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19.1 Introduction

The connection of agriculture, climate change, and sustainability has emerged as a 
critical focal point in global discourse, as humanity confronts the challenges of 
ensuring food security under the growing threats of environmental degradation and 
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climate change (Ortiz et al., 2021). As a result, conventional farming methods are 
being reconsidered and updated to become more resilient and sustainable (Okoronkwo 
et al., 2024). Over the past few decades, increased research funding has led to 
innovations that have improved crop adaptation to deteriorating soil health and climate 
stresses. The use of soil microbes is one of them. In addition to influencing the 
interaction between soil microorganisms and their function in generating biofertilizers 
and biopesticides, they are utilized as microbial inoculants and consortia to alleviate 
the effects of climate change on crop yields (Inbaraj, 2021; Kavadia et al., 2020).

The obvious effects of climate change manifest numerous impacts such as altered 
precipitation patterns, rising temperatures, increased frequency of extreme weather 
events, and shifts in pest and disease dynamics (Guo et al., 2021). These aggravate 
soil erosion, environmental degradation, and the loss of biodiversity in addition to 
endangering agricultural productivity (Eekhout & de Vente, 2022; Habibullah et al., 
2022). Therefore, in order to reduce the risks associated with climate change and to 
advance ecological resilience and sustainability, creative and adaptable agricultural 
practices should be continuously revised. Therefore, innovating means of harnessing 
the potential of beneficial microbes in the environment presents a promising prospect 
for sustainable agricultural practices and food security despite the challenges posed 
by climate change (Singh et al., 2023). Fig. 19.1 explains some impacts of beneficial 
fungi in sustainable agricultural practices.

Beneficial fungi, including a diverse array of symbiotic and endophytic species, offer a 
natural, compelling solution in this context. Fungi form intricate relationships with plants, 
aiding nutrient uptake, disease suppression, and stress tolerance. Also, they contribute to 
soil health, carbon sequestration, and ecosystem stability, offering multifaceted potential 
that can be exploited for sustainable agriculture (Alori et al., 2017; Eze et al., 2024). In 
light of the current climate change era, this study examines the diverse functions of 
beneficial fungi in sustainable agricultural practices. It is talked about how crucial it is to 
modify cropping techniques in response to climate change challenges.

19.2 Impacts of climate change on sustainable 
agricultural systems

Changing climate conditions can substantially affect agricultural productivity and food 
security (Yadav et al., 2018). Variations in temperature, humidity, and precipitation 
can cause growing seasons to be disrupted, crop yields to be decreased, soil microbial 
activities that promote plant growth to be increased, and the prevalence of pests and 
diseases to rise. Fisheries, aquaculture, and livestock production are all impacted by 
climate change, which may cause problems with the availability of food (Cheng et al., 
2022). This might have unintended detrimental effects on people's health by leading to 
starvation, infections from contaminated water, illnesses brought on by the heat, and 
various degrees of mental health issues (Myers & Bernstein, 2011). Rocha et al. 
(2022) noted that the population of humans is most susceptible to the effects of climate 
change. This is due to the fact that the effects of climate change, such as heat waves, 
extreme weather, and altered disease patterns, can weaken immunity in people, raising 
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their risk of developing respiratory issues, heat-related illnesses, vector-borne 
infections, waterborne infections, and other infections (Ebi et al., 2021). Susceptible 
populations, including the elderly, children, and marginalized communities, are 
particularly at higher risk of being affected by climate change-related stresses, leading 
to loss of livelihood, chronic exposure to pollutants and extreme weather patterns, 
epidemiological illnesses, and adaptive challenges to the changing socioeconomic 
landscape (Rocklöv & Dubrow, 2020).

Crop productivity is negatively impacted by climate change in a number of ways, 
including decreased soil fertility and crop yield, limited soil water availability, 
increased soil erosion, and increased pest spread (Tajudeen et al., 2022). According 
to Grigorieva et al. (2023), the negative impacts of climate change are expressed in 
terms of reduced crop yields and crop area.

Also, the impacts of climate change can have significant economic consequences 
(Kalkuhl & Wenz, 2020). Circular economic growth can be significantly slowed 
down by a number of factors, including damage to infrastructure, higher healthcare 

Figure 19.1 Impacts of beneficial fungi in sustainable agricultural practices.
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costs, disruptions to agriculture and food production, and the loss of coastal features 
and tourism revenue. These consequences may exacerbate already-existing disparities 
by causing social and economic inequality. The adverse effects of climate change 
encompass financial setbacks, escalated expenses for labor, and equipment (Grigorieva 
et al., 2023).

Dangerous climatic events such as flooding, extreme heat, and drought have led 
to soil degradation, which results in low crop yields (Agbola & Fayiga, 2016). 
Climate change negatively impacts crop productivity by decreasing soil fertility, 
and increasing soil erosion (Tajudeen et al., 2022). Due to changes in the ideal 
temperature ranges, climate change has also jeopardized the survival and integrity of 
many species, hastening the loss of biodiversity by gradually altering the ecosystem 
structures.

19.3 Importance of adapting cropping practices to 
climate change challenges

Adaptation refers to actions designed to increase the ability of individuals and 
communities to decrease harms from climate change that will occur in numerous 
parts of human life (Orlove, 2022). Hence, adapting cropping practices means 
activities aimed at increasing the cropping practice’s ability to lessen the harms from 
climate change. Adaptation of cropping practices to climate change includes changes 
in a cropping practice in response to variations in climate situations (Akinnagbe & 
Anugwa, 2015). Cropping practices can adapt in response to a series of events, 
such as temperature and precipitation levels, that cause droughts (in terms of intensity 
and/or frequency), which have an impact on crop yield (Smit et al., 2000). Crop 
varieties and management, innovative breeding techniques and changes in land use, 
water and soil management, agronomic practices, farmer training, and knowledge 
transfer are some of the crop practices that could be adjusted to the challenges posed 
by climate change (Grigorieva et al., 2023).

According to Akinnagbe and Anugwa (2015), Farmers frequently use the 
following adaptation strategies for their crops: using drought-tolerant crop varieties; 
crop diversification; altering cropping patterns and planting dates; conserving soil 
moisture through appropriate tillage techniques; increasing irrigation efficiency; and 
afforestation and agroforestry. The United Nations Sustainable Development Goals, 
which sought to safeguard the environment and guarantee that everyone lives in 
peace and prosperity, will be achieved through cropping practices that are adjusted to 
the challenges posed by climate change. sustainable cultivation of food (Çakmakçı 
et al., 2023). A key factor in reducing the adverse effects of climate change will be 
cropping practices adaptation, which may involve changes to field-scale management 
techniques (Lehmann et al., 2013).

Additionally, some of the effects of climate change are occurring more quickly 
than previously thought, and cropping practices will need to adapt to these trends if 
they are to continue (Rahmstorf et al., 2007). Differences in annual rainfall, average 
temperature, heat waves, alterations in weeds, pests or microbes, universal alteration 
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of atmospheric CO2 or ozone level, and instabilities in sea level, all due to climate 
change, impede total crop production and compromise food security worldwide 
(Raza et al., 2019). By using specially designed fertilization regimes in single-crop 
cultivation systems, cropping practices can be adjusted to the challenges posed 
by climate change. This reduces the need for inputs, water waste, fossil fuels, 
and unharvested products, all of which lower emissions and boost net productivity 
(Turner-Skoff & Cavender, 2019). Additionally, by lowering the amount of methane 
released during animal production, choosing plant-based protein sources (like pulse 
crops) rather than animal-based proteins lowers agricultural greenhouse gas emissions 
(Volk et al., 2023). Cropping practices that are adjusted to the challenges posed by 
climate change will: lower exposure to damage risk; increase resilience to inevitable 
damage; and enable the cropping system to seize new opportunities (Akinnagbe & 
Anugwa, 2015).

19.4 Activities of beneficial fungi that enhance crop 
and cropping system efficiency in the climate 
change era

Beneficial fungi adopt strategies, either direct or indirect, to help crops and cropping 
systems in the face of climate change. Production of phytohormones, nitrogen 
fixation, phosphate solubilization, siderophore formation, and antimicrobial metabo
lites are all part of the direct beneficial mechanism (El Enshasy et al., 2020).

Endophytic fungal annexation encourages physical changes and alters gene 
expression in the plants, thus elevating plant productivity through higher photosynth
esis rate, encouraging the growth of the shoots and roots, improving uptake and 
nutrient use efficiency, and providing resistance to biotic (pathogens and pests) and 
abiotic stress (drought, salinity, high temperature, high CO2, and metal toxicity) 
(Grabka et al., 2022). Beneficial fungi act as biostimulants to yield certain bioactive 
compounds, phytohormones, phosphate solubilization factors, etc., to improve root 
growth, seed germination, and plant growth promotion (Rustamova et al., 2022). Many 
fungi, such as Penicillium, Aspergillus, Curvularia, Trichoderma, Mesorhizobium, 
Aspergillus fumigatus, Aspergillus niger, Alternaria thlaspis, Metapochonia rubescens, 
have been identified and reported to have ability to solubilize and mobilize phosphorus, 
potassium, and zinc salts thereby boosting plant metabolic activity, plant growth 
resulting in high crop production (Haro & Benito, 2019; Mehta et al., 2019; Yung 
et al., 2021). They execute phyto stimulation via lowering plant hormone ethylene 
levels by 1-aminocyclopropane-1-carboxylate deaminase (ACC), escalating plant 
growth (Singh et al., 2015). Additionally, they break down biomass and reuse it into 
the environment, which increases the host's availability of nitrogen and increases its 
uptake of zinc and phosphorus, leading to phyto immobilization (Yung et al., 2021).

Through the immobilization of osmolytes and the stabilization of membrane ion 
conductivity under stress conditions brought on by climate change, phyto immobi
lization ultimately increases plants' ability to withstand abiotic stresses (Verma et al., 
2022). Beneficial fungi disrupt pathogens’ quorum sensing (QS) by inhibiting the 
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production of signal molecules that initiate infections. Take, for instance, the 
production of QS inhibitors that can break down QS signal molecules, such as 
chitinases, pectinases, and lactonases. These inhibitors prevent pathogen invasion and 
lead to reduced plant disease symptoms (Saeki et al., 2020). Curvularia geniculata 
mediates plant growth through phosphate solubilization and phytohormone produc
tion (Priyadharsini & Muthukumar, 2017).

The incidental beneficial mechanism includes resistance to abiotic and biotic 
stressors (modifying the metabolism process), biocontrol, etc. (Singh et al., 2021). 
Beneficial fungi defend plants indirectly by triggering a defense response or promoting 
plant growth (Zubair et al., 2021). As a result, the host undergoes a wide range of 
biochemical and molecular defensive processes that serve as a defense mechanism 
against numerous pathogens (Ayaz et al., 2023). Endophytic fungi potentially execute 
munificent global roles in the host plant via phytostimulation, phytoimmobilization, 
phytostabilization, phytotransformation, phytoremediation, and biocontrol (Adeleke 
et al., 2022b). They are reported to produce secondary metabolites, which include 
bioactive antimicrobial siderophores, which may execute defense against various 
pathogens (Srinivas et al., 2020). They inhibit the pathogens’ pathogenicity over 
different materials such as lipopeptides, biosurfactants, bacteriocins, volatiles, and 
enzymes that have antimicrobial properties by reducing the development or metabolic 
activity of pathogens (Babalola, 2010).

Under chilling stress, Funneliformis mosseae inoculation significantly improved 
the content of related secondary metabolites, including phenols, flavonoids, lignin, 
DPPH activity, and phenolic compounds (Chen et al., 2013). Glomus mosseae under 
low temperature stress increased leaf activities of superoxide dismutase, ascorbate 
peroxidase, guaiacol peroxidase, ascorbate, and glutathione, but decreased leaf 
concentrations of malondialdehyde, and hydrogen peroxide in crops (Liu et al., 2017).

19.5 Benefits and efficacy of sustainable agricultural 
practices using beneficial fungi

Rhizosphere soil fungi, such as Trichoderma spp., Gliocladium virens, Penicillium 
digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, and 
arbuscular mycorrhizal fungi, can improve the growth of the shoots and roots of 
crop plants, the germination of seeds, the production of chlorophyll for photosynth
esis, and the copious production of crops (Adedayo & Babalola, 2023a). Applications 
of beneficial fungi overwhelm the usage of agrochemicals and likewise prevent plants 
from biotic and abiotic stresses (Malgioglio et al., 2022). The beneficial fungi 
improve plant root extension, encourage plant growth development (seed germination 
and seedling strength and photosynthetic efficiency), protection from various kinds 
of phyto-pathogens, and also support soil improvements (Kumari et al., 2021). 
Plant growth-promoting fungi could suppress plant diseases by producing inhibitory 
chemicals and inducing immune responses in plants against phytopathogens, and 
have therefore proven to be effective biofertilizers and biopesticides, and are 
considered a feasible, attractive economic approach for sustainable agriculture 
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(El-Saadony et al., 2022). As stated by Muthuraman and Murugaragavan (2020), 
beneficial fungi conjointly play a basic role in different physiological processes 
as well as mineral and water uptake, chemical change, stomata movement, and 
biosynthesis of compounds termed biostimulants, auxins, lignan, and ethylene to 
enhance the flexibility of plants to ascertain and cope environmental stresses like 
drought, salinity, heat, cold, and significant metals. Beneficial fungi produce large 
quantities of bioactive compounds that can be used as agrochemicals for crop 
protection (Ayaz et al., 2023). Table 19.1 reported some of the benefits of using 
beneficial fungi for sustainable agricultural practices in a changing climatic scenario

19.6 Economic and environmental feasibility of 
adopting fungi in sustainable agriculture

In the majority of cases, climate-smart systems that incorporated beneficial fungi 
outperformed the conventional control, with some even achieving a yield gain of over 
60% (Thierfelder & Mutenje, 2018). Due to their biomass, hyphal network, and 
longer life cycle, fungi are more advantageous over bacteria for bioremediation of 
polluted agricultural soil (Kour et al., 2024). Utilizing arbuscular mycorrhizal fungi 
as a biofertilizer increases nutrient uptake, stimulates plant growth hormones, and 
expedites the decomposition of organic wastes, all of which can increase crop yield 
(Osemwegie et al., 2021). In nature, fungi are commonplace, and their various strains 
give their species greater specificity against pests and illnesses. They are self- 
sustaining because the infection spreads by means of spores, which are generated in 
vast quantities and persist so long as the right conditions for growth are present. As a 
result, application costs are also decreased (Singh et al., 2018). A deeper under
standing of the physiological responses of these microbes to stress can help develop a 
more robust and resilient agroecosystem, even though research supports the use of 
mycorrhizae and fungal endophytes as an environmentally friendly alternative to 
combat drought stress (Raghuwanshi, 2018). With their varied functional diversity 
and dispersal mechanisms, fungi constitute a significant and diverse component of the 
majority of ecosystems on Earth. The expanding body of knowledge regarding 
microbial biogeography is demonstrating how different fungal assembly patterns and 
processes are from bacterial ones. Their ability to successfully adapt and impact the 
environment is rooted in their multifaceted capacity to interact tempo-spatially with 
an increasingly diverse array of physical, chemical, and biological ecosystem 
components (Bahram & Netherway, 2022). Furthermore, their ubiquitous distribu
tion, diverse ecological roles, remarkable biological diversity, and high sensitivity 
have favored them as one of the most important groups of environmental bio- 
indicators (Warnasuriya et al., 2023). Suffice it to say that their existence, quantity, 
and nature can be used to make inferences about the quality of the environment or 
detect environmental contaminants by less rigorous laboratory analyses or in situ 
visual inspections. As a result, they aid in soil fertility by breaking down plant and 
animal waste through enzymatic processes. Many also interact with soil fauna and 
saprophytic bacteria to maximize access to nutrients from rocks and organic remains, 
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Table 19.1 Benefits of using beneficial fungi for sustainable agricultural practices. 

Beneficial fungi Climatic factor/ 
stress condition

Crop Effects References

Ascomycetes Semiarid Maize Improves physiological attributes 
of maize

Akinola 
et al. (2023)

Trichoderma species Management of root 
rot diseases

Tomato Improved crop health and 
productivity

Olowe, Nicola, 
Asemoloye, 
Akanmu, 
Babalola 
(2022)

Trichoderma species Pathogenic 
Fusarium species

Maize, banana, and 
cassava

Inhibit the growth of Fusarium 
pathogens in vitro.

Olowe, Nicola, 
Asemoloye, 
Akanmu, 
Sobowale 
et al. (2022)

Trichoderma koningii, 
Purpureocillium lilacinum, 
Mortierella alpina

Biotic stress: 
Powdery mildew 
disease caused by 
Oidium 
neolycopersicum

Solanum lycopersicum The fungi isolate promotes the 
production of tomatoes from 
Healthy rhizosphere soil and 
reduces the phytopathogen 
activities

Adedayo et al. 
(2023a)

Trichoderma spp., Gliocladium 
virens, Penicillium digitatum, 
Aspergillus flavus, Actinomucor 
elegans, Podospora bulbillosa, 
Arbuscular mycorrhizal fungi

Abiotic and biotic 
conditions

Solanum lycopersicum, 
Cucumis sativus, Zea 
mays, Oryza sativa, 
Triticum aestivum, 
Zea mays, etc.

Plant growth-promoting fungi 
promote abundant production of 
various crops

Adedayo and 
Babalola 
(2023a)

Ascomycota and Basidiomycota Plant diseases;
Oidium 
neolycopersicum

Solanum lycopersicum Fungi produce plant-growth- 
promoting genes that contribute 
to the abundant production of 
tomatoes and inhibit or eradicate 
disease invasion

Adedayo et al. 
(2023b)



Arbuscular mycorrhiza fungi, 
Trichoderma harzianum, 
Purpureocillium lilacinum, 
Metarhizium anisopliae, 
Penicillium spp., Aspergillus sp., 
Coprinellus radians, Neurospora 
spp., Paecilomyces spp.
Epichloë typhina and Curvularia 
protuberata

Abiotic and biotic 
stress

Solanum lycopersicum, 
Zea mays, 
Arabidopsis thaliana

Promote the production of the crop 
and prevent biotic including 
plant diseases, and abiotic stress 
including heavy metal toxicity, 
drought, salinity, extreme 
temperature

Babalola 
et al. (2022)

Rhizobium spp., Arbuscular 
mycorrhizal (AM) fungi,
Metarhizium brunneum,
Sargassum vulgare, Acanthophora 
spicifera, Ascophyllum nodosum,
Trichoderma spp.,
T. viride, P. chrysogenum, 
Cladosporium cladosporioides, 
Aspergillus fumigatus

Abiotic stress Crop plants Fungi implement Biostimulant 
activities in various crop plants

Adedayo and 
Babalola 
(2023b)

Bradyrhizobium spp., 
Filobasidiella, Ustilago, Tilletia, 
Metarhizium, Sordaria, 
Coprinopsis, Sclerotinia, 
Gibberella, Phaeosphaeria, 
Podospora, Ajellomyces, 
Aspergillus, Aspergillus 
fumigatus, 
Saccharomonospora sp.,

Biotic and abiotic 
stress

Vigna unguiculata, 
Helianthus annuus, 
Zea mays, Oryzae 
sativa

Endophytic fungi improve the 
growth as well as abundant 
production of crops

Babalola and 
Adedayo 
(2023)

Ascomycota, Basidiomycota, and 
Blastocladiomycota

Biotic stress (plant 
diseases);
Oidium 
neolycopersicum

Solanum lycopersicum They contribute to plant growth 
promotion by improving the 
health status of the crop plant

Adedayo 
et al. (2022)

(Continued) 



Table 19.1 (Continued)

Beneficial fungi Climatic factor/ 
stress condition

Crop Effects References

Arbuscular mycorrhizal fungi Abiotic stress Triticum spp., Populus 
spp., Zea mays, Pisum 
sativum

The fungi promote plant growth 
and development by tolerating 
the various abiotic stress

Koza 
et al. (2022)

Trichoderma asperellum, Glomus 
tortuosum, Glomus ethunicatum

Abiotic stress Solanum lycopersicum, 
Zea mays, Vigna 
radiate, Trifolium 
repens, Latuca sativa, 
Thymus vulgaris

Plant growth-promoting fungi relief 
crops from abiotic stresses

Adeleke et al. 
(2022a)

Trichoderma viride and Penicillium 
chrysogenum

Soft root disease; 
Fusarium 
oxysporum, 
Aspergillus 
wenti, 
Penicillium 
digitatum

Citrus sinensis The fungi provide biological 
control activities against the 
phytopathogens causing soft rot 
diseases in sweet oranges

Omomowo 
et al. (2020)



even though they perform biodegradation functions. For instance, one of nature's 
forces behind sustainable agriculture is the symbiotic relationship between plants 
and fungi. Through their interactions with bacteria and other living things, including 
animals, fungi are able to complete their life cycle in varying degrees of symbiosis. 
A symbiotic relationship between some bacteria and fungi can help transform 
atmospheric nitrogen into forms that are useful to biological systems (Rashid et al., 
2016). While bacteria are the main nitrogen-fixing organisms, some fungi can play a 
supportive role in Nitrogen fixation. Mycorrhizal fungi form mutualistic associations 
with plant roots, enhancing nutrient uptake (Khaliq et al., 2022). In some cases, these 
mycorrhizal associations can also facilitate the colonization of nitrogen-fixing 
bacteria. The fungus offers a favorable environment for the bacteria, such as protection 
from harsh conditions and a carbon source. In return, the bacteria provide the plant 
with fixed nitrogen in the form of ammonia or other nitrogen compounds.

Fungal hyphae grow beyond the root nutrient depletion zone and are much finer 
than plant roots. They can access soil pores containing plant essential nutrients that 
are hitherto inaccessible to their host (Begum et al., 2019; Watts et al., 2023). It is 
equally logical to hypothesize that the penetrating hyphae, while extending beyond 
the rhizospheric zone, interact with numerous niches of microorganisms and hyphae 
from other rhizosphere zones to sustain soil ecological functions, structure, ecophy
siology, metabolic dynamism, and soil health. Therefore, harnessing soil fungi's 
potential to drive soil ecosystem activities is promising for sustainable climate-smart 
agriculture, reducing reliance on synthetic fertilizers (Clocchiatti et al., 2021).

19.7 Using beneficial fungi to enhance plant growth 
and resistance to pests and diseases

Beneficial fungi positively impact sustainable agriculture under different climate 
scenarios as discussed in Table 19.2.

Certain fungi infiltrate the tissues of plants, creating a home for bacteria that fix 
nitrogen from the atmosphere and convert it into nitrate that is used by plants to grow 
(Burragoni & Jeon, 2021). Furthermore, Fungi facilitate the uptake of nutrients by 
plants, improving their capacity to absorb nitrogen, phosphorus, and other micro
nutrients. In order to enhance plant growth and development, fungal hyphae pierce 
the soil to obtain nutrients that are not accessible to the plant's root system. Plants are 
also able to withstand a variety of environmental stresses thanks to this symbiotic 
relationship. It epigenetically promotes the production of bioactive substances that 
have anti-biotic and antibiotic qualities against pathogens, saline, drought, and high 
temperatures (Zhang et al., 2023). The plant hosts' defense systems are strengthened 
by the metabolites, which also make them more resilient to harsh environmental 
conditions and adaptation. Thus, it is impossible to undervalue the role that fungi play 
in host plants' ability to withstand disease. Certain endophytic fungi give plants 
the ability to resist various diseases by producing bioactive compounds with 
antifungal or antibacterial qualities that inhibit the growth of pathogens (Zeilinger, 
2023). Endophytic fungi, for instance, can act as a first line of defense against 
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Table 19.2 Roles of beneficial fungi under changing climate scenarios. 

S/ 
N

Fungi Impact Role of the beneficial 
fungi

References

1 Mycorrhiza sp., Trichoderma 
sp., Chaetomium sp., and 
Gliocladium sp

They enhance plant growth, suppress abiotic stress 
conditions, and influence a number of biochemical 
developments and functions

Biofertilizer, Biocontrol 
agents

Odoh 
et al. (2020)

2 Glomus fasciculatum, 
Glomus mosseae)

Augmented the concentration of total phenolic 
compounds, flavonoids, and phenolic acid contents.

Tool for improving 
health-promoting 
compounds in 
vegetable

Khalid 
et al. (2017)

3 Glomus spp Improve plant growth Biofertilizer Arya 
et al. (2018)

4 Aspergillus awamori, 
Penicillium citrinum

Stimulatory effect on chickpea plant growth. Biofertilizer Mittal 
et al. (2008)

5 Trichoderma asperellum Increased chickpea (Cicer arietinum) growth parameters 
in the presence of plant pathogen Fusarium equiseti in 
chickpea

Biofertilizer, Biocontrol Adnani 
et al. (2024)

6 Trichoderma harzianum Increased plant height, stem circumference, leaf number, 
total phosphorus in the rubber tree leaves, shoot fresh 
weight, root fresh weight, shoot dry weight, and root 
dry weight

Biofertizer Promwee 
et al. (2014)

7 Curvularia geniculate Superior growth Biofertilizer Priyadharsini 
and 
Muthukumar 
(2017)

8 Penicillium sp Plant growth promotion Drought-adaptive 
bioinoculants

Kour 
et al. (2020)

9 Funneliformis mosseae Higher fresh weight and dry weight of the crop Alleviation of chilling 
stress

Chen 
et al. (2013)

10 Glomus mosseae Higher concentrations of soluble sugar, proline, P, and K Resistance of plants 
against low- 
temperature stress

Liu et al. (2017)

11 Gigaspora rosea, Glomus 
clarum, G. rosea + 
G. clarum

Higher dry matter and superoxide dismutase and 
peroxidase enzyme activities

Biofertilizer Sapelli 
et al. (2024)



pathogens by colonizing plant tissues and providing a barrier against invasion (Baron 
& Rigobelo, 2022). Additionally, by boosting the immune response, they can 
strengthen the plant's resistance to disease. Additionally, they generate compounds 
that promote plant growth, such as gibberellins, cytokinins, and auxins, which can 
boost nutrient uptake, encourage root and shoot growth, and increase overall plant 
vigor. Endophytic fungi have the potential to enhance crop yields, increase biomass, 
and grow larger root systems (Tripathi et al., 2022).

19.8 Conclusion

In climate change scenarios, beneficial fungi are important for sustainable agriculture 
in a variety of ways. Their benefits to disease prevention, soil health, sequestration of 
carbon, and overall ecosystem resilience make them invaluable allies in combating 
climate change-related agricultural challenges. Agricultural systems that are resilient 
and sustainable must be developed by putting in place measures that support and 
maximize the potential of these fungi. Under scenarios of a changing climate, 
beneficial fungi can play a variety of roles in sustainable agricultural practices, 
including biofertilizer, biocontrol agents, and abiotic stress bioremediators.
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