

Investigation of the Mechanical Properties of Sisal Fiber Reinforced Pervious Concrete

Publisher: IEEE

Cite This

PDF

Blessing Dorothy Agboola ; Esosa Joy Onabote ; Chibuike David Nwauju ; Solomon O Braimoh ; Praise Oladapo Ejigboye ; Solomon O. Ajamu [All Authors](#)

52

Full

Text Views

Abstract

Document Sections

I. Introduction

II. MATERIALS

III. METHODS

IV. RESULTS AND DISCUSSION

V. CONCLUSION

Authors

Figures

References

Keywords

Metrics

More Like This

Footnotes

Abstract:

The limited amount or lack of fine aggregate in pervious concrete creates a distinctive pore system that facilitates stormwater infiltration and minimizes runoff volume. Unfortunately, this absence of fine aggregate also results in a less densely packed matrix of concrete, reducing its load-bearing capacity. As a result, conventional pervious concrete often fails to meet the strength and durability requirements necessary for use as a high-traffic pavement material. To address these shortcomings, researchers have sought alternative methods for enhancing pervious concrete's properties while preserving its original purpose of allowing for seepage. In this study, sisal fiber was employed as a reinforcing material in pervious concrete to evaluate its effects on the mechanical properties. To achieve this, 12 concrete mixes were produced by replacing cement with sisal fibres at 0.5, 1.0, and 1.5% by weight and using varying aggregate sizes ranging from 4.5 to 20mm. The resulting composite was cured and tested for compressive and flexural strength, shrinkage, abrasion resistance and porosity. The strength of the resulting sisal fiber-reinforced pervious concrete (SRPC) evaluated at 7, 28, and 56 days showed that while SRPC exhibited early compressive strength gain, there was a decrease in strength at 28 days as the fiber content increased. The decrease in strength became more pronounced with increasing fiber content and curing time. However, the addition of 0.5% fiber and a 4.5-9.5mm aggregate size range achieved the highest flexural strength of 18.2 N/mm² at 28 days of curing, showing a 7% increase when compared to the control concrete. The optimal fiber replacement was found to be 0.5%, and the results demonstrate that incorporating sisal fiber as a reinforcing material in pervious concrete is feasible, although it did not significantly improve the compressive strength. Nonetheless, the flexural strength of the pervious concrete was significantly enhanced after 28 days of...

[Show More](#)

Published in: 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG)

Date of Conference: 02-04 April 2024

DOI: 10.1109/SEB4SDG60871.2024.10630279

Date Added to IEEE Xplore: 15 August 2024

Publisher: IEEE

ISBN Information:

Conference Location: Omu-Aran, Nigeria

Access to this document require

Sign in to Continue

IEEE offers both personal and institutional subscriptions. If you are an academic, a practitioner, or a student, IEEE offers a range of individual and institutional subscriptions to meet your needs.

Authors	▼
Figures	▼
References	▼
Keywords	▼
Metrics	▼
Footnotes	▼

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION TECHNICAL INTERESTS	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060 CONTACT & SUPPORT	f g in y

[About IEEE Xplore](#) | [Contact Us](#) | [Help](#) | [Accessibility](#) | [Terms of Use](#) | [Nondiscrimination Policy](#) | [IEEE Ethics Reporting](#) | [Sitemap](#) | [IEEE Privacy Policy](#)

A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2026 IEEE - All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies.