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Abstract
Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, tem-
perature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid 
and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use 
of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially result-
ing in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, 
therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some 
of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that 
are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive 
in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards 
plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect 
plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant 
colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricul-
tural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop 
production in arid and semi-arid areas.
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Introduction

“Arid and semi-arid regions” which include approximately 
one-third of the world’s land area are too dry for conven-
tional rain-fed agriculture, but they are widely used for agri-
cultural production (Banning et al. 2015). Moreover, arid 
and semi-arid regions serve as home to more than 2.1 bil-
lion people worldwide (UN 2016). These regions are typi-
cally characterized by low and erratic precipitation, high 
mean yearly temperatures, strong sunlight, high evaporative 

demand, negative water balance (i.e., evaporation is greater 
than precipitation), soil hypersalinity, soil alkalinity, low rate 
of infiltration, poor soil fertility, low soil moisture-holding 
capacity, and pest and disease problems (Ortiz et al. 2000). 
As a result, arid and semi-arid areas produce low crop yields 
and poor quality food.

The principal arid and semi-arid regions of the world 
include large portions of the Western USA, Australia, the 
Sahara Desert, the Sonoran Desert, the Sahel, the Kalahari 
Desert, East Africa, the Sechura Desert along the Pacific 
Coast of Peru, the Atacama Desert, the Middle East, the 
Sertao of Brazil, the Indian Desert, the Namib Desert, the 
Karakum Desert and the Gobi Desert.

The current agricultural systems typically depend heavily 
on chemical inputs (such as herbicides, pesticides and ferti-
lizers), hybrid or genetically modified seeds, fossil-fuel-pow-
ered machinery and extensive irrigation (Alori et al. 2017; 
Fess and Benedito 2018). While these approaches increase 
crop production, they can nevertheless negatively affect the 
environment, leading to soil degradation and pollution of the 
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biosphere. Hence, there is a need for a sustainable and eco-
friendly approach with no negative impact on life or natural 
resources (Alori 2015).

Both the quantity and quality of food production in arid 
and semi-arid areas may be improved through the applica-
tion of beneficial microorganisms. In this regard, the focus 
of most researchers has been on the use of fungi and bac-
teria. On the other hand, archaea have not received much 
attention as potential plant growth-promoting microorgan-
isms (Yadav et al. 2017).

Archaea live in a wide range of habitats, including 
extreme environments such as thermal vents (Edgcomb et al. 
2007); hypersaline environments (Ahmad et al. 2011); psy-
chrophilic environments (Margesin and Miteva 2011); dry 
soil environments (Timonen and Bomberg 2009); extreme 
acid and alkaline environments, acute anoxia (McLain 
2004); and arid and semi-arid soils (Huang et al. 2019; Ode-
lade and Babalola 2019).

Archaea constitute a substantial part of the plant micro-
biome and have the ability to interact with many different 
plants (Taffner et al. 2018). Figure 1 represents a schematic 
tree of some archaea. Archaea have been observed to dem-
onstrate some plant growth promoting attributes such as 
nitrogen fixation, phosphorus solubilization, siderophore 
production, indole acetic acid production, facilitation of 
plant stress responses, sulfur cycling, ammonia-oxidation 
and dissimilatory nitrate reduction (MacLeod et al. 2019; 
Navarrete et al. 2011; Yadav et al. 2017).

Increasing our understanding of how to maximize the 
benefits of the plant–archaea relationship may be a prom-
ising strategy to improve crop production sustainably in 
arid and semi-arid ecological zones. Here, the potential of 
archaea in improving sustainable crop production in the arid 
and semi-arid area is discussed (Fig. 2).

Interaction between archaea and host plant 
cells

Archaea interact with several different organisms, such 
as plants, other microorganisms, and metazoans (Moissl-
Eichinger et al. 2018). Mutualistic symbioses have been 
well described between archaea and its various hosts 
(Moissl-Eichinger and Huber 2011). Different meta-
bolic pathways such as the Wood–Ljungdahl pathway 
as a carbon-fixation approach, putative nucleotide sal-
vaging pathways, and mechanisms of phototrophy are 
involved (MacLeod et al. 2019). A key strategy for the 
archaea is the syntrophic relationship that is based on 
hydrogen transfer, particularly under energy-deficiency 
stress (Moissl-Eichinger et al. 2018; Taffner et al. 2018). 
Syntrophy refers to a process performed through meta-
bolic interaction between dependent partners (microbial 

cross-feeding), i.e., obligate mutualistic metabolism. The 
combined metabolic activities enable partners to survive 
with minimal energy resources (Morris et al. 2013). More-
over, the archaea and their partners depend on an effective 
electron transfer through nanowire-like cell–cell connec-
tions (Wegener et al. 2015). Syntrophy permits microbial 
consortia to gain energy by a coupling process that can 
only be accomplished by microbial interlinkage due to 
bioenergetic interaction (Moissl-Eichinger et al. 2018). 
Syntrophy interaction is also based on the movement of 
reducing substances such as hydrogen and formate (Mor-
ris et al. 2013).

Syntrophy relationships differ from symbiotic rela-
tionships because the latter are not necessarily based on 
metabolism but, slightly, on protection against biotic or 
abiotic stress (Stewart 2002). The interaction between 
archaea and its host is initiated and determined by sur-
face–surface recognition and is followed by cell adhesion 
(Wrede et al. 2012). Glycosylated extracellular polysac-
charide and filamentous protein appendages are involved 
in adhesion of archaeon surfaces during biofilm formation 
(Koerdt et al. 2012). Filaments and an exopolysaccharide 
are secreted by the archaeon, producing a matrix for the 
formation of a tight consortium between the archaeon 
and the host (Wrede et al. 2012). Several pilus types of 
appendages in archaea are responsible for recognition and 
attachment to surfaces (Fröls et al. 2008; Näther et al. 
2006). Also, surface structures such as hami, archaella, 
and even S-layers have also been reported to facilitate 
attachment to abiotic and biotic surfaces, allowing com-
munication or electron exchange among cells (McGlynn 
et al. 2015; Moissl et al. 2005; Perras et al. 2015; Wegener 
et al. 2015). Overall, the archaeal cell wall plays a key role 
in intercellular contact, serving as an anchor for cell–sur-
face appendages and as a contact point for interactions, 
attachment, and exchange (Moissl-Eichinger et al. 2018). 
Archaea possess a double cell membrane where the outer 
membrane is strengthened like the inner membrane and 
thus backs up interconnections with a particular symbiont 
(Küper et al. 2010). The outer membrane also helps to 
limit the entry of toxic compounds while permitting the 
entry of nutrient molecules (Nikaido 2003).

Archaea and plant roots

Archaea are important part of the plant microbiome (Buée 
et al. 2009). Plant root tissues and the rhizosphere harbor 
both methanogens and ammonium-oxidizing archaea, pro-
viding an oxygen-depleted micro-niche (Chelius and Triplett 
2001). Table 1 shows some archaea along with the crops 
with which they have been reported to interact.
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Fig. 1   Schematic tree of some 
archaea from Forterre (2015). 
1–2 Lokiarchaeota, 3–4 Thau-
marchaeota, 5–9 Crenarchaeota, 
10 Korarchaeota, 11–27 Euryar-
chaeota

Lokiarchaeum (DSAG)  1     

MCG  2

Algiarchaea 3

Thaumarchaea 4

Thermofilum 5

Geoarchaea 6

Thermoproteales 7

Sulfolobales        8

Desulfurococcales  9

Korarchaea 10

Nanoarchaea 11

Nanohaloarchaea 12

Parvarchaea 13

Thermococcales  14

Methanococcales 15

Methanopyrales   16

Methanobacteriales 17

Altiarchaeales 18

Microarchaeum 19

Acidoprofondum boonei 20

Mathanomassilicoccales   21

Thermoplasmatales            22

Archaeoglobales                23

Methanosarcinales             24

Methanocellales                25

Methanomicrobiales         26

Halobateriales                 27            
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Fig. 2   The roles of Archaea and 
some biotic and abiotic factors 
that influence their colonization 
of plants

Table 1   Some archaea phyla that have been reported to be associated with crop plants

Archaea phylum Crop References

Crenarchaea, Euryarchaea Zea mays Chelius and Triplett (2001)
Methanobacteriales, Methanomicrobiales, Methanosarcinales, 

Methanocellales
Oryza sativa Knief et al. (2012)

Crenarchaeota Lycopersicum esculentus Simon et al. (2005)
Methanobacterium, Methanoregula, Methanospirillum, Methano-

methylovorans, Methanosarcina, Methanosaeta, Crenarchaeota
Phragmites australis Liu et al. (2015)

Nitrosopumilus, Nitrososphaera Halocnemum strobilaceum, Phragmites 
australis, Karelinia caspia

He et al. (2017)

Euryarchaeota Oryza sativa Großkopf et al. (1998)
Euryarchaeota, Crenarchaeota Cherries of Coffea arabica Oliveira et al. (2013)
Thaumarchaeota, Crenarchaeota, Euryarchaeota Olea europaea L. Müller et al. (2015)
Methanocellales, Methanosaetaceae, Thaumarchaeota Oryza sativa Moissl-Eichinger et al. (2018)
Thaumarchaeota, Euryarchaeota, Crenarchaeota, Methanosarcina Eruca sativa Mill. Taffner et al. (2018)
Methanogens Oryza sativa Pump et al. (2015)
Crenarchaeota, Euryarchaeota Jatropha curcas Dubey et al. (2016)
Crenarchaeota, and Euryarchaeota Erica andevalensis Mendes et al. (2013)
Halobacteria, Methanobacteria, Methanomicrobia Thermoprotei Rhizophora mangle, Laguncularia racemosa Pires et al. (2012)
Nitrosocosmicus oleophilus MY3 Arabidopsis thaliana Song et al. (2019)
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Factors determining distribution, 
abundance and functioning of archaea

The distribution, abundance and functioning of archaea 
depend on several factors. For example, soil salinization 
and nitrogen losses due to increasing aridity in the semi-
arid regions led to a reduction of archaeal diversity (Huang 
et al. 2019). Archaeal interactions with their host or part-
ner are based on environmental conditions (which include 
climatic and edaphic factors such as rainfall, temperature, 
and dryness or wetness of the soil), the ability for metabo-
lite and electron exchange between the archaea and their 
host or partner (syntrophy), genomic and structural adapta-
tion capability of the host or partner (Morris et al. 2013). 
Simon et al. (2005), discovered that stressed plants such 
as those grown in unfertilized soil within a growth cham-
ber, harbor larger populations of archaea from the phylum 
crenarchaeotes on their roots than their unstressed coun-
terparts. The plant species is an important factor influenc-
ing the attached archaea community (Müller et al. 2015). 
Structural adaptation involves the development of intercel-
lular nanowires that facilitate the syntrophic relationship 
(Wegener et al. 2015).

Various developmental stages of plants, litter quality and 
long term soil management systems can alter the diversity 
and community structure of the archaea in the soil (Hai 
et al. 2009; Su et al. 2010). Taffner et al. (2019) noted that 
archaea tend to accumulate more in nutrient rich localities 
(rotting plant material) within the rhizosphere, which may 
indicate that they play a role in the decomposition processes. 
Archaeal colonization of plants also depends on biotic fac-
tors, including competition with bacteria and fungi (Karls-
son et al. 2012). High elevation (Zhang et al. 2009), pre-
cipitation and vegetation cover (Angel et al. 2010) favor 
colonization of plants by methanogenic and ammonium-oxi-
dizing archaea. The electrical conductivity, ammonium con-
centration and pH of the soil are factors that also influence 
the community structure of ammonium oxidizing archaea 
(He et al. 2017). Archaea prefer low ammonium concentra-
tions in contrast to ammonium oxidizing bacteria that have 
an affinity for high ammonium concentrations (Zheng et al. 
2017). Elevated CO2 and N addition force a shift in the com-
munity structure (i.e., in both diversity and abundance) of 
archaea (Lee et al. 2015). The presence of fixed nitrogen led 
to an increase in archaeal abundance, while elevated CO2 
reduced its abundance. Elevated CO2 significantly increases 
archaeal amoA (ammonium oxygenase) gene abundance 
and positively affects the growth of ammonium oxidizing 
archaea (Long et al. 2012). Archaea are typically less abun-
dant in oxygenated environments since they generally thrive 
in anaerobic conditions; hence, there are fewer archaea in 
the phyllosphere compared to the endosphere (Buée et al. 
2009; Oliveira et al. 2013). Archaea are more competitive 

in environments with low dissolved oxygen content (Zheng 
et al. 2017). There are sometimes conflicting results regard-
ing the factors that favor archaeal activities in the soil. Other 
studies observed that an abundance of ammonia-oxidizing 
archaea did not translate to the functional dominance of 
nitrification as compared to ammonia-oxidizing bacteria 
(Di et al. 2009; Jia and Conrad 2009).

On the other hand, Gubry-Rangin et al. (2010) reported 
that archaea, rather than bacteria, were responsible for nitri-
fication in acidic agricultural soils. This could be due to the 
fact that ammonia-oxidizing archaea prefer lower pH envi-
ronments than ammonia-oxidizing bacteria (He et al. 2012). 
These conflicting results could be due to the differences in 
the physical and chemical properties that have been dem-
onstrated to stimulate or inhibit various microbial activities 
(Sterngren et al. 2015). Oliveira et al. (2013) reported an 
abundance of archaea in the endosphere of some perennial 
plants. Treusch et al. (2005) reported increased ammonium 
oxidation by archaea in the presence of elevated ammonia 
concentrations when the soil was incubated with ammo-
nia. Müller et al. (2015) discovered that plant genotype and 
origin also increase the types and the population density 
of archaea in the tissues of olive plants. A high degree of 
plant specificity supports plant-archaeon interactions. Olive 
plants, for instance, are associated with Thaumarchaeota, 
Crenarchaeota, and Euryarchaeota (Müller et al. 2015). The 
relative archaeal abundance varies from plant species to spe-
cies (Taffner et al. 2018).

Indirect facilitation of plant growth 
by archaea

Archaea contribute to the ecosystem and vegetation func-
tions by their activities that are related to nutrient cycling, 
stress response and phytohormone biosynthesis (Taffner 
et  al. 2018). Several archaea have been reported to be 
ammonia oxidizers within the nitrogen cycle (Prosser and 
Nicol 2008; Schauss et al. 2009). This followed the identi-
fication of ammonia monooxygenase genes (the functional 
protein for ammonia oxidation) in archaea by Könneke et al. 
(2005). For example, Crenarchaeota function as soil nitri-
fiers (Treusch et al. 2005). Archaea also play a key role in 
soil denitrification processes; importantly, under low-oxygen 
conditions (Francis et al. 2007). Asgard archaea (consist-
ing of Lokiarchaeota, Thorarchaeota, Ordinarchaeota and 
Heimdallarhaeota) that have been successfully cultured in 
the laboratory are active in nitrogen cycling (MacLeod et al. 
2019). Ammonium oxidizing archaea, especially mesophilic 
crenarchaeota, are the most prevalent ammonia oxidizers in 
the soil (Francis et al. 2007) while, some other archaeal spe-
cies play an important role in sulfur cycling (MacLeod et al. 
2019). Archaea also participate in the C-cycle (Yadav et al. 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 World Journal of Microbiology and Biotechnology (2020) 36:133

1 3

133  Page 6 of 10

2017) by playing important roles in the processes mediating 
global carbon and changes in nutrient usage (Adam et al. 
2017).

Some coenzyme compounds that are produced by archaea 
include the isoprenoid lipids, methanopterin, F430, metha-
nofuran, coenzyme M, F420 and sulfohalopterin-2 (Jones 
et al. 1987; Lin and White 1987). These coenzymes are 
involved in the biochemical reduction of carbon dioxide 
and methylated amines to methane and also the oxidation 
of methane anaerobically (Mander and Liu 2010). Table 2 
shows some archaea and their identified probable plant 
growth-promoting activities.

Potentials of archaea to promote plant 
growth

Many archaeal plant growth-promoting mechanisms are 
largely unclear due to the methodological limitations 
required for their study. Nevertheless, some growth pro-
motion attributes have been identified in some groups of 
archaea. Some archaea, including Natrialba, Natrinema, 
Halolamina, Halosarcina, Halostagnicola, Haloarcula, 
Natronoarchaeum, Halobacterium, Halococcus, Haloferax 
and Haloterrigena exhibit some important plant growth-pro-
moting attributes like indole acetic acid production, nitro-
gen fixation, phosphorus solubilization, and production of 
siderophores (Yadav et al. 2017). Archaea were found to be 
involved in glycogen degradation and CO2 fixation (Taffner 
et al. 2019). Glycogen provides food and energy reserves 
for the organisms, especially in harsh environments (Wilson 
et al. 2010) and also promotes the interaction of archaea 
with other plant growth-promoting microorganisms (Taffner 

et al. 2019). This interaction requires additional study in 
agricultural soil to harness the positive benefits of archaea 
in semi-arid and arid environments.

Dave et al. (2006) reported that archaea sequester iron 
by producing carboxylate siderophores. The production of 
organic acids and pH reduction by some strains of archaea 
favor phosphorus solubilization by archaea (Yadav et al. 
2017). Unfortunately, these studies were conducted in the 
laboratory and require validation in the field. Song et al. 
(2019) demonstrated that archaea could elicit induced sys-
temic resistance against some plant pathogens through the 
salicylic acid-independent signalling pathway, which is simi-
lar to what has been observed with plant growth-promoting 
bacteria. Archaea have also been shown to protect the host 
plant from abiotic stress (Taffner et al. 2018) as they pos-
sess the so-called universal stress proteins (USP). These pro-
teins take part in various aspects of plant physiology and 
metabolism, including ion scavenging, hypoxia responses, 
cellular mobility, and regulation of cell growth and develop-
ment (Lee et al. 2019). However, the molecular mechanisms 
behind the protection of plants against stress by USP are not 
well understood.

The biosynthesis pathway of lipids in archaea is through 
sn-glycerol 1-phosphate (G-1-P), utilizing isoprenoid chains 
linked via ether bonds while bacteria and fungi use fatty 
acids attached via ester bonds to sn-glycerol-3-phosphate 
(mirror image of sn-glycerol-1-phosphate). This may con-
fer upon archaea the ability to protect plants against some 
types of stress. The gene that encodes the G-1-P is specific to 
archaea. It is one of the distinct features that separate archaea 
from bacteria (Nishihara et al. 1999).

Nitrogen fixation by archaea is via nitrogenase activ-
ity (Leigh 2000). However, the reduction of acetylene to 

Table 2   Some archaea and their potential roles in plant production

Archaea Role References

Asgard archaea Nutrient (nitrogen and sulphur) cycling, heavy metals 
(arsenic and copper) extraction

MacLeod et al. (2019)

Natrialba, Natrinema, Halolamina, Halosarcina, Halostag-
nicola, Haloarcula, Natronoarchaeum, Halobacterium, 
Halococcus, Haloferax, Haloterrigena

Phosphorus solubilization, nitrogen fixation, siderophore 
production and indole acetic acid production

Yadav et al. (2017)

Methanococcus thermolithotrophicus , Methanococcus 
maripaludis, Methanosarcina barkeri, Methanospirillum 
hungatei, Methanobacterium bryantii

Nitrogen fixation Leigh (2000)

Thaumarchaeota, Crenarchaeota, Euryarchaeota Siderophore production Dave et al. (2006)
Thaumarchaeota, Crenarchaeota Indole acetic acid production White (1987)
Candidatus, Nitrosocosmicus franklandus C13 Ammonium oxidation Prudence et al. (2019)
Crenarchaeota, Euarchaea N. transformation (nitrification) Dubey et al. (2016)
Nitrosocosmicus oleophilus MY3 Nutrient supply (ammonia-oxidation), biocontrol against 

pathogenic organisms
Song et al. (2019)

Thaumarchaeota, Euryarchaeota, Candidatus, Nitrosocos-
micus, Crenarchaeota, Methanosarcina

Ameliorate abiotic stress such as oxidative stress, CO2 fixa-
tion and glycogen degradation

Taffner et al. (2018)
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ethylene by archaea occurs at lower rates than in bacteria 
(Leigh 2000). In archaea, the predominant nitrogenases are 
molybdenum nitrogenases (Leigh 2000). Nitrogen fixation 
in archaea is evolutionarily related to nitrogen fixation in 
bacteria. Archaea such as Ferroglobus placidus is capable 
of degrading aromatic amino acids via partial and complete 
oxidation pathways. F. placidus contains the same genes that 
code for enzymes in Thetmococcales (for amino acid partial 
oxidation) and also has homologs for subunits 2-hydroxy-
acyl-CoA dehydratase complex HgdAB (Ferp_1042–1043) 
that are the same as those found in amino acid fermentation 
by Archaeoglobus sp. (complete oxidation) (Aklujkar et al. 
2014).

White (1987) reported the production of plant growth 
hormones such as indole-3-acetic acid (IAA) and 2-(indol-
3-ylmethyl) indol-3-yl acetic acid by archaea such as Sul-
folobus acidocaldarius. Aklujkar et al. (2014) have also 
reported the biosynthesis of IAA by archaea. Archaea and 
bacteria may co-habit in extreme environments and some-
times work synergistically to enhance plant growth.

Archaea in saline environments

Arid environments are characterized by low rainfall, high 
salinity, fluctuating temperature, and extreme solar radia-
tion. Archaea and other microorganisms that inhabit these 
regions have several mechanisms to cope with these harsh 
conditions. However, Huang et  al. (2019) stated that 
archaeal abundance decreased with increasing aridity due 
to increased soil electrical conductivity (EC) and reduced 
soil nitrogen content. This result is, however, at odds with 
other reports that archaea are adapted to high saline soils in 
the arid environment. In fact, Kırtel et al. (2018) indicated 
the use of salt-loving archaea, similar to what has been sug-
gested for halobacteria, as a strategy to cope with highly 
salinized soils. Archaea species in harsh environments often 
enter a dormant state to resist stressors like temperature and 
desiccation. To avoid desiccation, archaea, and most halo-
bacteria, employ two mechanisms to survive in a high saline 
environment. Ma et al. (2010) identified them as employing 
a “high-salt-in” and “low-salt, organic-solutes-in” strategy. 
With the high-salt-in mechanism, the intercellular proteins 
of the microorganisms are active with the accumulation of 
potassium chloride and other salts. These organisms cannot 
survive in non-saline environments because the intercellular 
proteins will most likely denature in such situations (Oren 
2008). The low-salt, organic-solutes-in strategy involves the 
accumulation of organic solutes that are compatible with 
the cytoplasm and does not hinder the enzymatic activity of 
the organism. This, however, requires that the proteins be 
adapted to salt. Archaeal species using this mechanism can 
adapt to a wide range of salt concentrations (Oren 2008). 

Gibson et  al. (2005) also reported that archaea possess 
unsaturated ether lipids in their membranes. These lipids, 
which are chemically stable, also contribute to the adapta-
tion of these organisms to extreme environments (Jain et al. 
2014; Odelade and Babalola 2019). Bacterial membranes 
consist of glycerol-3-phosphate ester lipids which are less 
chemically stable compare to archaeal membranes which 
are made up of glycerol-1-phosphate ether lipids (Caforio 
et al. 2018). Archaeal lipids are more chemically stable com-
pared to those from bacteria, and this attribute facilitates 
archaea’s ability to thrive in extreme environments (Koga 
2012). Archaeal membranes have also been reported to con-
tain proteins like ATP synthase (Gogarten et al. 1989), some 
proteins involved in respiration (Baymann et al. 2003), and 
other proteins that aid polypeptide secretion (Cao and Saier 
Jr 2003).

Halobacteria in saline environments have been reported 
to possess fructan biosynthetic enzymes (Kırtel et al. 2018, 
2019). Fructan, a fructose-based polymer, has been demon-
strated to contribute to the plant’s abiotic stress tolerance 
(Valluru and Van den Ende 2008) due to its ability to store 
carbohydrates and act as a signalling molecule. However, 
further studies are required to fully understand the link 
between archaea fructan production and plant abiotic stress 
tolerance. Halophilic enzymes produced by archaea are char-
acterized by an excess of acidic amino acids that result in 
negative surface charges, this, therefore, enhances effective 
competition for hydration water, hence the increased salt and 
heat tolerance by archaea (Ma et al. 2010).

Limitations to the application of Archaea 
in agriculture

The challenges to the application of archaea in plant produc-
tion include difficulties associated with their procurement 
from their natural environment (Prosser and Nicol 2012), 
laboratory cultivation, low growth rates and low biomass 
yields (Simon et al. 2005), limited understanding of their 
characteristics and genomes (Straub et al. 2018).

Archaea in natural soils

Archaea are ubiquitous and abundant in many soils. The 
phylla Crenarchaeaota and Euryarchaeaota were discov-
ered from primary forest, secondary forest, pasture and 
cropped soils of the Amazon region of Brazil (Navarrete 
et al. 2011). Euryarchaeota was reported to be present in 
rice soil and Thaumarchaeota from maize soil from eastern 
China (Jiao et al. 2019). Mesophilic soil of West Madison 
Agricultural Research Station, USA contains crenarchae-
otes (Simon et al. 2005). Mao et al. (2011) reported the 
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occurrence of archaea in soil located in the southwest of 
Urbana, Illinois, USA.

Conclusions

Small-scale farmers in arid and semi-arid regions, growing 
crops on marginal land, have to mitigate shortages in crop 
production. Archaea are found in the rhizosphere, the endo-
sphere and the phyllosphere of crops and are presumed to 
have the potential to play critical roles in nutrient cycling, 
crop responses to stress, and phytohormone biosynthesis. 
Hence, archaea appear to be important for both directly and 
indirectly promoting the growth of crops. We suggest that 
future studies should be directed towards a complete under-
standing of the mechanisms behind plant growth promotion 
by archaea. Also, there needs to be an increased understand-
ing of the interaction of archaea with other microorganisms 
and how agricultural practices affect the activities of these 
organisms. At present, however, the difficulty in culturing 
most archaea in the laboratory is a major limitation to their 
use as plant inoculants. Thus, while archaea may be impor-
tant for plant growth and development, quite a lot remains 
to be done to make this possibility into a commercial reality. 
Even though considerable time and great effort are required 
to enable better use of archaea in agriculture, the benefits 
that will accompany this knowledge should be more than 
worth the effort.
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