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Abstract

In the era of computational advancements, harnessing computer algorithms for approximat-
ing solutions to differential equations has become indispensable for its unparalleled produc-
tivity. The numerical approximation of partial differential equation (PDE) models holds
crucial significance in modelling physical systems, driving the necessity for robust methodol-
ogies. In this article, we introduce the Implicit Six-Point Block Scheme (ISBS), employing a
collocation approach for second-order numerical approximations of ordinary differential
equations (ODEs) derived from one or two-dimensional physical systems. The methodology
involves transforming the governing PDEs into a fully-fledged system of algebraic ordinary
differential equations by employing ISBS to replace spatial derivatives while utilizing a cen-
tral difference scheme for temporal or y-derivatives. In this report, the convergence proper-
ties of ISBS, aligning with the principles of multi-step methods, are rigorously analyzed. The
numerical results obtained through ISBS demonstrate excellent agreement with theoretical
solutions. Additionally, we compute absolute errors across various problem instances,
showcasing the robustness and efficacy of ISBS in practical applications. Furthermore, we
present a comprehensive comparative analysis with existing methodologies from recent lit-
erature, highlighting the superior performance of ISBS. Our findings are substantiated
through illustrative tables and figures, underscoring the transformative potential of ISBS in
advancing the numerical approximation of two-dimensional PDEs in physical systems.

1. Background information

Partial Differential Equations (PDEs) are a useful tool for the mathematical expression of
many natural phenomena and are useful in the solution of physical and other issues requiring
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functions of several variables. The transmission of heat/sound, fluid movement, turbulent
flow, heat transfer analysis, elasticity, electrostatics, and electrodynamics are a few examples of
these issues; see Ahsan et al. [1], Wang and Guo [2], Arif et al. [3, 4], Adoghe et al. [5], Nawaz
et al. [6], Animasaun et al. [7], Devnath et al. [8], Ahsan et al. [9], Wang et al. [10], Rufai et al.
[11], Nawaz and Arif [12], Ramakrishna et al. [13], El Misilmani et al. [14]). According to
Quarteroni and Valli [15], numerical approximation techniques for partial differential equa-
tions (PDEs) constitute a cornerstone in diverse scientific and engineering disciplines. In
agreement with Le Dret and Lucquin [16], PDEs are fundamental tools for describing the intri-
cate behaviour of physical systems and phenomena. However, deriving analytical solutions for
many PDEs poses significant challenges, often rendering such endeavours impractical or
unfeasible. In this context, numerical methods emerge as indispensable tools, offering prag-
matic and efficient avenues to approximate solutions of a well-known second-order PDEs aris-
ing from physical system with a rectangular domain I" = {(x, y):(x, y) € [a, b] x [c, d]} given by
Eq (1) below. Eq (1) embodies a versatile framework applicable across diverse fields within
contemporary society. Its utility extends to the design and optimization of a wide array of sys-
tems, spanning from aerospace engineering (including aircraft and submarines) to biological
and chemical processes. Additionally, these equations find application in mathematical models
encompassing viscoelastic flows, various dynamic systems, medical imaging technologies, and
the development of pharmaceuticals; see Bergounioux et al. [17]. The study of numerical solu-
tions for Partial Differential Equations (PDEs) has yielded crucial insights across diverse fields
such as photo-acoustic tomography, gas dynamics, aerodynamic shape optimization, and flow
control design. Gunzburger [18] and Bredies et al. [19] underscored the significance of
approximate PDE solutions. In the realms of physical sciences, applied mathematics, engineer-
ing, and economics, inherent physical constraints often necessitate the utilization of PDEs for
modelling. Neittaanmaki and Tiba [20] discuss controlling difficulties, mainly when specific
parameters, conditions, or constraints govern these PDEs throughout the computation. Given
the nonlinear nature of the majority of these governing equations, as highlighted by Leugering
et al. [21] and Aubert and Kornprobst [22], obtaining analytical solutions via theoretical meth-
ods proves exceedingly challenging.

2 2

u ou ou
a(x,y) 22T b(x,y) o +p(x,y) 5T r(x,y) o + k(x, y)u = g(x, ). (1)

Building upon the insights of Debnath [23], the practicality of using computers to generate
approximate solutions becomes evident, rendering it desirable and imperative to explore con-
trol and optimization techniques for various PDE models. Among them is time-dependent
(PDE)-driven optimal control problems which have recently garnered significant attention
within the scientific computing community due to their numerical complexities. Numerous
methods have emerged in literature aimed at approximating the solutions to problems
described by Eq (1) under various conditions. For instance, Liu et al. [24] introduced a novel
hybrid approach combining Haar wavelets and finite differences to tackle the hyperbolic
Schrodinger Equation incorporating a nonlinear function, energy, and mass conversion terms.
Their study included a rigorous convergence analysis of the hybrid method, supported by illus-
trative curves facilitating clear comprehension and interpretation of the results. In another
study, Raslan et al. [25] devised an extended version of cubic B-splines in n-dimensional space
specifically tailored for the numerical treatment of PDEs, with notable applications. The results
of the study demonstrated a commendable level of efficiency and accuracy, particularly evident
in terms of convergence characteristics. Mirzaee et al. [26] showcased the versatility of mesh-
free and finite difference methods in tackling the stochastic time-fractional sine-Gordon
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equation within two-dimensional space, particularly on non-rectangular domains. Meanwhile,
Lakestani and Dehghan [27] presented a meticulous numerical solution to the Nonlinear
Klein-Gordon Equation, employing a blend of collocation and finite difference-collocation
techniques. In a distinct avenue, Shiralashetti et al. [28] delved into the realm of PDE applica-
tion problems, specifically focusing on elasto-hydrodynamic lubrication issues, and explored
the efficacy of biorthogonal wavelet-based full-approximation techniques. Moreover, the dis-
cussion by Juraev and Gasimov [29] delved into the intricacies of the Cauchy issue associated
with matrix factorizations of the Helmholtz equation, shedding light on regularization tech-
niques within multidimensional bounded domains.

Predictor-corrector methods are numerical techniques used for solving boundary value
problems (BVPs) of ordinary differential equations (ODEs). As presented by Butcher and
Woanner [30] an initial approximation to the solution is made using a simple numerical
method like Euler’s method or the Runge-Kutta method and such approximation is referred to
as the “predictor.” Sequel to Gragg, W. B., & Stetter [31], the predictor step provides an initial
estimate of the solution. In the correction step, this estimate is refined using a more accurate
numerical method, typically a higher-order method like the Adams-Bashforth or Adams-
Moulton methods and such a refined estimate is called the “corrector.” Based on Garrido et al.
[32], worth remarking that the predictor and corrector steps are often applied iteratively until
the solution converges to the desired accuracy or until a specified stopping criterion is met.
Following Diamantakis et al. [33], since predictor-corrector methods are used for boundary
value problems, the boundary conditions are incorporated into the iterative process to ensure
that the solution satisfies the given boundary conditions. Worth concluding that the conver-
gence and stability of predictor-corrector methods depend on factors such as the choice of pre-
dictor and corrector methods, step size, and properties of the differential equation being
solved. Similarly, many authors have explored employing predictor-corrector methodologies
for the numerical resolution of boundary value problems or differential equations encompass-
ing initial conditions. For instance, Su and Zhou [34], Shokri and Saadat [35], and Awoyemi
[36] have contributed to this discourse. Sunday et al. [37] subsequently pioneered a suite of
off-step models facilitated by a self-starting technique, leveraging these models to tackle many
consequential application equations, such as the Kepler Problem. Ramos and Vigo-Aguiar [38]
have also conducted seminal research on BDF-style equations tailored for integrating a class of
stiff problems, employing the L-stable technique of lines. Ngwane and Jator [39] employed the
sophisticated trigonometrically fitted block technique to tackle a complex oscillating system of
equations, exhibiting both Hamiltonian dynamics and second-order initial conditions. Mode-
bei et al. [40] proposed a novel numerical approach for simulating fourth-order differential
equations involving partial derivatives, leveraging uniform-order block formulae outlined in
their reference. Jator [41] delved into research on block algorithms to provide precise and effi-
cient solutions for sine-Gordon partial differential equations (PDEs) with varying parameters.
Olaiya et al. [42] scrutinized the numerical models utilized in resolving the solutions for the
Black-Scholes differential equation. Additionally, Familua et al. [43] conducted an in-depth
examination of advanced self-starting algorithms tailored for numerically simulating differen-
tial equations featuring second derivatives, offering diverse practical applications.

As demonstrated by Farkas and Deconinck [44], Animasaun et al. [45], the numerical solu-
tion of the Heat Equation provide invaluable insights into the behaviour of heat transfer phe-
nomena in various physical systems, guiding the design of efficient thermal management
solutions crucial for industries ranging from electronics to aerospace engineering. Worth trac-
ing to Ullah et al. [46] and Salahudin et al. [47] that understanding the numerical solution of
the Wave Equation illuminates the propagation of waves in diverse mediums, offering indis-
pensable tools for predicting seismic activity, designing telecommunications networks, and
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optimizing acoustic environments in architectural and industrial settings. As presented by
Rehman et al. [48] and Khan et al. [49], the numerical solution of the Schrodinger Equation
underpins quantum mechanical simulations, empowering scientists to unravel the intricate
behaviour of fundamental particles and molecules, with applications spanning from drug dis-
covery to the development of quantum computing algorithms. The computational exploration
of the Navier-Stokes Equations was shown by Johnson [50], Fisher et al. [51], and Jameson

et al. [52] that its solution is capable of unlocking the complexities of fluid dynamics, enabling
advancements in areas crucial to human civilization, such as weather forecasting, aerodynam-
ics, and the optimization of industrial processes, from energy production to transportation sys-
tems. This report unveils the findings of an intensive research endeavour aimed at unleashing
the potential of implicit six-point block schemes in revolutionizing the numerical approxima-
tion of two-dimensional Partial Differential Equations (PDEs) within physical systems. These
block solvers not only retain the inherent self-starting nature of algorithms but also exhibit
rapid convergence rates and a unique ability to provide accurate approximations across vari-
ous stages of computation. Non-linear partial differential equations are omnipresent in science
and engineering, with notable examples including the Helmholtz and convection-diffusion
equations. Despite the pivotal role implicit block methods play in tackling these equations, a
conspicuous need for more attention is directed towards developing efficient numerical tech-
niques grounded in these methods for solving (1). A profound understanding of their intricate
dynamics is imperative to engineer mathematical methodologies that seamlessly amalgamate
precision with efficiency. Hence, we propose the introduction of a seventh-order Implicit Six-
point Block Scheme (ISBS). Employing the ISBS holds the promise of delivering more accurate
solutions with accelerated convergence rates for these equations. Remarkably, the methodol-
ogy being developed in this study boasts significant computational prowess and exhibits a
wide array of applications, surpassing existing methods delineated in the literature.

2. Development of the Implicit Six-Point Block Scheme (ISBS)

Hermite polynomials are orthogonal with respect to the weight function e on the interval
(—00, 00). According to Thakare et al. [53], Adeyefa et al. [54], and recently by Dattoli and Lic-
ciardi [55], it is worth remarking that this orthogonality property simplifies many computa-
tions, especially when dealing with integrals or solving differential equations. Hermite
polynomials, which belong to the class of orthogonal polynomials, are defined using recur-
rence formulas on the interval (—oo, c0) as

T (%) = xt,(x) = 7,(%) (2)
In relation to the weight function e **, the polynomials are orthonormal. According to Sal-
zer et al. [56], the first four Orthogonal Hermite polynomias are,

,(x) =1, 1(x)=x 1,(x)=x>—1, 1,(x)=x"—3x (3)

2.1 Development of the method
Consider the partial sum of the Hermite approximation defined as

m+n—1

U = 3 L (o), (4)
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Differentiating Eq (4) twice to obtain

m+n—1

U'(x) = Z {(x), re(0,6) (5)

Next is to input m = 6, n = 2, and k, where k is the step number. As a result, m is the number
of selected collocation points, and n is the number of individual interpolation points required
to suit the order of the partial differential equation in (1). Eqs (4) and (5) thus decrease to,

8
U =S 45, ), (6)
r=0
Similarly, differentiating (6) twice gives;
8
U'(x) = (), (7)
r=0

Right now After collocating the differential system (7) at x;,,,, w = 0(1)6 and interpolating
the approximate solution (6) at x,,,,,, w = 0(1), seven equations are produced. The following is
an expression for these equations as a matrix system of equations,

Q] = ; (8)
assume,

[ To (xn) T (xn) Ty ('xn> T3 (xn) T Tk+2 (xn) 1

To (xn+1) T (‘xn+1) Ty ('xn+1) Ty (xn+1) T T (xn+1)

Tg(xn) Tlll(xn) T’Q,(Xn) Tg (‘xn) e TZ+2 (xn)
Tg (‘xn+1) Tlll (er»l) 1/2/ (xn+1) Tg (xn+l) T TZ+2 (er»l)
@ =

L Tg (xn+k) T/l/ (xn+k) Tl2/ (xn+k) Tg (xn+k) T TZ+2 (xn+k) J

T
[um,rﬂ um+1.n? ’/’m.nﬂ ’/’m+l,n7 Tty 11m+62n ]

]: [C07C17C27C37"'7C8]T3 Z

By applying the matrix inverse approach to solve the matrix Eq (8) for the unknown coefti-
cients of {;, i = 0(1)8, where ] = ©'Z, or with the use of computer-aided tools like Mathema-
tica 11.0. The obtained values are then used to replace (6) and set x = ¢ph+x,,,5 in order to get
the form’s continuous function;

6
um+j‘n(¢) = lIj()um,n + lPluerLn + hZZAj(¢)nm+j,n7 ] = 0(1)6 (9)
j=0
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the matrix-formatted coefficients of the continuous function (9) are shown below.

¥, -1 —47(¢°
HERN o
v, 1 5 o'
r 1669 2867 1 13 1 1 1 1 77 .01
A, G048 10320 180 4320 960 864 3360 40320 ||
385 38 1 3 1 1 11 ]y
A, 1008 4032 24 1440 120 120 504 6720
5069 38401 5 19 29 37 11 1 ¢’
A, 2016 40320 36 288 960 1440 2016 2688 ||
P O T T A W R SR B A PP
’ 1512 1440 18 432 15 540 126 2016 ¢5
A | M7 s 5 a7 s3 100 13 1
2016 40320 12 288 960 480 2016 2688 ¢6
A, 179 8191 77 49 7 7 1 1
A 1008 20160 360 1440 120 360 360 6720 | | ¢
L6 95 13 1 137 1 17 1 1 s
| "6048 896 36 4320 64 4320 2016 403204 ¢
Evaluating (9) at ¢ = -3, -2, —1, 0, and 1 yields the following discrete schemes, which are
constructed as the main discrete scheme.
. pu oy 8O3 LS00 LT 0T
2, 1 mr 12096 ™" 10080 Mttt 20160 ™t 15120 TR (12)
1609 263 21
20160 Ninsan + m h Ninssn = m h [/
2803 1265 1657 , 17T,
Uign = Bthpyr = 2ty oomen Wil o Wl 5500 Fllnon + 2510 (/. 13
1049 1, 137, (13)
——--h Nopan T 557 misn " on1an ¥ Mnien
6720 ' 224 i 20160 '
u iy _ 34 +@ 4813 5461 3457 ‘
m+d.n m+1n mr 10080 1680 Miniin 3360 Mnyon 2520 Mmisn (14)
419 109 19
73360 Nntan 1680 mtsn T 9016 Nint6.n
1669 3875 5069 3751
Uyisn +5 um+1,n —4 um,n + @ 1008 m+11n 2016 Mson ﬁ nm+3,n
1457 179 9% (15)
2016 m+"1,n @ 7’m+51n - M Mns6.n
Uy, = 0 Upiin — Su,,+ % W Nonn % h2 Nsin %889 Mson ?gg; h Mni3n 6
2059 265 , 199 (16)
@ /P ﬂ m+5,n + m h Nint6.n
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e 120960k (

Below is the first derivative of (9),

6
() = Wty + Vit + B A, = 0(1)6 (17)

j=0

The function (17) has coefficients that are the first derivative of (10) and (11), which are as

follows,
g -1
MENG 8)
g 1
- 2867 1 13 1 1 1 1 1
A 40320 60 1080 192 144 480 5040 FT
3875 1 31 1 1 1 1
A, 4032 8 360 24 20 72 840 | |4
38401 5 19 29 37 11 1 ‘
A, 40320 12 72 192 240 288 336 ||¢
A; = @ § ﬂ _1 _§ _i _L ¢4 (19)
1440 6 108 3 90 18 252
T B L B A B U U R W
40320 4 72 192 80 288 336
A 8191 77 49 7 7 7 1 ¢°
. 20160 120 360 24 60 360 840 ;
LA 13 1 137 5 17 1 1 | Lo
L 896 12 1080 64 720 288 5040 -

By evaluating (17) at the locations ¢ = -5, -4, -3, -2, —1, 0, and 1, the additional discrete
scheme is produced. The first derivative discrete schemes that result are as follows,

1
=~ Tanogos (28BN, + STTS0 R, — 5LA53 I, , , + 42484 K00,

—23109 k%7, , + 7254 121, — 995 K0, 5., + 120960 u,,, — 120960 u,,,, )

(20)

9625 h’r,, , + T24TARY,,,,, — 41469 Ky, + 32524 H*n,, ., 2
—17313kn,,,,, + 53701, — T3L KN, 5, — 1209604, + 1209604, ,)

1 f 1 ‘ ‘ ‘
= Jo3a0; (20331, + 40910 K0, + 175030, s, + AN, — 905 KN,

+308 10,5, = 63170, — 40320, +40320u,,,,,,)

(22)

i = 150060k (8441 h°y,,, + 117210 hz”lm“,y, + 114147 h2nm+2$n + 75020 1*n,, 5.,

—16257kn,,..,, + 4410k, — 5TLR,, 4, — 120960 u,,, + 120960 u,,, )

(23)

win = Tao0g07 (B0BO MM, + 120426 1, + 100605 1, 5, + 150028 K,

+45381 k2, ., — 1110 k2%, o, — 2921, — 120960 u,, , + 120960 u,, ., ,)

(24)
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Wisn = Jog0s (2867 W+ 38750 KN, + 384011, + BO1T2HN, 25)
+46453 1%, + 16382k, — 585 k1, — 40320, , + 40320, )
1
! = — K 128874 h? 4781 K? 192524 h?y, ..
u m+6,n 120960]’[ (6875 nm,n + 887 nm+1,n + 7 78 nm+2‘n + 9 5 nm+$,n (26)

F4643T 21, + 179370 B2, 5, + 36419 %, ., — 120960 u,, , + 1209604, ,)

2.2 Formulation of Implicit Six-point Block Scheme (ISBS)

By joining the discrete schemes (12)-(16) and derivative (20) at x,,, ,, formed matrix equation

below,
EU, = F\, + G\, + h*[Hh, + IM,] (27)

[—120960 60480 0 0 0 0 7 [ty ]
—60480 0 20160 0 0 0 Uppion
g | 0820 0 0 10080 0 0 U T
—30240 0 0 0 6048 0 "
—24192 0 0 0 0 4032 Uppis
| —120960 0 0 0 0 0 | L i ]

0 0 0 0 0 —60480 7 Tty 1]

00 0 0 0 —40320 Uy g

e_ |0 0 0 0 0 —30240 m U, .

00 0 0 0 —24192 Uy g

00 0 0 0 —20160 Uy

L0 0 0 0 0 —120960 | Ly,

00 0 00 0 ] [ty 1]

00000 0 Uy 2y

o 00000 0 . um

00000 0 T

00000 0 Uy 50

L0 0 0 0 0 —120960 ] |, |

0 0 0 0 0 4315 (M1 ]

00 00 0 2803 U

4|0 0 00 0 208 = U

0000 0 1669 U—

00 00 0 1375 U

(00 0 0 0 —28549 R/

PLOS ONE | https://doi.org/10.1371/journal.pone.0301505 May 16, 2024 8/26


https://doi.org/10.1371/journal.pone.0301505

PLOS ONE Unveiling the Power of Implicit Six-Point Block Scheme

[ 53994 —2307 7948  —4827 1578 —2217 [ Mi1n ]
37950 14913 7108  —3147 990 137 Nt
28878 16383 13828 —1257 654 -95 Noni3.n
= 23250 15207 15004 4371 1074 =95 = Noian
19554 13401 15004 6177 4770 199 Noni5m

L —57750 51453 —42484 23109 7254 995 | L M6,

The product of the matrix Eq (27) with the inverse E gives the Implicit Six-point Block
Scheme of the form

U,, = FA, + G\, + h*[H), + IL,] (28)

10 0 0 0 0 00 0 0 0 17
01000 0 000001
001000/ |0000TO0H71

Um: 7F:

00010 0 000001
0000 10 000001
00000 1 00000 1

r 28549

00000 155060

00 0 0 0 17
00000%
00000 2
759
~Joooo o3 |0O0000 <o
G: H:

00000 4 1088
00000 —0
945

000005 s
0 0000 6 00 000 S0
123
00000 —=

i 70 |
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i % _ 5717 10621 _ 7703 403 _ 199 7
576 13440 30240 40320 6720 24192
194 s TS or 419
105 9 945 210 315 945
1485 2403 45 3267 513 141
I 448 4480 32 4480 2240 4480
504 8 2624 8 32 8
315 105 945 9 105 189
8375 3125 25625 _ 625 275 _ 1375
1344 8064 6048 2688 576 24192
54 27 204 27 54 0
L 7 35 35 70 35 J
Writing out the matrix Eq (28) in a simple form as follows
. o d pa 219 275, _STIT 10621,
m+1,n - m,n m,n 120960 ’/’m.n 576 '/Im+1.n 13440 nm+2,n 30240 ’/Im+3.n (29)
T3, 403, 199,
40320 Treie Tz " Tmesn T g1gg M mson
1027 194 8 788
um+2,n = um,n + 2hu,m,n + @ h2’7m,n ﬁ therl,n - § hznm+2,n + % hznm+3,n
(30)
97 46 19
i/ — Wy, — =N,
210 ”m+4,n + 315 ﬂm+o,n 945 nm+b.n
759 1485 2403 45
um+3¢n = um,n + 3hu/m7n + % hznm,n + T48 h2nm+l,n - ESO 2;/]m+2‘n + 3_2 h2’7m+3.n
31
BT, K13, L, G1)
2480 " Trean 90 ™ s T g M o
1088 1504 8 2624
— 4]’1 ! T2 I W/ o h2 == hZ )
um+4‘n um,n + u mn + 945 nm‘n 315 nm+1‘n 105 nm+2‘n + 945 nm+5,n (32)
8 . 32 . 8
_ = hz = hz o h2
9 nm+4,n + 105 nm+5,n 189 nm+6,n
) R o 8375, 3125, 25625,
m+5,n - m,n mn 24192 nm.n 1344 r]m+l.n 8064 nm+2.n 6048 ’/Im+i3.n (33)
625, 25, 135,
2688 | Imin T gyg T Imesn T 919y o
123 . 54 . 27 204
um+6¢n = um.n + 6hu/m.n + % hzrlm.n + 7 hznerl,n + % hz”’m+2.n + g hznm+3.n
34
27 54, (34)
+7_0 h nm+4.n + % h nm+5,n

To determine the first derivatives of Implicit Six-point block solver, the values of u,,,1 ., U,
2. Ui Umiam Umasn and Uy, 6., in (29)—(34) are substituted into (21)-(26) which
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produces;
y A 19087 n 2713 _ 15487 n @ _ 6737
m+1,n - mmn 60480 nm,n 2520 ’1m+1‘n 20160 ’7m+2,n 945 nm+3,n 20160 nm+f1,n (35)
+ 263 n _ 863 n
2520 T 60480 o
1139 94 11 332 269
/ = ! —_— h - h h ™ h - h
um+2,n u mn + 3780 nm,n + 63 nm+l,n + 1260 17m+2,n + 945 nm+3,n 1260 nm+4.n (36)
n 22 3 37 h
315 Imean T g7g( e
137 81 1161 34 729
e, = U —h —h ——h —h ——hn, .,
u m+3,n u m,n + 448 ;/Imm + 56 7,IerLn + 2240 r’m+24n + 35 nm+3.n 2240 nm+4.n (37)
n 27 3 29 n
980 " msan 940 e
Unin = Wt oo By oo B e By o i+ s
m+4,n - m,n 945 '/Im,n 315 nm+1.n 315 7’m+2,n 945 VIWH»S.H 315 ’/Im+4.n (38)
L6, 8,
315 mian T ggp
v g 3T T2 2195 L 250, 3875,
m+5,n - mn 12096 nm,n 504 nm+1‘n 4032 nm+2‘n 189 nm+3,n 4032 nm+4,n (39)
T
504 nm+5An 12096 nm+6n
41 54 27 68 27
! = u —h —h —h —h — hn,,..
um+6,n u m,n + 140 nm,n + 35 nm+1,n + 140 nm+2‘n + 35 nm+3,n + 140 nm+r1,n (40)
2
35 17m+57n 140 '/’m+6,n

Remark 1: The Eqs (29)-(34) and (35)—-(40) are the acquired Implicit Six-point Block
Scheme (ISBS) required for approximating (1) directly without starting values or separate
development of predictors.

Remark 2: There must be a non-singular square matrix © in Eq (9). If not, there wouldn’t
be a solution.

Remark 3: As the analysis section demonstrates, the Eqs (29)-(34) and (35)-(40) that make
up the ISBS have a consistent order of accuracy.

Remark 4: The continuous scheme (10) which has a coefficients in matrix form in (10) and
(11) must be a continuous function, differentiable, and the limit must exist.

Remark 5: For a matrix Eq (9) to be valid, the number of parameters of the equations to be
solved must coincide with the number of unknown.

3. The analysis of the ISBS

Next stage is to presents the preliminary of ISBS’s theoretical analysis, Convergence Analysis,
Absolute Stability Region, and some useful definitions.
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3.1 Preliminary of ISBS’s theoretical analysis

According to the established theorem by in Familua et al. and Jain et al. in references [43] and
[57]), this subsection analyzed the order of accuracy, constants of errors, zero-stability, and
finally the consistency of the ISBS. The linear operator listed below can be used to represent
the Scheme (28) and its related variants.

Llu(x); h] = U, — FAy + GA, + B2 [H), + I),), (41)

U,,, Fhy, G\, H\,, and I\, have the above-mentioned typical meanings, and u(m) is continu-
ously differentiable. Determining the similar terms in powers of h and u, and expanding U,
Ay, and A3 in (41), correspondingly, in Taylor series concerning x,,, provides,

L{u(x); h] = Cyu(x) + C,h/ (x) + C,h*u" (x) + ... + C hul (x) (42)

where C,,s = 1,2, ...
Definition 3.1.1 (Order) (Familua et al. [43])
The ISBS (29) and its linear operators are assigned an order p if
C=C=..=C,=0,C,, #0.
Definition 3.1.2 (Local Truncation Error) (Jain et al. [58])
In Definition 3.1.1, the word C

cation error (18), as

»+2 denotes the error constants that represent the local trun-

L.T.E. = C, ,h""*u*? (x,) + Oh+) (43)

Definition 3.1.3 (consistency) (Ken et al. [59])

A consistency is defined as any LMM class where the order is larger than or equal to one.

Definition 3.1.4 (zero-stability) (Bruce [60])

A class of LMM is considered zero-stable if the roots of the differential equations under
study do not exceed the order of the differential equations under consideration.

Definition 3.1.5 (convergence) (Lambert [61])

An LMM class is considered convergent if it is consistent and zero-stable.

Definition 1.3.6 (Singular matrix) (Lambert [61])

A singular matrix is a matrix with zero determinant.

Definition 1.3.7 (Maximal order) (Jain et al. [58])

The LM technique is said to be of maximum order if its order is 2k for even k and 2k — 1 for
odd k.

Definition 1.3.8 (Non-singular matrix) (Jain et al. [58])

A non-singular matrix is one whose determinant does not equal zero.

Definition 1.3.9 (P-stability) (Ken et al. [59])

If an LMM’’s periodicity interval is (0, co), it is considered P-stable.

Definition 1.3.10 (Identity matrix) (Jain et al. [58])

a matrix where all other entries are zero and the leading diagonal is one.

Definition 1.3.11 (A-stability) (Hericin [62])

If an LMM’s periodicity interval is (—o0, 0), it is considered A-stable.

Definition 1.3.12 (Matrix) (Hericin [62])

A rectangular array of integers that adheres to certain combination laws is called a matrix.

Definition 1.3.13 (Inverse of Matrix) (Ken et al. [59])

The inverse of a matrix A denoted by A™" is given as A~' = “d‘jT(‘m. where adj(A) is the ad

joint of matrix A and |A| is the determinant of the matrix.
Definition 1.3.14 (Row matrix) (John [63])

PLOS ONE | https://doi.org/10.1371/journal.pone.0301505 May 16, 2024 12/26


https://doi.org/10.1371/journal.pone.0301505

PLOS ONE

Unveiling the Power of Implicit Six-Point Block Scheme

A matrix with a single row of elements.

Definition 1.3.15 (Column matrix) (John [63])

A matrix with a single column of elements.

Definition 1.3.16 (Unit matrix) (Hericin [62])

A matrix in which all the elements on a principal diagonal are equal and all the non-diago-
nal elements are equal to zero.

Definition 1.3.17 (Null or Empty matrix) (Bruce [60])

A matrix in which all its elements has zero.

3.1.1 ISBS’s order and error parameters. The ISBS are analyzed using the procedure and
approach described in 3.1.1. Each of the (29)-(40) that made up the ISBS is looked at. Conse-
quently, the ISBS has error constants Cp o =Cyandisoforderp=17,7,7,7,7,7,7,7,7, 7]T

respectively.

C, = (6.65 x 107,1.64 x 1072,2.57 x 107%,3.50 x 107%,4.48 x 107%,5.14 x 107%)"
(1.14 x 1072,8.47 x 107,1.00 x 1072,8.47 x 107%,1.14 x 1072,0)"

3.1.2 Consistency of the ISBS. Applying definition of Consistency in (3.1.3), the ISBS
(29)-(34) together with the derivative (35)-(40). should the method’s order be larger than or
equal to one, it is considered consistent. Since the ISBS has order p =7 > 1, it is consistent
(Omole et al. al. [64]).

3.1.3 ISBS’s zero stability. Similarly, the first characteristics polynomial of the ISBS, pro-
vided by (Fatunla [65]), may be used to establish the zero-stability of the ISBS.

I1(q) = det(qU,, — F) =0 (44)
Thus,
/1 0 0 0 O O 0 00 0 0 1\
01 0 0 00O 0 00 0 01
0 01 0 0O 0 00 0 01
I(z) = |q - =0
0 001 00O 0 00 0 01
00 0 0 1 0 0 0 0 0 0 1
L \0 0 0 0 0 1 00 0 0 0 1/
(q) =q°(g - 1) =0, (45)

solving for the values of g in (46) to obtain g =0, 0, 0, 0, 0, 1. Hence, worth concluding that the
ISBS is hence zero-stable.

3.1.4 ISBS’s convergence analysis. As per the definition given in Definition 3.1.5, the lin-
ear multistep method just has to exhibit consistency and zero-stability. Therefore, the ISBS’s
zero-stability and consistency indicate that it is convergent throughout, so ending the proof;
see Henrici [62].
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3.1.5 Absolute stability region of ISBS. Lastly, the method outlined in Lambert [61] and
Yakubu et al. [66] is used to analyze and discuss the stability of the ISBS.

M(z) = zB(I — zA) 'U + V (46)

Not only the stability function but also;

p(n,z) = det(—M(z) + nl) (47)

The formulae (29)-(34) for the stability characteristics were created as,

Y A U [ hn(u)
SR (| (48)
Yi+1 B 14 Yt—l
um+1.n um+17n [ 0 11 l 1 O]
Y., = Y = V= I =
Ui ' U6 01 0 1

Consequently, n denotes the roots of the ISBS’s first characteristics polynomial; a detailed
presentation of the other parameters may be found in (Appendix B in S1 File). The parameters
of A, B, U, V, M, and I (as they appear in Appendix C in S1 File) are then substituted into Eqs
(47) and (48) to get the stability polynomial (49) and its first derivative (50). After that, the
MATLAB (R2012a) environment is used to code this. In the text following, Fig 1 illustrates the

0.08 ! ! T ! T ! J
0.06
0.04

0.02

-0.02
-0.04

-0.06

008 i ] | i 1 i
-0.02 ] 0.0z 0.04 0.06 0.0a 01 012 0.14

Re (z)

Fig 1. ISBS’s Stability domain.
https://doi.org/10.1371/journal.pone.0301505.g001
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stability of the ISBS.
2763 , 507 5
= 2y 1) ¢ 49
1) = (o450 2455 2= 1)g (49
oy 2763 , 507 s
n(z)—<<p+28oz+352 1)(p (50)

The complex plane beyond the boxed image makes up the ISBS’s absolute stability area in
Fig 1, which is P-stable since its interval falls within (0.13, 0), which is inside the defined inter-
val for P-stability as contained and established in Definition 1.3.9 (oo, 0).

4. Computational procedure of PDEs originating from physcial
system using ISBS

This section presents the process by which the ISBS is being applied to physical system prob-
lems. The variable y is discretized via a slightly similar approach of (Liu et al. [24] and Ramos
& Vigorous [38]) as illustrated as follows;

_b—a d—c

7 yj:C_l_jhv;j:Ov]-v"'?th: (51)

xf:a+jh7 j:071,"'7M'7 Ay N

N is the number of sub-intervals or iterations.

Thus, it follows that j = 0, - - -, M for a fixed x in the interval [a, b],and j=0, - - -, Nfor a
fixed y in the interval [, d]. The difference operator approximates the spatial derivative and
replaces it appropriately,

Ou _u(x,y,,) —ulx,y,,)

= 52
- o , (52)
@ ~ u(xvyiJrl) B 2u(xayi) + u(xayi—Hy) (53)
Oy? (Ay)* ’
The numerical approximation to u(x, y;,1) is denoted by u(x, y;,1).
Consequently, (1) has assumed the semi-discretized form displayed below.
dzui,n _ i [—b |f"(’@)ﬁ'+1) — 2u(x,y;) + ”(%%‘—13)’)] —p du, , —
a2  a, Ay)? e dx
: (Ay) (54)
_ u(xvyiH) — u(x7yi—l) o
ri‘n |: 2A}/ ki,nui‘n + gi,n]7

The non-homogeneous terms are represented by g, the step-size by h, and A represents the
tridiagonal matrix generated by (54) (see to Appendix D in S1 File for details). Using Mathe-
matical 11.0, which offers features such as Findroot for nonlinear problems and Nsolve for lin-
ear ones. Next, we applied the proposed ISBS to the resultant equations of ODEs with starting
or boundary conditions Eq (54).

5. Numerical examples with ISBS application

This section presents the ISBS’s accuracy and convergence. We solved three numerical
instances of partial differentials from the literature that originate from physical systems in
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Table 1. The numerical results for example 1.

two-dimensional space. In addition to comparing the mistakes created by various approaches
that are currently in the literature, a comparison was done between the precise results and the
numerical solution generated by ISBS. The findings are tabulated to highlight the accuracy of
ISBS and its advantages over the already existing methods in the literatures. The proposed
method, ISBS, computes its absolute error and compares its results with those of other meth-
ods that have been proposed previously, such as Yang et al. [67], Adeyefa and Omole [68],
Lakestani & Dehghan [69], and Igbal & Abass [70]. This discussion also includes the
approaches’ outcomes. The Error obtained namely; Absolute error (AEs) is given

by = Max | a — b |. It should be noted that a = u(x,,, y,,,) is the exact solution whereas, b = u,,,(y,
is the approximate solution at the mesh point chosen.

5.1 Example 1

Consider the two-dimensional second-order elliptic differential equation which was examined

by Yang et al. [67].
@—1——:(362—1-)/2)6” for0<x<2, 0<y<l1 (55)
Ox2  Oy? ’ - -l

in addition to the subsequent boundary requirements,

u(x,00=1, 0<x<2

ulx,1)=¢, 0<x<2
(56)
u(0,y) =1, 0<y<1
u(2,y)=¢e¥, 0<x<1
The given problem (55) has an analytical solution as
u(x,y) =ev. (57)

o ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.
o LIELM—Legendre Improved Extreme Learning Machine by Yang et al. [67]
« AEs—Absolute errors.

In Table 1, columns 1, 2, and 3 illustrate, respectively, the outcomes of the theoretical solu-
tion or analytical solution, computed solution, and the absolute error for example 1 and the

N

® AN

Exact solution
1.03174340749910280
1.01257845154063440
1.01387335406817300
1.00784309720644800
1.00501252085940100
1.00691278374453700
1.00511528351748440
1.00391388933834750
1.00314092239219570
1.00250312760579520

https://doi.org/10.1371/journal.pone.0301505.t001

ISBS solution
1.03174340748469340
1.01257845155039820
1.01387335397299160
1.00784309719585850
1.00501252085757000
1.00691278433307920
1.00511528368699920
1.00391388939492900
1.00314092241527280
1.00250312761497740

AE in ISBS
1.4409 x 107!
9.7637 x 1072
9.5181 x 107
1.0590 x 107!
1.8310 x 1072
5.8854 x 10 '°
1.6951 x 107°
5.6582 x 107!
2.3077 x 107
9.1822 x 1072
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Table 2. Comparison of AEs in ISBS and LIELM for example 1.

N Errors in ISBS Error in LIELM
6 9.5181 x 107! 1.6469 x 107!
8 1.0590 x 107! 6.7706 x 1072
10 1.8310 x 10712 1.8110 x 10722
12 5.8854 x 10710 8.8917 x 107
14 1.6951 x 107*° 1.4464 x 107
16 5.6582 x 107! 3.7625 x 107

https://doi.org/10.1371/journal.pone.0301505.t1002

—— ISBS

—(— LIELM

Log,q(Error)

10-11 A

6 8 10 12 14 16
Number of Sub- intervals
Fig 2. Logarithm curve of errors in ISBS versus LIELM for example 1.

https://doi.org/10.1371/journal.pone.0301505.9002

ISBS solution. It is evident that the computed solution’s findings converge to the theoretical
solution. Similar to this, Table 2 compares the ISBS’s performance with LIELM to assess the
ISBS’s accuracy in relation to LIELM, as reported by Yang et al. [67]. In Fig 2, we also show the
logarithm plot comparing ISBS vs LIELM. As a result, ISBS data indicate higher productivity
compared to LIELM.

5.2 Example 2

Secondly, we take into consideration the two-dimensional second-order PDEs arising in Phys-
ical system studied by Yang et al. [67] and also Tsoulos et al. in reference [71].

2 2
%Jrg—; — _9Sin(x)Cos(y), 0<x<1, 0<y<l, (58)

with boundary conditions
u(x,0) =Sin(x), 0<x<1
u(x,1) = Sin(x)Cos(1), 0<x<1
u(0,9)=0, 0<y<1
u(1,y) = Sin(1)Cos(y

~

b
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Table 3. Numerical result for example 2.

N Exact solution ISBS solution AEs in ISBS

2 0.478489465369979100 0.478489049493883600 4.1588 x 1077
4 0.247094768728200400 0.247094755255772100 1.3472 x 1078
6 0.164669829139475100 0.164669615418555000 21372 x 1077
8 0.124431307302325040 0.124431256843562420 5.0459 x 107%
10 0.099708650872138790 0.099708634541371400 1.6331 x 1078
12 0.082619333527632820 0.082619819444321240 4.8592 x 107"
14 0.071187278914784780 0.071187517966933400 2.3905 x 1077
16 0.062337366692613846 0.062337492660293650 1.2597 x 1077
18 0.055882996075642600 0.055883070085200895 7.4010 x 1078
20 0.049916708323414080 0.049916750915477440 42592 x 1078

https:/doi.org/10.1371/journal.pone.0301505.t003

The given exact solution is

u(x,y) = Sin(x)Cos(y)

(60)

o ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.

o LIELM—Legendre Improved Extreme Learning Machine by Yang et al. [67]

« CNN—Constructed Neutral Network produced by Tsoulos et al. [71]

e MAEs—Maximum Absolute Error

This section covers the ISBS numerical calculation results for example 2, which are pre-
sented in the Table 3 provided. Meanwhile, the assessment of AEs error in ISBS is made with
LIELM proposed by Yang et al. in [67]. On the other hand, in Table 4, the MAEs of ISBS at
N =2 was determined and compared with other existing methods namely LIELM and CNN
developed by Yang et al. [67] and Tsoulos et al. [71] respectively. It could be seen that in all the
ISBS shows high-level of performance in terms of accuracy and convergence than other exist-
ing methods. The logarithm plot of Table 5 is also shown in Fig 3 to demonstrate the results
graphically for easy analysis.

Table 4. Comparison of MAEs in ISBS with LIELM and CNN for example 2.

N MAE:s in ISBS MAEs in LIELM MAEs in CNN.
2 2.15x 107! 1.46 x 107% 2.50 x 107%°
https://doi.org/10.1371/journal.pone.0301505.1004
Table 5. Comparison of LIELM and ISBS absolute errors for example 2.
N AEs in ISBS AEsr in LIELM
6 21372 x 107 1.147 x 1072
8 5.0459 x 107% 1.9407 x 107
10 1.6331 x 1078 9.0274 x 107%°
12 48592 x 1077 5.0834 x 107
14 2.3905 x 1077 3.5712x 107
16 1.2597 x 1077 2.8968 x 107

https://doi.org/10.1371/journal.pone.0301505.t1005
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10-4 |
10—5,
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N

Fig 3. Logarithmic curve of errors in ISBS versus LIELM in for example 2, Shows the comparison analysis and
performance of the ISBS and other existing methods in the cited literatures.

https://doi.org/10.1371/journal.pone.0301505.9003

ISBS

—(— LIELM

Logq(Error)

5.3 Example 3
Last but not least, Lakestani and Dehghan [69] solved the non-linear Klein-Gordon Equation

with non-homogeneous term.
2 2
J'u O'u

T HWJF k(u) = g(x,t), fort>0 (61)

It follows that; g(x, t) = 6xt(x*—12) + x°t°, p=1,and k(u) = W,
with either initial or any other similar boundary conditions on the interval [0, 1] below,

u(x,0) =0,
u(x,1) =,
u(0,t) =0, (62)
u(l,t) =13,

The theoretical solution of (61) is given by,
u(x, t) = £#x° (63)

o ISBS—Implicit Six-point Block Scheme of uniform order 7 proposed in the present work.

o FIBUM—Five-step Implicit Block Unification Method of order 6 constructed by Adeyefa &
Omole [68].

o CWSCM—Chebyshev Wavelets Spectral Collocation Method developed by Igbal & Abass
[70].

« MFDCM—Modified Finite Difference Collocation Method examined by Lakestani & Deh-
ghan [69].

o CM—Collocation method by Lakestani & Dehghan [69].

Next is to present the numerical results of example 3, which is a notable non-linear applica-
tion problem arising from physical system. In Table 6, the computation of results of ISBS were
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Table 6. The numerical results of ISBS for example 3.

t Exact solution ISBS solution AEs in ISBS
0.1 9.702990000000002 x 10~ 9.702990000000003 x 10~ 1.93x 107
0.2 7.762392000000001 x 10™*# 7.762392000000002 x 10~ 2.11x 107
0.3 2.619807300000000 x 10~ 2.619807300000000 x 10" 3.08 x 107
0.4 6.209913600000004 x 10~ 6.209913600000002 x 107" 2.47 x 1072
0.5 1.212873749999999 x 1076 1.212873750000000 x 1076 493 x 1072
0.6 2.095845840000002 x 107 2.095845840000000 x 107'¢ 1.97 x 107!
0.7 3.328125569999999 x 107 3.328125570000000 x 1076 1.48 x 107!
0.8 4.967930880000004 x 10~*¢ 4.967930880000001 x 107*6 2.96 x 107!
0.9 7.073479710000002 x 10~ 7.073479710000003 x 107'¢ 9.86 x 107!
1.0 9.702990000000009 x 10~ 9.702990000000000 x 107'¢ 7.89 x 107>

https:/doi.org/10.1371/journal.pone.0301505.t006

Table 7. On the comparison of AEs of different methods with ISBS for example 3.

presented namely, the analytical solution, the ISBS solution and the Absolute error. Likewise,
Table 7 showcase the comparison of the absolute errors of the ISBS versus other similar exist-
ing recent methods in the literature. In particular, FIBUM of algebraic order six constructed
by Adeyefa & Omole [68], CWSCM developed by Igbal & Abass [70], MFDCM and CN both
proposed by Lakestani & Dehghan [69]. It is obvious that ISBS of algebraic order seven outper-
formed FIBUM of algebraic order six, In the same vein, ISBS performed almost as thrice as

much as the existing methods as shown in Table 7. The comparison of the absolute error is
also shown by employing a logarithm plot for all the values of £, say = 0.1, 0.2, . . ., 1.0. in Fig
4. Tt could be seen that Fig 4 shows the comparison analysis and performance of all the

methods.

Finally, it is worth providing example 3 surface plot to show how the ISBS solution or com-
puted solution, exact solution, and the absolute errors in Figs 5-7 behave in different ways. In
general, it can be seen that the exact solution frequently converges to the ISBS solution. As a
result, the absolute errors was relatively small. We come to the conclusion that the ISBI has a
wider range of applications than the currently used methods described in the literature, is
computationally dependable, and provides high-order precision.

6. Conclusion

In this report, the Power of implicit six-point block scheme had been Unveiled with the aim of
advancing numerical approximation of two-dimensional PDEs in physical systems. To tackle

t AEs in FIBUM AEs in CWSCM AEs in MFDCM AEs in CM AEs in ISBS
0.1 7.89 x 107> 45%x 107" 3.9% 107 1.5x 107 1.93 x 107*
0.2 473 x107° 6.5%x 107" 63%x107% 1.7x107% 2.11x107%
0.3 2.52%x107% 3.4x1071° 3.0x 107 9.7 x 107 3.08 x 107
0.4 3.79x 107% 5.9x 10710 9.1x 107" 1.8x107% 247 x 107
0.5 7.59 x 107 9.3 x 1071 12x107% 9.7 x 107 493 x 1072
0.6 1.77 x 1072® 2.6x 1071 42 x107% 1.7 x 107 1.97 x 107!
0.7 1.51x1072® 1.7 x 107 32x107% 1.6x107% 1.48 x 107!
0.8 3.03%x 1078 3.6x 10710 6.1x107% 1.1x107% 296 x 107!
0.9 2.02x107% 5.4 %1071 5.7 x 107% 2.0x107% 9.86 x 107!
1.0 9.09 x 10728 14x107% 5.5 % 107% 8.7x107% 7.89 x 107
https://doi.org/10.1371/journal.pone.0301505.t007
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Fig 4. Comparison of AEs of different methods with ISBS for example 3, shows the comparison analysis and
performance of the ISBS and other existing methods.

https://doi.org/10.1371/journal.pone.0301505.9004

Fig 5. ISBI solution for example 3, Shows the ISBI computed solution in surface plot for example 3.
https://doi.org/10.1371/journal.pone.0301505.g005

many physical system partial differential equations (PDEs), we embarked on a comprehensive
theoretical analysis and practical application of an innovative solution technique known as the
Implicitly Stable Boundary Scheme (ISBS). Leveraging orthogonal polynomials as the trial
functions and employing sophisticated collocation techniques, we meticulously crafted a
robust framework for PDE resolution. One of the hallmark achievements of our study was the
meticulous examination of the region of absolute stability using the boundary locus approach,
revealing remarkable stability properties, as vividly illustrated in Fig 1. Notably, our investiga-
tion unveiled that the seventh-order convergence ISBS is not only zero-stable but exhibits
exceptional consistency, laying a solid foundation for its widespread applicability. Focusing on
semi-discretizing the governing equations by substituting the y-function or time-dependent
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Fig 6. ISBI exact solution for example 3, Shows the ISBI exact solution in surface plot for example 3.

https://doi.org/10.1371/journal.pone.0301505.9006
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Fig 7. Absolute error (AEs) for example 3, Shows the Absolute error (AEs) in surface plot for example 3.

https://doi.org/10.1371/journal.pone.0301505.9007

derivatives, we transformed the complex PDEs into ordinary differential equations (ODEs),
ripe for ISBS resolution. Through rigorous testing across three significant physics and engi-
neering applications, our study unveiled compelling insights meticulously tabulated for clarity.
In our pursuit of numerical precision, we meticulously compared the ISBS solutions with theo-
retical counterparts, presenting comprehensive numerical results in Tables 1, 3 and 6. Further-
more, we conducted a thorough evaluation against other established techniques, showcased in
Tables 2, 4, 5 and 7, with logarithmic plots in Figs 2-4 providing visual clarity. The
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culmination of our efforts is exemplified in Figs 5-7, where surface plots for case 3 vividly
depict the robustness and accuracy of the ISBS approach. The profound alignment between
our findings and alternative methodologies underscores the efficacy of employing orthogonal
polynomials as approximate functions in addressing one and two-dimensional physical system
problems. Looking ahead, our future endeavours will be directed towards advancing the
numerical solution of higher-order PDEs, accommodating varying conditions and variable
step-sizes, further solidifying the practical utility and versatility of ISBS in tackling complex
physical system dynamics.
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