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The present study investigated crustal structures and geological bodies within selected areas

of the southern Benue trough and the adjacent crystalline basement. It utilized high-resolution
aeromagnetic data to provide original insights into the contrasting structures and geological

bodies within the area, while also identifying promising areas for further mineral and hydrocarbon
investigations. The aeromagnetic anomaly data were analyzed using various techniques, including
total gradient magnitude, pseudo-gravity transformation, tilt derivative, and source parameter
imaging. The total gradient magnitude anomalies revealed a considerable component of the basin
affected by block faulting which may have resulted from severe tectonic and structural deformation
of the metamorphic basement and the subsequent injection into the sedimentary sequence, a few
intrusions. The pseudo-gravity transformation identified a large igneous body in the sedimentary
basin which is characterized by positive pseudo-gravity anomalies and surrounded on both sides

by linear negative anomalies that signify a rift zone. The positive amplitude of the tilt derivative
identified subtle linear magnetic minerals associated with the geologic structure and igneous bodies
that suggest considerable mineral exploration prospects. A two-dimensional model of the source
parameter imaging reveals the basement below the sedimentary basin to be intensely fragmented
and variably subsided with the floor of the basin forming irregular upward and downward folds. In
conclusion, the findings suggest promising prospects for mineral exploration along the margin of the
sedimentary basin and potential hydrocarbon resources in the northeastern segment of the basin,
which is characterized by fewer intrusions.

The Nigerian Benue trough is an intra-continental rift basin during the Cretaceous period'-*. The trough contin-
ues inland from the petroleum-bearing Niger Delta basin and stretches nearly 800 km to northeastern Nigeria,
where it bifurcates into the northern (Gongola) and the southern (Yola) arms. Figure 1 is a reconstructed map
showing the present-day (0 Ma) boundaries of the Benue trough; the Niger Delta basin (a protraction of the
South Atlantic marine sediments) and the crystalline basement of Nigeria”®. The southern arm of the Benue
trough is connected to a deep depression beneath the southern boundary of the Chad basin while the northern
arm continues below the Chad basin as a protracted depression that stretches much further than Lake Chad'->*.
The Nigerian Benue trough is seemingly divided into the Lower, Middle and Upper parts with no observable
geological boundaries. It has widths between 130 and 150 km®.
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Figure 1. Reconstructed map of Nigeria at 0 Ma showing the boundary of the Benue trough, Niger Delta basin
and the crystalline basement.

Magnetic data have played major roles in understanding and characterizing geological formations around
the world'*'. The data is used frequently to delineate magnetic thin sheets or contacts such as faults. This has
been used frequently in petroleum exploration where magnetic data is used to identify faults in the basement that
may have control over the depositional history of the sedimentary basin'>-"°. In this case, the interpreter must
have an understanding of the structural and lithological framework and the importance of regional deposition
patterns?*-24,

Several groundbreaking studies have been conducted in the Benue trough, many of which have significantly
enhanced our understanding of this geological environment. Pioneering studies by authors such as"*-** consist-
ently reveal a distinctive central axial positive gravity anomaly, flanked by elongated negative gravity anomalies.

Reference® analysed airborne magnetic data in the lower and middle Benue trough and unveiled several
igneous rocks within the sedimentary sequence and the crystalline basement. These rocks are characterized by
varying thicknesses and magnetization polarities, and together with the basement, exhibit depths ranging from
1.7 to 7.30 km.

Reference’ promulgated a geological model for the origin of the Benue trough during the Lower Cretaceous.
Notable findings include the formation of isolated basins in the Aptian, the development of a substantial delta in
the upper Benue trough during the Albian, and a Turonian transgression connecting Atlantic and Tethys waters
through the Sahara, Niger basins, and Benue trough. The proposed tectonic evolution involves transcurrent
faulting, resulting in compressional and tensional regimes, with major compressional phases occurring during
the Santonian and at the end of the Cretaceous. The study suggested sinistral wrenching along the trough during
the initial stages of the opening of the Gulf of Guinea.

Additional key findings by many authors including*>*%**3> have significantly advanced our knowledge.
Despite these collective efforts, certain knowledge gaps persist, including the use of low-resolution geophysical
data, insufficient data to consolidate the trough development in relation to plate drifting, and a predominant focus
on the Lower Cretaceous to the end of the Cretaceous, leading to a gap in understanding more recent geological
features and potential post-Cretaceous changes.

However, recent studies by many authors, including®®*¢*” have provided additional insights into the geologi-
cal features and potential hydrocarbon and mineral resources by analysing one, two, or all of airborne magnetic
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data; gravity data; and satellite data in various parts of the Benue trough. Despite these advancements, criti-
cal gaps persist including the absence of an up-to-date review of the trough development in relation to plate
movement, as well as an inept description of the contrasting features of the Cretaceous basin and the adjoining
crystalline basement.

Location and geologic setting

The study area extends from longitude 5°30 E to 8°30' E and latitude 6°00" N to 8°00' N encompassing parts of
Benue, Kogi, Edo, Enugu, and Ondo, as well as small portions of Nasarawa, Anambra, Ebonyi and EKiti States in
the southern parts of Nigeria (Fig. 2). It is underlain by the Cretaceous sediments of the southern Benue trough
and the crystalline basement of southwestern Nigeria. The Cretaceous sediments in the study area extend slightly
downward, intersecting with the Tertiary sediments of the Niger Delta basin, and westward into the crystalline
basement of southwestern Nigeria.

Sedimentary terrane

The sedimentary basin in the study area is part of the southern Benue trough and a small part of the Niger Delta
basin (Fig. 3). It is underlain, essentially, by the Cretaceous sediments in the north-eastern segments and by the
Tertiary sediments in the southern segments****%. However, it is worth mentioning that the Cretaceous sediments
in the northeastern segments are specifically Upper Cretaceous, whereas the Tertiary sediments in the southern
segments range from Tertiary to Quaternary. The part of the study area adjacent to the coastline has an extensive
area of Quaternary sediments that continue inland along the Niger-Benue River. The sedimentary sequences in
the study area were intruded by mafic igneous rocks belonging to the Tertiary or later®*>4245,

Crystalline terrane

The crystalline basement in the study area displays a polycyclic sequence of reactivated Archaean basement
comprising variably and extensively migmatized gneisses, orthogneisses, paragneisses, fragments of silicified
quartzite-schist belts, and Pan-African granitoid (Fig. 3). The crystalline basement has several regional fractures
cutting through it, most of which exhibit NE-SW and NNE-SSW structural alignments. The Kalangai-Zungeru-
Ifewara and Anka-Yauri-Iseyin shear zones are notable examples of such regional fractures. Incidentally, a few of
the regional fractures, particularly transcurrent faults extend to the South Atlantic Ocean, where they connect
with the Atlantic ridge system*-°!.

Cretaceous and tectonic evolution of the Benue Trough

The Nigerian Benue trough is an aborted subset of a triple junction at the time of the opening of the Gulf of
Guinea'~**>%, The trough formation was initiated by the rifting of the African and South American continental
plates, which began in the Cretaceous period®>**%. To understand the development of the trough in relation
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Figure 2. Location map showing the Nigerian provinces that fall within the study area.
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Figure 3. Geological map of the study area showing the regions underlain by the sedimentary and crystalline
rocks.

Fracture

to plate movements, we present a pre-drift reconstruction of Gondwana at 200 Ma which corresponds to the
early Jurassic (Fig. 4a)”. The map shows the initial position of the African and South American plates. The con-
tinents in the southern hemisphere originally existed as one supercontinent at this period**-*’. However, during
the Lower Cretaceous, at about 100 Ma, the seafloor began to spread and the supercontinent split, causing the
African and South American plates to drift apart. This led to the opening of the South Atlantic Ocean (Fig. 4b)’.
The drifting of the continents resulted in continental volcanic activity, earthquakes, and the development of
regional continental fault systems®®'-%*. During this period, the Nigerian Benue trough, aided by the regional
intra-sedimentary fault system, began to open which was later aborted. The opened Benue trough experienced
marine transgression which led to the deposition of both continental and marine sediments. This was followed
by the reactivation of the intra-sedimentary fault system that resulted in major structural deformation character-
ized by the development of synclinal and anticlinal folds and the subsequent injection of igneous rocks into the
basement and the sedimentary sequences®’. Figure 4c shows the present-day position of the African and South
American plates which corresponds to the Holocene (0 Ma). The present-day coastline and intra-continental
sedimentary thickness across the South Atlantic Ocean are equally shown in Fig. 4d”%.

Data
Magnetic data
High-resolution aeromagnetic anomaly datasets across the study area were procured from the Nigerian Geo-
logical Survey Agency (NGSA). The acquisition of the unprocessed data was done by Fugro Airborne Surveys
company along NW-SE profiles at a magnetic data recording interval of 0.1 s and a mean barometric flight
altitude of 80 m®. The data were acquired at 500 m profile spacings and 2000 m tie-lines®. Essential corrections
and data improvements including the removal of temporal variations and the international Geomagnetic refer-
ence field (IGRF) were carried out by Fugro Airborne Surveys company®“. Following the elimination of the
temporal fluctuations and the IGRE, the residual dataset, representing the magnetic field from the local geological
features, underwent gridding at 100 m intervals using the Minimum Curvature technique®®” and presented as
a 2-D map (Fig. 5).

The analysis and description of low and high-amplitude magnetic areas reveal distinctive features in the
crystalline basement adjacent to the Benue trough. This area exhibits a complex distribution of short-wavelength
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Figure 4. Reconstructed maps showing (a) the pre-drift stage of Gondwana (b) the early-drift stage (c) the
post-drift stage (d) the opened Atlantic Ocean and the present-day continental sediments thickness.

anomalies. The boundary of the Cretaceous basin and the crystalline basement is generally discernible through a
series of magnetic lows, except in the northern segment where a high-amplitude magnetic anomaly extends from
the crystalline basement into the Cretaceous basin. Furthermore, within the Cretaceous basin, magnetic lows
and highs form alternating belts of long-wavelength anomalies. These are not continuous, instead, they manifest
as elongated, separate anomalies. To further distinguish between the two geological terranes, the sedimentary-
basement contact was demarcated with a greenish-yellow line (Fig. 5). Furthermore, two profiles A-B and C-D
were taken, each stretching 76 km and 147 km across notable parts of the study area. The interpretation of these
profiles was based on 2-D structural and stratigraphic analysis.

Methods

Total gradient magnitude analysis

Total gradient magnitude (TGM) is one of the edge detection techniques used for interpreting potential field
data®®-"2 Tt is one of the qualitative techniques for interpreting potential field data for delineating geologic struc-
tures and rocks. It works by forming maxima directly on the edges of the causal bodies®*-"2 The tool was applied
to the aeromagnetic anomaly data of the study area to detect the main geological features and structural align-
ment which are mainly two-dimensional. The non-dependence of the method on the magnetization direction,
remanent magnetization, dip angle, and depths to the top and bottom of sources for two-dimensional magnetic
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Figure 5. Residual aeromagnetic anomaly map of the study area showing NW-SE profiles.

bodies made it an excellent tool for the study area”’*. Details of the TGM are available in the published work
of*®72, The expression for TGM interpretation for gridded magnetic data is shown in Eq. (1).

2 2 2
ot = (5 + (57) + (5)'

where % and g—F are the first-order gartial derivatives of the residual magnetic intensity field F in x and y hori-
F

zontal directions respectively while 57 is the first-order partial derivative of the residual magnetic intensity field
F in a z vertical direction. The aeromagnetic data of the study area were acquired such that, the profile spacing

is sufficiently greater than the station distance, that is y > x, such that the lim (%) = 0. Therefore, Eq. (1)

— 00
75,76 7

reduces to Eq. (2) for delineating two-dimensional geological features

IF\*>  [(0F\’
|TGM (x,y)| = \/(ax> + (5) : )

Pseudo gravity transformation

A pseudo-gravity is an assumed gravity anomaly observable when a magnetization contrast is replaced by an
equivalence density contrast’’-8!. Due to the dipolar nature of magnetic sources and the fact that the magnetiza-
tion of a body can point in any direction, magnetic responses are far more complicated than gravitational ones.
Pseudo-gravity transformation is an anomaly simplifier, making the analysis of magnetic data considerably
simpler. The transformation may be a helpful tool for interpreting magnetic anomalies, not because a mass distri-
bution exactly corresponds to the magnetic distribution beneath the magnetic survey, but rather because gravity
anomalies are sometimes more instructive and simpler to analyse than magnetic anomalies®-%2. By converting the
magnetic anomaly to a pseudo-gravity anomaly and examining the anomaly for maximum horizontal gradients, it
is possible to make use of the fact that gravity anomalies over tabular bodies have the steepest horizontal gradients
roughly over the edges of the bodies” %5183, Furthermore, pseudo-gravity transformation can potentially reduce
the stronger effect of shallow magnetic sources and increase the dominance of magnetic anomalies from deeper
sources (Panepinto et al.®!). The relationship between the magnetic potential and gravitational field established
by Poisson leads to the pseudo-gravity transformation®'. The magnetic and gravitational scalar potentials of a
body with uniform magnetization and density in volume v are given by Egs. (3) and (4) respectively’”?!
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o=, ] L

U(q) = Gp// V%dv, (4)

where g is the data observation point, r is the source distance, M is the magnetization distribution, G is the gravi-
tational constant and p the source density. Using Eqgs. (3) and (4) we obtained Egs. (5), (6) and (7):

V(q) = —G—pMVq U, (5)

where
gm = VU, (6)
V(a) =~ M ?

From Poisson’s relation, gy refers to the component of gravity in the magnetization direction. The pseudo-
gravity operator converts the magnetic anomaly into a gravity-like response as if the body’s magnetism were
replaced with the same density distribution, where density and magnetic susceptibility have a perfect linear
association””#%2, The pseudo-gravity transformation was applied to the aeromagnetic anomaly data in the current
study area to simplify the magnetic anomaly and, where necessary, to locate magnetically strong and magneti-
cally dense geologic bodies within the Cretaceous basin. Since the pseudo-gravity map is an equivalent gravity
emanating only from magnetic sources and because the main sources of strong magnetic anomalies in the basin
are the igneous intrusions and the basement, the pseudo-gravity analysis was found suitable for these purposes.
Further details regarding the theory underlying the pseudo-gravity integration are available in the published
work of Ref.””7881,

Tilt derivative analysis

The tilt derivative (TDR) of a potential field data computes the arctan of the ratio of the potential field’s first-
order vertical derivative to its horizontal gradient magnitude®. The tool works by enhancing magnetically quiet
sources that were previously concealed by high-amplitude magnetic sources. It is suitable for delineating magnetic
minerals hosted for example by a more magnetic mafic igneous rock’. The TDR, however, is very sensitive to the
geomagnetic inclination and declination”. Further details of the TDR method are contained in the published
work of Ref.#*. For this study, the dependence of TDR on geomagnetic inclination and declination was resolved
by transforming the aeromagnetic data to a pseudo-gravity map before applying it*. The TDR, according to
Ref.#* is defined as shown in Eq. (8).

FVD

TDR = tan™ ———
' THGM(x,y)] ®

Equations (9) and (10) defined each of the FVD and |HGM (x,y) |

dF
FVD = —, )
4
IF\*  [9F\’
|[HGM (x, y)| = <£) +(@), (10)

where FVD and |HGM (x, y)| are the first-order vertical derivative and horizontal gradient magnitude of the
aeromagnetic anomaly data respectively.

Source parameter imaging analysis

Reference® introduced the source parameter imaging (SPI) technique. The method is based on a complex analytic
signal that calculates source parameters from gridded aeromagnetic data. It is also known as the local wavenum-
ber technique. The tool when applied to potential field data formed peaks over isolated contacts. The estimation
of the depths is carried out without making assumptions about the source thickness®. The map is more similar
to geology than the magnetic map or its derivatives®*®®. The SPI solution grids contain information about the
edge locations, depths, dips, and susceptibility contrasts. The local wavenumber in Eq. (11) was employed in the
estimation of the depths in the source parameter imaging (SPI) method®¢¥.

9’F OF 9°F 9F | 9°F dF
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where K is the local wavenumber. The depth estimates are thus calculated using the reciprocal of the local wave-
number given in Eq. (12).

1
Depthy—o = X (12)

max

Kooy is the maximum value of K above the source edge.

Results and discussion

Total gradient magnitude anomaly map

The total gradient magnitude (TGM) analysis was applied to the aeromagnetic data to enhance short-wavelength
aeromagnetic anomalies corresponding to shallow-seated geological structures and igneous intrusions. The result
reveals a significant number of shallow-seated linear and isolation geological features that can be interpreted as
fractures and igneous intrusions respectively (Fig. 6a). The fact that the study area extends beyond the Cretaceous
basin into the crystalline basement, the TGM analysis delineates distinct structural differences between these
two geologically different environments, identifying their boundary (depicted by yellow broken lines). Notably,
the crystalline basement displays extremely complex structural architecture with most parts exhibiting imprints
of shallow-seated felsic to intermediate igneous rocks (Fig. 6b). These rocks overwhelmingly conceal the meta-
morphic basement, resulting in shallow overburden thicknesses throughout the crystalline basement®®®. The
crystalline basement equally displays complex structural orientation, probably as a result of the overprinting of
multiple orogenic structures (Fig. 6¢)*2.

In contrast, the Cretaceous basin shows distinctive igneous rock distribution, enabling the classification of
the basin into two separate regions. The first region contains a few igneous rocks, representing a fairly intruded
area. This is notable in the northeastern and southwestern parts of the study area (Fig. 6b). The second contains
several igneous rocks, representing a highly intruded region. The southeastern part and particularly most areas
around the sedimentary-basement contact are notable for a high degree of igneous intrusions. The margin of
the Benue trough and the crystalline basement in southwestern parts have been identified with indiscriminate
artisanal gold mining®®. The occurrence of gold in this area could potentially be linked to the prevalence of
igneous intrusions. In this case, the contact between these intrusions and high-grade metamorphic rocks, such
as quartz-schist, quartzite, and gneisses, could serve as possible locations to maximise the exploitation of gold.

Pseudo-gravity transformation anomaly map

To reveal magnetically strong geological formations underlying the Cretaceous basin, we applied a pseudo-
gravity transformation (PGT) to the aeromagnetic anomaly map. The result shows an elongated region of the
basin characterized by a high pseudo-gravity anomaly that stretches eastward in parts of the southern study
area (Fig. 7). This region has positive pseudo-gravity anomalies that coincide with the centre of the source and
is flanked on both sides by linear negative anomalies. This pattern is common in rift valleys and indicates pos-
sible crustal thinning in regions with negative pseudo-gravity anomalies, along with crustal thickening in areas
displaying positive pseudo-gravity anomalies>**>?*-7. By comparing the pseudo-gravity anomalies originating
from this magnetic body with those from the crystalline basement and other parts of the basin, we observe a
strong magnetic signature, suggesting the existence of a magnetically dense and highly deformed segment. It is,
therefore, possible that the deformed segments are mainly of mafic composition, resulting in highly dense and
magnetically strong features. The pseudo-gravity result in this study is therefore significant because it demon-
strated that, despite recent changes, the structures imprinted during the Cretaceous are well-preserved.

Tilt-derivative anomaly map

The tilt-derivative (TDR) map (Fig. 8) was derived from the pseudo-gravity anomaly map to enhance subtle
magnetic features within highly magnetic mafic igneous rocks (see Fig. 7). It is important to understand that
TDR is sensitive to the direction of magnetization. It was, therefore, applied to an aeromagnetic dataset that has
undergone a pseudo-gravity transformation to limit its dependency. Reports indicate the presence of lead-zinc-
copper mineralization linked with igneous rocks, specifically diorite in addition to the structurally-controlled
hydrothermal mineralization in many parts of the southern Benue trough®***%-101 However, the diamagnetic
nature of these metals poses challenges in detecting them within the host rocks, particularly mafic igneous rocks.
The ability of the TDR to enhance subtle magnetic anomalies, while simultaneously suppressing strong magnetic
anomalies was found suitable for identifying potential locations for follow-up mineral investigation. Ultimately,
the result identified possible locations to focus on a detailed investigation of the minerals. The result further
revealed the dyke intrusions within the northeastern study area, originally identified in the TGM map (see Fig. 6a
and b). The distinct linear features of these intrusions were revealed, subsequently highlighting the mineralized
segments that were not revealed with other analyses (Fig. 8). This emphasised the possibility of volcanic-hosted
lead-zinc-copper mineralization as earlier reported by Ref.***. Generally, the TDR map shows specific parts
of the sedimentary basin that may be suitable for a follow-up mineral investigation in the study area. It equally
highlights the margin of the Cretaceous basin adjoining the crystalline basement which further substantiates the
observation that the region can be a good location for a follow-up investigation of gold mineralisation. A notable
drawback associated with TDR applied to pseudo-gravity anomalies is the potential for edge deformation, which
could be misinterpreted as skew in the original data.
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Figure 6. (a) Total gradient magnitude (TGM) aeromagnetic anomaly map of the study area. (b) Total gradient
magnitude (TGM) amplitude map of the study area. (c) Hill-shaded total gradient magnitude (TGM) with
magnetic lineaments.

Two-dimensional interpretation of the SPI analysis
The igneous rocks in the study area are not exposed. This made direct measurement of their susceptibility
impossible. Similarly, we could not identify any paleomagnetic reports in the area, so no information about the
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remanent magnetization and rock magnetic polarity is available. We, therefore, relied on the source parameter
imaging (SPI) for the 2-D interpretation of the subsurface morphology. This is because the estimation of source
depth and, ultimately, the display of 2-D subsurface morphology are independent of the source magnetic polarity,
remanent magnetization, dip, and strike®.

To understand the subsurface morphology, we present two SPI 2-D models from the aeromagnetic profiles
A-B and C-D stretching 76 km and 147 km respectively across the study area. This analysis was implemented
using magnetic inclination, declination and total magnetic field intensity of —10.57%, —2.41° and 33069.47nT
respectively. The source parameters namely analytic signal amplitude, local phase, local frequency, local wave-
number and, ultimately, the source depths were estimated. The results, particularly the 2-D model A-B show the
basement to be intensely fragmented and variably subsided within the basin (Fig. 9a). The floor of the basin is
irregularly deformed leading to a considerable variation in the thicknesses of the sedimentary basin from place
to place. The irregular floor is most likely the result of an intense block faulting, which began at the time of the
formation of the trough as a ‘failed army’ of a triple junction (an aulacogen) when the Africa and South America
plates drifted apart during the Cretaceous (see Fig. 4). The complex deformation of the basement is revealed
in the SPI 2-D model C-D (Fig. 9b). The elongated segment (see distance 72 km in Figs. 7 and 8) was revealed
in the 2-D model to have experienced an upward displacement (Fig. 9b). This segment is flanked on both sides
by regions displaying downward displacements as initially revealed in the pseudo-gravity result (see Fig. 7). As
a result, a shallow sedimentary thickness of 100 m or less is observed over the parts of the basement that were
displaced upward and up to 3 km for the areas displaced downward. The deepest sedimentary piles, especially
where the basement is folded downward represent possible traps for hydrocarbon given that other conditions
are favourable. The margin of the sedimentary and crystalline basement terranes also shows intense basement
subsidence that extends downward to about 3.5 km. Furthermore, the sedimentary-basement boundary located at
54 km on profile A-B (Figs. 7 and 8), exhibits an abrupt downward displacement of the basement to a depth of up
to 3.5 km (Fig. 9a). This area likely formed during the initiation of the southern Benue trough as a consequence
of continental crust rifting. Beyond the sedimentary terrane in the crystalline basement terrane, the basement
is fairly deformed resulting in extremely thin overburden or younger sediments (Fig. 9a).

Structural map

The application of various edge detection techniques to the aeromagnetic anomaly data enhanced different
geological structures and igneous bodies within the studied area. The magnetic lineaments were automatically
extracted from the amplitudes of the TGM (see Fig. 6) while the structurally deformed elongated formation in
the study area was derived from the TDR analysis (see Fig. 8). The map shows geological features in the crystal-
line basement and the sedimentary basin. Notably, the Cretaceous basin shows only a few lineaments while the
crystalline basement is characterised by a densely populated lineament exhibiting complex geological orienta-
tion. The structurally deformed segment of the basin, however, exhibits mainly eastward structural alignments.
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Figure 9. Maps showing 2-D subsurface morphology across profiles (a) A-B. (b) C-D.

The boundary of the basin and the crystalline basement which is 54 km on the profile A-B represent important
discontinuity. The intrusion areas, including the elongated segment within the basin and along its boundary,

constitute key areas for detailed investigation aimed at mineral exploitation, particularly for minerals such as
gold, lead, zinc, and copper (Fig. 10).
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Conclusion

The utilization of aeromagnetic data for investigating the crustal structures and igneous bodies within the sedi-
mentary basin of the southern Benue trough and the adjacent crystalline basement of southwestern Nigeria has
yielded significant findings. Numerous linear geologic structures, including faults, as well as basement subsid-
ence and volcanic intrusions, have been detected. Notably, a section of the sedimentary basin exhibits substantial
upward and downward displacements of the basement, resulting from intense deformation and block faulting.
These geological events played a crucial role in shaping and reshaping the entire Benue trough since the Creta-
ceous period. The crystalline basement in the study area is separated from the sedimentary basin by a large graben
that extends as far down as 3 km. Moreover, a substantial igneous body has been identified in the southern part
of the sedimentary basin. This igneous body exhibits abnormally high density and strong magnetic properties,
characterized by positive pseudo-gravity anomalies. Surrounding the igneous body on both sides are linear
negative anomalies, indicating the presence of a rift valley. The occurrence of magnetically quite causative bodies
associated with igneous bodies within the sedimentary basin and along the margin of the crystalline basement
suggests the need for further geological surveys to identify potential locations for gold, lead, zinc, and copper
exploitation. These surveys will be instrumental in determining the specific areas where these valuable mineral
resources may be found. Finally, the areas of severe downward displacement with considerable accumulation of
marine sediments suggest high-probability zones for follow-up hydrocarbon investigation.

Data availability

The reconstruction data analysed during the current study are available in the Earthbite repository, https://www.
earthbyte.org/gplates-2-3-software-and-data-sets/. However, the aeromagnetic data that support the findings of
this study are available from the Nigerian Geological Survey Agency but restrictions apply to the availability of
these data, which were used under license for the current study, and so are not publicly available. The data are
however available from the authors upon reasonable request and with permission of the Nigerian Geological
Survey Agency.
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