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Abstract - In this research, a refined two-stage sampling product 

estimator for estimating the population mean is introduced, 

incorporating information from auxiliary attributes. The 

estimation is carried out in a product form within the context of 

two-stage sampling. The modified product estimator proposed 

here is a versatile family of estimators, yielding different results 

depending on the value of Lambda. Specifically, for the projected 

estimator, when lambda takes values of 0, 0.5, and 1, the product 

estimators align with three different estimators respectively. When 

the auxiliary attribute is treated as a variable, the estimator 

corresponds to another estimator. In the scenario where lambda is 

0 and the auxiliary attribute is a variable, the result is akin to 

ordinary double sampling. The text further concentrates on the 

derivation of expressions for Bias and Mean Squared Error of the 

projected modified product estimator up to the first order of 

approximation. Through a comprehensive comparison with 

existing related estimators, both theoretically and empirically, it is 

demonstrated that the proposed modified product estimator 

exhibits superior efficiency at the optimal value of Lambda. This 

research contributes to the field by showcasing the enhanced 

proficiency of the proposed estimator in comparison to its 

counterparts. 

Keywords - product estimator, bias, ancillary attribute, and 

two-stage sampling. 

I. INTRODUCTION  

Sample surveys often used supplementary data to advance 

the accuracy of population parameters’ estimators [1-3]. Double 

sampling was first discovered by [4]. The estimation phase 

using auxiliary information was discovered by [5] and [6] 

revealed the basic outcome of double sampling, including the 

modest regression estimators for this kind of sampling scheme. 

Double sampling represents a sampling approach that 

incorporates additional data obtained through a supplementary 

sampling process. Specifically, this method involves selecting 

an initial sample of entities (n′) to gather supplementary 

information. Subsequently, a second sample (n) is chosen where 

the actual study variable(s) is experiential. In many instances, 

the second sample is a subset of the initial sample used to collect 

supplementary data. Double sampling is particularly useful in 

two common scenarios where ancillary information is utilized 

to enhance the estimation of study variables: 
 

• When the study variable is challenging or expensive to 

measure, but there exists a more economical associated 

variable, a strategy is employed where a substantial number 

of sampling units are initially selected. The less expensive 

(supplementary) variable is measured on this larger sample, 

and the study variable is measured only on a subsample (or 

smaller sample). 
 

• Non-response bias is a prevalent issue in various surveys. 

Double sampling, in conjunction with stratification 

principles, can be employed to address non-response 

concerns by selecting a second sample specifically from the 

non-respondents. 

Utilizing supplementary variable becomes particularly 

beneficial in enhancing the accuracy of an estimator when the 

response variable (y) is strongly correlated with an ancillary 

variable (x). Additionally, circumstances arise where data is 

accessible in form of attributes or qualitative data (φ) that 

exhibits a high correlation with y. This underscores the 

versatility and effectiveness of double sampling in refining the 

accuracy of estimators in diverse survey and research contexts. 

For example: 

• Persons’ Gender and height  

• Quantity of milk extracted and a specific type of the cow, 
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• Total produce of maize crop and a specific variety of maize 

etc. [7] 

 

Given a population of size N, consider a sample of size n 

selected via simple random sampling without replacement 

(SRSWOR). Let yi and ϕi signify the elements in variables y and 

ϕ, correspondingly, for the ith unit (i = 1, 2, …, N). It is 

presumed that the population exhibits a distinct dichotomy 

concerning the presence or absence of a characteristic, denoted 

as ϕ, it is further presumed that the attribute or quality ϕ 

assumed only two values, 0 and 1. 

 

𝜙𝑖 = {

1, if unit of the population has the
characteristic ϕ

 
0, otherwise                                               

 

 

 

Consider  𝑎 = ∑ 𝜙𝑖
𝑛
𝑖  and 𝐴 = ∑ 𝜙𝑖

𝑁
𝑖 signify the total number of 

units I sample and population and correspondingly possessing 

characteristic ϕ. 𝑝 =  
𝑎

𝑛
  and  𝑃 =

𝐴

𝑁
  signify the fraction of units 

in the sample and population correspondingly possessing 

characteristic ϕ [8] 

Ancillary information:- in sample survey scheme, facts about 

the sampling unit which is supplementary to the features under 

study in the survey is called ancillary information. This 

information can be qualitative called ancillary characteristics. 

[9]. 

 

II. DEFINITION OF TERMS USED 

 

𝑛1 = the initia stage sample size     

n = the second sample size or the sub − sample size  

N = Population size   

𝑌 = Response variable  

𝑃1 =   
∑ 𝑎1

𝑛1  = The initial stage sample proportion of the 

ancillary characteristic 

 𝑝 =
∑ 𝑎

𝑛
 = the second stage sample fraction of the ancillary 

characteristic 

Φ= ancillary characteristic 

𝑦̅  =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 = Second stage mean of Sample of the response 

variable   

a = ∑ 𝜙𝑖
𝑛
𝑖  represent the total number of units in the second 

sample that possessed the attribute 

a1 = ∑ 𝜙𝑖
𝑛
𝑖  represent the total number of units in the first sample 

that possessed the characteristic. [9] 

 

 

 

III. MATERIAL AND METHODOLOGY 

Two-stage sampling for product estimator:- Product estimators, 

with ancillary information, for calculating the average of a 

determinate population is well acknowledged. The proficiency 

of Product estimator is high contingent on whether the ancillary 

character is strongly negatively correlated with the main 

attribute of study. This research projected an enhanced modify 

family of Product estimator in two-stage sampling via auxiliary 

attribute.  

 

The suggested enhanced family of product estimator is defined 

as:- 

 

 Y̅adP = λy̅  + (1 − λ) y̅(
𝑝

𝑝1)    

 

Existing Related Product Estimators in two-phase Sampling 

Traditional estimator of population mean for (SRSWOR) . 

 

𝑌̅𝑎 = 𝑦̅ = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛             (1) 

𝑀𝑆𝐸(𝑌̅𝑎) = 𝑓𝑛𝑌̅2𝐶𝑦
2                              (2) 

Two-stage sampling product estimator with ancillary variable. 

 

Product Estimator:- 

 

𝑌̅𝐷𝑆𝑃 = 𝑦̅
𝑥̅

𝑥̅1                                            (3) 

B( 𝑌̅𝐷𝑆𝑃)=𝑌̅𝑓𝑛𝑐𝑦𝑥              (4) 

MSE(𝑌̅𝐷𝑆𝑃)= 𝑌̅2(𝑓𝑛𝑐𝑦
2 + 𝑓𝑛 (𝑐𝑥

2 +2𝜌𝑦𝑥𝑐𝑦𝑐𝑥))          (5) 

 

[10], proposed two-stage sampling Product estimator via 

ancillary attribute as:- 

 𝑌̅𝑁𝐺𝑃 = 𝑦̅
𝑝

𝑝1                                      (6)            

B( 𝑌̅𝑁𝐺𝑃)=𝑌̅𝑓𝑛𝑐𝑝𝑦                             (7) 

MSE(𝑌̅𝑁𝐺𝑃)= 𝑌̅2(𝑓𝑛𝑐𝑦
2 + 𝑓𝑛 (𝑐𝑝

2 +2𝜌𝑦𝑝𝑐𝑦𝑐𝑝))            (8) 

 

[2], recommended Product exponential estimator with twofold 

sampling and auxiliary attribute. The estimators were merely an 

advancement over the exponential estimators proposed by [10] 

that made use of auxiliary attributes. 

 𝑌̅𝑁𝑆𝑃=𝑦̅𝑒𝑥𝑝
(

𝑝−𝑝1

𝑝+ 𝑝1)
                                    (9) 

B(𝑌̅𝑁𝑆𝑃)= 𝑌̅ (
1

𝑛
−

1

𝑛1) [
1

2
𝜌𝑝𝑦𝐶𝑦𝐶𝑝]              (10)  

MSE(𝑌̅𝑁𝑆𝑃)= 𝑌̅2(𝑓𝑛𝑛𝑐𝑦
2 + 𝑓𝑛𝑛1 (

1

4
𝑐𝑝

2+𝜌𝑦𝑝𝑐𝑦𝑐𝑝)       (11) 

 [11], recommended employing population percentage of an 

ancillary character to estimate population mean more 

accurately. 

𝑌̅𝑝𝐻 = 𝑦̅𝑒𝑥𝑝
(

𝜆(𝑝−𝑝1)

𝑝+ 𝑝1 )
                              (12) 

𝐵(𝑡𝑝𝐻) = (
𝐾

𝑝𝐶𝑝
2

2
)(1 − 𝐾𝑝)                          (13) 

MSE(𝑡𝑝̅𝐻) = 𝜃𝑆𝑦
2(1 − 𝜌𝑝𝑏

2 ) +  𝜃1𝜌𝑝𝑏
2 𝑆𝑦

2                  (14) 

 

Where 𝐾𝑝 =
𝑆𝑦𝜙𝑝

𝑆𝜙
2 𝑦̅
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The limitation of this estimator is that an open range between -

1.25 and 2.25 is the estimator's range for alpha 

In order to estimate population mean in two-stage sampling, [3] 

suggested the Product estimator. The exponential dual to 

product type estimator for finite population mean in two-stage 

sampling by [12] served as the model for the suggested 

estimator. 

- 

 

 𝑌̅Sub𝑃 =∝ y̅ + (1−∝)tpe
d              (15) 

B(𝑌̅Sub𝑃)=𝑌̅[
1

8
𝑔2𝛾𝐶𝑥

2 − 
1

8
𝑔2𝛾∗∗𝐶𝐶𝑥

2](1 −
𝐷

4𝐵
  )          (16) 

(𝑌̅Sub𝑃) = 𝑌̅2 (γ𝑐𝑦
2 + 𝑔γ𝑐𝑥

2(
𝑔

4
+  𝑐)-ϓ

𝐷2

4𝐵
) ]     

    (17)   

 

Where C = ρyx
𝐶𝑦

𝐶𝑥
, 𝛾∗∗

= (
1

𝑛
−

1

𝑛1) , γ= (
1

𝑛
−

1

𝑁
) , 𝛾∗

= (
1

𝑛1 −
1

𝑁
), D = 𝐶𝑥

2(𝑔 + 2𝑐), B = 𝐶𝑥
2

,  A = 𝐶𝑥
2(𝑔 − 2𝑐). 

In this research, the optimum value of the attribute scalar α 

was gotten as 𝛼 =
𝐴

𝑔𝐵
 and The outcomes were contrasted with 

those of Singh and [13] and [14]. As a result, the projected 

estimate was chosen above the previously stated current 

estimators. 

. 

 

Bias and MSE of the Projected Enhanced Family of Product 

estimator  

The suggested Enhanced Product Estimator  Y̅adp is given as :- 

 

 Y̅adP = λy̅  + (1 − λ) y̅(
𝑝

𝑝1)         (18)   

 

 The Bias and mean squared error (MSE) of the suggested 

estimator 𝑌̅𝑎𝑑𝑃 given the error terms   𝑦̅ =  𝑌̅(1 + ∆𝑦̅),  𝑝1 =
𝑃(1 + ∆𝑝1),   𝑝 = 𝑃(1 + ∆𝑝)   in a way that  

 

𝐸(∆𝑝1) = 0,  𝐸(∆𝑝) = 0,   

𝐸(∆𝑦̅) = 0, 𝐸(∆𝑦̅
2 ) = (

1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 ,  

𝐸(∆𝑝1
2 ) = (

1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2, 

𝐸(∆𝑃
2 ) = (

1

𝑛
−

1

𝑁
)

𝑆𝑃
2

𝑃2, 

𝐸(∆𝑦̅∆𝑝1) = (
1

𝑛1 −
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
,  

𝐸(∆𝑦̅∆𝑝) = (
1

𝑛
−

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
,  

𝐸(∆𝑝∆𝑝1) = (
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2      (19) 

 

The proposed Product estimator 𝑌̅𝑎𝑑𝑝 can be stated in terms of 

error terms ∆𝑦̅, ∆𝑝1 and ∆p as follows, up to the first degree of 

approximation: 

𝑌̅𝑎𝑑𝑝=𝜆𝑌̅(1 + ∆𝑦̅) + (1 − 𝜆)𝑌̅(1 + ∆𝑦̅)
𝑃(1+∆𝑝)

𝑃(1+∆𝑝1)
   (20)  

 

This might be written uniformly as   

 𝑌̅𝑎𝑑𝑝 =  𝜆𝑌̅(1 + ∆𝑦̅) + (1 − 𝜆)𝑌̅(1 + ∆𝑦̅)(1 + ∆𝑝)(1 +

∆𝑝1)−1                                              (21)  

(1 − ∆𝑝 + ∆𝑃
2 )  is the expansion of (1 + ∆𝑝)−1  using power 

series up to the first order approximation 0(𝑛−1). 

As a result, equation (2.3) now yields [15] 

𝑌̅𝑎𝑑𝑝   = 𝑌̅[𝛼(1 + ∆𝑦̅) +  (1 − 𝛼)𝑌̅(1 + ∆𝑦̅)(1 + ∆𝑝)(1 −

∆𝑝1 + ∆𝑝1
2 )]                                    (22)   

 

Additional simplification of equation (22 )   

 

 𝑌̅𝑎𝑑𝑝 = 𝑌̅[𝜆(1 + ∆𝑦̅) + (1 − 𝜆)(1 − ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 −

∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)       (23) 

 

Limiting equation (23) to the power of two or order two (2) 

 

 𝑌̅𝑎𝑑𝑝 = 𝑌̅[𝜆(1 + ∆𝑦̅) + (1 − 𝜆)(1 − ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 −

∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)       (24) 

 

Bias of the Projected Enhanced Family of Product estimator  

𝐵𝑖𝑎𝑠(𝑌̅𝑎𝑑𝑝) = 𝐸(𝑌̅𝑎𝑑𝑝 − 𝑌̅)      

(Y̅adp − Y̅) = {Y̅ [𝜆(1 + ∆y̅) + (1 − 𝜆)(1 − ∆𝑝1 + ∆𝑝1
2 +

∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)] − Y̅}    (25) 

   

(Y̅adp − Y̅) = Y̅{[𝜆(1 + ∆y̅) + (1 − 𝜆)(1 − ∆𝑝1 + ∆𝑝1
2 +

∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)] − 1}  

Obtain the equation expected value: 

 

E(Y̅adp − Y̅) = Y̅{[𝜆(E(1) + E(∆y̅)) +  (1 − 𝜆)(E(1) −

 𝐸(∆𝑝1) + 𝐸(∆𝑝1
2 ) + 𝐸(∆𝑝) − 𝐸(∆𝑝∆𝑝1) + 𝐸(∆𝑦̅) −

𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝)] − E(1)}   (26) 

 

Replace the value of equation (19) in equation (26):  
  

 

E(Y̅adp − Y̅) = Y̅{[𝜆(0 + 0) +  (1 − 𝜆)(0 −  0 + 𝐸(∆𝑝1
2 ) +

0 − 𝐸(∆𝑝∆𝑝1) + 0 − 𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝)] − 0}     (27)                            

 

Adding more implications to equation (27) results in : 

 

𝐸(∆𝑃
2 ) = (

1

𝑛
−

1

𝑁
)

𝑆𝑃
2

𝑃2   𝐸(∆𝑦̅∆𝑝1) = (
1

𝑛1 −
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
,  𝐸(∆𝑦̅∆𝑝) =

(
1

𝑛
−

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
  and 𝐸(∆𝑝∆𝑝1) = (

1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2 

E(Y̅adp − Y̅) = Y̅ [(1 − 𝜆) ((
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2  − (
1

n1 −
1

N
)

SP
2

p2 −

(
1

n1 −
1

N
)

Syp

YP̅̅ ̅̅
+ (

1

n
−

1

N
)

Syp

YP̅̅ ̅̅
)]   (28)  

 

Collecting the like terms, 
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E(Y̅adp − Y̅) = Y̅ [(1 − 𝜆) ((
1

n
−

1

N
−

1

n1 +
1

N
)

Syp

YP̅̅ ̅̅
)]        

     (29) 

 

Additional  simplification gives  

 

E(Y̅adp − Y̅) = Y̅ [(1 − 𝜆) ((
1

n
−

1

n1)
Syp

YP̅̅ ̅̅
)]  (30) 

E(Y̅adp − Y̅) = Y̅ [(1 − 𝜆)(
1

n
−

1

n1)(Cyp)]  (31) 

     

 

The Bias connoted by  Bias(𝑌̅𝑎𝑑𝑃)  of the suggested Product 

estimator (𝑌̅𝑎𝑑𝑃) is 

 

 Bias(Y̅adp) = Y̅(1 − 𝜆)(
1

n
−

1

n1)Cyp        (32)  

 

MSE of the suggested family of Product estimator (𝑌̅𝑎𝑑𝑃) 

To get mean squared error (MSE) of the suggested Product 

estimator𝑌̅𝑎𝑑𝑃 , replicate the stages of equations (20), (21), (22), 

(23), (24) and (25). 

 

(Y̅adp − Y̅) = Y̅{[𝜆(1 + ∆y̅) + (1 − 𝜆)(1 − ∆𝑝1 + ∆𝑝1
2 +

∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)] − 1}  (33) 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = 𝐸(𝑌̅𝑎𝑑𝑝 − 𝑌̅)2 

Square both sides of equation (33)  

 

{(Y̅adp − Y̅)
2

= Y̅2[𝜆2(1 + ∆y̅)2 + 2𝜆(1 − 𝜆)(1 + ∆y̅)(1 −

 ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝) −

2𝜆(1 + ∆y̅) − 2(1 − 𝜆)(1 −  ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 − ∆𝑝∆𝑝1 +

∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝) + (1 − 𝜆)2(1 −  ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 −

∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)
2

− 1  }    (34) 

 

Expand equation (34) and limit the equation to order two 

 

{(Y̅adp − Y̅)
2

= Y̅2[𝜆2(1 + 2∆y̅  + ∆𝑦̅
2)  + 2𝜆(1 − α)(1 −

 ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝 + ∆y̅  −

∆y̅∆p1 + ∆y̅∆p + ∆𝑦̅
2 )  − 2𝜆(1 + ∆y̅) − 2(1 − 𝜆)(1 −

 ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 − ∆𝑝∆𝑝1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝)) + (1 −

𝜆)2(1 − ∆𝑝1 + ∆𝑝1
2 + ∆𝑝 − ∆p∆p1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1 + ∆𝑦̅∆𝑝 −

∆p1 + ∆𝑝1
2 − ∆p∆p1 − ∆y̅∆p1  + ∆𝑝1

2 + ∆p − ∆p∆p1 + ∆P
2 +

∆p∆y̅ − ∆p∆p1 + ∆𝑦̅ − ∆𝑦̅∆𝑝1  + ∆p∆y̅ + ∆𝑦̅
2 − ∆y̅∆p1 +

∆y̅∆p) − 1]  }       (35) 

 

Take the expectation of equation (35) above 

 

E(Y̅adp − Y̅)
2

= Y̅2 [ 𝜆2(  E(1) + 2E( ∆y̅ ) +E( ∆𝑦̅
2 )  + 2𝜆(1 −

𝜆)(E(1)-E(∆p1)+E(∆𝑝1
2 ) + E(∆p) – E(∆p∆p1) - 2𝐸(∆y̅∆p1) + 

2𝐸(∆y̅∆p)+ 2𝐸(∆y̅) +𝐸(∆𝑦̅
2 ))  −2𝜆𝐸(E(1) + E(∆y)̅) − 2(1 −

𝜆)(E(1) −  𝐸(∆𝑝1) + 𝐸(∆𝑝1
2 ) + 𝐸(∆𝑝) − 𝐸(∆𝑝∆𝑝1) +

𝐸(∆𝑦̅) − 𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝) + (1 − 𝜆)2 ( 𝐸(1) −

𝐸( ∆𝑝1) + 𝐸(∆𝑝1
2 ) + 𝐸(∆𝑝) − 𝐸(∆p∆p1) + 𝐸(∆𝑦̅) −

𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝) − E(∆p1) + 𝐸(∆𝑝1
2 ) − E(∆p∆p1) −

E(∆y̅∆p1)  + 𝐸(∆𝑝1
2 ) + E(∆p) – E(∆p∆p1) +  E(∆P

2) +

E(∆p∆y̅) − E(∆p∆p1) + 𝐸(∆𝑦̅) − 𝐸(∆𝑦̅∆𝑝1)  + E(∆p∆y̅) +
E(∆𝑦̅

2 ) − E(∆y̅∆p1) + E(∆y̅∆p))                        (36) 

 

substitute for equation (19) in equation (36)  

 

E(Y̅adp − Y̅)
2

= Y̅2[𝜆2((0 +  0 +  E(∆𝑦̅
2 )) + 2𝜆(1 − 𝜆) (0-

0+E( ∆𝑝1
2 ) + 0– E(∆p∆p1 )-2 𝐸(∆y̅∆p1 ) + 

2 𝐸(∆y̅∆p )+0+ 𝐸(∆𝑦̅
2 )  −2(1 − 𝜆)(0 −  0 + 𝐸(∆𝑝1

2 ) + 0 −

𝐸(∆𝑝∆𝑝1) + 0 − 𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝))  +  (1 −

α)2 ( 3E(∆𝑝1
2 ) − 4E(∆p∆p1) − 4E(∆y̅∆p1) +  E(∆P

2) +

4E(∆y̅∆p) + 𝐸(∆𝑦̅
2))                         (37)  

                   

E(Y̅adp − Y̅)
2

= Y̅2[𝜆2( E(∆𝑦̅
2 )) + 2𝜆(1 − 𝜆) (E( ∆𝑝1

2 ) 

– E(∆p∆p1 )-2 𝐸(∆y̅∆p1 )+2 𝐸(∆y̅∆p )+ 𝐸(∆𝑦̅
2 )  −2(1 −

𝜆)(𝐸(∆𝑝1
2 ) − 𝐸(∆𝑝∆𝑝1) − 𝐸(∆𝑦̅∆𝑝1) + 𝐸(∆𝑦̅∆𝑝))  +  (1 −

α)2 ( 3E(∆𝑝1
2 ) − 4E(∆p∆p1) − 4E(∆y̅∆p1) +  E(∆P

2) +

4E(∆y̅∆p) + 𝐸(∆𝑦̅
2))      (38) 

 

Replace equation (19 ) in equation (38) 

 

E(Y̅adp − Y̅)
2

= Y̅2[𝜆2 (
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 +  2𝜆(1 − 𝜆)((
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑃2 −

 (
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2 − 2(
1

𝑛1 −
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
+ 2 (

1

𝑛
−

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
+ (

1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2)  −

2(1 − 𝜆)((
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑃2   − (
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2 −  (
1

𝑛1 −
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
 +  (

1

𝑛
−

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
 + (1 − 𝜆)2(3 (

1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑃2 − 4 (
1

𝑛1 −
1

𝑁
)

𝑆𝑃
2

𝑝2 − 4 (
1

𝑛1 −

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
+ 4 (

1

𝑛
−

1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
+ (

1

𝑛
−

1

𝑁
)

𝑆𝑃
2

𝑝2 + (
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2)]                             (39) 

 

Collect the like terms in equation (39) 

 

E(Y̅adp − Y̅)
2

= Y̅2[𝜆2 (
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 + 2𝜆(1 − 𝜆)((
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 +

2(
1

𝑛
−

1

𝑁
−

1

𝑛1 +
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
)  − 2(1 − 𝜆) (

1

𝑛
−

1

𝑁
−

1

𝑛1 +
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
) +

 (1 − 𝜆)2((
1

𝑛
−

1

𝑁
−

1

𝑛1 +
1

𝑁
)

𝑆𝑃
2

𝑝2 − 4 (
1

𝑛
−

1

𝑁
−

1

𝑛1 +
1

𝑁
)

𝑆𝑦𝑝

𝑌𝑃̅̅ ̅̅
+

(
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 )]                               (40) 

 

Further simplify equation (40) 

 

E(Y̅adp − Y̅)
2

= Y̅2[𝜆2  (
1

𝑛
−

1

𝑁
) 𝐶𝑦

2 + 2𝜆(1 − 𝜆)((
1

𝑛
−

1

𝑁
) 𝐶𝑦

2 +

2(
1

𝑛
−

1

𝑛1)𝐶𝑦𝑝)  − 2(1 − 𝜆) (
1

𝑛
−

1

𝑛1) 𝐶𝑦𝑝)  + (1 − 𝜆)2((
1

𝑛
−

Authorized licensed use limited to: National University Fast. Downloaded on December 13,2024 at 17:29:12 UTC from IEEE Xplore.  Restrictions apply. 



1

𝑛1) 𝐶𝑝
2 − 4 (

1

𝑛
−

1

𝑛1) 𝐶𝑦𝑝 + (
1

𝑛
−

1

𝑁
)𝐶𝑦

2)]      

  (41)  

MSE(𝑌̅𝑎𝑑𝑝) = E(Y̅adp − Y̅)
2

=𝜆2 (
1

𝑛
−

1

𝑁
)

𝑆𝑦
2

𝑌̅2 + 2𝜆(1 − 𝜆)((
1

𝑛
−

1

𝑁
) 𝐶𝑦

2 +2(
1

𝑛
−

1

𝑛1)𝐶𝑦𝑝)      −2(1 − 𝜆)((
1

𝑛
−

1

𝑛1) 𝐶𝑦𝑝) + (1 − 𝜆)2((
1

𝑛
−

1

𝑛1) 𝐶𝑝
2 − 4 (

1

𝑛
−

1

𝑛1) 𝐶𝑦𝑝 + (
1

𝑛
−

1

𝑁
)𝐶𝑦

2))                  (42)  

Mean Squared Error (MSE) of the suggested Product estimator 

(𝑌̅𝑎𝑑𝑃) signified  𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑃) was obtained as :- 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = Y̅2[(
1

𝑛
−

1

𝑁
) 𝐶𝑦

2 + (1 − 𝜆) (
1

𝑛
−

1

𝑛1) ((1 − 𝜆)𝐶𝑝
2 +

2𝐶𝑦𝑝)]                           (43) 

 

By applying the maxima-minima method to minimize Mean 

squared error 𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑃), the most advantageous value of the 

described scalar λ is achieved. 

Extend equation (43) 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = Y̅2[(
1

𝑛
−

1

𝑁
) 𝐶𝑦

2 + (1 − 𝜆)2 (
1

𝑛
−

1

𝑛1) 𝐶𝑝
2 +  2(1 −

𝜆) (
1

𝑛
−

1

𝑛1) 𝐶𝑦𝑝]  

Where   𝐹𝑛𝑛1 = (
1

𝑛
−

1

𝑛1),  Fn = (
1

𝑛
−

1

𝑁
) 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑅) = Y̅2[Fn𝐶𝑦
2 + (1 − α)2𝐹𝑛𝑛1𝐶𝑝

2 −  2(1 −

α)𝐹𝑛𝑛1𝐶𝑦𝑝]     (44) 

 

Obtain the derivative of 𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑃)with respect to λ [16]

  

 
Δ(𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝)) 

Δ𝜆
=2(1 − 𝜆)(-1)𝐹𝑛𝑛1𝐶𝑝

2 +  2(−1)𝐹𝑛𝑛1𝐶𝑦𝑝                     

  (45) 

 

Limiting 
Δ(𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝)) 

Δ𝜆
=0 

2(1 − 𝜆) (-1)𝐹𝑛𝑛1𝐶𝑝
2 +  2(−1)𝐹𝑛𝑛1𝐶𝑦𝑝=0  (46) 

−2(1 − 𝜆) 𝐹𝑛𝑛1𝐶𝑝
2 − 2𝐹𝑛𝑛1𝐶𝑦𝑝=0   (47) 

−2(1 − 𝜆) 𝐹𝑛𝑛1𝐶𝑝
2 = 2𝐹𝑛𝑛1𝐶𝑦𝑝  

Divide both sides by −2𝐹𝑛𝑛1𝐶𝑝
2 

−2(1 − 𝜆) 𝐹𝑛𝑛1𝐶𝑝
2

−2𝐹𝑛𝑛1𝐶𝑝
2

=
2𝐹𝑛𝑛1𝐶𝑦𝑝

−2𝐹𝑛𝑛1𝐶𝑝
2
 

(1 − 𝜆)= −
𝐶𝑦𝑝

 𝐶𝑝
2      (48) 

 

The optimum value of the characterized scalar [9] is  

 

 𝜆 = 1 +
𝐶𝑦𝑝

 𝐶𝑝
2  = 

𝐶𝑝
2+𝐶𝑦𝑝

 𝐶𝑝
2          (49)  

 

 

Substitute for optimum lambda 𝜆optin equation (32), where  

𝐹𝑛𝑛1 = (
1

𝑛
−

1

𝑛1), Fn =  (
1

𝑛
−

1

𝑁
) 

 

Bias(Y̅adp) = Y̅(1 − 𝜆)𝐹𝑛𝑛1Cyp   (50) 

Bias(Y̅adp) = Y̅(−
𝐶𝑦𝑝

 𝐶𝑝
2 )𝐹𝑛𝑛1Cyp    (51)  

 

Simplifying equation (51)    

 

Bias(Y̅adp) = Y̅𝐹𝑛𝑛1(−
Cyp

2

𝐶𝑝
2 )     (52) 

 

Further simplification of equation (52) 

 

Bias(Y̅adp) = Y̅𝐹𝑛𝑛1(−ρyp
2 Cy

2)    (53) 

 

The minimum Bias(Y̅adP) written as Bias(Y̅adP)min is obtained 

as 

 

Bias(Y̅adp) = −Y̅𝐹𝑛𝑛1ρyp
2 Cy

2    (54) 

 

Substitute for optimum lambda 𝜆opt in equation (43) to obtain 

the minimum MSE(Y̅adP) written as MSE(Y̅adP)min 

where  𝐹𝑛𝑛1 = (
1

𝑛
−

1

𝑛1), Fn =  (
1

𝑛
−

1

𝑁
) 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝)=Y̅2[Fn𝐶𝑦
2 + (1 − 𝜆)2𝐹𝑛𝑛1𝐶𝑝

2 +  2(1 −

𝜆)𝐹𝑛𝑛1𝐶𝑦𝑝]       (55) 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = Y̅2[Fn𝐶𝑦
2 + (−

𝐶𝑦𝑝

 𝐶𝑝
2 )

2

𝐹𝑛𝑛1𝐶𝑝
2 +

 2 (−
𝐶𝑦𝑝

 𝐶𝑝
2 ) 𝐹𝑛𝑛1𝐶𝑦𝑝]     (56) 

Simplify equation (56) 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝)=Y̅2[Fn𝐶𝑦
2 +

𝐶𝑦𝑝
2

 𝐶𝑝
2 𝐹𝑛𝑛1 −  2 (

𝐶𝑦𝑝
2

 𝐶𝑝
2 ) 𝐹𝑛𝑛1]  

   (57) 

 

Further simplification of equation (57) 

 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = Y̅2[Fn𝐶𝑦
2 − (

𝐶𝑦𝑝
2

 𝐶𝑝
2 ) 𝐹𝑛𝑛1]        

  (58) 

 

The minimum MSE(Y̅adP) written as MSE(Y̅adP)min is 

obtained as 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑝) = Y̅2 𝐶𝑦
2[Fn −  ρyp

2 𝐹𝑛𝑛1]    (59)  

 

where ρyp
2 =

𝐶𝑦𝑝
2

𝐶𝑦
2 𝐶𝑝

2,    𝐶𝑦
2ρyp

2 =
𝐶𝑦𝑝

2

𝐶𝑝
2          

[9]. 

IV. EFFECTIVENESS AND EXPERIMENTAL 

EVALUATION 
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We used the following two populations to determine the 

effectiveness of the proposed Product estimator with various 

current population mean estimators in two-stage sampling. 

 

Population 1 [17] 

Y=Area under non-Agriculture, X= permanent Pasture, ϕ =Area 

of Barren and un-Cultivated Land greater than 2 

𝑌̅ =2.725, 𝑋̅ =3.37, P=0.75, 𝐶𝑥 =0.6751, 𝐶𝑦 =0.09456, 

𝐶𝑝=1.2405,  𝜌𝑦𝑥= -0.2246, 𝜌𝑦𝑝= -0.3305,            

𝜌𝑥𝑝= -0.1858, n=15, 𝑛1=25, N=40 

Population 2 [18] 

Y=Birth Weight, X= Placenta Weight, ϕ =Gender 

𝑌̅ =2.8828, 𝑋̅ =0.6017, P=0.5, 𝐶𝑥 =0.2893, 𝐶𝑦 =0.1935, 

𝐶𝑝=0.4989,  𝜌𝑦𝑥= 0.1866, 𝜌𝑦𝑝= -0.21501,           𝜌𝑥𝑝= -0.41696, 

n=30, 𝑛1=40, N=60 

 

Table 1: Theoretical and Empirical Conditions for Efficiency of 𝑌̅𝑎𝑑𝑃  on 
𝒀̅𝒔𝒓𝒔,     𝒀̅𝑫𝑺𝒑,      𝒀̅𝑵𝑮, 𝒀̅𝑵𝑺, 𝒀̅𝐒𝐒, and 𝒀̅𝐒𝐮𝐛 using population 1,  n=15, 𝒏𝟏=25, N=40 

 

 S/No Author Estimator Theoretical or Mathematical 
Condition 

Empirical Condition 

1 Conventional Mean  
𝑌̅𝑠𝑟𝑠  

       
            ρyp

2  ≥ 0  
            

     0.1092 > 0  

2  Conventional Two-Stage 
estimator 

     𝑌̅𝐷𝑆𝑃   
ρyp

2 ≥
−(2Cyx + 𝐶𝑥

2)

Cy
2

 
0.1092 > −47.7633  

3 Naik, Gupta (1996)       𝑌̅𝑁𝐺  
ρyp  ≥ −

Cp

Cy

 
 

−0.3305 > −25.3179 

4 Nirmala Sawan (2010)       𝑌̅𝑁𝑆            ρyp ≥ −
Cp

2Cy
    −0.3305 > −12.6589 

5 Subhash et al (2016) 𝑌̅Sub       ρyp
2 ≥

D2− 𝑔𝐶𝑥
2𝐵(𝑔−4𝑐)

4𝐵Cy
2  

 

  
0.1092 > 0.05044 

From Table 1, all the stated conditions are met.: 

Table 2: Bias, Mean Squared Error and Percentage Relative Efficiency of  𝒀̅𝒂𝒅𝑷, 𝒀̅𝒔𝒓𝒔,     𝒀̅𝑫𝑺𝑷,      𝒀̅𝑵𝑮, 𝒀̅𝑵𝑺, and 𝒀̅𝐒𝐮𝐛 for 

Population 1 where ρ < 0 

S/No Author Estimator Bias Mean Square Error 
(MSE) 

Percentage Relative 
Efficiency (PRE) 

1 Conventional Mean 𝑌̅𝑠𝑟𝑠   0.002767       100 

2 Conventional Two-Stage 
estimator 

      𝑌̅𝐷𝑆𝑃   -0.00163 0.0874      3.2 

3 Naik, Gupta (1996)         𝑌̅𝑁𝐺  -0.9358 190.722       0.25 

4 Nirmala Sawan (2010)         𝑌̅𝑁𝑆 -0.4679 46.7627       1 

5 Subhash et al (2016)  𝑌̅Sub 0.03728 0.4607       103 

6 Modified Product Estimator         𝑌̅𝑎𝑑𝑃  -7.097E-05 0.002573       108 

 

 

From Table 2: 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑃) << MSE (𝑌̅𝐷𝑆𝑃)< MSE (𝑌̅Sub)< 𝑀𝑆𝐸(𝑌̅𝑠𝑟𝑠) <𝑀𝑆𝐸(𝑌̅𝑁𝑆)  < 𝑀𝑆𝐸(𝑌̅𝑁𝐺)  

PR𝐸(𝑌̅𝑎𝑑𝑃)  > PRE (𝑌̅𝐷𝑆𝑃) > PRE (𝑌̅Sub) > 𝑃𝑅𝐸(𝑌̅𝑠𝑟𝑠) > 𝑃𝑅𝐸(𝑌̅𝑁𝑆)  > 𝑃𝑅𝐸(𝑌̅𝑁𝐺)  
𝐵𝑖𝑎𝑠(𝑌̅𝑎𝑑𝑃) <𝐵𝑖𝑎𝑠(𝑌̅𝐷𝑆𝑃) < Bias (𝑌̅Sub)<𝐵𝑖𝑎𝑠(𝑌̅𝑁𝑆)  < 𝐵𝑖𝑎𝑠(𝑌̅𝑁𝐺)  
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Table 3: Theoretical and Empirical Conditions for Efficiency of 𝒀̅𝒂𝒅𝑷 on 𝒀̅𝒔𝒓𝒔,      𝒀̅𝑫𝑺𝑹,      𝒀̅𝑵𝑮, 𝒀̅𝑵𝑺, and 𝒀̅𝐒𝐮𝐛 using 

population 2, n=30, 𝒏𝟏=40, N=60 

S/No Author Estimator Theoretical or Mathematical 

Condition 

Empirical Condition 

1 Conventional Mean 𝑌̅𝑠𝑟𝑠              ρyp
2  ≥ 0              0.04623 > 0  

2  Conventional Two-Stage 
estimator 

     𝑌̅𝐷𝑆𝑃   
ρyp

2 ≥
−(2Cyx +  𝐶𝑥

2)

Cy
2

 
0.0462 > −2.7930  

3 Naik, Gupta (1996)       𝑌̅𝑁𝐺  
ρyp  ≥ −

Cp

Cy

 
 

−0.21501 > −2.5783 

4 Nirmala Sawan (2010)       𝑌̅𝑁𝑆            ρyp ≥ −
Cp

2Cy
    −0.21501 > −1.2891 

5 Subhash et al (2016)       𝑌̅𝑆𝑢𝑏       ρyp
2 ≥

D2− 𝑔𝐶𝑥
2𝐵(𝑔−4𝑐)

4𝐵Cy
2   0.04623 > 0.034697 

 

 

From Table 3, all the stated conditions are met.  

 

Table 4: Bias, Mean Squared Error and Percentage Relative Efficiency of 𝒀̅𝒂𝒅𝑷, 𝒀̅𝒔𝒓𝒔,     𝒀̅𝑫𝑺𝑹,      𝒀̅𝑵𝑮, 𝒀̅𝑵𝑺, and 𝒀̅𝐒𝐮𝐛 for 

Population 2 where ρ < 0 

 

S/No Author Estimator Bias Mean Square Error (MSE) Percentage Relative 
Efficiency (PRE) 

1 Conventional Mean 𝑌̅𝑠𝑟𝑠  0.005184       100 

2  Conventional Two-
Stage estimator 

      𝑌̅𝐷𝑆𝑃   0.0005026 0.01241       42 

3 Naik, Gupta (1996)       𝑌̅𝑁𝐺  -0.0004983 0.01954       27 

4 Nirmala Sawan 
(2010) 

         𝑌̅𝑁𝑆 -0.00024922 0.008055       64 

5  Subhash et al (2016)           𝑌̅𝑆𝑢𝑏 -0.002102 0.007263       71 

6 Modified Product 
Estimator  

          𝑌̅𝑎𝑑𝑃 -0.00004154 0.005064       102 

From Table 4, 

𝑀𝑆𝐸(𝑌̅𝑎𝑑𝑃) < 𝑀𝑆𝐸(𝑌̅𝑠𝑟𝑠)  < MSE (𝑌̅𝑆𝑢𝑏) <𝑀𝑆𝐸(𝑌̅𝑁𝑆)  < 𝑀𝑆𝐸(𝑌̅𝐷𝑆𝑃) < 𝑀𝑆𝐸(𝑌̅𝑁𝐺)  

PR𝐸(𝑌̅𝑎𝑑𝑃) > 𝑃𝑅𝐸(𝑌̅𝑠𝑟𝑠) > PRE (𝑌̅𝑆𝑢𝑏) > 𝑃𝑅𝐸(𝑌̅𝑁𝑆) > 𝑃𝑅𝐸(𝑌̅𝐷𝑆𝑃)  > 𝑃𝑅𝐸(𝑌̅𝑁𝐺)  

𝐵𝑖𝑎𝑠(𝑌̅𝑎𝑑𝑃)  <𝐵𝑖𝑎𝑠(𝑌̅𝑁𝑆)  < 𝐵𝑖𝑎𝑠(𝑌̅𝑁𝐺) <𝐵𝑖𝑎𝑠(𝑌̅𝐷𝑆𝑃)  < Bias (𝑌̅𝑆𝑢𝑏) 

 

 

 

V. CONCLUSION  

 

In conclusion, the use of auxiliary attributes in a suggested 

product estimator in double sampling proves to be a superior 

approach, outperforming existing estimators [19], [20]. This 

innovative method not only enhances precision but also 

demonstrates a clear advantage in accuracy, making it a 

valuable and efficient tool for product estimation. The 

combination of double sampling and auxiliary attributes 

stands as a robust solution, paving the way for more reliable 

and advanced estimations in comparison to conventional 

methods. 
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