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Abstract—Due to inefficiencies in production and distribution
systems, resource constraints, and environmental degradation,
traditional agricultural methods are becoming diminishingly
capable and effective in addressing food security challenges. The
most important global concern of the twenty-first century research is
promoting food security even as the world's population grows, and
climate actions increase. Agricultural productivity thrives on timely,
optimum and acceptable weather elements. In response, Artificial
intelligence has become a trending strategy and tool that uses
cutting-edge technologies to improve food systems® sustainability,
productivity, and efficiency. To facilitate real-time farming and
decision-making, artificial intelligence in precision agriculture
incorporates data-driven technologies like, the Internet of Things
(loT), satellite imaging, tensiometer, geographic information
systems (GIS), remote sensing etc. With the use of these technologies,
farmers can efficiently and promptly use farm inputs including
water, liquid macro and micro-nutrients (fertilizers), and pesticides
based on the unique requirements of the soil and crop. Engaging
Artificial Intelligence will promote seamless and smart agricultural
production processes, and reduction in environmental hazards with
resultant effect on improved food systems. Smart irrigation systems,
blockchain-enabled supply chain transparency, Al-based disease
and pest detection, and the use of unmanned aerial vehicles (UAVs)
for crop monitoring are some of the major emerging trends in

Precision agriculture as facilitated by Al. To maintain sustainability,
efficiency, and productivity, agriculture must change as
environmental pressures, and global food demands also change in
the upward direction. Artificial intelligence provides requisite tools
to support smart farming. Precision in agriculture does not only
promote food availability, and sustainability, but also provide data
and statistics for informed and intentional steps towards enhanced
productivity. The study concludes that Al is essential in attaining a
sustainable agricultural future after discussing the advantages,
difficulties, and potential future of Al-powered farming.
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. INTRODUCTION

The need for sustainable resource use, environmental
concerns, and the rising demand for food worldwide are all
causing a major shift in the agricultural sector. This is to say
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that in the recent, the agricultural sector has been at a threshold
as orchestrated by man-made and natural challenges such as
rising population, climate actions, and uncontrollable fall in
natural resources [1].

Undoubtedly, as the name suggests, the challenges of
traditional farming methods are fueled by tools that are
frequently ineffective in addressing the demands of
environmental degradation and food security. Precision
agriculture, a data-driven strategy that optimizes farming
practices, is being used by industries to address and
revolutionize agricultural activities for outstanding timely
produce/product performance [2,3]. Adoption of Artificial
Intelligence (Al), which permits real-time data analysis and
decision-making, is essential to this evolution [4].

There has never been more pressure on agriculture to
produce more with less input, as the world's population is
expected to approach 10 billion people by 2050 [5,6]. Despite
the long-standing years of traditional farming practices, the
demand for modern food systems in terms of quantity, quality
and sustainability is yet achieved. Noting this, precision
farming and artificial intelligence (Al), empirically called
"smart farming," has created a hope and future for food
security. This topic examines how Al tools like machine
learning which include, GP- guided tractors, Soil sensors,
automatic weeders, robotics, crop scouting robots, Al-smart
irrigation platforms according to [7] etc, and Internet of Things
(1oT) devices are embraced and accepted as instruments for
transforming agricultural practices in order to satisfy the
world's need for food security.

Predictive analytics can forecast extreme weather events,
suggest crop varieties that can withstand stress, and direct
planting schedules. These innovations are critical in African
regions (Sub-Saharan Africa and South Asia) where food
insecurity is most vulnerable [8,9]. Agricultural productivity is
constrained by subsistence farming. Precision farming and
artificial intelligence (Al) support smart farming, which offers
a revolutionary approach to contemporary agriculture. It
encompasses the application of Al to agricultural productivity
processes like crop monitoring, forecasting, nutrient
applications, yield predictions, updating and evaluating soil
health, and automation of processes such as feeding regime,
date and time for planting and harvesting, etc. Machine
learning, computer vision, big data analytics, and the Internet
of Things (loT) are examples of Al technologies used in smart
farming that gather, process, and interpret data from multiple
sources to enable real-time, data-driven informed decision for
better agricultural practices. According to Food and Agriculture
Organization [5], the increase in food production must not be
less than 70% by 2050 in order to meet global food demands.
This review, therefore, analyzes through internet search, the
fundamental applications and uses, challenges and future
prospects of artificial intelligence and its incorporation into
precision agriculture through crop monitoring, yield prediction,
pest control, irrigation management, and automating machinery
towards advancing agricultural practices for food security in the
Sub-Saharan nations.

Il. CONNECTING FOOD SECURITY AND ARTIFICIAL
INTELLIGENCE

One of the most urgent global issues of the twenty-first
century is food security. [5] defines food security as the state in
which all people, at all times, have physical, social, and
economic access to enough food that is safe and nourishing.
Globally, by 2050, it is expected that there will be more than
9.7 billion people (see fig. 1). Itis expected that the increase in
food production from agricultural systems will be hugely
overwhelmed arising from the pressure from the natural
ecosystem and resources as well the non-dependable climate
actions which hitherto has bewildered the expectations on
global food security. The use of digital technologies and data-
driven instruments like artificial intelligence (Al), machine
learning, and the Internet of Things (IoT) in smart agriculture
is becoming more widely acknowledged as a practical way to
improve global food security, even in the ravaging climate
actions against seamless traditional farming operations.
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Figure 1: World Population Growth

I1l. A. THE ROLE OF Al IN ENHANCING PRECISION IN
AGRICULTURAL PRODUCTIVITY

The fundamental pillar of food security is food availability,
which depends on agricultural productivity. Smart agriculture
improves productivity through the integration of precision
farming techniques. Better still, other productivity activities
include smart irrigation, weed, pest and disease control, yield
optimization, etc which ensure optimized use of inputs like
water, fertilizers, and pesticides for enhance output (Table 1).
Al-driven systems use data from satellite imagery, weather
sensors, and soil health monitors to make real-time decisions
that maximize crop yields while minimizing waste [10]. For
example, variable rate technology (VRT) allows for the precise
application of nutrients and irrigation, which enhances the
efficiency of farming operations and leads to higher yields [11].

In order to improve planning and resource allocation,
machine learning models are also essential for forecasting crop
yields and determining the best times to plant. Particularly in
areas susceptible to food shortages as a result of environmental
stressors or unstable economies, these innovations are essential
to guaranteeing steady food production and supply.
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3b. Crop Health Assessment and Monitoring Al-powered
systems gather high-resolution photos of crops using drones,
satellites, and ground-based sensors. To find indications of
illness, dietary inadequacies, or water stress, these photos are
examined using machine learning algorithms, specifically
convolutional neural networks (CNNs) [9]. Significant yield
losses are avoided, and prompt interventions are made possible
by early detection.

3c. Insect and Management of plant diseases and pest
infestations result in significant crop losses. Al systems can use
image recognition and sensor data to identify particular pests
and disease symptoms. [8] showed how deep learning can
accurately identify 58 distinct plant diseases. By applying
pesticides more precisely, these insights lessen the impact on
the environment and the use of chemicals. Further details on
use of Al for precision Agriculture is presented in Tables 1.

Table 1: Agricultural productivity activities and role of Artificial intelligence

SIN  Agricultural activity Role of Al Benefits of Al Reference 1

1 Precision irrigation Al smart irrigation optimal Water conservation, [13]
prediction systems to provide improved performance
predictions on when to apply
irrigation water.

2 Pest and disease early Al-powered computer vision Early detection and [8]

detection systems to provide robotics treatment prevents loses
for monitoring and identifying and makes for protection.
plant diseases.

3 Weed control Use of Al enabled drones Reduced undue [14]
robots to detect and destroy competition among plants,
targeted emerging weeds. chemical  usage, and

prevent secondary

4 Yield prediction
yield forecasting.

5 General
practice

precision
platform for

input, logistics and sales.

Al models (CNNs, RF) for

Use of IBM Watson decision
prompt and
proactive decision making on
all-inclusive activities (farm

infestation through weeds
harbouring pests.

Improved crop [15]
management strategies

Optimal agricultural input
utilization and cost
reduction. Proactive
logistics in marketing and
produce sales.

[10,16]

IV. PROMOTING CLIMATE RESILIENCE

The ultimate challenge to global food security is climate
change, which affects crop production by making droughts,
floods, and other extreme weather events more frequent (Table
2). To increase resilience against weather threats, smart
agriculture is essential. Al can assist farmers in anticipating
weather anomalies and modifying their practices in response by
using climate models and predictive analytics [1]. For example,
based on future weather forecasts, Al systems can suggest
different sowing schedules or crop varieties that are resistant to
drought. This flexibility is crucial for maintaining food
production in the face of adversity. Furthermore, smart
agriculture encourages sustainable methods like conservation

tillage and effective water management, which contribute to
ecosystem protection and the long-term sustainability of
agricultural land [4].

This may however be expensive and seemingly unpracticable,
especially by pro-poor farmers who are small-holder farmers
and hence the cost of Al application may be farfetched. The role
of extension agents and the development of simple Al tools for
such local community-based farmers is worth giving prominent
attention.
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TABLE 2: WEATHER DATA IN PRECISION AGRICULTURE

SIN  Weather Data Collected Tool to Application Author source
Element Use/Source
1 Temperature Daily/hourly (from soil/air) 10T weather  Forecasting planting [15, 3]
stations, dates, timing for
Thermocouples irrigation, diseases
and risk etc
2 Solar radiation ~ Solar irradiance, photosynthetic ~Satellite imaging, To determine crop [18]
periods, and timing pyranometers growth models,
optimize
photosynthesis
3 Precipitation Amount of Rain Guage To predict water [17]
rainfall/frequency/duration stress and schedule
irrigation
4 Humidity Dew point, relative humidity loT climate To predict [19]
station, diseases/water stress
Hygrometer
5 Wind Wind direction and speed Anemometers Liquid [20a]
speed/direction nutrient/pesticide
spray optimization
6 Evaporation Crop cover estimate Multiple weather Water conservation, [21]
inputs used irrigation scheduling
7 Soil Moisture ~ Water content/ volume, tension Tensionmeters, Drought  response [22].
Soil probes modelling, irrigation
scheduling

V. OPTIMIZING FOOD SYSTEMS TO PREVENT WASTE

One of the biggest obstacles to attaining food security is pre-
and post-harvest losses, including food waste, even after
processing. Not less than 1.3 billion tons of food are annually
lost or wasted. This is approximately one-third of the food
produced worldwide that is lost or wasted, according to the
[23]. By enhancing supply chain management, smart
agriculture tackles this problem. [16] opined that to guarantee
food reaching markets and consumers in the best possible
condition, Al algorithms may be deployed to optimize the
timing of harvest, storage conditions, and transportation
logistics. [15] identified remote sensing, Yield prediction using
Al, precision irrigation etc, as intervention means from the
production stage to harvesting that will greatly reduce losses.

Better still, block and cold chain technology are other elements
of smart agriculture that provide transparency and traceability
throughout the food supply chain with adequate and improved
packaging. By doing this, inefficiencies are decreased, spoilage
is avoided, and stakeholder accountability is guaranteed
[25,26]. Additionally, Al-powered digital marketplaces can
connect smallholder farmers with customers or retailers
directly, cutting down on layers of middlemen and minimizing
food loss. Processing and manufacturing efficiency by adopting

waste recycling into animal feed is expected to significantly
reduce waste and promote circular economy [27].

VI. ENCOURAGING ACCESS AND INCLUSIVE GROWTH

Another essential component of food security is having
physical and financial access to food. By giving them access to
resources and knowledge that increase output and revenue,
smart agriculture can empower smallholder farmers, who make
up a sizable share of the global agricultural workforce. Al-
enabled mobile apps can provide farmers with localized
guidance on crop management, weather predictions, and pest
control based on their unique location and crop type [28].
Farmers' resilience and financial capacity to invest in improved
inputs and technologies are further enhanced by digital
financial services, such as mobile banking and agricultural
insurance. Smart agriculture also helps to lower economic
inequality and rural poverty, these are two issues that are
closely related to food insecurity [29].

VII.

The shift to smart agriculture is fraught with challenges, despite
its long-standing benefits. Widespread awareness and adoption
are severely hampered by the high upfront financial and gadget
investment, low levels of digital literacy, and inadequate
infrastructure (to power and synergize the process), especially

CHALLENGES TO ALL-INCLUSIVE Al EMPOWERMENT
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in developing nations are all areas demanding critical attention
in Al-driven Agricultural productivity. If underprivileged
communities do not have access to these technologies, there is
therefore the digital divide that will widen the gap in acceptance
and adoption [1].

To gain users' trust, issues with cybersecurity, ownership, and
data privacy must also be resolved.

Governments and international organizations must develop
inclusive policies, provide capacity-building programs, and
incentivize research and development to ensure that the benefits
of smart agriculture are equitably distributed. For the pro-poor
smallholder farmers, who are the foundation of the world's food
production, public-private partnerships, policy support, and
capacity-building programs are crucial in order to gain and
secure their attention in espousing and the deployment of Al.

VII1.CONCLUSION

Precision agriculture stands out as a crucial pillar in the quest for
a fair and food-secure future as international efforts come
together to achieve the United Nations Sustainable
Development Goal 2 (zero Hunger). The future of Al and data-
driven Agriculture is promoted by the integration of Al across
agricultural operations, despite the overwhelming challenges
which include inadequate digital infrastructure, digital divide,
ethical issues, lack of and inadequate capacity building,
unavailable data etc. Albeit the Future of Al with the emerging
cutting-edge computing, swarm robotics, and blockchain
integration, artificial intelligence in agriculture is expected to
secure global food demands. The relationship between Al in
smart agriculture and food security is multifaceted as it requires
a multidisciplinary approach in developing requisite Al tools for
respective agricultural operations. Enhancing productivity
through Al promotes building resilience, reducing food waste,
improving access to food and agricultural services through
digital marketing etc. In order to enable wide acceptance and
adoption of Al in smart farming technologies, especially by
smallholder farmers who are financially impoverished,
supportive policies, targeted investments, capacity building and
public-private partnerships must be embraced, implemented and
promoted. Gains in Precision agriculture is being transformed
and implemented by Al, which increases agricultural resilience,
sustainability, and efficiency. To fully utilize Al in agriculture,
it will be essential to guarantee fair access and address ethical
issues.
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