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Abstract—Due to inefficiencies in production and distribution 

systems, resource constraints, and environmental degradation, 

traditional agricultural methods are becoming diminishingly 

capable and effective in addressing food security challenges. The 

most important global concern of the twenty-first century research is 

promoting food security even as the world's population grows, and 

climate actions increase. Agricultural productivity thrives on timely, 

optimum and acceptable weather elements. In response, Artificial 

intelligence has become a trending strategy and tool that uses 

cutting-edge technologies to improve food systems' sustainability, 

productivity, and efficiency. To facilitate real-time farming and 

decision-making, artificial intelligence in precision agriculture 

incorporates data-driven technologies like, the Internet of Things 

(IoT), satellite imaging, tensiometer, geographic information 

systems (GIS), remote sensing etc. With the use of these technologies, 

farmers can efficiently and promptly use farm inputs including 

water, liquid macro and micro-nutrients (fertilizers), and pesticides 

based on the unique requirements of the soil and crop. Engaging 

Artificial Intelligence will promote seamless and smart agricultural 

production processes, and reduction in environmental hazards with 

resultant effect on improved food systems. Smart irrigation systems, 

blockchain-enabled supply chain transparency, AI-based disease 

and pest detection, and the use of unmanned aerial vehicles (UAVs) 

for crop monitoring are some of the major emerging trends in 

Precision agriculture as facilitated by AI. To maintain sustainability, 

efficiency, and productivity, agriculture must change as 

environmental pressures, and global food demands also change in 

the upward direction. Artificial intelligence provides requisite tools 

to support smart farming. Precision in agriculture does not only 

promote food availability, and sustainability, but also provide data 

and statistics for informed and intentional steps towards enhanced 

productivity. The study concludes that AI is essential in attaining a 

sustainable agricultural future after discussing the advantages, 

difficulties, and potential future of AI-powered farming. 
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I. INTRODUCTION  

The need for sustainable resource use, environmental 
concerns, and the rising demand for food worldwide are all 
causing a major shift in the agricultural sector. This is to say 
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that in the recent, the agricultural sector has been at a threshold 
as orchestrated by man-made and natural challenges such as 
rising population, climate actions, and uncontrollable fall in 
natural resources [1].  

Undoubtedly, as the name suggests, the challenges of 
traditional farming methods are fueled by tools that are 
frequently ineffective in addressing the demands of 
environmental degradation and food security. Precision 
agriculture, a data-driven strategy that optimizes farming 
practices, is being used by industries to address and 
revolutionize agricultural activities for outstanding timely 
produce/product performance [2,3]. Adoption of Artificial 
Intelligence (AI), which permits real-time data analysis and 
decision-making, is essential to this evolution [4]. 

There has never been more pressure on agriculture to 
produce more with less input, as the world's population is 
expected to approach 10 billion people by 2050 [5,6]. Despite 
the long-standing years of traditional farming practices, the 
demand for modern food systems in terms of quantity, quality 
and sustainability is yet achieved. Noting this, precision 
farming and artificial intelligence (AI), empirically called 
"smart farming," has created a hope and future for food 
security. This topic examines how AI tools like machine 
learning which include, GP- guided tractors, Soil sensors, 
automatic weeders, robotics, crop scouting robots, AI-smart 
irrigation platforms according to [7] etc, and Internet of Things 
(IoT) devices are embraced and accepted as instruments for 
transforming agricultural practices in order to satisfy the 
world's need for food security.  

 Predictive analytics can forecast extreme weather events, 
suggest crop varieties that can withstand stress, and direct 
planting schedules. These innovations are critical in African 
regions (Sub-Saharan Africa and South Asia) where food 
insecurity is most vulnerable [8,9]. Agricultural productivity is 
constrained by subsistence farming. Precision farming and 
artificial intelligence (AI) support smart farming, which offers 
a revolutionary approach to contemporary agriculture. It 
encompasses the application of AI to agricultural productivity 
processes like crop monitoring, forecasting, nutrient 
applications, yield predictions, updating and evaluating soil 
health, and automation of processes such as feeding regime, 
date and time for planting and harvesting, etc. Machine 
learning, computer vision, big data analytics, and the Internet 
of Things (IoT) are examples of AI technologies used in smart 
farming that gather, process, and interpret data from multiple 
sources to enable real-time, data-driven informed decision for 
better agricultural practices. According to Food and Agriculture 
Organization [5], the increase in food production must not be 
less than 70% by 2050 in order to meet global food demands. 
This review, therefore, analyzes through internet search, the 
fundamental applications and uses, challenges and future 
prospects of artificial intelligence and its incorporation into 
precision agriculture through crop monitoring, yield prediction, 
pest control, irrigation management, and automating machinery 
towards advancing agricultural practices for food security in the 
Sub-Saharan nations. 

II. CONNECTING FOOD SECURITY AND ARTIFICIAL 

INTELLIGENCE 

One of the most urgent global issues of the twenty-first 
century is food security. [5] defines food security as the state in 
which all people, at all times, have physical, social, and 
economic access to enough food that is safe and nourishing. 
Globally, by 2050, it is expected that there will be more than 
9.7 billion people (see fig. 1).  It is expected that the increase in 
food production from agricultural systems will be hugely 
overwhelmed arising from the pressure from the natural 
ecosystem and resources as well the non-dependable climate 
actions which hitherto has bewildered the expectations on 
global food security. The use of digital technologies and data-
driven instruments like artificial intelligence (AI), machine 
learning, and the Internet of Things (IoT) in smart agriculture 
is becoming more widely acknowledged as a practical way to 
improve global food security, even in the ravaging climate 
actions against seamless traditional farming operations. 

 
Figure 1: World Population Growth 

III. A. THE ROLE OF AI IN ENHANCING PRECISION IN 

AGRICULTURAL PRODUCTIVITY 

The fundamental pillar of food security is food availability, 
which depends on agricultural productivity. Smart agriculture 
improves productivity through the integration of precision 
farming techniques. Better still, other productivity activities 
include smart irrigation, weed, pest and disease control, yield 
optimization, etc which ensure optimized use of inputs like 
water, fertilizers, and pesticides for enhance output (Table 1). 
AI-driven systems use data from satellite imagery, weather 
sensors, and soil health monitors to make real-time decisions 
that maximize crop yields while minimizing waste [10]. For 
example, variable rate technology (VRT) allows for the precise 
application of nutrients and irrigation, which enhances the 
efficiency of farming operations and leads to higher yields [11]. 

In order to improve planning and resource allocation, 
machine learning models are also essential for forecasting crop 
yields and determining the best times to plant. Particularly in 
areas susceptible to food shortages as a result of environmental 
stressors or unstable economies, these innovations are essential 
to guaranteeing steady food production and supply. 
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3b. Crop Health Assessment and Monitoring AI-powered 
systems gather high-resolution photos of crops using drones, 
satellites, and ground-based sensors. To find indications of 
illness, dietary inadequacies, or water stress, these photos are 
examined using machine learning algorithms, specifically 
convolutional neural networks (CNNs) [9]. Significant yield 
losses are avoided, and prompt interventions are made possible 
by early detection. 

3c. Insect and Management of plant diseases and pest 
infestations result in significant crop losses. AI systems can use 
image recognition and sensor data to identify particular pests 
and disease symptoms. [8] showed how deep learning can 
accurately identify 58 distinct plant diseases. By applying 
pesticides more precisely, these insights lessen the impact on 
the environment and the use of chemicals. Further details on 
use of AI for precision Agriculture is presented in Tables 1. 

Table 1: Agricultural productivity activities and role of Artificial intelligence 

S/N Agricultural activity Role of AI Benefits of AI Reference 1 

1 Precision irrigation AI smart irrigation optimal 

prediction systems to provide 

predictions on when to apply 

irrigation water. 

Water conservation, 

improved performance 

[13] 

2 Pest and disease early 

detection 

AI-powered computer vision 

systems to provide robotics 

for monitoring and identifying 

plant diseases. 

Early detection and 

treatment prevents loses 

and makes for protection. 

[8] 

3 Weed control Use of AI enabled drones 

robots to detect and destroy 

targeted emerging weeds. 

Reduced undue 

competition among plants, 

chemical usage, and 

prevent secondary 

infestation through weeds 

harbouring pests. 

[14] 

4 Yield prediction AI models (CNNs, RF) for 

yield forecasting. 

Improved crop 

management strategies 

[15] 

5 General precision 

practice 

Use of IBM Watson decision 

platform for prompt and 

proactive decision making on 

all-inclusive activities (farm 

input, logistics and sales. 

Optimal agricultural input 

utilization and cost 

reduction. Proactive 

logistics in marketing and 

produce sales. 

[10,16] 

IV.  PROMOTING CLIMATE RESILIENCE 

The ultimate challenge to global food security is climate 
change, which affects crop production by making droughts, 
floods, and other extreme weather events more frequent (Table 
2). To increase resilience against weather threats, smart 
agriculture is essential.  AI can assist farmers in anticipating 
weather anomalies and modifying their practices in response by 
using climate models and predictive analytics [1]. For example, 
based on future weather forecasts, AI systems can suggest 
different sowing schedules or crop varieties that are resistant to 
drought. This flexibility is crucial for maintaining food 
production in the face of adversity. Furthermore, smart 
agriculture encourages sustainable methods like conservation 

tillage and effective water management, which contribute to 
ecosystem protection and the long-term sustainability of 
agricultural land [4]. 

This may however be expensive and seemingly unpracticable, 

especially by pro-poor farmers who are small-holder farmers 

and hence the cost of AI application may be farfetched. The role 

of extension agents and the development of simple AI tools for 

such local community-based farmers is worth giving prominent 

attention. 
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TABLE 2: WEATHER DATA IN PRECISION AGRICULTURE 

S/N Weather 

Element 

Data Collected  Tool to 

Use/Source 

Application Author source 

1 Temperature Daily/hourly (from soil/air) IOT weather 

stations, 

Thermocouples 

Forecasting planting 

dates, timing for 

irrigation, diseases 

and risk etc 

[15, 3] 

2 Solar radiation Solar irradiance, photosynthetic 

periods, and timing 

Satellite imaging, 

pyranometers 

To determine crop 

growth models, 

optimize 

photosynthesis 

[18] 

3 Precipitation Amount of 

rainfall/frequency/duration 

Rain Guage To predict water 

stress and schedule 

irrigation  

[17] 

4 Humidity Dew point, relative humidity IoT climate 

station, 

Hygrometer 

To predict 

diseases/water stress 

[19] 

5 Wind 

speed/direction 

Wind direction and speed Anemometers Liquid 

nutrient/pesticide 

spray optimization 

[20a] 

6 Evaporation Crop cover estimate Multiple weather 

inputs used 

Water conservation, 

irrigation scheduling 

[21] 

7 Soil Moisture Water content/ volume, tension Tensionmeters, 

Soil probes 

Drought response 

modelling, irrigation 

scheduling 

[22]. 

V.   OPTIMIZING FOOD SYSTEMS TO PREVENT WASTE  

One of the biggest obstacles to attaining food security is pre- 

and post-harvest losses, including food waste, even after 

processing. Not less than 1.3 billion tons of food are annually 

lost or wasted. This is approximately one-third of the food 

produced worldwide that is lost or wasted, according to the 

[23]. By enhancing supply chain management, smart 

agriculture tackles this problem. [16] opined that to guarantee 

food reaching markets and consumers in the best possible 

condition, AI algorithms may be deployed to optimize the 

timing of harvest, storage conditions, and transportation 

logistics. [15] identified remote sensing, Yield prediction using 

AI, precision irrigation etc, as intervention means from the 

production stage to harvesting that will greatly reduce losses. 

Better still, block and cold chain technology are other elements 

of smart agriculture that provide transparency and traceability 

throughout the food supply chain with adequate and improved 

packaging. By doing this, inefficiencies are decreased, spoilage 

is avoided, and stakeholder accountability is guaranteed 

[25,26]. Additionally, AI-powered digital marketplaces can 

connect smallholder farmers with customers or retailers 

directly, cutting down on layers of middlemen and minimizing 

food loss. Processing and manufacturing efficiency by adopting 

waste recycling into animal feed is expected to significantly 

reduce waste and promote circular economy [27]. 

VI.    ENCOURAGING ACCESS AND INCLUSIVE GROWTH 

Another essential component of food security is having 

physical and financial access to food. By giving them access to 

resources and knowledge that increase output and revenue, 

smart agriculture can empower smallholder farmers, who make 

up a sizable share of the global agricultural workforce. AI-

enabled mobile apps can provide farmers with localized 

guidance on crop management, weather predictions, and pest 

control based on their unique location and crop type [28].  

Farmers' resilience and financial capacity to invest in improved 

inputs and technologies are further enhanced by digital 

financial services, such as mobile banking and agricultural 

insurance. Smart agriculture also helps to lower economic 

inequality and rural poverty, these are two issues that are 

closely related to food insecurity [29]. 

VII.   CHALLENGES TO ALL-INCLUSIVE AI EMPOWERMENT 

The shift to smart agriculture is fraught with challenges, despite 

its long-standing benefits. Widespread awareness and adoption 

are severely hampered by the high upfront financial and gadget 

investment, low levels of digital literacy, and inadequate 

infrastructure (to power and synergize the process), especially 
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in developing nations are all areas demanding critical attention 

in AI-driven Agricultural productivity. If underprivileged 

communities do not have access to these technologies, there is 

therefore the digital divide that will widen the gap in acceptance 

and adoption [1]. 

To gain users' trust, issues with cybersecurity, ownership, and 

data privacy must also be resolved. 

Governments and international organizations must develop 

inclusive policies, provide capacity-building programs, and 

incentivize research and development to ensure that the benefits 

of smart agriculture are equitably distributed. For the pro-poor 

smallholder farmers, who are the foundation of the world's food 

production, public-private partnerships, policy support, and 

capacity-building programs are crucial in order to gain and 

secure their attention in espousing and the deployment of AI. 

 

VIII. CONCLUSION 

Precision agriculture stands out as a crucial pillar in the quest for 

a fair and food-secure future as international efforts come 

together to achieve the United Nations Sustainable 

Development Goal 2 (zero Hunger). The future of AI and data-

driven Agriculture is promoted by the integration of AI across 

agricultural operations, despite the overwhelming challenges 

which include inadequate digital infrastructure, digital divide, 

ethical issues, lack of and inadequate capacity building, 

unavailable data etc.  Albeit the Future of AI with the emerging 

cutting-edge computing, swarm robotics, and blockchain 

integration, artificial intelligence in agriculture is expected to 

secure global food demands. The relationship between AI in 

smart agriculture and food security is multifaceted as it requires 

a multidisciplinary approach in developing requisite AI tools for 

respective agricultural operations. Enhancing productivity 

through AI promotes building resilience, reducing food waste, 

improving access to food and agricultural services through 

digital marketing etc. In order to enable wide acceptance and 

adoption of AI in smart farming technologies, especially by 

smallholder farmers who are financially impoverished, 

supportive  policies, targeted investments, capacity building and 

public-private partnerships must be embraced, implemented and 

promoted. Gains in Precision agriculture is being transformed 

and implemented by AI, which increases agricultural resilience, 

sustainability, and efficiency. To fully utilize AI in agriculture, 

it will be essential to guarantee fair access and address ethical 

issues. 
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