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Abstract

In the era of computational advancements, harnessing computer algorithms for approximat-

ing solutions to differential equations has become indispensable for its unparalleled produc-

tivity. The numerical approximation of partial differential equation (PDE) models holds

crucial significance in modelling physical systems, driving the necessity for robust methodol-

ogies. In this article, we introduce the Implicit Six-Point Block Scheme (ISBS), employing a

collocation approach for second-order numerical approximations of ordinary differential

equations (ODEs) derived from one or two-dimensional physical systems. The methodology

involves transforming the governing PDEs into a fully-fledged system of algebraic ordinary

differential equations by employing ISBS to replace spatial derivatives while utilizing a cen-

tral difference scheme for temporal or y-derivatives. In this report, the convergence proper-

ties of ISBS, aligning with the principles of multi-step methods, are rigorously analyzed. The

numerical results obtained through ISBS demonstrate excellent agreement with theoretical

solutions. Additionally, we compute absolute errors across various problem instances,

showcasing the robustness and efficacy of ISBS in practical applications. Furthermore, we

present a comprehensive comparative analysis with existing methodologies from recent lit-

erature, highlighting the superior performance of ISBS. Our findings are substantiated

through illustrative tables and figures, underscoring the transformative potential of ISBS in

advancing the numerical approximation of two-dimensional PDEs in physical systems.

1. Background information

Partial Differential Equations (PDEs) are a useful tool for the mathematical expression of

many natural phenomena and are useful in the solution of physical and other issues requiring
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functions of several variables. The transmission of heat/sound, fluid movement, turbulent

flow, heat transfer analysis, elasticity, electrostatics, and electrodynamics are a few examples of

these issues; see Ahsan et al. [1], Wang and Guo [2], Arif et al. [3, 4], Adoghe et al. [5], Nawaz

et al. [6], Animasaun et al. [7], Devnath et al. [8], Ahsan et al. [9], Wang et al. [10], Rufai et al.
[11], Nawaz and Arif [12], Ramakrishna et al. [13], El Misilmani et al. [14]). According to

Quarteroni and Valli [15], numerical approximation techniques for partial differential equa-

tions (PDEs) constitute a cornerstone in diverse scientific and engineering disciplines. In

agreement with Le Dret and Lucquin [16], PDEs are fundamental tools for describing the intri-

cate behaviour of physical systems and phenomena. However, deriving analytical solutions for

many PDEs poses significant challenges, often rendering such endeavours impractical or

unfeasible. In this context, numerical methods emerge as indispensable tools, offering prag-

matic and efficient avenues to approximate solutions of a well-known second-order PDEs aris-

ing from physical system with a rectangular domain Γ = {(x, y):(x, y) 2 [a, b] × [c, d]} given by

Eq (1) below. Eq (1) embodies a versatile framework applicable across diverse fields within

contemporary society. Its utility extends to the design and optimization of a wide array of sys-

tems, spanning from aerospace engineering (including aircraft and submarines) to biological

and chemical processes. Additionally, these equations find application in mathematical models

encompassing viscoelastic flows, various dynamic systems, medical imaging technologies, and

the development of pharmaceuticals; see Bergounioux et al. [17]. The study of numerical solu-

tions for Partial Differential Equations (PDEs) has yielded crucial insights across diverse fields

such as photo-acoustic tomography, gas dynamics, aerodynamic shape optimization, and flow

control design. Gunzburger [18] and Bredies et al. [19] underscored the significance of

approximate PDE solutions. In the realms of physical sciences, applied mathematics, engineer-

ing, and economics, inherent physical constraints often necessitate the utilization of PDEs for

modelling. Neittaanmaki and Tiba [20] discuss controlling difficulties, mainly when specific

parameters, conditions, or constraints govern these PDEs throughout the computation. Given

the nonlinear nature of the majority of these governing equations, as highlighted by Leugering

et al. [21] and Aubert and Kornprobst [22], obtaining analytical solutions via theoretical meth-

ods proves exceedingly challenging.

a x; yð Þ
@

2u
@x2
þ b x; yð Þ

@
2u
@y2
þ p x; yð Þ

@u
@x
þ r x; yð Þ

@u
@y
þ k x; yð Þu ¼ g x; yð Þ: ð1Þ

Building upon the insights of Debnath [23], the practicality of using computers to generate

approximate solutions becomes evident, rendering it desirable and imperative to explore con-

trol and optimization techniques for various PDE models. Among them is time-dependent

(PDE)-driven optimal control problems which have recently garnered significant attention

within the scientific computing community due to their numerical complexities. Numerous

methods have emerged in literature aimed at approximating the solutions to problems

described by Eq (1) under various conditions. For instance, Liu et al. [24] introduced a novel

hybrid approach combining Haar wavelets and finite differences to tackle the hyperbolic

Schrodinger Equation incorporating a nonlinear function, energy, and mass conversion terms.

Their study included a rigorous convergence analysis of the hybrid method, supported by illus-

trative curves facilitating clear comprehension and interpretation of the results. In another

study, Raslan et al. [25] devised an extended version of cubic B-splines in n-dimensional space

specifically tailored for the numerical treatment of PDEs, with notable applications. The results

of the study demonstrated a commendable level of efficiency and accuracy, particularly evident

in terms of convergence characteristics. Mirzaee et al. [26] showcased the versatility of mesh-

free and finite difference methods in tackling the stochastic time-fractional sine-Gordon
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equation within two-dimensional space, particularly on non-rectangular domains. Meanwhile,

Lakestani and Dehghan [27] presented a meticulous numerical solution to the Nonlinear

Klein-Gordon Equation, employing a blend of collocation and finite difference-collocation

techniques. In a distinct avenue, Shiralashetti et al. [28] delved into the realm of PDE applica-

tion problems, specifically focusing on elasto-hydrodynamic lubrication issues, and explored

the efficacy of biorthogonal wavelet-based full-approximation techniques. Moreover, the dis-

cussion by Juraev and Gasimov [29] delved into the intricacies of the Cauchy issue associated

with matrix factorizations of the Helmholtz equation, shedding light on regularization tech-

niques within multidimensional bounded domains.

Predictor-corrector methods are numerical techniques used for solving boundary value

problems (BVPs) of ordinary differential equations (ODEs). As presented by Butcher and

Wanner [30] an initial approximation to the solution is made using a simple numerical

method like Euler’s method or the Runge-Kutta method and such approximation is referred to

as the “predictor.” Sequel to Gragg, W. B., & Stetter [31], the predictor step provides an initial

estimate of the solution. In the correction step, this estimate is refined using a more accurate

numerical method, typically a higher-order method like the Adams-Bashforth or Adams-

Moulton methods and such a refined estimate is called the “corrector.” Based on Garrido et al.
[32], worth remarking that the predictor and corrector steps are often applied iteratively until

the solution converges to the desired accuracy or until a specified stopping criterion is met.

Following Diamantakis et al. [33], since predictor-corrector methods are used for boundary

value problems, the boundary conditions are incorporated into the iterative process to ensure

that the solution satisfies the given boundary conditions. Worth concluding that the conver-

gence and stability of predictor-corrector methods depend on factors such as the choice of pre-

dictor and corrector methods, step size, and properties of the differential equation being

solved. Similarly, many authors have explored employing predictor-corrector methodologies

for the numerical resolution of boundary value problems or differential equations encompass-

ing initial conditions. For instance, Su and Zhou [34], Shokri and Saadat [35], and Awoyemi

[36] have contributed to this discourse. Sunday et al. [37] subsequently pioneered a suite of

off-step models facilitated by a self-starting technique, leveraging these models to tackle many

consequential application equations, such as the Kepler Problem. Ramos and Vigo-Aguiar [38]

have also conducted seminal research on BDF-style equations tailored for integrating a class of

stiff problems, employing the L-stable technique of lines. Ngwane and Jator [39] employed the

sophisticated trigonometrically fitted block technique to tackle a complex oscillating system of

equations, exhibiting both Hamiltonian dynamics and second-order initial conditions. Mode-

bei et al. [40] proposed a novel numerical approach for simulating fourth-order differential

equations involving partial derivatives, leveraging uniform-order block formulae outlined in

their reference. Jator [41] delved into research on block algorithms to provide precise and effi-

cient solutions for sine-Gordon partial differential equations (PDEs) with varying parameters.

Olaiya et al. [42] scrutinized the numerical models utilized in resolving the solutions for the

Black-Scholes differential equation. Additionally, Familua et al. [43] conducted an in-depth

examination of advanced self-starting algorithms tailored for numerically simulating differen-

tial equations featuring second derivatives, offering diverse practical applications.

As demonstrated by Farkas and Deconinck [44], Animasaun et al. [45], the numerical solu-

tion of the Heat Equation provide invaluable insights into the behaviour of heat transfer phe-

nomena in various physical systems, guiding the design of efficient thermal management

solutions crucial for industries ranging from electronics to aerospace engineering. Worth trac-

ing to Ullah et al. [46] and Salahudin et al. [47] that understanding the numerical solution of

the Wave Equation illuminates the propagation of waves in diverse mediums, offering indis-

pensable tools for predicting seismic activity, designing telecommunications networks, and
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optimizing acoustic environments in architectural and industrial settings. As presented by

Rehman et al. [48] and Khan et al. [49], the numerical solution of the Schrodinger Equation

underpins quantum mechanical simulations, empowering scientists to unravel the intricate

behaviour of fundamental particles and molecules, with applications spanning from drug dis-

covery to the development of quantum computing algorithms. The computational exploration

of the Navier-Stokes Equations was shown by Johnson [50], Fisher et al. [51], and Jameson

et al. [52] that its solution is capable of unlocking the complexities of fluid dynamics, enabling

advancements in areas crucial to human civilization, such as weather forecasting, aerodynam-

ics, and the optimization of industrial processes, from energy production to transportation sys-

tems. This report unveils the findings of an intensive research endeavour aimed at unleashing

the potential of implicit six-point block schemes in revolutionizing the numerical approxima-

tion of two-dimensional Partial Differential Equations (PDEs) within physical systems. These

block solvers not only retain the inherent self-starting nature of algorithms but also exhibit

rapid convergence rates and a unique ability to provide accurate approximations across vari-

ous stages of computation. Non-linear partial differential equations are omnipresent in science

and engineering, with notable examples including the Helmholtz and convection-diffusion

equations. Despite the pivotal role implicit block methods play in tackling these equations, a

conspicuous need for more attention is directed towards developing efficient numerical tech-

niques grounded in these methods for solving (1). A profound understanding of their intricate

dynamics is imperative to engineer mathematical methodologies that seamlessly amalgamate

precision with efficiency. Hence, we propose the introduction of a seventh-order Implicit Six-

point Block Scheme (ISBS). Employing the ISBS holds the promise of delivering more accurate

solutions with accelerated convergence rates for these equations. Remarkably, the methodol-

ogy being developed in this study boasts significant computational prowess and exhibits a

wide array of applications, surpassing existing methods delineated in the literature.

2. Development of the Implicit Six-Point Block Scheme (ISBS)

Hermite polynomials are orthogonal with respect to the weight function e� x2

on the interval

(−1,1). According to Thakare et al. [53], Adeyefa et al. [54], and recently by Dattoli and Lic-

ciardi [55], it is worth remarking that this orthogonality property simplifies many computa-

tions, especially when dealing with integrals or solving differential equations. Hermite

polynomials, which belong to the class of orthogonal polynomials, are defined using recur-

rence formulas on the interval (−1,1) as

tnþ1ðxÞ ¼ xtnðxÞ � t0nðxÞ ð2Þ

In relation to the weight function e� x2

, the polynomials are orthonormal. According to Sal-

zer et al. [56], the first four Orthogonal Hermite polynomias are,

t0ðxÞ ¼ 1; t1ðxÞ ¼ x; t2ðxÞ ¼ x2 � 1; t3ðxÞ ¼ x3 � 3x ð3Þ

2.1 Development of the method

Consider the partial sum of the Hermite approximation defined as

UðxÞ ¼
Xmþn� 1

r¼0

zrtrðxÞ; ð4Þ
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Differentiating Eq (4) twice to obtain

U 00ðxÞ ¼
Xmþn� 1

r¼0

zrt
00

r ðxÞ; r 2 ð0; 6Þ ð5Þ

Next is to input m = 6, n = 2, and k, where k is the step number. As a result, m is the number

of selected collocation points, and n is the number of individual interpolation points required

to suit the order of the partial differential equation in (1). Eqs (4) and (5) thus decrease to,

UðxÞ ¼
X8

r¼0

zrtrðxÞ; ð6Þ

Similarly, differentiating (6) twice gives;

U 00ðxÞ ¼
X8

r¼0

zrt
00

r ðxÞ; ð7Þ

Right now After collocating the differential system (7) at xn+w, w = 0(1)6 and interpolating

the approximate solution (6) at xn+w, w = 0(1), seven equations are produced. The following is

an expression for these equations as a matrix system of equations,

YJ ¼ Z; ð8Þ

assume,

Y ¼

t0ðxnÞ t1ðxnÞ t2ðxnÞ t3ðxnÞ � � � tkþ2ðxnÞ
t0ðxnþ1Þ t1ðxnþ1Þ t2ðxnþ1Þ t0ðxnþ1Þ � � � tkþ2ðxnþ1Þ

t00
0
ðxnÞ t00

1
ðxnÞ t00

2
ðxnÞ t00

3
ðxnÞ � � � t00kþ2

ðxnÞ
t00

0
ðxnþ1Þ t00

1
ðxnþ1Þ t00

2
ðxnþ1Þ t00

3
ðxnþ1Þ � � � t00kþ2

ðxnþ1Þ

..

. ..
. ..

. ..
.

� � � ..
.

..

. ..
. ..

. ..
.

� � � ..
.

t00
0
ðxnþkÞ t00

1
ðxnþkÞ t00

2
ðxnþkÞ t00

3
ðxnþkÞ � � � t00kþ2

ðxnþkÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

J ¼ z0; z1; z2; z3; � � � ; z8 �
T
; Z ¼ um;n; umþ1;n; Zm;n; Zmþ1;n; � � � ; Zmþ6;n �

T��

By applying the matrix inverse approach to solve the matrix Eq (8) for the unknown coeffi-

cients of zi, i = 0(1)8, where J = Θ−1Z, or with the use of computer-aided tools like Mathema-

tica 11.0. The obtained values are then used to replace (6) and set x = ϕh+xn+5 in order to get

the form’s continuous function;

umþj;nð�Þ ¼ C0um;n þC1umþ1;n þ h2
X6

j¼0

Djð�ÞZmþj;n; j ¼ 0ð1Þ6 ð9Þ
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the matrix-formatted coefficients of the continuous function (9) are shown below.

C0

C1

" #

¼
� 1 � 4

1 5

" #
�

0

�
1

2

4

3

5 ð10Þ

D0

D1

D2

D3

D4

D5

D6

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1669

6048

2867

40320
�

1

180
�

13

4320

1

960

1

864

1

3360

1

40320

3875

1008

3875

4032

1

24

31

1440
�

1

120
�

1

120
�

1

504
�

1

6720

5069

2016

38401

40320
�

5

36
�

19

288

29

960

37

1440

11

2016

1

2688

3751

1512

1399

1440

5

18

47

432

� 1

15
�

23

540
�

1

126
�

1

2016

1457

2016

46453

40320
�

5

12
�

17

288

83

960

19

480

13

2016

1

2688

179

1008

8191

20160

77

360
�

49

1440
�

7

120
�

7

360
�

1

360
�

1

6720

�
95

6048
�

13

896

1

36

137

4320

1

64

17

4320

1

2016

1

40320

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�
0

�
1

�
3

�
4

�
5

�
6

�
7

�
8

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð11Þ

Evaluating (9) at ϕ = −3, −2, −1, 0, and 1 yields the following discrete schemes, which are

constructed as the main discrete scheme.

umþ2;n ¼ 2 umþ1;n � um;n þ
863

12096
h2Zm;n þ

8999

10080
h2Zmþ1;n �

769

20160
h2Zmþ2;n þ

1987

15120
h2Zmþ3;n

�
1609

20160
h2Zmþ4;n þ

263

10080
h2Zmþ5;n �

221

60480
h2Zmþ6;n

ð12Þ

umþ3;n ¼ 3 umþ1;n � 2 um;n þ
2803

20160
h2Zm;n þ

1265

672
h2Zmþ1;n þ

1657

2240
h2Zmþ2;n þ

1777

5040
h2Zmþ3;n

�
1049

6720
h2Zmþ4;n þ

11

224
h2Zmþ5;n �

137

20160
h2Zmþ6;n

ð13Þ

umþ4;n ¼ 4 umþ1;n � 3 um;n þ
2089

10080
h2Zm;n þ

4813

1680
h2Zmþ1;n þ

5461

3360
h2Zmþ2;n þ

3457

2520
h2Zmþ3;n

�
419

3360
h2Zmþ4;n þ

109

1680
h2Zmþ5;n �

19

2016
h2Zmþ6;n

ð14Þ

umþ5;n ¼ þ5 umþ1;n � 4 um;n þ
1669

6048
h2Zm;n þ

3875

1008
h2Zmþ1;n þ

5069

2016
h2Zmþ2;n þ

3751

1512
h2Zmþ3;n

þ
1457

2016
h2Zmþ4;n þ

179

1008
h2Zmþ5;n �

95

6048
h2Zmþ6;n

ð15Þ

umþ6;n ¼ 6 umþ1;n � 5 um;n þ
1375

4032
h2Zm;n þ

3259

672
h2Zmþ1;n þ

1489

448
h2Zmþ2;n þ

3751

1008
h2Zmþ3;n

þ
2059

1344
h2Zmþ4;n þ

265

224
h2Zmþ5;n þ

199

4032
h2Zmþ6;n

ð16Þ
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Below is the first derivative of (9),

u0mþj;nðtÞ ¼ C
0

0
um;n þC

0

1
umþ1;n þ h2

X6

j¼0

D
0

jð�ÞZmþj;n; j ¼ 0ð1Þ6 ð17Þ

The function (17) has coefficients that are the first derivative of (10) and (11), which are as

follows,

C
0

0

C
0

1

" #

¼
� 1

1

" #

�
1

� �
ð18Þ

D
0

0

D
0

1

D
0

2

D
0

3

D
0

4

D
0

5

D
0

6

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

2867

40320
�

1

60
�

13

1080

1

192

1

144

1

480

1

5040

3875

4032

1

8

31

360
�

1

24
�

1

20
�

1

72
�

1

840

38401

40320
�

5

12
�

19

72

29

192

37

240

11

288

1

336

1399

1440

5

6

47

108
�

1

3
�

23

90
�

1

18
�

1

252

46453

40320
�

5

4
�

17

72

83

192

19

80

13

288

1

336

8191

20160

77

120
�

49

360
�

7

24
�

7

60
�

7

360
�

1

840

�
13

896

1

12

137

1080

5

64

17

720

1

288

1

5040

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�
0

�
2

�
3

�
4

�
5

�
6

�
7

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð19Þ

By evaluating (17) at the locations ϕ = −5, −4, −3, −2, −1, 0, and 1, the additional discrete

scheme is produced. The first derivative discrete schemes that result are as follows,

u0m;n ¼ �
1

120960h
ð28549 h2Zm;n þ 57750 h2Zmþ1;n � 51453 h2Zmþ2;n þ 42484h2Zmþ3;n

� 23109h2Zmþ4;n þ 7254 h2Zmþ5;n � 995 h2Zmþ6;n þ 120960 um;n � 120960 umþ1;nÞ

ð20Þ

u0mþ1;n ¼
1

120960h
ð9625 h2Zm;n þ 72474 h2Zmþ1;n � 41469 h2Zmþ2;n þ 32524 h2Zmþ3;n

� 17313h2Zmþ4;n þ 5370 h2Zmþ5;n � 731 h2Zmþ6;n � 120960 um;n þ 120960 umþ1;nÞ

ð21Þ

u0mþ2;n ¼
1

40320h
ð2633 h2Zm;n þ 40910 h2Zmþ1;n þ 17503 h2Zmþ2;n þ 4 h2Zmþ3;n � 905 h2Zmþ4;n

þ398 h2Zmþ5;n � 63 h2Zmþ6;n � 40320 um;n þ 40320umþ1;nÞ

ð22Þ

u0mþ3;n ¼
1

120960h
ð8441 h2Zm;n þ 117210 h2Zmþ1;n þ 114147 h2Zmþ2;n þ 75020h2Zmþ3;n

� 16257h2Zmþ4;n þ 4410 h2Zmþ5;n � 571 h2Zmþ6;n � 120960 um;n þ 120960 umþ1;nÞ

ð23Þ

u0mþ4;n ¼
1

120960h
ð8059 h2Zm;n þ 120426 h2Zmþ1;n þ 100605 h2Zmþ2;n þ 150028 h2Zmþ3;n

þ45381 h2Zmþ4;n � 1110 h2Zmþ5;n � 29 h2Zmþ6;n � 120960 um;n þ 120960 umþ1;nÞ

ð24Þ
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u0mþ5;n ¼
1

40320h
ð2867 h2Zm;n þ 38750 h2Zmþ1;n þ 38401 h2Zmþ2;n þ 39172 h2Zmþ3;n

þ46453 h2Zmþ4;n þ 16382h2Zmþ5;n � 585 h2Zmþ6;n � 40320 um;n þ 40320umþ1;nÞ

ð25Þ

u0mþ6;n ¼
1

120960h
ð6875 h2Zm;n þ 128874 h2Zmþ1;n þ 74781 h2Zmþ2;n þ 192524 h2Zmþ3;n

þ46437 h2Zmþ4;n þ 179370 h2Zmþ5;n þ 36419h2Zmþ6;n � 120960 um;n þ 120960 umþ1;nÞ

ð26Þ

2.2 Formulation of Implicit Six-point Block Scheme (ISBS)

By joining the discrete schemes (12)–(16) and derivative (20) at xm,n formed matrix equation

below,

EUm ¼ Fl0 þ Gl1 þ h2½Hl2 þ Il3� ð27Þ

E ¼

� 120960 60480 0 0 0 0

� 60480 0 20160 0 0 0

� 40320 0 0 10080 0 0

� 30240 0 0 0 6048 0

� 24192 0 0 0 0 4032

� 120960 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

;Um ¼

umþ1;n

umþ2;n

umþ3;n

umþ4;n

umþ5;n

umþ6;n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

F ¼

0 0 0 0 0 � 60480

0 0 0 0 0 � 40320

0 0 0 0 0 � 30240

0 0 0 0 0 � 24192

0 0 0 0 0 � 20160

0 0 0 0 0 � 120960

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; l0 ¼

um� 1;n

um� 2;n

um� 3;n

um� 4;n

um� 5;n

um;n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

G ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 � 120960

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; l1 ¼

u0m� 1;n

u0m� 2;n

u0m� 3;n

u0m� 4;n

u0m� 5;n

u0m;n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

H ¼

0 0 0 0 0 4315

0 0 0 0 0 2803

0 0 0 0 0 2089

0 0 0 0 0 1669

0 0 0 0 0 1375

0 0 0 0 0 � 28549

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; l2 ¼

Zm� 1;n

Zm� 2;n

Zm� 3;n

Zm� 4;n

Zm� 5;n

Zm;n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5
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I ¼

53994 � 2307 7948 � 4827 1578 � 221

37950 14913 7108 � 3147 990 � 137

28878 16383 13828 � 1257 654 � 95

23250 15207 15004 4371 1074 � 95

19554 13401 15004 6177 4770 199

� 57750 51453 � 42484 23109 � 7254 995

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; l3 ¼

Zmþ1;n

Zmþ2;n

Zmþ3;n

Zmþ4;n

Zmþ5;n

Zmþ6;n

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The product of the matrix Eq (27) with the inverse E gives the Implicit Six-point Block

Scheme of the form

Um ¼
�Fl0 þ

�Gl1 þ h2½ �Hl2 þ
�Il3� ð28Þ

Um ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; �F ¼

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�G ¼

0 0 0 0 0 1

0 0 0 0 0 2

0 0 0 0 0 3

0 0 0 0 0 4

0 0 0 0 0 5

0 0 0 0 0 6

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�H ¼

0 0 0 0 0
28549

120960

0 0 0 0 0
1027

1890

0 0 0 0 0
759

896

0 0 0 0 0
1088

945

0 0 0 0 0
35225

24192

0 0 0 0 0
123

70

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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�I ¼

275

576
�

5717

13440

10621

30240
�

7703

40320

403

6720
�

199

24192

194

105
�

8

9

788

945
�

97

210

46

315
�

19

945

1485

448
�

2403

4480

45

32
�

3267

4480

513

2240
�

141

4480

1504

315
�

8

105

2624

945
�

8

9

32

105
�

8

189

8375

1344

3125

8064

25625

6048
�

625

2688

275

576
�

1375

24192

54

7

27

35

204

35

27

70

54

35
0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Writing out the matrix Eq (28) in a simple form as follows

umþ1;n ¼ um;n þ u0m;nhþ
28549

120960
h2Zm;n þ

275

576
h2Zmþ1;n �

5717

13440
h2Zmþ2;n þ

10621

30240
h2Zmþ3;n

�
7703

40320
h2Zmþ4;n þ

403

6720
h2Zmþ5;n �

199

24192
h2Zmþ6;n

ð29Þ

umþ2;n ¼ um;n þ 2hu0m;n þ
1027

1890
h2Zm;n þ

194

105
h2Zmþ1;n �

8

9
h2Zmþ2;n þ

788

945
h2Zmþ3;n

�
97

210
h2Zmþ4;n þ

46

315
h2Zmþ5;n �

19

945
h2Zmþ6;n

ð30Þ

umþ3;n ¼ um;n þ 3hu0m;n þ
759

896
h2Zm;n þ

1485

448
h2Zmþ1;n �

2403

4480
h2Zmþ2;n þ

45

32
h2Zmþ3;n

�
3267

4480
h2Zmþ4;n þ

513

2240
h2Zmþ5;n �

141

4480
h2Zmþ6;n

ð31Þ

umþ4;n ¼ um;n þ 4hu0m;n þ
1088

945
h2Zm;n þ

1504

315
h2Zmþ1;n �

8

105
h2Zmþ2;n þ

2624

945
h2Zmþ3;n

�
8

9
h2Zmþ4;n þ

32

105
h2Zmþ5;n �

8

189
h2Zmþ6;n

ð32Þ

umþ5;n ¼ um;n þ 5hu0m;n þ
35225

24192
h2Zm;n þ

8375

1344
h2Zmþ1;n þ

3125

8064
h2Zmþ2;n þ

25625

6048
h2Zmþ3;n

�
625

2688
h2Zmþ4;n þ

275

576
h2Zmþ5;n �

1375

24192
h2Zmþ6;n

ð33Þ

umþ6;n ¼ um;n þ 6hu0m;n þ
123

70
h2Zm;n þ

54

7
h2Zmþ1;n þ

27

35
h2Zmþ2;n þ

204

35
h2Zmþ3;n

þ
27

70
h2Zmþ4;n þ

54

35
h2Zmþ5;n

ð34Þ

To determine the first derivatives of Implicit Six-point block solver, the values of um+1,n, um
+2,n, um+3,n, um+4,n, um+5,n, and um+6,n in (29)−(34) are substituted into (21)–(26) which
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produces;

u0mþ1;n ¼ u0m;n þ
19087

60480
hZm;n þ

2713

2520
hZmþ1;n �

15487

20160
hZmþ2;n þ

586

945
hZmþ3;n �

6737

20160
hZmþ4;n

þ
263

2520
hZmþ5;n �

863

60480
hZmþ6;n

ð35Þ

u0mþ2;n ¼ u0m;n þ
1139

3780
hZm;n þ

94

63
hZmþ1;n þ

11

1260
hZmþ2;n þ

332

945
hZmþ3;n �

269

1260
hZmþ4;n

þ
22

315
hZmþ5;n �

37

3780
hZmþ6;n

ð36Þ

u0mþ3;n ¼ u0m;n þ
137

448
hZm;n þ

81

56
hZmþ1;n þ

1161

2240
hZmþ2;n þ

34

35
hZmþ3;n �

729

2240
hZmþ4;n

þ
27

280
hZmþ5;n �

29

2240
hZmþ6;n

ð37Þ

u0mþ4;n ¼ u0m;n þ
286

945
hZm;n þ

464

315
hZmþ1;n þ

128

315
hZmþ2;n þ

1504

945
hZmþ3;n þ

58

315
hZmþ4;n

þ
16

315
hZmþ5;n �

8

945
hZmþ6;n

ð38Þ

u0mþ5;n ¼ u0m;n þ
3715

12096
hZm;n þ

725

504
hZmþ1;n þ

2125

4032
hZmþ2;n þ

250

189
hZmþ3;n þ

3875

4032
hZmþ4;n

þ
235

504
hZmþ5;n �

275

12096
hZmþ6;n

ð39Þ

u0mþ6;n ¼ u0m;n þ
41

140
hZm;n þ

54

35
hZmþ1;n þ

27

140
hZmþ2;n þ

68

35
hZmþ3;n þ

27

140
hZmþ4;n

þ
54

35
hZmþ5;n þ

41

140
hZmþ6;n

ð40Þ

Remark 1: The Eqs (29)–(34) and (35)–(40) are the acquired Implicit Six-point Block

Scheme (ISBS) required for approximating (1) directly without starting values or separate

development of predictors.

Remark 2: There must be a non-singular square matrix Θ in Eq (9). If not, there wouldn’t

be a solution.

Remark 3: As the analysis section demonstrates, the Eqs (29)–(34) and (35)–(40) that make

up the ISBS have a consistent order of accuracy.

Remark 4: The continuous scheme (10) which has a coefficients in matrix form in (10) and

(11) must be a continuous function, differentiable, and the limit must exist.

Remark 5: For a matrix Eq (9) to be valid, the number of parameters of the equations to be

solved must coincide with the number of unknown.

3. The analysis of the ISBS

Next stage is to presents the preliminary of ISBS’s theoretical analysis, Convergence Analysis,

Absolute Stability Region, and some useful definitions.
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3.1 Preliminary of ISBS’s theoretical analysis

According to the established theorem by in Familua et al. and Jain et al. in references [43] and

[57]), this subsection analyzed the order of accuracy, constants of errors, zero-stability, and

finally the consistency of the ISBS. The linear operator listed below can be used to represent

the Scheme (28) and its related variants.

L½uðxÞ; h� ¼ Um �
�Fl0 þ

�Gl1 þ h2½ �Hl2 þ
�Il3�; ð41Þ

Um;
�Fl0;

�Gl1;
�Hl2, and �Il3 have the above-mentioned typical meanings, and u(m) is continu-

ously differentiable. Determining the similar terms in powers of h and u, and expanding Um,

λ2, and λ3 in (41), correspondingly, in Taylor series concerning xn, provides,

L½uðxÞ; h� ¼ �C0uðxÞ þ �C1hu0ðxÞ þ �C2h2u00ðxÞ þ :::þ �CshsuðsÞðxÞ ð42Þ

where �Cs; s ¼ 1; 2; :::

Definition 3.1.1 (Order) (Familua et al. [43])

The ISBS (29) and its linear operators are assigned an order p if

�C0 ¼
�C1 ¼ ::: ¼

�Cp ¼ 0; �Cpþ2 6¼ 0.

Definition 3.1.2 (Local Truncation Error) (Jain et al. [58])

In Definition 3.1.1, the word �Cpþ2 denotes the error constants that represent the local trun-

cation error (18), as

L:T:E: ¼ �Cpþ2hpþ2uðpþ2ÞðxnÞ þ Ohðpþ3Þ ð43Þ

Definition 3.1.3 (consistency) (Ken et al. [59])

A consistency is defined as any LMM class where the order is larger than or equal to one.

Definition 3.1.4 (zero-stability) (Bruce [60])

A class of LMM is considered zero-stable if the roots of the differential equations under

study do not exceed the order of the differential equations under consideration.

Definition 3.1.5 (convergence) (Lambert [61])

An LMM class is considered convergent if it is consistent and zero-stable.

Definition 1.3.6 (Singular matrix) (Lambert [61])

A singular matrix is a matrix with zero determinant.

Definition 1.3.7 (Maximal order) (Jain et al. [58])

The LM technique is said to be of maximum order if its order is 2k for even k and 2k − 1 for

odd k.

Definition 1.3.8 (Non-singular matrix) (Jain et al. [58])

A non-singular matrix is one whose determinant does not equal zero.

Definition 1.3.9 (P-stability) (Ken et al. [59])

If an LMM’s periodicity interval is (0,1), it is considered P-stable.

Definition 1.3.10 (Identity matrix) (Jain et al. [58])

a matrix where all other entries are zero and the leading diagonal is one.

Definition 1.3.11 (A-stability) (Hericin [62])

If an LMM’s periodicity interval is (−1, 0), it is considered A-stable.

Definition 1.3.12 (Matrix) (Hericin [62])

A rectangular array of integers that adheres to certain combination laws is called a matrix.

Definition 1.3.13 (Inverse of Matrix) (Ken et al. [59])

The inverse of a matrix A denoted by A−1 is given as A� 1 ¼
adjðAÞ
jAj . where adjðAÞ is the ad

joint of matrix A and |A| is the determinant of the matrix.

Definition 1.3.14 (Row matrix) (John [63])
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A matrix with a single row of elements.

Definition 1.3.15 (Column matrix) (John [63])

A matrix with a single column of elements.

Definition 1.3.16 (Unit matrix) (Hericin [62])

A matrix in which all the elements on a principal diagonal are equal and all the non-diago-

nal elements are equal to zero.

Definition 1.3.17 (Null or Empty matrix) (Bruce [60])

A matrix in which all its elements has zero.

3.1.1 ISBS’s order and error parameters. The ISBS are analyzed using the procedure and

approach described in 3.1.1. Each of the (29)–(40) that made up the ISBS is looked at. Conse-

quently, the ISBS has error constants �Cpþ2 ¼ C9 and is of order p = [7, 7, 7, 7, 7, 7, 7, 7, 7, 7]T

respectively.

�C9 ¼ ð6:65� 10� 3; 1:64� 10� 2; 2:57� 10� 2; 3:50� 10� 2; 4:48� 10� 2; 5:14� 10� 2; Þ
T

ð1:14� 10� 2; 8:47� 10� 3; 1:00� 10� 2; 8:47� 10� 3; 1:14� 10� 2; 0Þ
T

3.1.2 Consistency of the ISBS. Applying definition of Consistency in (3.1.3), the ISBS

(29)–(34) together with the derivative (35)–(40). should the method’s order be larger than or

equal to one, it is considered consistent. Since the ISBS has order p = 7> 1, it is consistent

(Omole et al. al. [64]).

3.1.3 ISBS’s zero stability. Similarly, the first characteristics polynomial of the ISBS, pro-

vided by (Fatunla [65]), may be used to establish the zero-stability of the ISBS.

PðqÞ ¼ detðqUm �
�FÞ ¼ 0 ð44Þ

Thus,

PðzÞ ¼ q

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼ 0

PðqÞ ¼ q5ðq � 1Þ ¼ 0; ð45Þ

solving for the values of q in (46) to obtain q = 0, 0, 0, 0, 0, 1. Hence, worth concluding that the

ISBS is hence zero-stable.

3.1.4 ISBS’s convergence analysis. As per the definition given in Definition 3.1.5, the lin-

ear multistep method just has to exhibit consistency and zero-stability. Therefore, the ISBS’s

zero-stability and consistency indicate that it is convergent throughout, so ending the proof;

see Henrici [62].
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3.1.5 Absolute stability region of ISBS. Lastly, the method outlined in Lambert [61] and

Yakubu et al. [66] is used to analyze and discuss the stability of the ISBS.

MðzÞ ¼ zBðI � zAÞ� 1U þ V ð46Þ

Not only the stability function but also;

pðn; zÞ ¼ detð� MðzÞ þ nIÞ ð47Þ

The formulae (29)–(34) for the stability characteristics were created as,

Y

� � �

Yiþ1

2

6
6
6
4

3

7
7
7
5
¼

A U

� � � � � � � � �

B V

2

6
6
6
4

3

7
7
7
5

h2ZðuÞ

� � �

Yi� 1

2

6
6
6
4

3

7
7
7
5

ð48Þ

Yi� 1 ¼

umþ1;n

um;n

2

4

3

5;Yiþ1 ¼

umþ1;n

umþ6;n

2

4

3

5;V ¼
0 1

0 1

" #

; I ¼
1 0

0 1

" #

Consequently, n denotes the roots of the ISBS’s first characteristics polynomial; a detailed

presentation of the other parameters may be found in (Appendix B in S1 File). The parameters

of A, B, U, V, M, and I (as they appear in Appendix C in S1 File) are then substituted into Eqs

(47) and (48) to get the stability polynomial (49) and its first derivative (50). After that, the

MATLAB (R2012a) environment is used to code this. In the text following, Fig 1 illustrates the

Fig 1. ISBS’s Stability domain.

https://doi.org/10.1371/journal.pone.0301505.g001
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stability of the ISBS.

Z zð Þ ¼ φþ
2763

280
z2 þ

507

35
z � 1

� �

φ5 ð49Þ

Z0 zð Þ ¼ φþ
2763

280
z2 þ

507

35
z � 1

� �

φ5 ð50Þ

The complex plane beyond the boxed image makes up the ISBS’s absolute stability area in

Fig 1, which is P-stable since its interval falls within (0.13, 0), which is inside the defined inter-

val for P-stability as contained and established in Definition 1.3.9 (1, 0).

4. Computational procedure of PDEs originating from physcial

system using ISBS

This section presents the process by which the ISBS is being applied to physical system prob-

lems. The variable y is discretized via a slightly similar approach of (Liu et al. [24] and Ramos

& Vigorous [38]) as illustrated as follows;

xj ¼ aþ jh; j ¼ 0; 1; � � � ;M:; Dy ¼
b � a
M

yj ¼ cþ jh; ; j ¼ 0; 1; � � � ;N; h ¼
d � c
N

: ð51Þ

N is the number of sub-intervals or iterations.

Thus, it follows that j = 0, � � �, M for a fixed x in the interval [a, b], and j = 0, � � �, N for a

fixed y in the interval [c, d]. The difference operator approximates the spatial derivative and

replaces it appropriately,

@u
@y
�
uðx; yiþ1Þ � uðx; yi� 1Þ

2Dy
; ð52Þ

@
2u
@y2
�

uðx; yiþ1Þ � 2uðx; yiÞ þ uðx; yi� 1; yÞ
ðDyÞ2

" #

; ð53Þ

The numerical approximation to u(x, yi+1) is denoted by u(x, yi+1).

Consequently, (1) has assumed the semi-discretized form displayed below.

d2ui;n

dx2
¼

1

ai;n
½� bi;n

uðx; yiþ1Þ � 2uðx; yiÞ þ uðx; yi� 1; yÞ
ðDyÞ2

" #

� pi;n
dui;n
dx
�

� ri;n
uðx; yiþ1Þ � uðx; yi� 1Þ

2Dy

� �

� ki;nui;n þ gi;n�;

ð54Þ

The non-homogeneous terms are represented by g, the step-size by h, and A represents the

tridiagonal matrix generated by (54) (see to Appendix D in S1 File for details). Using Mathe-

matical 11.0, which offers features such as Findroot for nonlinear problems and Nsolve for lin-

ear ones. Next, we applied the proposed ISBS to the resultant equations of ODEs with starting

or boundary conditions Eq (54).

5. Numerical examples with ISBS application

This section presents the ISBS’s accuracy and convergence. We solved three numerical

instances of partial differentials from the literature that originate from physical systems in
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two-dimensional space. In addition to comparing the mistakes created by various approaches

that are currently in the literature, a comparison was done between the precise results and the

numerical solution generated by ISBS. The findings are tabulated to highlight the accuracy of

ISBS and its advantages over the already existing methods in the literatures. The proposed

method, ISBS, computes its absolute error and compares its results with those of other meth-

ods that have been proposed previously, such as Yang et al. [67], Adeyefa and Omole [68],

Lakestani & Dehghan [69], and Iqbal & Abass [70]. This discussion also includes the

approaches’ outcomes. The Error obtained namely; Absolute error (AEs) is given

by = Max | a − b |. It should be noted that a = u(xm, ym) is the exact solution whereas, b = um(yn
is the approximate solution at the mesh point chosen.

5.1 Example 1

Consider the two-dimensional second-order elliptic differential equation which was examined

by Yang et al. [67].

@
2u
@x2
þ
@

2u
@y2
¼ ðx2 þ y2Þexy; for 0 � x � 2; 0 � y � 1; ð55Þ

in addition to the subsequent boundary requirements,

uðx; 0Þ ¼ 1; 0 � x � 2

uðx; 1Þ ¼ ex; 0 � x � 2

uð0; yÞ ¼ 1; 0 � y � 1

uð2; yÞ ¼ e2y; 0 � x � 1

ð56Þ

The given problem (55) has an analytical solution as

uðx; yÞ ¼ exy: ð57Þ

• ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.

• LIELM—Legendre Improved Extreme Learning Machine by Yang et al. [67]

• AEs—Absolute errors.

In Table 1, columns 1, 2, and 3 illustrate, respectively, the outcomes of the theoretical solu-

tion or analytical solution, computed solution, and the absolute error for example 1 and the

Table 1. The numerical results for example 1.

N Exact solution ISBS solution AE in ISBS

2 1.03174340749910280 1.03174340748469340 1.4409 × 10−11

4 1.01257845154063440 1.01257845155039820 9.7637 × 10−12

6 1.01387335406817300 1.01387335397299160 9.5181 × 10−11

8 1.00784309720644800 1.00784309719585850 1.0590 × 10−11

10 1.00501252085940100 1.00501252085757000 1.8310 × 10−12

12 1.00691278374453700 1.00691278433307920 5.8854 × 10−10

14 1.00511528351748440 1.00511528368699920 1.6951 × 10−10

16 1.00391388933834750 1.00391388939492900 5.6582 × 10−11

18 1.00314092239219570 1.00314092241527280 2.3077 × 10−11

20 1.00250312760579520 1.00250312761497740 9.1822 × 10−12

https://doi.org/10.1371/journal.pone.0301505.t001
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ISBS solution. It is evident that the computed solution’s findings converge to the theoretical

solution. Similar to this, Table 2 compares the ISBS’s performance with LIELM to assess the

ISBS’s accuracy in relation to LIELM, as reported by Yang et al. [67]. In Fig 2, we also show the

logarithm plot comparing ISBS vs LIELM. As a result, ISBS data indicate higher productivity

compared to LIELM.

5.2 Example 2

Secondly, we take into consideration the two-dimensional second-order PDEs arising in Phys-

ical system studied by Yang et al. [67] and also Tsoulos et al. in reference [71].

@
2u
@x2
þ
@

2u
@y2
¼ � 2SinðxÞCosðyÞ; 0 � x � 1; 0 � y � 1; ð58Þ

with boundary conditions

uðx; 0Þ ¼ SinðxÞ; 0 � x � 1

uðx; 1Þ ¼ SinðxÞCosð1Þ; 0 � x � 1

uð0; yÞ ¼ 0; 0 � y � 1

uð1; yÞ ¼ Sinð1ÞCosðyÞ; 0 � x � 1

ð59Þ

Table 2. Comparison of AEs in ISBS and LIELM for example 1.

N Errors in ISBS Error in LIELM

6 9.5181 × 10−11 1.6469 × 10−01

8 1.0590 × 10−11 6.7706 × 10−02

10 1.8310 × 10−12 1.8110 × 10−02

12 5.8854 × 10−10 8.8917 × 10−04

14 1.6951 × 10−10 1.4464 × 10−04

16 5.6582 × 10−11 3.7625 × 10−03

https://doi.org/10.1371/journal.pone.0301505.t002

Fig 2. Logarithm curve of errors in ISBS versus LIELM for example 1.

https://doi.org/10.1371/journal.pone.0301505.g002
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The given exact solution is

uðx; yÞ ¼ SinðxÞCosðyÞ ð60Þ

• ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.

• LIELM—Legendre Improved Extreme Learning Machine by Yang et al. [67]

• CNN—Constructed Neutral Network produced by Tsoulos et al. [71]

• MAEs—Maximum Absolute Error

This section covers the ISBS numerical calculation results for example 2, which are pre-

sented in the Table 3 provided. Meanwhile, the assessment of AEs error in ISBS is made with

LIELM proposed by Yang et al. in [67]. On the other hand, in Table 4, the MAEs of ISBS at

N = 2 was determined and compared with other existing methods namely LIELM and CNN

developed by Yang et al. [67] and Tsoulos et al. [71] respectively. It could be seen that in all the

ISBS shows high-level of performance in terms of accuracy and convergence than other exist-

ing methods. The logarithm plot of Table 5 is also shown in Fig 3 to demonstrate the results

graphically for easy analysis.

Table 3. Numerical result for example 2.

N Exact solution ISBS solution AEs in ISBS

2 0.478489465369979100 0.478489049493883600 4.1588 × 10−07

4 0.247094768728200400 0.247094755255772100 1.3472 × 10−08

6 0.164669829139475100 0.164669615418555000 2.1372 × 10−07

8 0.124431307302325040 0.124431256843562420 5.0459 × 10−08

10 0.099708650872138790 0.099708634541371400 1.6331 × 10−08

12 0.082619333527632820 0.082619819444321240 4.8592 × 10−07

14 0.071187278914784780 0.071187517966933400 2.3905 × 10−07

16 0.062337366692613846 0.062337492660293650 1.2597 × 10−07

18 0.055882996075642600 0.055883070085200895 7.4010 × 10−08

20 0.049916708323414080 0.049916750915477440 4.2592 × 10−08

https://doi.org/10.1371/journal.pone.0301505.t003

Table 4. Comparison of MAEs in ISBS with LIELM and CNN for example 2.

N MAEs in ISBS MAEs in LIELM MAEs in CNN.

2 2.15 × 10−11 1.46 × 10−06 2.50 × 10−05

https://doi.org/10.1371/journal.pone.0301505.t004

Table 5. Comparison of LIELM and ISBS absolute errors for example 2.

N AEs in ISBS AEsr in LIELM

6 2.1372 × 10−07 1.147 × 10−02

8 5.0459 × 10−08 1.9407 × 10−03

10 1.6331 × 10−08 9.0274 × 10−05

12 4.8592 × 10−07 5.0834 × 10−06

14 2.3905 × 10−07 3.5712 × 10−07

16 1.2597 × 10−07 2.8968 × 10−08

https://doi.org/10.1371/journal.pone.0301505.t005
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5.3 Example 3

Last but not least, Lakestani and Dehghan [69] solved the non-linear Klein-Gordon Equation

with non-homogeneous term.

@
2u
@t2
� m

@
2u
@x2
þ kðuÞ ¼ gðx; tÞ; for t > 0 ð61Þ

It follows that; g(x, t) = 6xt(x2−t2) + x6t6, μ = 1, and k(u) = u2.

with either initial or any other similar boundary conditions on the interval [0, 1] below,

uðx; 0Þ ¼ 0;

uðx; 1Þ ¼ x3;

uð0; tÞ ¼ 0;

uð1; tÞ ¼ t3;

utðx; 0Þ ¼ 0; uxðt; 0Þ ¼ 0;

ð62Þ

The theoretical solution of (61) is given by,

uðx; tÞ ¼ t3x3 ð63Þ

• ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.

• FIBUM—Five-step Implicit Block Unification Method of order 6 constructed by Adeyefa &

Omole [68].

• CWSCM—Chebyshev Wavelets Spectral Collocation Method developed by Iqbal & Abass

[70].

• MFDCM—Modified Finite Difference Collocation Method examined by Lakestani & Deh-

ghan [69].

• CM—Collocation method by Lakestani & Dehghan [69].

Next is to present the numerical results of example 3, which is a notable non-linear applica-

tion problem arising from physical system. In Table 6, the computation of results of ISBS were

Fig 3. Logarithmic curve of errors in ISBS versus LIELM in for example 2, Shows the comparison analysis and

performance of the ISBS and other existing methods in the cited literatures.

https://doi.org/10.1371/journal.pone.0301505.g003
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presented namely, the analytical solution, the ISBS solution and the Absolute error. Likewise,

Table 7 showcase the comparison of the absolute errors of the ISBS versus other similar exist-

ing recent methods in the literature. In particular, FIBUM of algebraic order six constructed

by Adeyefa & Omole [68], CWSCM developed by Iqbal & Abass [70], MFDCM and CN both

proposed by Lakestani & Dehghan [69]. It is obvious that ISBS of algebraic order seven outper-

formed FIBUM of algebraic order six, In the same vein, ISBS performed almost as thrice as

much as the existing methods as shown in Table 7. The comparison of the absolute error is

also shown by employing a logarithm plot for all the values of t, say t = 0.1, 0.2, . . ., 1.0. in Fig

4. It could be seen that Fig 4 shows the comparison analysis and performance of all the

methods.

Finally, it is worth providing example 3 surface plot to show how the ISBS solution or com-

puted solution, exact solution, and the absolute errors in Figs 5–7 behave in different ways. In

general, it can be seen that the exact solution frequently converges to the ISBS solution. As a

result, the absolute errors was relatively small. We come to the conclusion that the ISBI has a

wider range of applications than the currently used methods described in the literature, is

computationally dependable, and provides high-order precision.

6. Conclusion

In this report, the Power of implicit six-point block scheme had been Unveiled with the aim of

advancing numerical approximation of two-dimensional PDEs in physical systems. To tackle

Table 7. On the comparison of AEs of different methods with ISBS for example 3.

t AEs in FIBUM AEs in CWSCM AEs in MFDCM AEs in CM AEs in ISBS

0.1 7.89 × 10−31 4.5 × 10−11 3.9 × 10−09 1.5 × 10−04 1.93 × 10−34

0.2 4.73 × 10−30 6.5 × 10−11 6.3 × 10−08 1.7 × 10−04 2.11 × 10−33

0.3 2.52 × 10−29 3.4 × 10−10 3.0 × 10−07 9.7 × 10−04 3.08 × 10−33

0.4 3.79 × 10−29 5.9 × 10−10 9.1 × 10−07 1.8 × 10−04 2.47 × 10−32

0.5 7.59 × 10−29 9.3 × 10−11 1.2 × 10−06 9.7 × 10−04 4.93 × 10−32

0.6 1.77 × 10−28 2.6 × 10−10 4.2 × 10−06 1.7 × 10−04 1.97 × 10−31

0.7 1.51 × 10−28 1.7 × 10−10 3.2 × 10−06 1.6 × 10−04 1.48 × 10−31

0.8 3.03 × 10−28 3.6 × 10−10 6.1 × 10−06 1.1 × 10−04 2.96 × 10−31

0.9 2.02 × 10−28 5.4 × 10−10 5.7 × 10−06 2.0 × 10−04 9.86 × 10−31

1.0 9.09 × 10−28 1.4 × 10−10 5.5 × 10−06 8.7 × 10−04 7.89 × 10−31

https://doi.org/10.1371/journal.pone.0301505.t007

Table 6. The numerical results of ISBS for example 3.

t Exact solution ISBS solution AEs in ISBS

0.1 9.702990000000002 × 10−19 9.702990000000003 × 10−19 1.93 × 10−34

0.2 7.762392000000001 × 10−18 7.762392000000002 × 10−18 2.11 × 10−33

0.3 2.619807300000000 × 10−17 2.619807300000000 × 10−17 3.08 × 10−33

0.4 6.209913600000004 × 10−17 6.209913600000002 × 10−17 2.47 × 10−32

0.5 1.212873749999999 × 10−16 1.212873750000000 × 10−16 4.93 × 10−32

0.6 2.095845840000002 × 10−16 2.095845840000000 × 10−16 1.97 × 10−31

0.7 3.328125569999999 × 10−16 3.328125570000000 × 10−16 1.48 × 10−31

0.8 4.967930880000004 × 10−16 4.967930880000001 × 10−16 2.96 × 10−31

0.9 7.073479710000002 × 10−16 7.073479710000003 × 10−16 9.86 × 10−31

1.0 9.702990000000009 × 10−16 9.702990000000000 × 10−16 7.89 × 10−31

https://doi.org/10.1371/journal.pone.0301505.t006
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many physical system partial differential equations (PDEs), we embarked on a comprehensive

theoretical analysis and practical application of an innovative solution technique known as the

Implicitly Stable Boundary Scheme (ISBS). Leveraging orthogonal polynomials as the trial

functions and employing sophisticated collocation techniques, we meticulously crafted a

robust framework for PDE resolution. One of the hallmark achievements of our study was the

meticulous examination of the region of absolute stability using the boundary locus approach,

revealing remarkable stability properties, as vividly illustrated in Fig 1. Notably, our investiga-

tion unveiled that the seventh-order convergence ISBS is not only zero-stable but exhibits

exceptional consistency, laying a solid foundation for its widespread applicability. Focusing on

semi-discretizing the governing equations by substituting the y-function or time-dependent

Fig 5. ISBI solution for example 3, Shows the ISBI computed solution in surface plot for example 3.

https://doi.org/10.1371/journal.pone.0301505.g005

Fig 4. Comparison of AEs of different methods with ISBS for example 3, shows the comparison analysis and

performance of the ISBS and other existing methods.

https://doi.org/10.1371/journal.pone.0301505.g004

PLOS ONE Unveiling the Power of Implicit Six-Point Block Scheme

PLOS ONE | https://doi.org/10.1371/journal.pone.0301505 May 16, 2024 21 / 26

https://doi.org/10.1371/journal.pone.0301505.g005
https://doi.org/10.1371/journal.pone.0301505.g004
https://doi.org/10.1371/journal.pone.0301505


derivatives, we transformed the complex PDEs into ordinary differential equations (ODEs),

ripe for ISBS resolution. Through rigorous testing across three significant physics and engi-

neering applications, our study unveiled compelling insights meticulously tabulated for clarity.

In our pursuit of numerical precision, we meticulously compared the ISBS solutions with theo-

retical counterparts, presenting comprehensive numerical results in Tables 1, 3 and 6. Further-

more, we conducted a thorough evaluation against other established techniques, showcased in

Tables 2, 4, 5 and 7, with logarithmic plots in Figs 2–4 providing visual clarity. The

Fig 6. ISBI exact solution for example 3, Shows the ISBI exact solution in surface plot for example 3.

https://doi.org/10.1371/journal.pone.0301505.g006

Fig 7. Absolute error (AEs) for example 3, Shows the Absolute error (AEs) in surface plot for example 3.

https://doi.org/10.1371/journal.pone.0301505.g007
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culmination of our efforts is exemplified in Figs 5–7, where surface plots for case 3 vividly

depict the robustness and accuracy of the ISBS approach. The profound alignment between

our findings and alternative methodologies underscores the efficacy of employing orthogonal

polynomials as approximate functions in addressing one and two-dimensional physical system

problems. Looking ahead, our future endeavours will be directed towards advancing the

numerical solution of higher-order PDEs, accommodating varying conditions and variable

step-sizes, further solidifying the practical utility and versatility of ISBS in tackling complex

physical system dynamics.
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