
+

 
= + + − +  

  


  
= + + − +  

  


 
= + + + + 
  

 (8) 

At 2r = , equations (5)-(7) give, 

1 1 3 2

2

3 1 3 2

2 2

2 1 3 2

2

1 13 26 1
,

15 6 15 2

21 153 57 15
,

320 64 40 32

1 7 16 2
.

15 3 15 3

n n n n n
n

n n n n
n n

n n n n n
n

y y h f f f f

y y h f f f f

y y h f f f f

+ + +
+

+ +
+ +

+ + +
+

 
= + + − +  

  


  
= + + − +  

  


 
= + + − + 
  

 (9) 

At 1/ 2r = , equations (5)-(7) give, 

1 1 3 2

2

3 1 3 2

2 2

2 1 3 2

2

4 5 2 1
,

3 6 3 6

21 9 15 3
,

16 16 16 16

4 2 4
(0) .

3 3 3

n n n n n
n

n n n n
n n

n n n n n
n

y y h f f f f

y y h f f f f

y y h f f f f

+ + +
+

+ +
+ +

+ + +
+

 
= + − + −  

  


  
= + − + −  

  


 
= + − + + 
  

    (10) 

 Equations (8)-(10) form the TSAHBAM. This method can be 

written in general form as, 

1 2

3/2 1

2

1 2 3
1

^ ^ ^

1 2 3 3/2

21 2 3

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

n n

n n

n n

n

n

n

y y

y y

y y

f

h f

f

  

  

  

+ −

+ −

+

+

+

+

      
      

=
      
            

 
  
  +
  
    

 

.       (11)        

Equation (11) can be rewritten in matrix finite difference 

equation, 
^ ^ ^

1m m mI Y AY hB F−= +       (12) 

1 0 0

0 1 0

0 0 1

I

 
 

=
 
  

,  

1
^

3/2

2

n

m n

n

y

Y y

y

+

+

+

 
 

=
 
  

, 

2
^

1 1

n

m n

n

y

Y y

y

−

− −

 
 

=
 
  

, 

0 0 1

0 0 1

0 0 1

A

 
 

=
 
  

, 

1 2 3

^ ^ ^

1 2 3

1 2 3

B

  

  

  

 
 
 =
 
 
 

,     

1
^

3/2

2

n

m n

n

f

F f

f

+

+

+

 
 

=
 
  

. 

 

B. Derivation of the TSAHBBDF 

To derive the TSAHBBDF, we let 2( )ns t t h+= − , so that on 

substituting 2nt t sh+= +  into the interpolating polynomial 

(4), we obtain 

( )

2 2

3

2

1

1
( ) ( ) ( 1)(2 1)

1

1
8 ( 1)

2 1

1
(2 1)

2 1
( 1) .

1 (2 1)

n n

n

n

n

r s
P t P t sh s s y

r

r s
s s y

r

r s
s s y

r

s
s s y

r r r

+ +

+

+

+ + 
= + = + +  

+ 

+ + 
− +  

+ 

+ + 
+ +  

 

 +
− +   + + 

(13) 

Differentiating equation (13) with respect to s , gives 
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( )

( )

( )
( )

2

2 2

2

3

2

2

1

2

2

3 10 4 6 4
'

( 1)

8 4 2 3 1

(2 1)

6 4 6 1

6 6 1
.

2 3 1

n n

n

n

n

r s rs s
hP t sh y

r

r s rs s
y

r

r s rs s
y

r

s s
y

r r r

+ +

+

+

 + + + +
+ =  

+ 

 + + + +
 −
 +
 

 + + + +
+  
 

 + +
 −
 + +
 

  (14) 

Substituting 1, 1/ 2s = − −  and 0s = in equation (14) 

respectively gives, 

( )

( )

1 2 3

2

1 2

3 2 3

2 2

1 2

2 2

8

1 2 1

3 1 1
,

2 3 1

(1/ 2) 8

1 2 1

(1/ 2) 1
,

2 2 3 1

3 4 8( 1)

1 2 1

n n
n

n n

n
n n

n n

n n

r r
hf y y

r r

r
y y

r r r r

r
hf y y

r r

r
y y

r r r r

r r
hf y

r r

+ +
+

+

+
+ +

+

+ +

   
= − +   

+ +   

 − 
 − −   + +   

+   
= +   

+ +   

 + 
 − +   + +   

+ +  
= −  

+ +  

( )

3

2

1 2

1 1
.

2 3 1

n

n n

y

r
y y

r r r r

+

+


















 


 +  
 + −   + +    

 (15) 

Solving equation (15) for 1ny + , 3/2ny +  and 2ny +  respectively 

leads to,  

( )

( )

2 3

2

12

1

2 1

32

2

3

2

2

8

1 2 1

1

2 3 1
,

3 1

(1/ 2) (1/ 2)

1

1

2 2 3 1
,

2

2 1

8(

n
n

n n

n

n n

n
n

n

n

r r
y y

r r

y hf
r r r

y
r

r

r r
y y

r r

y hf
r r r

y

r

y

+
+

+

+

+ +

+

+

+

    
− +    

+ +    
  
  − −
  + +

  
=

− 
 
 

 + +   
−    

+    
  
  + −

  + +
  =

 
− 

+ 

−

=
( )

3 1

2

22

1) 1

2 1

1

2 3 1
.

3 4

1

n
n

n n

r r
y y

r r

y hf
r r r

r

r

+
+

+























 + +    +     +     
   
   − −
  + +   


+  −  + 







  (16) 

At 1r = , equation (16)  is  

1 3 2 1

2

3 1 2 3

2 2

2 1 3 2

2

1 4 1 1
,

12 3 4 2

1 9 9 3
,

8 4 8 2

1 4 32 2
.

21 7 21 7

n n n n
n

n n n
n n

n n n n
n

y y y y hf

y y y y hf

y y y y hf

+ + +
+

+ +
+ +

+ + +
+


= − + − − 




= − + − + 



= − + + 


     (17) 

At 2r = , equation (16)  is given by 

1 3 2 1

2

3 1 2 3

2 2

2 1 3 2

2

1 32 4 2
,

75 25 15 5

1 25 25 5
,

24 8 12 2

1 9 36 3
.

100 20 25 10

n n n n
n

n n n
n n

n n n n
n

y y y y hf

y y y y hf

y y y y hf

+ + +
+

+ +
+ +

+ + +
+


= − + − − 




= − + − + 



= − + + 


     (18) 

At 1/ 2r = ,  equation (16) becomes 
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1 3 2 1

2

3 1 2 3

2 2

2 1 3 2

2

2 1
2 ,

3 3

1 2
2 ,

3 3

2 9 18 3
.

11 11 11 11

n n n n
n

n n n
n n

n n n n
n

y y y y hf

y y y y hf

y y y y hf

+ + +
+

+ +
+ +

+ + +
+


= − + − − 




= − + − + 



= − + + 


     (19) 

Equations (17)-(19) collectively form the TSAHBBDF. This 

method can be written in general form as, 

  

1 1 3 1 2 1 1 1

2

3 2 1 2 2 2 3 3

2 2 2

2 3 1 3 3 3 2 2

2

,

,

.

n n n
n

n n
n n

n n n
n

y y y hf

y y y hf

y y y hf

   

   

   

+ + +
+

+ +
+ +

+ + +
+


= + + + 




= + + + 

= + + +


     (20) 

where 1 , 3/2  and 2  are back values. In matrix-vector 

form, equation (20) is equivalent to, 

( ) ,m mI A Y hBF − = +      (21) 

where 

1 0 0

0 1 0

0 0 1

I

 
 

=
 
  

,  

1 1

2 2

3 3

0

0

0

A

 

 

 

 
 

=
 
  

, 

1

3/2

2

n

m n

n

y

Y y

y

+

+

+

 
 

=
 
  

, 

1

2

3

0 0

0 0

0 0

B







 
 

=
 
  

, 

1

3/2

2

n

m n

n

f

F f

f

+

+

+

 
 

=
 
  

, 

1

3/2

2



 



 
 

=
 
  

. 

The TSAHBAM in equations (8)-(10) and TSAHBBDF in 

equations (17)-(19) collectively form the IPT. 
 

III. IMPLEMENTATION STRATEGY OF THE IPT 

To implement the IPT, the differential system (1) is initially 

treated as non-stiff and solved using the newly derived 

TSAHBAM in equations (8)-(10). Once a failure step is noticed 

due to suspected presence of stiffness, a stronger test is carried 

out. This test involves computing the trace of the Jacobian, that 

is f y  . If the trace is negative, the system (1) is treated as 

stiff and then solved using the newly derived TSAHBBDF in 

equations (17)-(19). However, if the trace is positive, the 

iteration is continued using the TSAHBAM with half of the 

step-size. 

According to [16], the error control algorithm is as follows: 

• if the error control is less than tolerance limit, then the 

step-size h  is increased to gain computation speed, 

• in the case of step failure, the step-size h  is halved 

and the step repeated. 

For more on the implementation strategies of the partitioning 

technique, see the works of [1], [5] and [6]. 
 

IV. ANALYSIS OF THE IPT 

In this section, summary of analysis of basic properties of the 

two methods that made up the IPT shall be investigated. 

Definition 4.1: The general k-step LMM (2) and its associated 

linear difference operator L  given by 

  
0

( ); ( ) '( )
k

j j

j

L y t h y t jh h y t jh 
=

 = + − +      (22)                     

are said to be of order p if 

0 1 2 1... 0, 0p pc c c c c += = = = =  , [17]. The term 

1 0pc +   is called the error constant. The constants 
pc are 

defined as 

 

( )

0

0

1

0

1

0

.

.

.

1 1
, 2,3,...

! ( 1)!

k

j

j

k

j j

j

k
p p

p j j

j

c

c j

c j j p
p p



 

 

=

=

−

=


= 




= − 








  = − =  −  







    (23)                                   

 

Specifically, for the TSAHBAM at 1r = ,  

0 1 2 4

0

... 0 ,

0

T

c c c c

 
 

= = = = =
 
  

                              (24) 

with error constant  

 

2

3
5

2

1.0764 10

9.9609 10

1.1111 10

T

c

−

−

−

 − 
 

= −  
 −  

.                (25) 

On the other hand, for the TSAHBBDF at 1r = , 

0 1 2 3

0

0 ,

0

c c c c

 
 

= = = =
 
  

                                        (26) 

with error constant 
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2

2
4

2

1.0417 10

2.3438 10

1.1905 10

T

c

−

−

−

 
 

=  
 −  

.               (27) 

This implies that the TSAHBAM is of order four while the 

TSAHBBDF is of the third order. Similarly, the stability 

polynomial of the TSAHBAM at 1r = , 2r =  and 1/ 2r =
are respectively given by, 

3 3 2

1

2 3 2

1 13 9
( , ) 1

8 24 8

1 7 7
1 ,

24 24 8

R t H t H H H

t H H H

 
= − − + − 

 

 
− + + + 

 

 (28) 

3 3 2

2

2 3 2

67 1273 169
( , ) 1

240 1440 120

1 193 71
1 ,

120 1440 120

R t H t H H H

t H H H

 
= − − + − 

 

 
− + + + 

 

   (29) 

3 3 2

1/2

2 3 2

5 77 5
( , ) 1

48 288 48

1 247 91
1 .

6 288 48

R t H t H H H

t H H H

 
= − − + 

 

 
− + + + 

 

   (30) 

Substituting 0H =  in equations (28)-(30), we obtain 
3 2

1 2 1 2( ,0) ( ,0) ( ,0) .R t R t R t t t= = = −       (31) 

Solving equations (31) gives 0,0  and 1, which shows that the 

TSAHBAM is zero-stable. For the TSAHBBDF, the stability 

polynomials at 1r = , 2r =  and 1/ 2r = are respectively 

given by 

3 3 3 2 2 2

1

3 2 3 2

3 13 1
( , )

14 28 28

9 3 3 3
,

14 14 7 7

R t H t H t H t H

t H t H t t

= − +

+ + − +

  (32) 

3 3 3 2 2 2

2

3 2 3 2

3 37 1
( , )

10 100 100

3 3 3 3
,

10 50 25 25

R t H t H t H t H

t H t H t t

= − +

+ + − +

 (33) 

3 3 3 2 2 2

1/2

3 2 3 2

3 2
( , )

11 11

24 12 24 24
.

11 11 11 11

R t H t H t H t H

t H t H t t

= − +

+ + − +

 (34) 

Substituting 0H =  into equations (32)-(34), we obtain 

3 2

1

3 3
( ,0) ,

7 7
R t t t= − +         

      (35) 

3 2

2

3 3
( ,0) ,

25 25
R t t t= − +     (36) 

3 2

1

24 24
( ,0) .

11 11
R t t t= − +    (37) 

Solving each of the polynomials in equations (35)-(37) give 

0,0  and 1, which also shows that the TSAHBBDF is zero-

stable, [18]. 

Tables 1 and 2 present the summary of basic properties of the 

IPT made up of TSAHBAM and TSAHBBDF. Similarly Fig. 1 

and Fig. 2 show the stability regions of the TSAHBAM and 

TSAHBBDF at the three step-size ratios. 

 
Fig. 1. Regions of absolute stability of the TSAHBAM 

 

 
Fig. 2. Regions of absolute stability of the TSAHBBDF   

 

From Fig. 1, the exterior part of the blue- and red-coloured 

contours are the stability regions of the TSAHBAM at 2r =  
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and 1r =  respectively. On the other hand, the interior part of 

the black-coloured contour is the stability region of the 

TSAHBAM at 1/ 2r = . This implies that the TSAHBAM at 

2r =  has the largest region of stability, followed by 

TSAHBAM at 1r =  and then 1/ 2r =  has the smallest 

stability region. The instability intervals of the TSAHBAM are 

given in Table 2. In Fig. 2, the regions of absolute stability of 

the TSAHBBDF are the exterior of the blue-, red-, and black-

coloured contours for step-size ratios 2r = , 1r =  and 

1/ 2r =  respectively. This implies that the TSAHBBDF at 

2r =  has the largest stability region, then the TSAHBBDF at 

1r =  and then TSAHBBDF at 1/ 2r =  has the smallest 

region of stability. Table 2 also shows the intervals of instability 

of the TSAHBBDF. It is clear that the TSAHBAM is A-stable 

at 1r =  and 2r =  but is not A-stable at 1/ 2r = . On the 

other hand, the TSAHBBDF is A-stable at all the three step-

size ratios. 

V. NUMERICAL EXPERIMENTS 

The newly formulated IPT shall be adopted in solving some test 

problems. This is aimed at testing its efficiency as well as 

accuracy over existing methods. The following notations shall 

be used in presenting the results. 

ℎ𝑖𝑛𝑖𝑡  : Initial step-size 

TOL: Tolerance level/limit 

TS: Total number of steps taken 

TAS: Total number of accepted steps 

TFS: Total number of failure steps 

MAXE: Maximum absolute error 

TIME: Execution time (in seconds) 

ode15s: Matlab inbuilt variable order solver based on BDF 

IBP: 3-point intervalwise block partitioning method developed 

by [1] 

IPT: newly formulated intervalwise partitioning technique 

 

Problem 5.1 

Consider the nonlinear differential system, 

( )
1 1 2 1

2 1 2 2

' 2 2sin , (0) 2,

' 998 999 999 cos sin , (0) 3,

y y y t y

y y y t t y

= − + + = 


= − + − =   (38) 

defined over  0,5t . The exact solution of the system is 

1

2

( ) 2 sin ,

( ) 2 cos .

t

t

y t e t

y t e t

−

−

= + 


= + 

     (39) 

Source: [12] 

 

Problem 5.2 

Consider the linear differential system  

1 1 2 3 1

2 1 2 3 2

3 1 2 3 3

' 21 19 20 , (0) 1,

' 19 21 20 , (0) 0,

' 40 40 40 , (0) 1,

y y y y y

y y y y y

y y y y y

= − + − = 


= − + = 
= − − = −    (40) 

defined for  0,10t , with the exact solution 

( ) ( )

( ) ( )

( ) ( )

2 40

1

2 40

2

40

3

( ) 1/ 2 cos 40 sin 40 ,

( ) 1/ 2 cos 40 sin 40 ,

( ) 1/ 2 2 sin 40 cos 40 .

t t

t t

t

y t e e t t

y t e e t t

y t e t t

− −

− −

−

 = + +  


 = − +  


 = −   

 (41) 

The Jacobian matrix of the system (40) has Eigen values 

1 2 = − , 2 40 40i = − +  and 3 40 40i = − − . 

Source: [19] 

 

 

 

 

 

 Table 1. Summary of analysis of basic properties of TSAHBAM and TSAHBBDF 

Method Order Zero-stability Consistence Convergence 

TSAHBAM 4 Zero-stable Consistent Convergent 

TSAHBBDF 3 Zero-stable Consistent Convergent 

 

Table 2. Summary of analysis of TSAHBAM and TSAHBBDF showing roots stability polynomials and intervals of 

instability at different step-size ratios 

Method Step-size ratio Roots of Stability 

Polynomial 

Intervals of Instability 

TSAHBAM 𝑟 = 1 

𝑟 = 2 

𝑟 = 1/2 

0, 0, 1 

0, 0, 1 

0, 0, 1 

(0,9.941075) 
(0,3.500023) 

(−∞,−15.927177) ∪ (0,∞) 
TSAHBBDF 𝑟 = 1 

𝑟 = 2 

𝑟 = 1/2 

0, 0, 1 

0, 0, 1 

0, 0, 1 

(0,2.238034) 
(0,1.168105) 
(0,4.273441) 

 

Table 3. Numerical results for Problem 5.1 at ℎ𝑖𝑛𝑖𝑡 = 10−1 
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_____________________________________________________________________________ 

TOL   Method    TS      TAS     TFS MAXE     TIME  

_____________________________________________________________________________ 

10−3 ode15s        29    28   1 2.40𝑒 − 03     0.7938 

IPT          21   19   2 1.2314𝑒 − 09     0.0021 

 ____________________________________________________________________________ 

10−4 ode15s        38    38   0 2.41𝑒 − 04     2.5669 

IPT          27   25   2 7.0025𝑒 − 10     0.0033 

____________________________________________________________________________ 

10−5 ode15s        55    54   1 5.30𝑒 − 05     52.4463 

IPT          45   41   4 4.5119𝑒 − 12     0.0078 

____________________________________________________________________________ 

 

 

 
Fig. 3. Accuracy curves for Problem 5.1 

 

 

 

 

 

Table 4. Numerical results for Problem 5.2  

_____________________________________________________________ 

TOL   Method    TS      MAXE     TIME  

_____________________________________________________________ 

10−2 ode15s        37    7.92983𝑒 − 03     0.009659 

 IBP  26 2.15015𝑒 − 01     0.000224 

 IPT  20 1.23172𝑒 − 05     0.000101 

_____________________________________________________________ 

10−4 ode15s        86    1.16049𝑒 − 04     0.018109 

 IBP  36 8.24059𝑒 − 03     0.000344 

 IPT  28 3.77241𝑒 − 07     0.000171 

_____________________________________________________________ 

10−6 ode15s        162    1.77877𝑒 − 06     0.028360 

 IBP  58 4.71831𝑒 − 05     0.000919 

 IPT  40 1.62001𝑒 − 10     0.000544 

_____________________________________________________________ 

10−8 ode15s        305    3.83010𝑒 − 08     0.073445 

 IBP  139 1.45542𝑒 − 09     0.001936 

 IPT  108 7.26503𝑒 − 12     0.001032 

_____________________________________________________________ 
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Fig. 3. Accuracy curves for Problem 5.2

 

 

The newly formulated IPT was applied in solving two 

differential systems of the form (1). The results obtained in 

Table 3 showed that the method is efficient as well as accurate. 

This is because the maximum absolute errors of the IPT are 

smaller than those of ode15s. The IPT also had smaller 

execution time than the ode15s implying that it is more 

efficient. The accuracy curves obtained in Fig. 3 clearly showed 

that the IPT is more computationally reliable. It was also 

observed in Table 3 that the IPT took fewer numbers of steps to 

achieve accuracy in comparison with ode15s. Similarly the 

numerical and graphical results obtained in Table 4 and Fig. 4 

respectively showed that the IPT is accurate and efficient than 

the ode15s and IBP developed by [1]. Further study could 

explore the performance of the IPT on problems discussed in 

[20], [21] and [22-28]. 

 

 

VI. CONCLUSSIONS 

The new partitioning strategy, which is the IPT proposed in this 

research has been proven to be more efficient than the other 

methods we compared our results with. This is in addition to 

the improved accuracy exhibited by the new technique. 

Analysis of basic properties of the IPT showed that the 

technique is consistent, zero-stable and convergent. Thus, the 

IPT has proven to be computationally reliable in solving 

differential systems of the form (1). 
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