

Sustainable agricultural practices using beneficial fungi under changing climate scenarios

19

Elizabeth Temitope Alori^{1,2,3,4}, Abidemi Olubusayo Onaoalapo^{1,2,3},

Glory Adesola Alabi^{1,2,5}, Matthew Durowaiye Ayeni^{1,2,6},

Osarenkho Omorefosa Osemwiegie^{2,7}, and Olubukola Oluranti Babalola⁴

¹Landmark University SDG 2 (Zero Hunger) Omu-Aran, Kwara State, Nigeria, ²Landmark University SDG 15 (Life on Land) Omu-Aran Kwara State, Nigeria, ³Crop and Soil Science Department, Landmark University, Omu-Aran, Kwara State, Nigeria, ⁴Faculty of Natural and Agricultural Sciences, Food Security and Safety Focus Area, North-West University, Mmabatho, South Africa, ⁵Department of Agriculture, Landmark University, Omuanan, Kwara State, Nigeria, ⁶Department of Agricultural Economics and Extension, Landmark University, Omu-Aran, Kwara State, Nigeria, ⁷Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria

Chapter Outline

19.1 Introduction 467

19.2 Impacts of climate change on sustainable agricultural systems 468

19.3 Importance of adapting cropping practices to climate change challenges 470

19.4 Activities of beneficial fungi that enhance crop and cropping system efficiency in the climate change era 471

19.5 Benefits and efficacy of sustainable agricultural practices using beneficial fungi 472

19.6 Economic and environmental feasibility of adopting fungi in sustainable agriculture 473

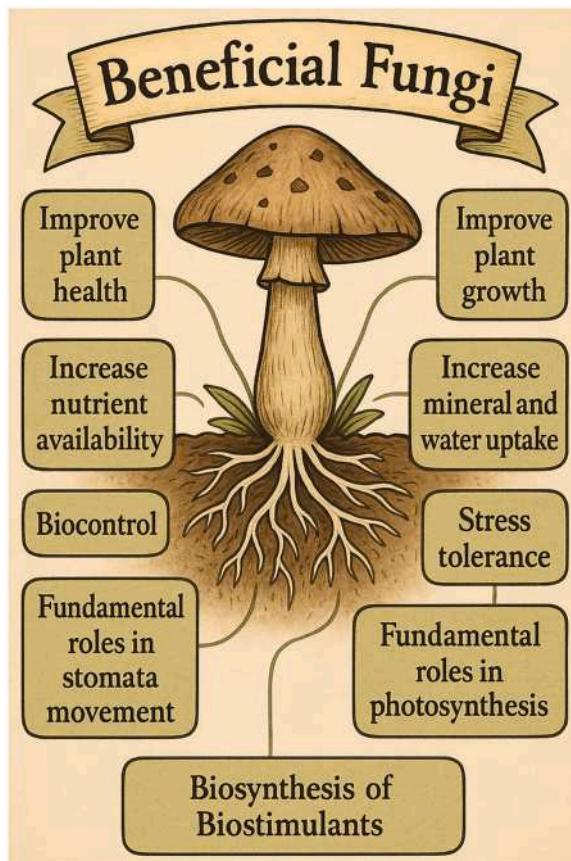
19.7 Using beneficial fungi to enhance plant growth and resistance to pests and diseases 477

19.8 Conclusion 479

References 479

19.1 Introduction

The connection of agriculture, climate change, and sustainability has emerged as a critical focal point in global discourse, as humanity confronts the challenges of ensuring food security under the growing threats of environmental degradation and


climate change (Ortiz et al., 2021). As a result, conventional farming methods are being reconsidered and updated to become more resilient and sustainable (Okoronkwo et al., 2024). Over the past few decades, increased research funding has led to innovations that have improved crop adaptation to deteriorating soil health and climate stresses. The use of soil microbes is one of them. In addition to influencing the interaction between soil microorganisms and their function in generating biofertilizers and biopesticides, they are utilized as microbial inoculants and consortia to alleviate the effects of climate change on crop yields (Inbaraj, 2021; Kavadia et al., 2020).

The obvious effects of climate change manifest numerous impacts such as altered precipitation patterns, rising temperatures, increased frequency of extreme weather events, and shifts in pest and disease dynamics (Guo et al., 2021). These aggravate soil erosion, environmental degradation, and the loss of biodiversity in addition to endangering agricultural productivity (Eekhout & de Vente, 2022; Habibullah et al., 2022). Therefore, in order to reduce the risks associated with climate change and to advance ecological resilience and sustainability, creative and adaptable agricultural practices should be continuously revised. Therefore, innovating means of harnessing the potential of beneficial microbes in the environment presents a promising prospect for sustainable agricultural practices and food security despite the challenges posed by climate change (Singh et al., 2023). Fig. 19.1 explains some impacts of beneficial fungi in sustainable agricultural practices.

Beneficial fungi, including a diverse array of symbiotic and endophytic species, offer a natural, compelling solution in this context. Fungi form intricate relationships with plants, aiding nutrient uptake, disease suppression, and stress tolerance. Also, they contribute to soil health, carbon sequestration, and ecosystem stability, offering multifaceted potential that can be exploited for sustainable agriculture (Alori et al., 2017; Eze et al., 2024). In light of the current climate change era, this study examines the diverse functions of beneficial fungi in sustainable agricultural practices. It is talked about how crucial it is to modify cropping techniques in response to climate change challenges.

19.2 Impacts of climate change on sustainable agricultural systems

Changing climate conditions can substantially affect agricultural productivity and food security (Yadav et al., 2018). Variations in temperature, humidity, and precipitation can cause growing seasons to be disrupted, crop yields to be decreased, soil microbial activities that promote plant growth to be increased, and the prevalence of pests and diseases to rise. Fisheries, aquaculture, and livestock production are all impacted by climate change, which may cause problems with the availability of food (Cheng et al., 2022). This might have unintended detrimental effects on people's health by leading to starvation, infections from contaminated water, illnesses brought on by the heat, and various degrees of mental health issues (Myers & Bernstein, 2011). Rocha et al. (2022) noted that the population of humans is most susceptible to the effects of climate change. This is due to the fact that the effects of climate change, such as heat waves, extreme weather, and altered disease patterns, can weaken immunity in people, raising

Figure 19.1 Impacts of beneficial fungi in sustainable agricultural practices.

their risk of developing respiratory issues, heat-related illnesses, vector-borne infections, waterborne infections, and other infections (Ebi et al., 2021). Susceptible populations, including the elderly, children, and marginalized communities, are particularly at higher risk of being affected by climate change-related stresses, leading to loss of livelihood, chronic exposure to pollutants and extreme weather patterns, epidemiological illnesses, and adaptive challenges to the changing socioeconomic landscape (Rocklöv & Dubrow, 2020).

Crop productivity is negatively impacted by climate change in a number of ways, including decreased soil fertility and crop yield, limited soil water availability, increased soil erosion, and increased pest spread (Tajudeen et al., 2022). According to Grigorieva et al. (2023), the negative impacts of climate change are expressed in terms of reduced crop yields and crop area.

Also, the impacts of climate change can have significant economic consequences (Kalkuhl & Wenz, 2020). Circular economic growth can be significantly slowed down by a number of factors, including damage to infrastructure, higher healthcare

costs, disruptions to agriculture and food production, and the loss of coastal features and tourism revenue. These consequences may exacerbate already-existing disparities by causing social and economic inequality. The adverse effects of climate change encompass financial setbacks, escalated expenses for labor, and equipment (Grigorieva et al., 2023).

Dangerous climatic events such as flooding, extreme heat, and drought have led to soil degradation, which results in low crop yields (Agbola & Fayiga, 2016). Climate change negatively impacts crop productivity by decreasing soil fertility, and increasing soil erosion (Tajudeen et al., 2022). Due to changes in the ideal temperature ranges, climate change has also jeopardized the survival and integrity of many species, hastening the loss of biodiversity by gradually altering the ecosystem structures.

19.3 Importance of adapting cropping practices to climate change challenges

Adaptation refers to actions designed to increase the ability of individuals and communities to decrease harms from climate change that will occur in numerous parts of human life (Orlove, 2022). Hence, adapting cropping practices means activities aimed at increasing the cropping practice's ability to lessen the harms from climate change. Adaptation of cropping practices to climate change includes changes in a cropping practice in response to variations in climate situations (Akinnagbe & Anugwa, 2015). Cropping practices can adapt in response to a series of events, such as temperature and precipitation levels, that cause droughts (in terms of intensity and/or frequency), which have an impact on crop yield (Smit et al., 2000). Crop varieties and management, innovative breeding techniques and changes in land use, water and soil management, agronomic practices, farmer training, and knowledge transfer are some of the crop practices that could be adjusted to the challenges posed by climate change (Grigorieva et al., 2023).

According to Akinnagbe and Anugwa (2015), Farmers frequently use the following adaptation strategies for their crops: using drought-tolerant crop varieties; crop diversification; altering cropping patterns and planting dates; conserving soil moisture through appropriate tillage techniques; increasing irrigation efficiency; and afforestation and agroforestry. The United Nations Sustainable Development Goals, which sought to safeguard the environment and guarantee that everyone lives in peace and prosperity, will be achieved through cropping practices that are adjusted to the challenges posed by climate change. sustainable cultivation of food (Çakmakçı et al., 2023). A key factor in reducing the adverse effects of climate change will be cropping practices adaptation, which may involve changes to field-scale management techniques (Lehmann et al., 2013).

Additionally, some of the effects of climate change are occurring more quickly than previously thought, and cropping practices will need to adapt to these trends if they are to continue (Rahmstorf et al., 2007). Differences in annual rainfall, average temperature, heat waves, alterations in weeds, pests or microbes, universal alteration

of atmospheric CO₂ or ozone level, and instabilities in sea level, all due to climate change, impede total crop production and compromise food security worldwide (Raza et al., 2019). By using specially designed fertilization regimes in single-crop cultivation systems, cropping practices can be adjusted to the challenges posed by climate change. This reduces the need for inputs, water waste, fossil fuels, and unharvested products, all of which lower emissions and boost net productivity (Turner-Skoff & Cavender, 2019). Additionally, by lowering the amount of methane released during animal production, choosing plant-based protein sources (like pulse crops) rather than animal-based proteins lowers agricultural greenhouse gas emissions (Volk et al., 2023). Cropping practices that are adjusted to the challenges posed by climate change will: lower exposure to damage risk; increase resilience to inevitable damage; and enable the cropping system to seize new opportunities (Akinnagbe & Anugwa, 2015).

19.4 Activities of beneficial fungi that enhance crop and cropping system efficiency in the climate change era

Beneficial fungi adopt strategies, either direct or indirect, to help crops and cropping systems in the face of climate change. Production of phytohormones, nitrogen fixation, phosphate solubilization, siderophore formation, and antimicrobial metabolites are all part of the direct beneficial mechanism (El Enshasy et al., 2020).

Endophytic fungal annexation encourages physical changes and alters gene expression in the plants, thus elevating plant productivity through higher photosynthesis rate, encouraging the growth of the shoots and roots, improving uptake and nutrient use efficiency, and providing resistance to biotic (pathogens and pests) and abiotic stress (drought, salinity, high temperature, high CO₂, and metal toxicity) (Grabka et al., 2022). Beneficial fungi act as biostimulants to yield certain bioactive compounds, phytohormones, phosphate solubilization factors, etc., to improve root growth, seed germination, and plant growth promotion (Rustamova et al., 2022). Many fungi, such as *Penicillium*, *Aspergillus*, *Curvularia*, *Trichoderma*, *Mesorhizobium*, *Aspergillus fumigatus*, *Aspergillus niger*, *Alternaria thlaspis*, *Metapochonia rubescens*, have been identified and reported to have ability to solubilize and mobilize phosphorus, potassium, and zinc salts thereby boosting plant metabolic activity, plant growth resulting in high crop production (Haro & Benito, 2019; Mehta et al., 2019; Yung et al., 2021). They execute phyto stimulation via lowering plant hormone ethylene levels by 1-aminocyclopropane-1-carboxylate deaminase (ACC), escalating plant growth (Singh et al., 2015). Additionally, they break down biomass and reuse it into the environment, which increases the host's availability of nitrogen and increases its uptake of zinc and phosphorus, leading to phyto immobilization (Yung et al., 2021).

Through the immobilization of osmolytes and the stabilization of membrane ion conductivity under stress conditions brought on by climate change, phyto immobilization ultimately increases plants' ability to withstand abiotic stresses (Verma et al., 2022). Beneficial fungi disrupt pathogens' quorum sensing (QS) by inhibiting the

production of signal molecules that initiate infections. Take, for instance, the production of QS inhibitors that can break down QS signal molecules, such as chitinases, pectinases, and lactonases. These inhibitors prevent pathogen invasion and lead to reduced plant disease symptoms (Saeki et al., 2020). *Curvularia geniculata* mediates plant growth through phosphate solubilization and phytohormone production (Priyadharsini & Muthukumar, 2017).

The incidental beneficial mechanism includes resistance to abiotic and biotic stressors (modifying the metabolism process), biocontrol, etc. (Singh et al., 2021). Beneficial fungi defend plants indirectly by triggering a defense response or promoting plant growth (Zubair et al., 2021). As a result, the host undergoes a wide range of biochemical and molecular defensive processes that serve as a defense mechanism against numerous pathogens (Ayaz et al., 2023). Endophytic fungi potentially execute munificent global roles in the host plant via phytostimulation, phytoimmobilization, phytostabilization, phytotransformation, phytoremediation, and biocontrol (Adeleke et al., 2022b). They are reported to produce secondary metabolites, which include bioactive antimicrobial siderophores, which may execute defense against various pathogens (Srinivas et al., 2020). They inhibit the pathogens' pathogenicity over different materials such as lipopeptides, biosurfactants, bacteriocins, volatiles, and enzymes that have antimicrobial properties by reducing the development or metabolic activity of pathogens (Babalola, 2010).

Under chilling stress, *Funneliformis mosseae* inoculation significantly improved the content of related secondary metabolites, including phenols, flavonoids, lignin, DPPH activity, and phenolic compounds (Chen et al., 2013). *Glomus mosseae* under low temperature stress increased leaf activities of superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione, but decreased leaf concentrations of malondialdehyde, and hydrogen peroxide in crops (Liu et al., 2017).

19.5 Benefits and efficacy of sustainable agricultural practices using beneficial fungi

Rhizosphere soil fungi, such as *Trichoderma* spp., *Gliocladium virens*, *Penicillium digitatum*, *Aspergillus flavus*, *Actinomucor elegans*, *Podospora bulbillosa*, and arbuscular mycorrhizal fungi, can improve the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the copious production of crops (Adedayo & Babalola, 2023a). Applications of beneficial fungi overwhelm the usage of agrochemicals and likewise prevent plants from biotic and abiotic stresses (Malgioglio et al., 2022). The beneficial fungi improve plant root extension, encourage plant growth development (seed germination and seedling strength and photosynthetic efficiency), protection from various kinds of phyto-pathogens, and also support soil improvements (Kumari et al., 2021). Plant growth-promoting fungi could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens, and have therefore proven to be effective biofertilizers and biopesticides, and are considered a feasible, attractive economic approach for sustainable agriculture

(El-Saadony et al., 2022). As stated by Muthuraman and Murugaragavan (2020), beneficial fungi conjointly play a basic role in different physiological processes as well as mineral and water uptake, chemical change, stomata movement, and biosynthesis of compounds termed biostimulants, auxins, lignan, and ethylene to enhance the flexibility of plants to ascertain and cope environmental stresses like drought, salinity, heat, cold, and significant metals. Beneficial fungi produce large quantities of bioactive compounds that can be used as agrochemicals for crop protection (Ayaz et al., 2023). Table 19.1 reported some of the benefits of using beneficial fungi for sustainable agricultural practices in a changing climatic scenario

19.6 Economic and environmental feasibility of adopting fungi in sustainable agriculture

In the majority of cases, climate-smart systems that incorporated beneficial fungi outperformed the conventional control, with some even achieving a yield gain of over 60% (Thierfelder & Mutenje, 2018). Due to their biomass, hyphal network, and longer life cycle, fungi are more advantageous over bacteria for bioremediation of polluted agricultural soil (Kour et al., 2024). Utilizing arbuscular mycorrhizal fungi as a biofertilizer increases nutrient uptake, stimulates plant growth hormones, and expedites the decomposition of organic wastes, all of which can increase crop yield (Osemwiegie et al., 2021). In nature, fungi are commonplace, and their various strains give their species greater specificity against pests and illnesses. They are self-sustaining because the infection spreads by means of spores, which are generated in vast quantities and persist so long as the right conditions for growth are present. As a result, application costs are also decreased (Singh et al., 2018). A deeper understanding of the physiological responses of these microbes to stress can help develop a more robust and resilient agroecosystem, even though research supports the use of mycorrhizae and fungal endophytes as an environmentally friendly alternative to combat drought stress (Raghuvanshi, 2018). With their varied functional diversity and dispersal mechanisms, fungi constitute a significant and diverse component of the majority of ecosystems on Earth. The expanding body of knowledge regarding microbial biogeography is demonstrating how different fungal assembly patterns and processes are from bacterial ones. Their ability to successfully adapt and impact the environment is rooted in their multifaceted capacity to interact tempo-spatially with an increasingly diverse array of physical, chemical, and biological ecosystem components (Bahram & Netherway, 2022). Furthermore, their ubiquitous distribution, diverse ecological roles, remarkable biological diversity, and high sensitivity have favored them as one of the most important groups of environmental bio-indicators (Warnasuriya et al., 2023). Suffice it to say that their existence, quantity, and nature can be used to make inferences about the quality of the environment or detect environmental contaminants by less rigorous laboratory analyses or in situ visual inspections. As a result, they aid in soil fertility by breaking down plant and animal waste through enzymatic processes. Many also interact with soil fauna and saprophytic bacteria to maximize access to nutrients from rocks and organic remains,

Table 19.1 Benefits of using beneficial fungi for sustainable agricultural practices.

Beneficial fungi	Climatic factor/ stress condition	Crop	Effects	References
Ascomycetes	Semiarid	Maize	Improves physiological attributes of maize	Akinola et al. (2023)
<i>Trichoderma</i> species	Management of root rot diseases	Tomato	Improved crop health and productivity	Olowe, Nicola, Asemoloye, Akanmu, Babalola (2022)
<i>Trichoderma</i> species	Pathogenic <i>Fusarium</i> species	Maize, banana, and cassava	Inhibit the growth of <i>Fusarium</i> pathogens in vitro.	Olowe, Nicola, Asemoloye, Akanmu, Sobowale et al. (2022)
<i>Trichoderma koningii</i> , <i>Purpureocillium lilacinum</i> , <i>Mortierella alpina</i>	Biotic stress: Powdery mildew disease caused by <i>Oidium neolycorepicum</i>	<i>Solanum lycopersicum</i>	The fungi isolate promotes the production of tomatoes from Healthy rhizosphere soil and reduces the phytopathogen activities	Adedayo et al. (2023a)
<i>Trichoderma</i> spp., <i>Gliocladium virens</i> , <i>Penicillium digitatum</i> , <i>Aspergillus flavus</i> , <i>Actinomucor elegans</i> , <i>Podospora bulbillosa</i> , Arbuscular mycorrhizal fungi	Abiotic and biotic conditions	<i>Solanum lycopersicum</i> , <i>Cucumis sativus</i> , <i>Zea mays</i> , <i>Oryza sativa</i> , <i>Triticum aestivum</i> , <i>Zea mays</i> , etc.	Plant growth-promoting fungi promote abundant production of various crops	Adedayo and Babalola (2023a)
Ascomycota and Basidiomycota	Plant diseases; <i>Oidium neolycorepicum</i>	<i>Solanum lycopersicum</i>	Fungi produce plant-growth-promoting genes that contribute to the abundant production of tomatoes and inhibit or eradicate disease invasion	Adedayo et al. (2023b)

<i>Arbuscular mycorrhiza fungi, Trichoderma harzianum, Purpureocillium lilacinum, Metarhizium anisopliae, Penicillium spp., Aspergillus sp., Coprinellus radians, Neurospora spp., Paecilomyces spp. Epichloë typhina and Curvularia protuberata</i> <i>Rhizobium spp., Arbuscular mycorrhizal (AM) fungi, Metarhizium brunneum, Sargassum vulgare, Acanthophora spicifera, Ascophyllum nodosum, Trichoderma spp., T. viride, P. chrysogenum, Cladosporium cladosporioides, Aspergillus fumigatus</i> <i>Bradyrhizobium spp., Filobasidiella, Ustilago, Tilletia, Metarhizium, Sordaria, Coprinopsis, Sclerotinia, Gibberella, Phaeosphaeria, Podospora, Ajellomyces, Aspergillus, Aspergillus fumigatus, Saccharomonospora sp., Ascomycota, Basidiomycota, and Blastocladiomycota</i>	Abiotic and biotic stress	<i>Solanum lycopersicum, Zea mays, Arabidopsis thaliana</i>	Promote the production of the crop and prevent biotic including plant diseases, and abiotic stress including heavy metal toxicity, drought, salinity, extreme temperature	Babalola et al. (2022)
	Abiotic stress	Crop plants	Fungi implement Biostimulant activities in various crop plants	Adedayo and Babalola (2023b)
	Biotic and abiotic stress	<i>Vigna unguiculata, Helianthus annuus, Zea mays, Oryzae sativa</i>	Endophytic fungi improve the growth as well as abundant production of crops	Babalola and Adedayo (2023)
	Biotic stress (plant diseases); <i>Oidium neolycopersicum</i>	<i>Solanum lycopersicum</i>	They contribute to plant growth promotion by improving the health status of the crop plant	Adedayo et al. (2022)

(Continued)

Table 19.1 (Continued)

Beneficial fungi	Climatic factor/ stress condition	Crop	Effects	References
Arbuscular mycorrhizal fungi	Abiotic stress	<i>Triticum spp.</i> , <i>Populus spp.</i> , <i>Zea mays</i> , <i>Pisum sativum</i>	The fungi promote plant growth and development by tolerating the various abiotic stress	Koza et al. (2022)
<i>Trichoderma asperellum</i> , <i>Glomus tortuosum</i> , <i>Glomus ethunicatum</i>	Abiotic stress	<i>Solanum lycopersicum</i> , <i>Zea mays</i> , <i>Vigna radiate</i> , <i>Trifolium repens</i> , <i>Latuca sativa</i> , <i>Thymus vulgaris</i>	Plant growth-promoting fungi relief crops from abiotic stresses	Adeleke et al. (2022a)
<i>Trichoderma viride</i> and <i>Penicillium chrysogenum</i>	Soft root disease; <i>Fusarium oxysporum</i> , <i>Aspergillus wenti</i> , <i>Penicillium digitatum</i>	<i>Citrus sinensis</i>	The fungi provide biological control activities against the phytopathogens causing soft rot diseases in sweet oranges	Omomowo et al. (2020)

even though they perform biodegradation functions. For instance, one of nature's forces behind sustainable agriculture is the symbiotic relationship between plants and fungi. Through their interactions with bacteria and other living things, including animals, fungi are able to complete their life cycle in varying degrees of symbiosis. A symbiotic relationship between some bacteria and fungi can help transform atmospheric nitrogen into forms that are useful to biological systems (Rashid et al., 2016). While bacteria are the main nitrogen-fixing organisms, some fungi can play a supportive role in Nitrogen fixation. Mycorrhizal fungi form mutualistic associations with plant roots, enhancing nutrient uptake (Khalil et al., 2022). In some cases, these mycorrhizal associations can also facilitate the colonization of nitrogen-fixing bacteria. The fungus offers a favorable environment for the bacteria, such as protection from harsh conditions and a carbon source. In return, the bacteria provide the plant with fixed nitrogen in the form of ammonia or other nitrogen compounds.

Fungal hyphae grow beyond the root nutrient depletion zone and are much finer than plant roots. They can access soil pores containing plant essential nutrients that are hitherto inaccessible to their host (Begum et al., 2019; Watts et al., 2023). It is equally logical to hypothesize that the penetrating hyphae, while extending beyond the rhizospheric zone, interact with numerous niches of microorganisms and hyphae from other rhizosphere zones to sustain soil ecological functions, structure, ecophysiology, metabolic dynamism, and soil health. Therefore, harnessing soil fungi's potential to drive soil ecosystem activities is promising for sustainable climate-smart agriculture, reducing reliance on synthetic fertilizers (Clocchiatti et al., 2021).

19.7 Using beneficial fungi to enhance plant growth and resistance to pests and diseases

Beneficial fungi positively impact sustainable agriculture under different climate scenarios as discussed in Table 19.2.

Certain fungi infiltrate the tissues of plants, creating a home for bacteria that fix nitrogen from the atmosphere and convert it into nitrate that is used by plants to grow (Burragoni & Jeon, 2021). Furthermore, Fungi facilitate the uptake of nutrients by plants, improving their capacity to absorb nitrogen, phosphorus, and other micro-nutrients. In order to enhance plant growth and development, fungal hyphae pierce the soil to obtain nutrients that are not accessible to the plant's root system. Plants are also able to withstand a variety of environmental stresses thanks to this symbiotic relationship. It epigenetically promotes the production of bioactive substances that have anti-biotic and antibiotic qualities against pathogens, saline, drought, and high temperatures (Zhang et al., 2023). The plant hosts' defense systems are strengthened by the metabolites, which also make them more resilient to harsh environmental conditions and adaptation. Thus, it is impossible to undervalue the role that fungi play in host plants' ability to withstand disease. Certain endophytic fungi give plants the ability to resist various diseases by producing bioactive compounds with antifungal or antibacterial qualities that inhibit the growth of pathogens (Zeilinger, 2023). Endophytic fungi, for instance, can act as a first line of defense against

Table 19.2 Roles of beneficial fungi under changing climate scenarios.

S/ N	Fungi	Impact	Role of the beneficial fungi	References
1	<i>Mycorrhiza</i> sp., <i>Trichoderma</i> sp., <i>Chaetomium</i> sp., and <i>Gliocladium</i> sp	They enhance plant growth, suppress abiotic stress conditions, and influence a number of biochemical developments and functions	Biofertilizer, Biocontrol agents	Odoh et al. (2020)
2	<i>Glomus fasciculatum</i> , <i>Glomus mosseae</i>)	Augmented the concentration of total phenolic compounds, flavonoids, and phenolic acid contents.	Tool for improving health-promoting compounds in vegetable	Khalid et al. (2017)
3	<i>Glomus</i> spp	Improve plant growth	Biofertilizer	Arya et al. (2018)
4	<i>Aspergillus awamori</i> , <i>Penicillium citrinum</i>	Stimulatory effect on chickpea plant growth.	Biofertilizer	Mittal et al. (2008)
5	<i>Trichoderma asperellum</i>	Increased chickpea (<i>Cicer arietinum</i>) growth parameters in the presence of plant pathogen <i>Fusarium equiseti</i> in chickpea	Biofertilizer, Biocontrol	Adnani et al. (2024)
6	<i>Trichoderma harzianum</i>	Increased plant height, stem circumference, leaf number, total phosphorus in the rubber tree leaves, shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight	Biofertilizer	Promwee et al. (2014)
7	<i>Curvularia geniculata</i>	Superior growth	Biofertilizer	Priyadharsini and Muthukumar (2017)
8	<i>Penicillium</i> sp	Plant growth promotion	Drought-adaptive bioinoculants	Kour et al. (2020)
9	<i>Funneliformis mosseae</i>	Higher fresh weight and dry weight of the crop	Alleviation of chilling stress	Chen et al. (2013)
10	<i>Glomus mosseae</i>	Higher concentrations of soluble sugar, proline, P, and K	Resistance of plants against low-temperature stress	Liu et al. (2017)
11	<i>Gigaspora rosea</i> , <i>Glomus clarum</i> , <i>G. rosea</i> + <i>G. clarum</i>	Higher dry matter and superoxide dismutase and peroxidase enzyme activities	Biofertilizer	Sapelli et al. (2024)

pathogens by colonizing plant tissues and providing a barrier against invasion (Baron & Rigobelo, 2022). Additionally, by boosting the immune response, they can strengthen the plant's resistance to disease. Additionally, they generate compounds that promote plant growth, such as gibberellins, cytokinins, and auxins, which can boost nutrient uptake, encourage root and shoot growth, and increase overall plant vigor. Endophytic fungi have the potential to enhance crop yields, increase biomass, and grow larger root systems (Tripathi et al., 2022).

19.8 Conclusion

In climate change scenarios, beneficial fungi are important for sustainable agriculture in a variety of ways. Their benefits to disease prevention, soil health, sequestration of carbon, and overall ecosystem resilience make them invaluable allies in combating climate change-related agricultural challenges. Agricultural systems that are resilient and sustainable must be developed by putting in place measures that support and maximize the potential of these fungi. Under scenarios of a changing climate, beneficial fungi can play a variety of roles in sustainable agricultural practices, including biofertilizer, biocontrol agents, and abiotic stress bioremediators.

References

Adedayo, A., Fadiji, A., & Babalola, O. (2023a). Biochemical and molecular characterization of bacterial and fungal isolates associated with the rhizosphere of healthy and diseased *Solanum lycopersicum*. *International Journal of Agriculture and Biology*, 30, 281–290. <https://doi.org/10.17957/IJAB/15.2086>.

Adedayo, A. A., & Babalola, O. O. (2023a). Fungi that promote plant growth in the rhizosphere boost crop growth. *Journal Fungi (Basel)*, 9. <https://doi.org/10.3390/jof9020239>.

Adedayo, A. A., & Babalola, O. O. (2023b). The potential of biostimulants on soil microbial community: A review. *Frontiers in Industrial Microbiology*, 1. <https://doi.org/10.3389/fimmi.2023.1308641>.

Adedayo, A. A., Fadiji, A. E., & Babalola, O. O. (2022). The Effects of Plant Health Status on the Community Structure and Metabolic Pathways of Rhizosphere Microbial Communities Associated with *Solanum lycopersicum*. *Horticulturae*, 8, 404.

Adedayo, A. A., Fadiji, A. E., & Babalola, O. O. (2023b). Unraveling the functional genes present in rhizosphere microbiomes of *Solanum lycopersicum*. *PeerJ*, 11, e15432. <https://doi.org/10.7717/peerj.15432>.

Adeleke, B. S., Akinola, S. A., Adedayo, A. A., Glick, B. R., & Babalola, O. O. (2022a). Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants. *Frontiers in Environmental Science*, 10. <https://doi.org/10.3389/fenvs.2022.1015897>.

Adeleke, B. S., Ayilara, M. S., Akinola, S. A., & Babalola, O. O. (2022b). Biocontrol mechanisms of endophytic fungi. *Egyptian Journal of Biological Pest Control*, 32, 46.

Adnani, M., El Hazzat, N., Msairi, S., El Alaoui, M. A., Mouden, N., Selmaoui, K., Benkirane, R., Ouazzani Touhami, A., & Douira, A. (2024). Exploring the efficacy of a *Trichoderma asperellum*-based seed treatment for controlling *Fusarium equiseti* in chickpea. *Egyptian Journal of Biological Pest Control*, 34, 7.

Agbola, P., & Fayiga, O. A. (2016). Effects of climate change on agricultural production and rural livelihood in Nigeria. *Journal of Agricultural Research and Development*, 15(1), 71–82.

Akinnagbe, O., & Anugwa, I. (2015). Agricultural adaptation strategies to climate change impacts in africa: a review. *Bangladesh Journal of Agricultural Research*, 39.

Akinola, S. A., Ayangbenro, A. S., & Babalola, O. O. (2023). Pedological factors as drivers of archaeal and fungal communities in maize rhizosphere: A shotgun metagenomic sequencing approach. *SN Applied Sciences*, 5, 351. <https://doi.org/10.1007/s42452-023-05603-5>.

Alori, E. T., Dare, M. O., & Babalola, O. O. (2017). Microbial inoculants for soil quality and plant health. In E. Lichtfouse (Ed.). *Sustainable Agriculture Reviews* (pp. 281–307). Cham: Springer International Publishing.

Arya, A., Ojha, S., & Singh, S. (2018). Arbuscular mycorrhizal fungi as phosphate fertilizer for crop plants and their role in bioremediation of heavy metals. In P. Gehlot, & J. Singh (Eds.). *Fungi and their Role in Sustainable Development: Current Perspectives*. Singapore: Springer Singapore.

Ayaz, M., Li, C. H., Ali, Q., Zhao, W., Chi, Y. K., Shafiq, M., Ali, F., Yu, X. Y., Yu, Q., Zhao, J. T., Yu, J. W., Qi, R. D., & Huang, W. K. (2023). Bacterial and fungal biocontrol agents for plant disease protection: Journey From Lab To Field, Current Status, Challenges, And Global Perspectives. *Molecules (Basel, Switzerland)*, 28.

Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. *Biotechnology Letters*, 32, 1559–1570.

Babalola, O. O., & Adedayo, A. A. (2023). Endosphere microbial communities and plant nutrient acquisition toward sustainable agriculture. *Emerg Top Life Sci*, 7, 207–217. <https://doi.org/10.1042/etls20230069>.

Babalola, O. O., Adedayo, A. A., & Fadiji, A. E. (2022). Metagenomic survey of tomato rhizosphere microbiome using the shotgun approach. *Microbiology Resource Announcements*, 11, e0113121. <https://doi.org/10.1128/mra.01131-21>.

Bahram, M., & Netherway, T. (2022). Fungi as mediators linking organisms and ecosystems. *FEMS Microbiology Reviews*, 46. <https://doi.org/10.1093/femsre/fuab058>.

Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. *Mycology*, 13, 39–55. <https://doi.org/10.1080/21501203.2021.1945699>.

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. *Frontiers in Plant Science*, 10, 1068. <https://doi.org/10.3389/fpls.2019.01068>.

Burragoni, S. G., & Jeon, J. (2021). Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. *Microbiological Research*, 245, 126691. <https://doi.org/10.1016/j.micres.2020.126691>.

Çakmakçı, R., Salık, M. A., & Çakmakçı, S. (2023). Assessment and principles of environmentally sustainable food and agriculture systems. *Agriculture*, 13, 1073.

Chen, S., Jin, W., Liu, A., Zhang, S., Liu, D., Wang, F., Lin, X., & He, C. (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. *Scientia Horticulturae*, 160, 222–229.

Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: A literature review. *Atmosphere*, 13, 140.

Clocchiatti, A., Hannula, S. E., Hundscheid, M. P. J., Klein Gunnewiek, P. J. A., & de Boer, W. (2021). Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. *Environmental Microbiology*, 23(10), 6056–6073. <https://doi.org/10.1111/1462-2920.15563> 2021.

Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: Health risks. *Lancet*, 398, 698–708. [https://doi.org/10.1016/s0140-6736\(21\)01208-3](https://doi.org/10.1016/s0140-6736(21)01208-3).

Eekhout, J. P. C., & de Vente, J. (2022). Global impact of climate change on soil erosion and potential for adaptation through soil conservation. *Earth-Science Reviews*, 226, 103921. <https://doi.org/10.1016/j.earscirev.2022.103921>.

El Enshasy, H., Ambehabati, K., El Baz, A., Ramchuran, S. O., Sayyed, R., et al. (2020). Trichoderma: biocontrol agents for promoting plant growth and soil health. In A. Yadav, S. Mishra, D. Kour, N. Yadav, & A. Kumar (Vol. Eds.), *Agriculturally Important Fungi for Sustainable Agriculture. Functional Annotation for Crop Protection: Vol. 2*Cham: Springer. https://doi.org/10.1007/978-3-030-48474-3_8.

El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., El-Tahan, A. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Negm, S. H., Selim, S., Babalghith, A. O., Elrys, A. S., El-Tarabily, K. A., & Abuqamar, S. F. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. *Frontiers In Plant Science*, 13.

Eze, Chijioke, K., Obasi, Patrick, N., Ewa, Chikaodis, S., Eyibio, & Usenekong, N. (2024). Soil microbiome in nutrient conservation for plant growth. In S. A. Aransiola, (Ed.). *Prospects for Soil Regeneration and Its Impact on Environmental Protection* (pp. 335–350). Cham: Springer Nature Switzerland.

Grabka, R., d'Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., et al. (2022). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. *Plants*, 11, 384. <https://doi.org/10.3390/plants11030384>.

Grigorieva, E., Livenets, A., & Stelmakh, E. (2023). Adaptation of agriculture to climate change: A scoping review. *Climate*, 11(10), 202. <https://doi.org/10.3390/cli11100202>.

Guo, X., Endler, A., Poll, C., Marhan, S., & Ruess, L. (2021). Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. *Agriculture, Ecosystems & Environment*, 316, 107467. <https://doi.org/10.1016/j.agee.2021.107467>.

Habibullah, M. S., Din, B. H., Tan, S.-H., & Zahid, H. (2022). Impact of climate change on biodiversity loss: Global evidence. *Environmental Science and Pollution Research*, 29, 1073–1086. <https://doi.org/10.1007/s11356-021-15702-8>.

Haro, R., & Benito, B. (2019). The role of soil fungi in K⁺ plant nutrition. *International Journal of Molecular Sciences*, 20, 3169. <https://doi.org/10.3390/ijms20133169>.

Inbaraj, M. P. (2021). Plant-microbe interactions in alleviating abiotic stress—A mini review. *Frontiers in Agronomy*, 3, 667903.

Kalkuhl, M., Wenz, L. (2020). The impact of climate conditions on economic production. Evidence from a global panel of regions. EconStor Preprints.

Kavadia, A., Omirou, M., Fasoula, D., & Ioannides, I. M. (2020). The importance of microbial inoculants in a climate-changing agriculture in Eastern Mediterranean region. *Atmosphere*, 11(10), 1136. <https://doi.org/10.3390/atmos11101136> 2020.

Khalid, M., Hassani, D., Bilal, M., Asad, F., & Huang, D. (2017). Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of *Spinacia oleracea* L. *Botanical Studies*, 58(1), 1–9.

Khaliq, A., Perveen, S., Alamer, K. H., Zia Ul Haq, M., Rafique, Z., Alsudays, I. M., Althobaiti, A. T., Saleh, M. A., Hussain, S., & Attia, H. (2022). Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. *Sustainability*, 14, 7840.

Kour, D., Khan, S. S., Ramniwas, S., Kumar, S., Rai, A. K., Rustagi, S., Chaubey, K. K., Singh, S., Yadav, A. N., & Ahluwalia, A. S. (2024). Beneficial fungal communities for sustainable development: Present scenario and future challenges. *Journal of Applied Biology & Biotechnology*.

Kour, D., Rana, K. L., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (*Sorghum bicolor* L.) by drought-adaptive and phosphorus-solubilizing microbes. *Biocatalysis and Agricultural Biotechnology*, 23, 101501.

Koza, N. A., Adedayo, A. A., Babalola, O. O., & Kappo, A. P. (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. *Microorganisms*, 10. <https://doi.org/10.3390/microorganisms10081528>.

Kumari, P., Singh, A., & Kharwar, R. N. (2021). Chapter 18 - Phytostimulation and ISR responses of fungi. In V. K. Sharma, M. P. Shah, S. Parmar, & A. Kumar (Eds.). *Fungi Bio-Prospects In Sustainable Agriculture, Environment And Nano-Technology*. Academic Press.

Lehmann, N., Finger, R., Klein, T., Calanca, P., & Walter, A. (2013). Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. *Agricultural Systems*, 117, 55–65.

Liu, X. M., Xu, Q. L., Li, Q. Q., Zhang, H., & Xiao, J. X. (2017). Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress. *Journal of Plant Nutrition*, 40(18), 2562–2570. <https://doi.org/10.1080/01904167.2017.1380823>.

Malgioglio, G., Rizzo, G. F., Nigro, S., Lefebvre Du Prey, V., Herforth-Rahm  , J., Catara, V., & Branca, F. (2022). Plant-microbe interaction in sustainable agriculture: The factors that may influence the efficacy of PGPM application. *Sustainability*, 14, 2253.

Mehta, P., Sharma, R., Putatunda, C., & Walia, A. (2019). Endophytic fungi: role in phosphate solubilization. In B. P. Singh (Ed.). *Advances in Endophytic Fungal Research, Fungal Biology* Berlin: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-03589-1_9.

Mittal, V., Singh, O., Nayyar, H., Kaur, J., & Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (*Aspergillus awamori* and *Penicillium citrinum*) on the yield of chickpea (*Cicer arietinum* L. cv. GPF2). *Soil Biology and Biochemistry*, 40, 718–727.

Muthuraman, y, & Murugaragavan, R. (2020). Role of fungi in agriculture. In M. Seyed Mahyar, & R. Ramalingam (Eds.). *Biosstimulants in Plant Science* Rijeka: IntechOpen IntechOpen, Rijeka. pp. Ch. 4.

Myers, S. S., & Bernstein, A. (2011). The coming health crisis: Indirect health effects of global climate change. *F1000 Biology Reports*, 3, 3. https://doi.org/10.3410/B3-3_21399764 PMCID: PMC3042309.

Odoh, C. K., Eze, C. N., Obi, C. J., Anyah, F., Egbe, K., Unah, Unah, V., Akpi, U. K., & Adobu, U. S. (2020). Fungal biofertilizers for sustainable agricultural productivity. In A. N. Yadav, S. Mishra, D. Kour, N. Yadav, & A. Kumar (Eds.). *Agriculturally Important Fungi for Sustainable Agriculture: Volume 1: Perspective for Diversity and Crop Productivity*. Cham: Springer International Publishing.

Okoronkwo, D. J., Ozioko, R. I., Ugwoke, R. U., Nwagbo, U. V., Nwobodo, C., Ugwu, C. H., Okoro, G. G., & Mbah, E. C. (2024). Climate smart agriculture? Adaptation strategies of traditional agriculture to climate change in sub-Saharan Africa. *Frontiers in Climate*, 6. <https://doi.org/10.3389/fclim.2024.1272320>.

Olowe, O. M., Nicola, L., Asemoloye, M. D., Akanmu, A. O., & Babalola, O. O. (2022). Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. *Microbiological Research*, 257, 126978. <https://doi.org/10.1016/j.micres.2022.126978>.

Olowe, O. M., Nicola, L., Asemoloye, M. D., Akanmu, A. O., Sobowale, A. A., & Babalola, O. O. (2022). Characterization and antagonistic potentials of selected rhizosphere Trichoderma species against some Fusarium species. *Front Microbiol*, 13, 985874. <https://doi.org/10.3389/fmicb.2022.985874>.

Omomowo, I. O., Adedayo, A. A., & Omomowo, O. I. (2020). Biocontrol potential of rhizospheric fungi from *Moringa oleifera*, their phytochemicals and secondary metabolite assessment against spoilage fungi of sweet orange (*Citrus sinensis*). *Asian Journal of Applied Sciences*, 8. <https://doi.org/10.24203/ajas.v8i1.6047>.

Orlove, B. (2022). The concept of adaptation. *Annual Review Environmental Resources*, 47, 535–581.

Ortiz, A. M. D., Outhwaite, C. L., Dalin, C., & Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. *One Earth*, 4, 88–101. <https://doi.org/10.1016/j.oneear.2020.12.008>.

Osemwogie, O. O., Adetunji, C. O., Oghenekaro, A. O., Alori, E. T., Dania, T. A., & Daramola, F. Y. (2021). Arbuscular mycorrhizae: Under-tapped potential benefits and perspective on Africa. *OnLine Journal of Biological Sciences*, 21.

Priyadharsini, P., & Muthukumar, T. (2017). The root endophytic fungus *Curvularia geniculata* from *Parthenium hysterophorus* roots improves plant growth through phosphate solubilization and phytohormone production. *Fungal Ecology*, 27, 69–77.

Promwee, A., Issarakraisila, M., Intana, W., Chamswang, C., & Yenjit, P. (2014). Phosphate solubilization and growth promotion of rubber tree (*Hevea brasiliensis* Muell. Arg.) by *Trichoderma* strains. *Journal of Agricultural Science*, 6(9), 8.

Raghuwanshi, R. (2018). Fungal community in mitigating impacts of drought in plants. In P. Gehlot, & J. Singh (Eds.). *Fungi and their role in sustainable development: Current perspectives*. Singapore: Springer Singapore.

Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & Somerville, R. C. J. (2007). Recent climate observations compared to projections. *Science (New York, N.Y.)*, 316, 709.

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. *Microbiological Research*, 183, 26–41.

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. *Plants (Basel)*, 8.

Rocha, J., Oliveira, S., Viana, C. M., & Ribeiro, A. I. (2022). Chapter 8 - Climate change and its impacts on health, environment and economy. In J. C. Prata, (Ed.). *One Health* (pp. 253–279). Academic Press.

Rocklöv, J., & Dubrow, R. (2020). Climate change: An enduring challenge for vector-borne disease prevention and control. *Nature Immunology*, 21, 479–483. <https://doi.org/10.1038/s41590-020-0648-y>.

Rustamova, N., Litao, N., Bozorov, K., Sayyed, R., Aisa, H. A., & Yili, A. (2022). Plant-associated endophytic fungi: A source of structurally diverse and bioactive natural products. *Plant Cell Biotechnol. Mol. Biol.* 23, 1–19. <https://www.ikppress.org/index.php/PCBMB/article/view/7454>.

Saeki, E. K., Kobayashi, R. K. T., & Nakazato, G. (2020). Quorum sensing system: Target to control the spread of bacterial infections. *Microbial Pathogenesis*, 142, 104068.

Sapelli, K. S., Rusin, C., Sousa, A., Santos, S., Cristo, F., Resende, J., Knob, A., & Botelho, R. (2024). Growth and physiological attributes of blueberry seedlings inoculated with arbuscular mycorrhizal fungi. *Ciência Rural*, 54.

Singh, B., Srivastava, P., Jamir, A., Jamir, S., Uikey, P., Sulochna, & Saikanth, D. R. (2023). Harnessing microorganisms for sustainable agriculture: Promoting environmental protection and soil health. *BIONATURE*. <https://doi.org/10.56557/BN/2023/v43i11851>.

Singh, N., Singh, A., & Dahiya, P. (2021). Plant growth-promoting endophytic fungi from different habitats and their potential applications in agriculture. In A. N. Yadav (Ed.). *Recent trends in Mycological Research. Fungal Biology*Cham: Springerhttps://doi.org/10.1007/978-3-030-60659-6_3.

Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants. *Frontiers. in Microbiology*. 6, 937. <https://doi.org/10.3389/fmicb.2015.00937>.

Singh, S., Bhatnagar, S., Choudhary, S., Nirwan, B., & Sharma, K. (2018). Fungi as biocontrol agent: An alternate to chemicals. In P. Gehlot, & J. Singh (Eds.). *Fungi and their role in sustainable development: Current perspectives*. Singapore: Springer Singapore.

Smit, B., Burton, I., Klein, R. J. T., & Wandel, J. (2000). An anatomy of adaptation to climate change and variability. In S. M. Kane, & G. W. Yohe (Eds.). *Societal adaptation to climate variability and change*. Dordrecht: Springer Netherlands.

Srinivas, C., Shubha, S., Narasimhamurthy, K., Arakere, U., & Sudisha, J. (2020). Detection and characterization of antibacterial siderophores secreted by endophytic fungi from *Cymbidium aloifolium*. *Biomolecules*, 10, 1412. <https://doi.org/10.3390/biom10101412>.

Tajudeen, T. T., Omotayo, A., Ogundele, F. O., & Rathbun, L.,C. (2022). The effect of climate change on food crop production in lagos state. *Foods*, 11(24), 3987. <https://doi.org/10.3390/foods11243987>, 36553731 PMCID: PMC9778574.

Thierfelder, C., & Mutenje, M. (2018). Feasibility study for climate-smart agriculture systems in Southern Africa CIMMYT. https://www.ccardesa.org/sites/default/files/ickm-documents/Annex%204%20Feasibility%20study%20final_0.pdf (accessed 18 July 2024).

Tripathi, A., Pandey, P., Tripathi, S. N., & Kalra, A. (2022). Perspectives and potential applications of endophytic microorganisms in the cultivation of medicinal and aromatic plants. *Frontiers in Plant Science*, 13. <https://doi.org/10.3389/fpls.2022.985429>.

Turner-Skoff, J. B., & Cavender, N. (2019). The benefits of trees for livable and sustainable communities. *Plants People Planet*, 1, 323–335. <https://doi.org/10.1002/ppp3.39>.

Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyed, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. *Frontiers in Plant Science*, 13.

Volk, G. M., Byrne, P. F., & Moreau, T. L. (2023). Importance of plants for mitigating and adapting to the effects of climate change. In G. M. Volk, T. L. Moreau, & P. F. Byrne (Eds.). *Conserving and using climate-ready plant collections*Fort Collins, Colorado: Colorado State University. Date accessed. <https://colostate.pressbooks.pub/climatereadyplantcollections/chapter/importance-of-plants/>.

Warnasuriya, S. D., Udayanga, D., Manamgoda, D. S., & Biles, C. (2023). Fungi as environmental bioindicators. *Science of The Total Environment*, 892, 164583. <https://doi.org/10.1016/j.scitotenv.2023.164583>.

Watts, A. B., Magkourilou, E., Howard, N., & Field, K. (2023). Can mycorrhizal fungi fix farming? Benefits and limitations of applying them to agroecosystems. *The Biochemist*, 45. https://doi.org/10.1042/bio_2023_118.

Yadav, S. S., Hegde, V. S., Habibi, A. B., Dia, M., & Verma S. (2018). Climate change, agriculture and food security, food security and climate change (pp. 1–24).

Yung, L., Sirguey, C., Azou-Barré, A., & Blaudez, D. (2021). Natural fungal endophytes from *Noccaea caerulescens* mediate neutral to positive effects on plant biomass, mineral

nutrition and Zn phytoextraction. *Frontiers in Microbiology*. 12, 689367. <https://doi.org/10.3389/fmicb.2021.689367>.

Zeilinger, S. (2023). Biocontrol fungi for plant disease research. *Open Access Government*, 39, 256–257. <https://doi.org/10.56367/OAG-039-10938>.

Zhang, J., Lu, J., Zhu, Y., Shen, X., Zhu, B., & Qin, L. (2023). Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. *Chinese Herbal Medicines*. <https://doi.org/10.1016/j.chmed.2023.02.006>.

Zubair, M., Farzand, A., Mumtaz, F., Khan, A. R., Sheikh, T. M. M., Haider, M. S., Yu, C., Wang, Y., Ayaz, M., Gu, Q., Gao, X., & Wu, H. (2021). Novel genetic dysregulations and oxidative damage in *Fusarium graminearum* induced by plant defense eliciting psychrophilic *Bacillus atrophaeus* TS1. *International Journal of Molecular Sciences*, 22, 12094.

This page intentionally left blank

Index

Note: Page numbers followed by “*f*” and “*t*” refer to figures and tables, respectively.

A

ABA. *See* Abscisic acid (ABA)
Abiotic factors, 333
Abiotic stress, 278, 335–339, 382, 400
 alterations in climate patterns, 336
 factors, 99
 plant growth promoting microorganisms in
 abiotic stress management, 101–102,
 103f
 plant-microbe interaction in alleviating,
 208–214
 role in enhancing abiotic stress tolerance,
 407
 soil degradation, 336–339
 tolerance, 445
Abiotic stressors, 405–406, 445
Abscisic acid (ABA), 151, 172–173,
 209–210, 270, 373, 407
1-ACC deaminase, 180–181
Acetylcholinesterase, 347–348
Achatina fulica. *See* Giant African snail
 (*Achatina fulica*)
Acidic agro-industrial biowastes, 120
Acinetobacter, 176
 A. calcoaceticus, 179–180
Actinomycetes, 101–102
ACToR. *See* Aggregated Computational
 Toxicology Online Resource (ACToR)
Adaptation, 438–439
 to agricultural ecosystems, 89–90
 climate change, 13–15
 definition, 470
 strategies, 149–153
 biochemical responses and synthesis of
 antioxidants, 150–151
 genomic insights into plant adaptation to
 climate change, 152

nanotechnology solutions for increasing
 plant resistance to climate
 change, 152–153
phytohormone synthesis for
 enhancing climate resilience,
 151–152
potential strategies for water recycling
 and reuse, 150
sustainable approaches to soil
 conservation and improvement,
 149
 sustainable fertilizer production, 150
Adapting cropping practices, 470–471
Adenosine triphosphate (ATP), 371
Adsorption, 307
Advanced agricultural technologies,
 148–149
Aerosols, 137–138
 aerosol-cloud interactions, 137–138
 aerosol-radiation interactions, 137–138
Africa, flood events, 34–35
African Union (AU), 154
Aggregated Computational Toxicology
 Online Resource (ACToR), 318
Agricultural Production Statistics, 332–333
Agricultural/agriculture, 1–2, 59–62, 88,
 93–94, 336, 405, 435–436, 439–440
 activity, 90
 adaptation to agricultural ecosystems,
 89–90
 agrochemicals and role in, 401–404
 agroecosystems in, 60–62
 application of agricultural practices within
 concept of climate-smart agriculture,
 74–77
 climate change scenarios, 404–405
 implications for, 385–386

management
 produces, 60
 strategies, 386

production, 88

sector, 116, 399–400
 accounts, 23

soils, 333

systems, 71, 339

Agrochemicals, 248–249, 339, 347, 401, 419–420, 472–473
 beneficial effects of, 405–409
 changing efficacy of, 414–417
 climate change scenarios, 404–405
 fertilizers, 400
 future of, 420–422
 global policy and regulatory frameworks on, 417
 harmful effects of agrochemicals under climate change scenarios, 409–413
 national regulatory frameworks and policy development, 417–420
 challenges in agrochemical regulation, 418
 emerging risks and regulatory gaps, 419
 opportunities for improvement in agrochemical regulation, 419–420

pesticides, 347–350

plant growth regulators, 399–400

plant protection chemicals, 401

role in agriculture, 401–404

Agroecological approach elements from climate-smart agriculture perspective, 71–74, 73^t

Agroecology, 70
 challenges and limitations of climate-smart agriculture methodology in, 77–79

Agroecosystems, 60
 in agriculture, 60–62, 61^t

Agroforestry, 75, 458

Agroforestry system, 71

AI. *See* Artificial intelligence (AI)

Air
 impact of xenobiotics in, 50
 pollution, 146

AMF. *See* Arbuscular mycorrhizal fungi (AMF)

Aminocyclopropane-1-carboxylate (ACC) deaminase, 176–177, 180–181

1-aminocyclopropane-1-carboxylate deaminase (ACC), 205, 207

Ammonia
 application, 127
 exhaust air treatment, 127
 manure treatment, 127

emissions abatement techniques, 120–127
 exhaust air treatment, 124–127
 manure treatment, 120–124, 121^f

novelty statement, 119–120
 exhaust air treatment, 119–120
 manure treatment, 119

problem statement, 118–119
 exhaust air treatment, 118–119
 manure treatment, 118

software for quantifying greenhouse gases and NH₃ emissions from livestock barns, 127

Ammonia (NH₃), 116

Ampelomyces quisqualis, 240

Anaerobic pathway activation, 447–448

Andhra Pradesh, flood events, 34

Animal production farms, 127

Animals, 5, 441–442
 heat tolerance in, 5
 husbandry, 90

Antagonists, impact, 240

Anthocyanin, 139

Anthropogenic activities, 22, 49–50, 228, 337

Anthropogenic drivers, 136–138
 aerosols, 137–138
 contrails, 138
 emissions of greenhouse gases and global warming, 136–137
 ozone, 137

Antioxidants, 446
 biochemical responses and synthesis of, 150–151
 defense, 384
 production of, 183
 system, 151

Aphanomyces euteiches. *See* Pea root rot (*Aphanomyces euteiches*)

Apparent resistance manifests, 448–449

APX. *See* Ascorbate peroxidase (APX)

Aquatic organisms, impact on, 411

Arabidopsis, 371–372
 A. thaliana, 105–106, 270–271

Arbuscular mycorrhizal fungi (AMF), 99–100, 187–188, 203–204, 282–283 as biofertilizer, 473–477

Arctic, 12

Arctotheca calendula. *See* Capeweed (*Arctotheca calendula*)

Arid areas, 4–5

Armillaria mellea, 340–341

Aromatic hydrocarbon Degrading Database, 318

Artificial intelligence (AI), 451 for crop modeling, 455–456

AsA. *See* Ascorbate (AsA)

Ascorbate (AsA), 151

Ascorbate peroxidase (APX), 151, 172–173

ASEAN. *See* Association of Southeast Asian Nations (ASEAN)

Aspergillus aculeatus, 103–105

Assam, flood events, 32, 33f

Association of Southeast Asian Nations (ASEAN), 154

Atlantic mackerel (*Scomber scombrus*), 144

Atlantic white-sided dolphins (*Lagenorhynchus acutus*), 144

Atmosphere, 24, 306 immediate consequences of higher levels of carbon dioxide in, 6

Atmospheric circulation changes, 25

Atmospheric CO₂, 370, 379–380

Atmospheric nitrogen deposition, 344–345

ATP. *See* Adenosine triphosphate (ATP)

Atrazine, 403–404

AU. *See* African Union (AU)

Autotrophic microorganisms, 76

Auxins, 184–185, 373

Azospirillum, 62–63, 179–180

Azotobacter, 62–63, 179–180

B

Bacillus, 62–63, 103–105, 179–180, 210, 214

Bacillus cereus, 210

Bacillus megaterium, 105–106

Bacillus pumilus, 105–106

Bacillus subtilis, 105–106, 211–212

Bacillus thuringiensis, 250, 350, 450

Bacteria, 101–102, 126, 201–202

Bacterial plant diseases, 340–341

Bacterial scab (*Streptomyces* spp.), 238

Bactericides, 299–300

Bagasse, 93

Barley (*Hordeum vulgare*), 380

BBD. *See* Biodegradation Database (BBD)

BCF. *See* Biological chemical filter (BCF)

Bemisia tabaci, 230, 250

Beneficial bacteria, 64

Beneficial fungi activities of, 471–472 as biostimulants, 471 in sustainable agriculture, 468, 469f, 479 benefits, 472–473, 474t under changing climate scenarios, 477, 478t efficacy, 472–473 enhance plant growth and resistance to pests and diseases, 477–479

Beneficial microbes, 468

Benzo- α -pyrene, 312–313

Benzothiadiazole, 407–408

Beta vulgaris. *See* Sugar beet (*Beta vulgaris*)

Bibliographic databases, 318

Bioaccumulation, 309

Bioactive compounds, 93

Bioavailability impact of climate change on bioavailability of xenobiotics, 311 impacts on biodiversity, 313–315

Biochemical attributes, alteration in, 172–173

Biochemical responses and synthesis of antioxidants, 150–151

Biodegradation, 310 of xenobiotic compounds, 52–53

Biodegradation Database (BBD), 318

Biodiversity, 141, 145–146, 250, 387 under climate change, 141–145 climate change affects marine ecosystems, 143 climate change affects terrestrial ecosystems, 144–145 ocean acidification, 144 ocean warming, 144 of drought-tolerant microbiome, 175–179 endophytes, 176–177 phyllospheric microbiome, 177–179 rhizoplanic microbiome, 176 rhizospheric microbiome, 175

Biofertilizers, 76, 150 arbuscular mycorrhizal fungi as, 473–477

Biofilters, 118

Biofortification for defense, 409
 Biogas, 116
 Biogeochemical cycles, 309, 312
 alterations in, 308–309
 impact of xenobiotics on biogeochemical cycles, 312
 Bioinformatics, 318
 Bioinoculants, 351–352
 Biological chemical filter (BCF), 116
 Biological control, 76–77
 Biological management, 250
 Biological processes, 64
 Biomass, 387, 446
 accumulation and yield, 379–380
 Bioremediation, 314–316
 Biosphere, 136
 Biotechnology, 349
 Biotic stress, 339–341, 400
 factors, 99
 Biotic stressors, 334–335, 341, 405–406
 Bisphenol A, 312–313
 Black foot (*Dactylolectria* spp.), 237
 Blue whiting (*Micromesistius poutassou*), 144
Bradyrhizobium, 176–177
 Brassica black leg (*Leptosphaeria maculans*), 237
Brassica napus. *See* Oilseed rape (*Brassica napus*)
Burkholderia, 62–63
Bursaphelenchus xylophilus, 241
 By-products, 92–93

C
CABI. *See* Centre for Agriculture and Biosciences (CABI)
Cad. *See* Cadaverine (Cad)
 Cadaverine (Cad), 184–185
CAM. *See* Crassulacean acid metabolism (CAM)
CaneCPI-1. *See* Sugarcane cysteine peptidase inhibitor 1 (*CaneCPI-1*)
 Canopy structure, 377–378
Capeweed (*Arctotheca calendula*), 4–5
 Carbohydrates, 150–151, 380–381
 impact on allocation and storage, 375
 Carbon (C), 75, 375–376, 380–381
 assimilation, 371–373
 carbon-based secondary metabolites, 374
 fertilizer, 6
 fixation, 447
 sequestration, 146
 storage in soils, 387
 Carbon dioxide (CO₂), 1–3, 59, 87–88, 90–91, 116, 140–141, 267–268, 271, 333–334, 404–405
 effect of, 273
 emissions, 2–3
 immediate consequences of higher levels of carbon dioxide in atmosphere, 6
 Carbon monoxide (CO), 137
 Carbonic acid, 136–137
 Carbonic anhydrase activity, 371–372
 Carbon-to-nitrogen ratio (C:N ratio), 230
 Carotenoids, 273–277, 374
CAT. *See* Catalase (CAT)
 Catalase (CAT), 172–173, 210, 446
 Catastrophic floods, 36
 Centre for Agriculture and Biosciences (CABI), 246–247
Ceratobasidiumcerealis, 237
 Cereals, 376–377, 380
 CFCs. *See* Chlorofluorocarbons (CFCs)
CGIAR. *See* Consultative Group On International Agricultural Research (CGIAR)
 Chemical and Products Database (CPDat), 318
 Chemical fertilizers, 70
 Chemical nature of xenobiotics, 49
 Chemical remediation, 315
 Chennai, flood events, 31
Chilo suppressalis. *See* Striped rice stemborer (*Chilo suppressalis*)
 Chlorofluorocarbons (CFCs), 90–91, 306
 Chlorpyrifos, 411, 413
 9-cis-epoxy carotenoid dioxygenase (NCED), 187–188
 Circular economic growth, 469–470
CK. *See* Cytokinins (CK)
 Climate change, 1–4, 22–23, 59, 69, 87, 134–138, 239, 267–268, 271, 311, 313, 317–318, 336, 400, 415, 435–436
 adaptation strategies, 149–153
 adaptation to new agricultural ecosystems, 89–90
 affects marine ecosystems, 143
 affects terrestrial ecosystems, 144–145

anthropogenic drivers, 136–138
case studies, 147–149
of flood events and role of remote sensing, 30–36
international case studies, 147–148
national case studies, 148–149
challenges in maintaining plant productivity and ecosystem sustainability, 145–147
change in cereal production, yield, land use, and population worldwide, 334/
climate change-induced flooding, 23
climate change-induced warming, 134–135
current and innovative strategies to mitigate plant stress, 346–353
definition and scope of flood risks, 23–24
development of new ingredients from co-products, 92–93
direct effects of weather pattern changes, 4–6
ecosystems and biodiversity under, 141–145
effect on secondary metabolism, 272–278, 274/
effect of CO₂, 273
effect of drought stress, 273–277
effect of light, 277
effect of temperature, 273
effect of ultraviolet-B radiation, 277–278
interactive effects of environmental factors, 278
effects on plant productivity, 138–141
environmental consequences of climate change, 341–344
factors affecting food security around world, 335–341
factors contributing to unusual weather conditions lead to flooding events, 24–25
flood induced damage, 23
flood risks and impact on vulnerable populations, 23–24
impact on food security, 23–24
food quality and safety with, 93–95
frameworks for flood mitigation strategies, 36–41
future
of agrochemicals in context, 420–422
outlook and emerging solutions, 154–155
perspectives, 353
genomic insights into plant adaptation to, 152
global production of primary crops by commodity group, 333/
harmful effects of agrochemicals under climate change scenarios, 409–413
environmental risks, 410–413
impact
on microbiome and plant diseases, 344–346
on mycotoxins and pesticide residues, 242–243
on pest and disease management using chemicals, 243–244
on pest incidence, 229–234
on plant pathogens, 234–241
on post-production, storage, and processing, 241–242
impact of climate change on weeds, 244–245
impact on secondary metabolism, 271–278
climatic factors, 271–272
and impacts on environmental processes, 308
changes in global temperature and weather patterns, 308
importance of studying xenobiotics in context of, 299
increased flood vulnerability and risk, 26–28
flood vulnerable geographies of India, 26–28
indirect effects of global warming on diseases, pests, or herbicides, 6–9
indirect effects of situation change, 10–13
fertility of land with erosion, 12
fewer snow on ground means is greater farmland, 12
increased expenses for producing food, 11–12
increased expenses of food, 11
mountains receding, fewer resources of water available for cultivation, 12
timely blooming' implications for seasons of growth, 13
managing climate change, 13–15
mitigation strategies, 149–153, 248–250

nanotechnology solutions for increasing plant resistance to, 152–153

natural drivers, 136

plant protection under changing climate, 245–248

policy and governance for climate action, 153–154

postharvest management, 90–91

reducing food loss during processing, 91–92

remote sensing datasets in assessing flood events, 28–29

resilience mechanisms, 278–283

scenarios, 404–405

understanding

- impacts of climate change on hydrological cycle, 22
- secondary metabolism in plants, 268–271

way forward, 250–252

xenobiotics and, 52

Climate resilience, phytohormone synthesis for enhancing, 151–152

Climate stress, plant adaptations to, 278–283

Climate-related issues, 135

Climate-resilient agriculture (CRA), 436

- framework of, 438–439

Climate-resilient crops, 422

Climate-resilient infrastructure, 439–440

Climate-resilient sustainable agriculture

- factors affecting crop productivity due to stress, 437f
- framework of, 438–439
- funding opportunities, 457
- impact of changing rainfall patterns and drought, 442–444, 443f
- principle of climate resilience, 439–442
- diversified farming systems and mixed farming, 440–442
- sustainable agriculture, 439–440

research prospects, 458

technological Innovations, 445–456

- digital tools for climate-smart decision-making, 453–456
- precision agriculture, 451–453
- smart-crop varieties, 445–451

Climate-responsive pest and weed management, 408

Climate-smart agriculture (CSA), 70, 72, 88–89, 444

agroecological perspective, 70–71

application of agricultural practices within concept, 74–77

challenges and limitations of climate-smart agriculture methodology in agroecology, 77–79, 78f

elements of agroecological approach from climate-smart agriculture perspective, 71–74

methods, 74

Climatic conditions, 99

Cnaphalocrocis medinalis, 233

CNs. *See* Cyst nematodes (CNs)

Coastal communities, 25

Coastal ecosystems, 6

Coastal flooding, 24–25

CompTox Chemistry Dashboard, 318

Consultative Group On International Agricultural Research (CGIAR), 457

ContaminantDB, 318

Conventional farming, 467–468

Conventional fertilizers, 150

Cover cropping, 76

Cover crops, 76

COVID-19 pandemic, 435–436

CPDat. *See* Chemical and Products Database (CPDat)

CPV. *See* Cytoplasmic Polyhedrosis Virus (CPV)

CRA. *See* Climate-resilient agriculture (CRA)

Crassulacean acid metabolism (CAM), 279–281

Crop(s), 4–5, 9, 69, 140–141, 170, 228–229, 248, 376–377, 441–442, 445–446

- artificial intelligence and machine learning for crop modeling, 455–456
- breeding programs, 386
- production, 101, 146–147
- role in increasing yield and reducing crop losses, 409
- rotation, 75–76
- simulation models, 385
- yields, 145
 - forecasting, 453
 - yield-loss models, 251

Cropping practices, adaptation of, 470–471

Crop productivity, climate change and, 469
Crown rot (*Fusarium* spp.), 242–243
CSA. *See* Climate-smart agriculture (CSA)
Cultural management, 250
Curvularia geniculata, 471–472
Cyanogenic glycosides, 374–375
Cyst nematodes (CNs), 340
Cytokinins (CK), 151, 184–185, 373
Cytoplasmic Polyhedrosis Virus (CPV), 250

D
Dactylolectria spp. *See* Black foot (*Dactylolectria* spp.)
Dandelion, 244–245
Data layers, 41
DATs. *See* Digital Agricultural Tools and Services (DATs)
DBE. *See* Debranching enzyme (DBE)
DDT. *See* Dichlorodiphenyltrichloroethane (DDT)
Debranching enzyme (DBE), 172–173
Deforestation, 370
Degradation, 336, 442–444
Dehydroascorbate reductase (DHAR), 172–173
DEM. *See* Digital elevation models (DEMs)
Dephinus delphis. *See* Short-beaked common dolphins (*Dephinus delphis*)
Detoxification system, 51
DFS. *See* Diversified farming systems (DFS)
DHAR. *See* Dehydroascorbate reductase (DHAR)
Dichlorodiphenyltrichloroethane (DDT), 47–48, 347–348, 401–403
2,4-dichlorophenoxyacetic acid, 403–404
Digital Agricultural Tools and Services (DATs), 453–454
Digital elevation models (DEMs), 31
Digital technologies, 92
Digital tools
 for climate-smart decision-making, 453–456
 artificial intelligence and machine learning for crop modeling, 455–456
 smart irrigation, 454–455
“Dilution effect”, 380–381

Direct effects of weather pattern changes, 4–6
heat tolerance in animals, 5
high weather conditions, 4–5
immediate consequences of higher levels of carbon dioxide in atmosphere, 6
variations in precipitation, 5

Disease(s), 229
 biological control of, 76–77
 disease-resistant, 386
 crop types, 449–450
 varieties, 448–451
 impact of climate change on pest and disease management using chemicals, 243–244
 incidence in horticulture crops, 140–141
 indirect effects of global warming on, 6–9

Distributed Structure-Searchable Toxicity (DSSTox), 318

Diversified agriculture, 441

Diversified farming systems (DFS), 440–442

DNA. *See* Deoxyribonucleic acid (DNA)

DON, 241–242

Drought, 5, 88, 140, 230, 311, 407, 442–444
 biodiversity of drought-tolerant microbiome, 175–179
 drought-resistant crop varieties, 445–446
 effect, 237
 of drought stress, 273–277
 on incidence of pests, 230
 genetic and molecular basis of drought tolerance, 186
 impact of changing, 442–444, 443f
 molecular aspects of drought stress management in plant, 186–188
 plant growth promoting microorganisms in drought stress management, 102–105
 resistance, 385–386
 stress, 99–100, 102–103, 172, 350
 stress and severity, 170–175, 171t
 alteration in biochemical attributes, 172–173
 decreasing physiological activity of plants, 172
 metabolic modifications, 173–174
 production of reactive oxygen species, 174–175
 tolerance, 458

Dry products, 91

DSSTox. *See* Distributed Structure-Searchable Toxicity (DSSTox)

E

Earth, 134–135, 141

- atmosphere, 90
- climate system, 136
- orbit, 134

Earth Observation (EO), 36

Earthworms, 412

EC. *See* Electrical conductivity (EC)

Ecklonia radiate, 144

Ecological processes, 141–143

Ecosystem(s), 53, 79, 87–88, 135

- challenges in maintaining plant productivity and ecosystem sustainability, 145–147
- biodiversity and habitat loss, 146
- land use and degradation, 146
- temperature variability, 145
- water availability, 146–147

under climate change, 141–145

- climate change affects marine ecosystems, 143
- climate change affects terrestrial ecosystems, 144–145
- ocean acidification, 144
- ocean warming, 144

dynamics, 386–387

effects on, 312–313

impacts on ecosystem functioning, 313–315

implications for ecosystem functioning, 385–386

resilience, 441–442

Ectomycorrhizal fungi, 282–283

El Niño-Southern Oscillation (ENSO), 25

Electrical conductivity (EC), 452

Elevated atmospheric carbon dioxide, 371, 379–380

Elevated carbon dioxide (eCO₂), 370, 378

- mechanistic insights into elevated CO₂, 371–376
- source-sink relationships under, 375
- impact on carbohydrate allocation and storage, 375

Endogenous xenobiotics, 48

Endophytes, 176–177, 207–208

Endophytic fungi, 472

- annexation, 471
- defense against pathogens, 477–479

Endophytic microbes, 207

Endosulfan, 411

Endosymbiosis, 203–204

ENSO. *See* El Niño-Southern Oscillation (ENSO)

Enterobacter, 62–63, 214

Environment(al), 300, 421, 439

- climate change and impacts on, 308
- consequences of climate change, 341–344
- effects on different environmental compartments, 306–308

improved resilience to stressors in changing, 407–409

biofortification for defense, 409

climate-responsive pest and weed management, 408

induction of systemic resistance, 407–408

integrated pest management, 408

strengthening plant health, 407

interaction with environmental factors, 380–382

risks, 410–413

- impact on aquatic organisms, 411
- impact on terrestrial organisms, 411–412
- soil degradation, 412–413
- water contamination and impact on nontarget organisms, 410–411

stressors, 381–382

temperature, 343

xenobiotics impact on, 49–52, 299–300

- in air, 50
- mammals, 51
- marine life, 51–52
- negative impact of xenobiotics on water-bodies, 49
- plants, 50–51
- soil, 50

Environmental Protection Agency (EPA), 417–418

Enzymes, 52–53, 207–208, 447

EO. *See* Earth Observation (EO)

EPA. *See* Environmental Protection Agency (EPA)

Epigenetic modifications, 281

EPSs. *See* Exopolysaccharides (EPSs)

Erwinia amylovora, 340–341

ESA. *See* European Space Agency (ESA)

Ethylene (ET), 151, 180–181, 209–210

Ethylenedurea (EDU), 407

EU. *See* European Union (EU)

Europe, flood events, 36

European Space Agency (ESA), 29

European Union (EU), 154, 338, 418

- Horizon Europe, 457
- Pesticide database, 318

Eutrophication, 307

Exhaust air treatment, 127

- emissions abatement techniques, 124–127
- greenhouse gases and ammonia emission, 118
- novelty statement, 119–120
- problem statement, 118–119

Exogenous xenobiotics, 48

Exophiala pisciphila, 99–100

Exopolysaccharides (EPSs), 102–103, 182–183, 212

- production of, 183–184

Extracellular enzymes, 307

F

FACE. *See* Free-air CO₂ enrichment (FACE)

Famine Early Warning System Network (FEWS NET), 24

FAO. *See* Food and Agriculture Organization (FAO)

Farm animals, 118

Farm management information systems (FMIS), 74

Farmers, 439–440

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 417–418

“Fertilization effect”, 233

Fertilizers, 248–249, 347–349, 399–400

FEWS NET. *See* Famine Early Warning System Network (FEWS NET)

FHB. *See* Fusarium Head Blight (FHB)

FIFRA. *See* Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)

Flavonoids, 269–270, 277–278, 374

Flood(s), 5, 23

- case studies of flood events and role of remote sensing, 30–36
- damage, 29
- definition and scope of flood risks, 23–24

factors contributing to unusual weather conditions lead to flooding events, 24–25

flood-associated damage, 23

flood-resistant crops, 447–448

frameworks for flood mitigation strategies, 36–41

hazard, vulnerability, and risk in urban flood management, 37–38

planning and strategy development, 38–41

increased flood vulnerability and risk, 26–28

flood vulnerable geographies of India, 26–28

mitigation approaches, 36–37

monitoring systems, 36

remote sensing datasets in assessing flood events, 28–29

risk

- climate change, 22
- impact on food security, 23–24
- and impact on vulnerable populations, 23–24
- induced damage, 23
- maps, 34–36
- understanding impacts of climate change on hydrological cycle, 22

Flooding, 22–23

- factors contributing to unusual weather conditions lead to flooding events, 24–25

Fluid dynamics, 383

FMIS. *See* Farm management information systems (FMIS)

Food, 3–4, 88–89

- factors affecting food security around world, 335–341
- abiotic stress, 335–339
- biotic stress, 339–341

increased expenses of, 11–12

loss, 91

production, 199–200

quality and safety with climate change, 93–95

reducing food loss during processing, 91–92

security, 23–24, 94–95, 331–332

waste

- classification, 91
- management, 91

Food and Agriculture Organization (FAO), 331–332, 401–403

Food Risk Component Database, 318

Foodborne diseases, 94

Forecasts, 5

Fossil fuels, 50

- combustion, 370

Free radical-induced lipid peroxidation, 151–152

Free-air CO₂ enrichment (FACE), 380, 383–384

Fresh products, 90–91

Freshwater resources, 22–23

Fusarium spp. *See* Crown rot (*Fusarium* spp.)

Fuel-based mechanization, 22

Fungal/fungi, 64, 101–102, 201–203

- diseases, 348
- hyphae, 477
- mutualistic association between plant-dwelling, 203–204
- pathogens, 341
- symbiotic relationship, 473–477

Fungicides, 299–300, 348, 404, 409

Funneliformis mosseae, 472

Fusarium

- F. culmorum*, 243
- F. graminearum*, 236

Fusarium Head Blight (FHB), 242–243

Fusarium spp. *See* Wheat crown rot (*Fusarium* spp.)

Futuristic projection systems, 10–11

G

GA. *See* Gibberellic acid (GA)

Gaeumannomyces graminis var. *tritici*. *See* Wheat take-all (*Gaeumannomyces graminis* var. *tritici*)

Gamma irradiation, 270

GAs. *See* Gibberellins (GAs)

Gaseous emissions, 118

Gaseous xenobiotics, 305

GBSS. *See* Granule bound starch synthase (GBSS)

GCF. *See* Green Climate Fund (GCF)

G×E×M. *See* Genotype-by-environment-by-management (G×E×M)

Genes, 187–188

- editing, 446, 450–451
- expression, 281–282
- gene-edited crops, 419

Genetic engineering, 349

Genetic modification (GM), 388–389, 446

Genetic resistance, 448–449

Genetic transformation systems, 349–350

Genetic variety, 436–438

Genome editing, 388–389

Genome-wide association studies (GWAS), 152

Genotype-by-environment-by-management (G×E×M), 388–389

Geographical distribution of pathogens, impact on, 238

Geospatial technologies, 32–33

Germ-free plants, 200–201

GHGs. *See* Greenhouse gases (GHGs)

Giant African snail (*Achatina fulica*), 231

Gibberellic acid (GA), 151, 210, 270

Gibberellins (GAs), 184–185, 373

GIS-based flood modeling, 30–31

Glacial lake outburst floods (GLOFs), 25

Global Environment Facility, 457

Global Flood Awareness System (GloFAS), 36

Global food production systems, 72

Global Plant Clinic network (GPC network), 246–247

Global population, 199–200

Global Precipitation Measurement (GPM), 29

Global warming, 1–2, 25, 52, 87, 117, 141–143, 228, 231–232, 243–244

- emissions of, 136–137
- indirect effects of global warming on diseases, pests, or herbicides, 6–9

GloFAS. *See* Global Flood Awareness System (GloFAS)

GLOFs. *See* Glacial lake outburst floods (GLOFs)

Glomalin, 213

Glomus mosseae, 472

Gluconobacter diazotrophicus, 179–180

Glutamicibacter halophytocota, 212

Glutathione (GSH), 151

Glutathione peroxidase (GPX), 151

Glutathione reductase (GR), 151, 172–173

Glutathione-S-transferase (GST), 151

Glycine max. *See* Soybean (*Glycine max*)

Glyphosate, 314–315, 403–404, 413

GM. *See* Genetic modification (GM)

GPC network. *See* Global Plant Clinic network (GPC network)

GPM. *See* Global Precipitation Measurement (GPM)

GPX. *See* Glutathione peroxidase (GPX)

GR. *See* Glutathione reductase (GR)

Granule bound starch synthase (GBSS), 172–173

Green Chemistry, 420–421

Green Climate Fund (GCF), 153–154, 457

Greenhouse effect, 117, 228

Greenhouse gases (GHGs), 2–3, 59, 70, 90–91, 116, 134, 143–145, 244, 248–249, 308, 333–334

application, 127

 exhaust air treatment, 127

 manure treatment, 127

emissions, 405

emissions abatement techniques, 120–127

 exhaust air treatment, 124–127

 manure treatment, 120–124

emissions of, 136–137

exhaust air treatment, 118

manure treatment, 117

novelty statement, 119–120

 exhaust air treatment, 119–120

 manure treatment, 119

problem statement, 118–119

 exhaust air treatment, 118–119

 manure treatment, 118

software for quantifying greenhouse gases

 and NH_3 emissions from livestock barns, 127

Growth promoters. *See* Beneficial bacteria

Growth rate of pests, impact on, 231

GSH. *See* Glutathione (GSH)

GST. *See* Glutathione-S-transferase (GST)

GWAS. *See* Genome-wide association studies (GWAS)

H

H3K9 dimethylation (H3K9me2), 281

H3K9 monomethylation (H3K9me1), 281

H3K27 trimethylation (H3K27me3), 281

Habitat loss, 146

HAT. *See* Histone acetyltransferase (HAT)

HCH. *See* Hexachlorocyclohexane (HCH)

HDAC. *See* Histone de-acetylase (HDAC)

HDM. *See* Histone demethylase (HDM)

Heat exchange properties, 383

Heat exhaustion, 5

Heat island effect, weather, 25

Heat resistance, 458

Heat shock proteins (HSPs), 210, 446–447

Heat shock transpiration factors (HsfA1s), 273

Heat stress, 94

 mitigation, 386

Heat tolerance in animals, 5

Heat-tolerant crop varieties, 446–447

Heat-trapping emissions, 438–439

Heavy metals, 312–313

Heavy monsoons, 24–25

Helicoverpa armigera, 231, 250

Heliothis virescens, 350

Herbaspirillum seropedicae, 179–180

Herbicides, 9, 299–300, 403–404, 409

 indirect effects of global warming on, 6–9

Hexachlorocyclohexane (HCH), 401–403

Hexose-P, 371–372

High weather conditions, 4–5

Histone acetyltransferase (HAT), 281

Histone de-acetylase (HDAC), 281

Histone demethylase (HDM), 281

Histone methylation, 281

Histone methyltransferase (HMT), 281

Histone modification, 281

HMT. *See* Histone methyltransferase (HMT)

“Holobiont”, 200

Holocene, 90

Hordeum vulgare. *See* Barley (*Hordeum vulgare*)

Horizontal resistance, 448–449

Horticultural biotechnology, 349–350

Horticulture crops, disease incidence and pests in, 140–141

Host-microbe interactions, 102

HsfA1s. *See* Heat shock transpiration factors (HsfA1s)

HSPs. *See* Heat shock proteins (HSPs)

Human health

 effects on, 312–313

 risk assessment due to xenobiotic exposure under climate change conditions, 312–313

Hybrid remediation, 315

Hydrofluorocarbons (HFCs), 271

Hydrogen peroxide (H_2O_2), 174

Hydrogen sulfide (H_2S), 116

Hydrological cycle, 22–23

- understanding impacts of climate change on, 22

Hydrological modeling and risk assessment, 29

Hydrosphere, 306

Hydroxyl radicals (OH), 174

Hylocereus spp. *See* Pitaya fruit (*Hylocereus* spp.)

Hypericum brasiliense, 270

Hyphae, fungal, 477

Hypocrea teleomorph, 62–63

I

IAA. *See* Indole-3-acetic acid (IAA)

IBA. *See* Indole-3-butyric acid (IBA)

Ice sheets, melting glaciers and, 25

ICS. *See* Irrigated Crop System (ICS)

Incidental beneficial mechanism, 472

India, flood vulnerable geographies of, 26–28

Indirect effects of global warming on

- diseases, pests, or herbicides, 6–9
- innovative remedies for insect as well as weed problems, 9
- insects and pest, 7
- plant diseases, invasive plants, or herbicides, 9, 10_t
- summer worms, 8

Indole-3-acetic acid (IAA), 151, 207–208, 210

Indole-3-butyric acid (IBA), 151

Induced systemic resistance (ISR), 184–185, 200

Industrial growth, 47–48

Industrial wastes, 47–48

Inorganic acids, 117

Inorganic substances, 404

Inorganic xenobiotic substances, 47–48

Insecticides, 299–300, 347–348, 403, 409

Insecticides Act (1968), 418

Insects, 7, 13, 229–230

Integrated pest management (IPM), 2–3, 408, 410, 450

Intelligent automatic plant irrigation system, 454–455

Intergovernmental Panel on Climate Change (IPCC), 79, 134, 141, 388, 414

International case studies, 147–148

International Code of Conduct on Pesticide Management, 417

Internet of Things (IoT), 451

IoT. *See* Internet of Things (IoT)

IPCC. *See* Intergovernmental Panel on Climate Change (IPCC)

IPM. *See* Integrated pest management (IPM)

Irrigated Crop System (ICS), 149

Irrigation systems, 455

ISR. *See* Induced systemic resistance (ISR)

Itchgrass (*Rottboellia cochinchinensis*), 244

J

JA. *See* Jasmonic acid (JA)

Jasmonic acid (JA), 7–8, 184–185, 209–210, 407

K

Kerala, flood events, 32–33

Kharif crops, 436

Klebsiella, 62–63

Kosakonia, 176–177

L

Lacaria bicollis, 213–214

Lagenorhynchus acutus. *See* Atlantic white-sided dolphins (*Lagenorhynchus acutus*)

Lagenorhynchus albirostris. *See* White-beaked dolphins (*Lagenorhynchus albirostris*)

Laminaria religiosa, 144

Land use, 136

- and degradation, 146

Land use and land cover (LULC), 31

Land with erosion, fertility of, 12

Landsat data, 32

Lasers-induced cell division, 125–126

Latent pathogens, 204

Leaf mass per unit area (LMA), 378

Leaf morphology, 377–378

Legumes, 376–377

Leptosphaeria maculans. *See* Brassica black leg (*Leptosphaeria maculans*)

Light, effect of, 277

Line-shaped contrails, 138

Lipaphis erysimi, 232–233

Livestock barns, software for quantifying greenhouse gases and NH_3 emissions from, 127

Livestock farming, 116
Livestock manure, 117
Livestock production, 118, 416
LMA. *See* Leaf mass per unit area (LMA)
LULC. *See* Land use and land cover (LULC)
Lupins (*Lupinus termis*), 270–271
Lupinus albus. *See* White lupin (*Lupinus albus*)
Lupinus termis. *See* Lupins (*Lupinus termis*)

M
Machine learning (ML), 451
algorithms, 32
for crop modeling, 455–456
Macrophomina sp., 237
Macrophomina phaseolina, 237
Magnaporthe oryzae. *See* Rice blast (*Magnaporthe oryzae*)
Maharashtra, flood events, 30–31
Mammals, impact of xenobiotics on, 51
Manduca sexta, 350
Manure, 117
treatment, 127
emissions abatement techniques, 120–124
greenhouse gases and ammonia emission, 117
novelty statement, 119
problem statement, 118
Marine ecosystems, 146
climate change affects, 143
Marine environments, 298
Marine life, impact of xenobiotics on, 51–52
Marine organisms, 307
MC. *See* Moisture content (MC)
MDHAR. *See* Monodehydroascorbate reductase (MDHAR)
Medical wastes, 47–48
Melanotrichum tuberosum, 213–214
Meloidogyne graminicola, 241
Meta organism, 200
Metabolic modifications, 173–174
Metabolites, 268–269
Metabolomics, 384, 388
Methane (CH₄), 2–3, 59, 87–88, 90–91, 116, 137, 271, 341–342, 404–405
Methyl groups (-CH₃), 281
Methyl mercury, 47–48
Meyerozyma guilliermondi, 103–105

Microbes, 52–53, 102, 187–188, 200–201, 205
Microbial
communities, 201
degradation, 310
diversity, 175, 344
mechanisms to alleviate drought stress in plant, 179–185
alteration in root morphology and soil composition, 185
aminocyclopropane-1-carboxylate deaminase production, 180–181
antioxidants production, 183
exopolysaccharide production, 183–184
generation of volatile organic compounds, 182–183
mineral uptake, 184–185
osmotic adaptation, 182
phytohormone production, 179–180
VOCs, 182–183
Microbial fertilizers. *See* Microbial inoculants
Microbial inoculants, 76
Microbiome
impact of climate change on, 344–346
modification of microbiome diversity, 345
occurrence of emerging pathogens, 345–346
Microdochium
M. majus, 103–105
M. nivale, 243
Micromesistius poutassou. *See* Blue whiting (*Micromesistius poutassou*)
Micronutrients, 184–185, 298
acquisition, 386
Microorganisms, 52, 60, 62–63, 201, 307, 312, 346
Microplastics, 307
“Mid-Piacenzian Warm Period”, 89–90
Mineral solubilizers, 213
Mineral uptake, 184–185
Mitigation strategies, climate change, 13–15, 149–153, 248–250
biochemical responses and synthesis of antioxidants, 150–151
detection of changes in geographical distribution, 249
forecasting and forewarning, 249

genomic insights into plant adaptation to climate change, 152

nanotechnology solutions for increasing plant resistance to climate change, 152–153

pest management options, 249–250

phytohormone synthesis for enhancing climate resilience, 151–152

potential strategies for water recycling and reuse, 150

surveillance and monitoring, 249

sustainable approaches to soil conservation and improvement, 149

sustainable fertilizer production, 150

Mitochondrial electron transport, 348

Mixed farming, 440–442

ML. *See* Machine learning (ML)

Mobile payment systems, 74

Moderate Resolution imaging spectroradiometer (MODIS), 28

MODIS. *See* Moderate Resolution imaging spectroradiometer (MODIS)

Moisture, 27

Moisture content (MC), 442–444

Molecular aspects of drought stress management in plant, 186–188

activation of stress-responsive genes through plant-microbe interactions, 187–188

genetic and molecular basis of drought tolerance, 186

Monocrops, 9

Monodehydroascorbate reductase (MDHAR), 151, 172–173

Monsoon, 26

Monsoon-WD overlap, 27

Mountains receding, fewer resources of water available for cultivation, 12

Multistressor tolerance, 386

Mumbai, flood events, 30–31

Mycorrhizal fungi, 282–283

Mycorrhizal symbiosis, 282–283

Mycotoxins, 91, 241–242

 impact of climate change on, 242–243

Myzus persicae, 232–233

N

Nanoparticles (NPs), 125–126, 152–153, 407

Nanopesticides, 420

Nanotechnology, 92, 315–316

National case studies, 148–149

National Disaster Management Agency, 27–28

National food production systems, 72

Nationally Determined Contributions (NDCs), 153–154

Natural disturbances, 136

Natural drivers, 136

 biosphere and land use, 136

 solar irradiation variability, 136

 volcanic eruptions, 136

Natural ecosystems, 145

Natural enemies, impact on, 234, 240

NCED. *See* 9-cis-epoxy carotenoid dioxygenase (NCED)

N-containing secondary metabolites, 374–375

NDCs. *See* Nationally Determined Contributions (NDCs)

Nematodes, 240–241, 339–340

Neonicotinoids, 413

 insecticides, 411–412

Nervous system, 312–313

Next-generation microbial inoculants, 335

Nicotinamide adenosine dinucleotide phosphate, 371

Nilaparvata lugens, 233

Nitrate reductase (NR), 172–173

Nitric oxide (NO), 174, 184–185

Nitrite, 119–120, 124–125

Nitrogen fixation, 439–440

 fungi in, 473–477

Nitrogen monoxide, 306

Nitrogen (N), 380–381, 386

 N-containing substances, 273–277

 N-fixing endophytes, 176–177

 N-fixing microbes, 412–413

Nitrogen oxides (NOx), 137, 306

Nitrogen-use efficiency (NUE), 386

Nitrous oxide (N₂O), 2–3, 87–88, 90–91, 116, 271, 341–342, 404–405

Nonhost resistance, 448–449

NPs. *See* Nanoparticles (NPs)

NPV. *See* Nuclear Polyhedrosis Virus (NPV)

NR. *See* Nitrate reductase (NR)

Nuclear Polyhedrosis Virus (NPV), 250

NUE. *See* Nitrogen-use efficiency (NUE)

Nutrients, 60, 70, 212–213
cycling, 439–440
limitations, 380–381
uptake, 378–379

O

Ocean
acidification, 144
warming, 144

OECD. *See* Organization for Economic Co-operation and Development (OECD)

Oilseed rape (*Brassica napus*), 380

Omics technology, 102, 152, 278–279, 384

Open-top chambers (OTCs), 383

Optical satellites, 32

Organic
acids, 117
farming systems, 70
fertilizers, 150
food, 242
xenobiotic substances, 47–48

Organization for Economic Co-operation and Development (OECD), 417

Organochlorine pesticides, 401–403

Organonitrogen Degradation Database, 318

Organophosphorus pesticides, 312–313

Oryza sativa L. *See* Rice (*Oryza sativa* L.)

Osmotic adaptation, 182

OTCs. *See* Open-top chambers (OTCs)

Oxidation-reduction reactions, 310

Oxidative stress, 447–448

Ozone (O_3), 136–137, 140–141, 381–382

layers, 277–278

P

Paris Agreement, 438–439

Particulate matter (PM), 116

Pathogenic infection risk, 334

Pathogens

impact on
dispersal of, 239
geographical distribution of, 238
multiplication, 239
pathogen interspecies occurrence, 239
occurrence of emerging, 345–346

Pea root rot (*Aphanomyces euteiches*), 237

Perfluorocarbons (PFCs), 271

Periconia sp., 208

Peroxidase (POD), 210

Persistent organic pollutants, 313

Pesticides, 50, 244, 339–340, 399–403, 409
impact of climate change on pesticide residues, 242–243

Pests, 2–3, 7, 9, 229

biological control of, 76–77

climate change impact on pest and disease management using chemicals, 243–244

climate change impact on pest incidence changes in migration pattern, 232

changes in overwintering behavior, 232
effect of drought on incidence of pests, 230

effect of elevated carbon dioxide, 230

effect of higher temperature on insect pests, 229–230

effects on community structure, 232

effects on fitness-related behavior or traits, 232

impact on dispersal of, 231

impact on geographical distribution of, 230–231

impact on growth rate of pests, 231

impact on host plants, 233

impact on interspecific and multitrophic interactions, 232–233

impact on natural enemies, 234

impact on phenology, 233–234

impact on reproduction and multiplication of, 231–232

community structure, 232

in horticulture crops, 140–141

impact of climate change on pest incidence, 229–234

indirect effects of global warming on, 6–9

management options, 249–250

biological management, 250

chemical management, 250

cultural management, 250

pest-resistant crop types, 449–450

pest-resistant varieties, 448–451

resistance, 386

PGPB. *See* Plant growth-promoting bacteria (PGPB)

PGPMs. *See* Plant growth-promoting microorganisms (PGPMs)

PGPR. *See* Plant growth-promoting rhizobacteria (PGPR)

PGRs. *See* Plant growth regulators (PGRs)

Phacidium infestans. *See* Snow blight (*Phacidium infestans*)

Phenolic accumulation, mechanisms underlying, 374

Phenolic compounds, 269, 374

Phenylalanine, 269–270

Phenylalanine ammonia lyase, 374

Phenylpropanoid pathway implications for, 375–376

growth trade-offs between vegetative and reproductive organs, 375–376

source-sink relationships under elevated CO₂, 375

Phosphate, 105–106

Phosphoglycerate, 371–372

Phosphorus (P), 379

Phosphorus uptake, 386

Photobiostimulation, 127

Photochemical efficiency, 372–373

Photodegradation, 310

Photosynthesis, 279–281, 371–373, 387, 446

Photosystems (PSs), 172

PHs. *See* Phytohormones (PHs)

Phthalates, 312–313

Phyllosphere, 177–178, 201–202

Phyllospheric microbiome, 177–179

Physical remediation, 315

Physio-chemical reaction, 139

Physiological adaptations, 279–281

Physiological and morphological flexibility, 279–281

Phytohormones (PHs), 62–63, 151, 373

phytohormone synthesis for enhancing climate resilience, 151–152

production of, 179–180

Phytomicrobiome, 102

Phytopathogenic fungi, 341

Phytophthora spp., 235–236

P. infestans, 450

P. sojae, 238

Pinus radiata, 378

Piriformospora indica, 103–105

Pisum sativum L., 139

Pitaya fruit (*Hylocereus* spp.), 93

Plant(s), 100–101, 174, 186, 200, 208–209, 268, 382, 385–386, 445

activation of stress-responsive genes through plant-microbe interactions, 187–188

adaptations to climate stress, 278–283

advances in experimental approaches, 382–385

free-air CO₂ enrichment system, 383–384

modeling plant responses, 385

omics technologies, 384

open-top chambers, 383

advantages and disadvantages of diverse strategies for stress mitigation in crops, 347

agroecosystems in agriculture, 60–62

biomass, 387

carbon storage in soils, 387

cells, 182, 446

challenges in maintaining plant productivity and ecosystem sustainability, 145–147

biodiversity and habitat loss, 146

land use and degradation, 146

temperature variability, 145

water availability, 146–147

climate change impact on plant diseases, 344–346

modification of microbiome diversity, 345

occurrence of emerging pathogens, 345–346

climate change impact on plant pathogens

effect of drought, 237

effect of elevated carbon dioxide, 236–237

effect of higher moisture content and humidity, 238

effect of higher temperature, 235–236

impact on dispersal of pathogens, 239

impact on geographical distribution of pathogens, 238

impact on host plants, 239–240

impact on multiplication of pathogens, 239

impact on natural enemies/antagonists, 240

impact on nematodes, 240–241

impact on pathogen interspecies occurrence, 239

communities, 272

current and innovative strategies to mitigate plant stress, 346–353

agrochemical pesticides and fertilizers, 347–349

biotechnologically modified plant-resistant varieties, 349–351

plant growth-promoting microorganisms-based bioinoculants, 351–353

decreasing physiological activity of, 172

diseases, 9

ecosystem dynamics

- and agricultural management strategies, 386
- and biodiversity, 387

effect of climate change on plant-microorganism interactions, 63–64

effects of climate change on plant productivity, 138–141, 138*f*

disease incidence and pests in horticulture crops, 140–141

drought, 140

salinity, 139

temperature, 139

genomic insights into plant adaptation to climate change, 152

growth-promoting compounds, 407

hidden microbial world within, 207–208

immunity responses, 240

impact of climate change on plant pathogens, 234–241

impact of drought stress on, 170–175, 171*t*

impact of xenobiotics on, 50–51

implications for agriculture and ecosystem functioning, 385–386

interaction with environmental factors, 380–382

nutrient limitations, 380–381

ozone and stresses, 381–382

knowledge gaps and future directions, 388–389

mechanistic insights into elevated CO₂ and plant growth, 371–376

implications for phenylpropanoid pathway, 375–376

photosynthesis and carbon assimilation, 371–373

role in stress signaling and growth modulation, 373

secondary metabolism, 373–375

microbial mechanisms to alleviate drought stress in, 179–185

microbiome, 201

microbiota, 199–200

molecular aspects of drought stress management in plant, 186–188

morphophysiological responses, 377–380

biomass accumulation and yield, 379–380

leaf morphology and canopy structure, 377–378

root development and nutrient uptake, 378–379

nanotechnology solutions for increasing plant resistance to climate change, 152–153

pathogens, 234–235, 334–335, 345–346

phenotyping, 385

plant–microorganism interactions, 62–63

protection under changing climate, 245–248

SMs, 268

strengthening plant health, 407

Plant growth regulators (PGRs), 399–400

Plant growth-promoting bacteria (PGPB), 62–64

Plant growth-promoting fungi, 472–473

Plant growth-promoting microorganisms (PGPMs), 101–102

- in abiotic stress management, 101–102
- in drought stress management, 102–105
- in salinity stress management, 105–106

Plant growth-promoting rhizobacteria (PGPR), 170, 183

Plant pathogenic nematodes (PPNs), 240–241

Plant–microbe interactions, 352–353

- endophytes, 207–208
- plant-associated microbes, 200–201

plant–microbe interaction in alleviating abiotic stress, 208–214

strategic interaction of plant-associated microbes, 201–206, 202*f*

- above-ground plant–microbiome interaction, 204–205
- below-ground plant–microbe interaction, 205–206

mutualistic association between plant-dwelling bacteria and fungi, 203–204

vertical *vs.* horizontal inheritance of plant microbiota, 206

Plastics Microbial Biodegradation Database, 318

PM. *See* Particulate matter (PM)

POD. *See* Peroxidase (POD)

Pollution, 307

Polychlorinated biphenyls, 313

Polycyclic aromatic hydrocarbons, 49–50

Polyethylene glycol, 270

Postharvest management, 90–92

Post-transcriptional histone tail modifications, 281

Potato (*Solanum tuberosum*), 380

PPNs. *See* Plant pathogenic nematodes (PPNs)

Precipitation, 2–3
variations in, 5

Precision agriculture, 421, 451–453
crop yield forecasting and optimization, 453
soil health and precision soil management, 451–453

Precision farming, 451

Precision irrigation, 458

Preinfectional defenses, 448–449

Primary aerosols, 137–138

Primary metabolites, 268–269

Primary reaction, 174

Proline, 150–151

Proteomic analyses, 384

Proteomics, 388

Pseudomonas, 105, 176, 183–184, 214
P. knackmussii, 105–106
P. pseudoalcaligenes, 105–106
P. syringae, 236, 340–341

PSs. *See* Photosystems (PSs)

Push-pneumatic system, 121

Q

QS. *See* Quorum sensing (QS)

QTL. *See* Quantitative trait locus (QTL)

Quantitative trait locus (QTL), 152

Quorum sensing (QS), 205, 213

Quorum sensing (QS) inhibitors, 471–472

R

Rabi crops, 436

Radiative forcing (RF), 136

Rainfall patterns, impact of changing, 442–444, 443f

REACH. *See* Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

Reactive oxygen species (ROS), 101, 172–175, 209–210, 214, 270, 373, 407, 446

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), 316

Reinforcement learning, 456

Relative water content (RWC), 172

Remote sensing, 28, 32–33, 453
case studies of flood events and role of, 30–36
datasets, 22–23
datasets in assessing flood events, 28–29
assessing damage and post-flood analysis, 29
cost-effectiveness and efficiency, 29
hydrological modeling and risk assessment, 29
mapping flood extent and dynamics, 29
real-time monitoring and early warning, 28
wide-area coverage and accessibility, 28–29

global, 34–36
Africa, 34–35
Europe, 36

regional, 30–34
Assam, 32, 33f
Chennai, Tamil Nadu, 31
Mumbai, Maharashtra, 30–31
Vijayawada, Andhra Pradesh, 34, 35f
Wayanad, Kerala, 32–33

technologies, 28

Reproduction and multiplication of pests, impact on, 231–232

Resilience mechanisms, 278–283
DNA methylation, 281–282
epigenetic modifications, 281
histone modification, 281
physiological and morphological flexibility, 279–281
symbiotic relationship, 282–283

RF. *See* Radiative forcing (RF)

Rhizobacteria, 352

Rhizobia, 179–180, 206

Rhizophagus irregularis, 99–100

Rhizoplanic microbiome, 176

Rhizosphere, 175, 205
Rhizosphere soil fungi, 472–473
Rhizospheric microbiome, 175, 205
Rhopalosiphum padi, 231–233
Rice (*Oryza sativa* L), 270, 341, 450
Rice blast (*Magnaporthe oryzae*), 238
Rising carbon dioxide
 advances in experimental approaches, 382–385
 free-air CO₂ enrichment system, 383–384
 modeling plant responses, 385
 omics technologies, 384
 open-top chambers, 383
carbon storage in soils, 387
concentrations, 69
ecosystem dynamics and agricultural management strategies, 386
ecosystem dynamics and biodiversity, 387
implications for agriculture and ecosystem functioning, 385–386
interaction with environmental factors, 380–382
 nutrient limitations, 380–381
 ozone and stresses, 381–382
knowledge gaps and future directions, 388–389
mechanistic insights into elevated CO₂ and plant growth, 371–376
 implications for phenylpropanoid pathway, 375–376
 photosynthesis and carbon assimilation, 371–373
 role in stress signaling and growth modulation, 373
 secondary metabolism, 373–375
Rivers, 32
Root
 alteration in root morphology and soil composition, 185
 architecture, 385
 development, 378–379
 meristem, 173
Root-associated beneficial symbionts, 282–283
Zone Water Quality Model, 455–456
Root system architecture (RSA), 185
ROS. *See* Reactive oxygen species (ROS)

Rottboellia cochinchinensis. *See* Itchgrass (*Rottboellia cochinchinensis*)
RSA. *See* Root system architecture (RSA)
Rust (*Triphragmium ulmarie*), 238
RWC. *See* Relative water content (RWC)

S

SA. *See* Salicylic acid (SA)
Salicylic acid (SA), 151, 209–210, 407–408, 449–450
Saline soils, 339
Saline stress, 339
Salinity, 139
 plant growth promoting microorganisms in salinity stress management, 105–106
 stress, 99–100
SAR. *See* Synthetic aperture radar (SAR)
SAS. *See* Shifting agriculture (SAS)
Satellites, 28–29
 data, 29
 satellite-based Earth Observation, 36
SBE. *See* Starch branching enzyme (SBE)
Sclerotium cepivorum. *See* White rot (*Sclerotium cepivorum*)
Scomber scombrus. *See* Atlantic mackerel (*Scomber scombrus*)
Sea levels, rising, 25
Seasonal floods, 26
Secondary metabolism, 373–375
 effect of climate change on, 272–278, 274t
 effect of CO₂, 273
 effect of drought stress, 273–277
 effect of light, 277
 effect of temperature, 273
 effect of ultraviolet-B radiation, 277–278
 interactive effects of environmental factors, 278
 impact of climate change on, 271–278
 climatic factors, 271–272
 mechanisms underlying phenolic accumulation, 374
 N-containing secondary metabolites, 374–375
 phenolic compounds and flavonoids, 374
 in plants understanding secondary metabolism, 268–271

resilience mechanisms, 278–283

terpenes and carbon-based secondary metabolites, 374

Secondary metabolites, 176, 384

Secondary molecules (SMs), 268

Seed microbiota, 206–207

Semi-arid, 4–5

Sensor technologies, 451–452

Sertraline, 310

Sesquiterpenes, 374

Shifting agriculture (SAS), 149

Short-beaked common dolphins (*Delphinus delphis*), 144

Siderophores, 472

Silver nanoparticles (Ag-NPs), 152–153

Silybum marianum, 270

Singlet oxygen (${}^1\text{O}_2$), 174

Sitobion avenae, 232

Small-scale farmers, 74

Smart farming, 451

Smart irrigation, 454–455

Smart-crop varieties, 445–451

- drought-resistant crop varieties, 445–446
- flood-resistant and waterlogging-tolerant crops, 447–448
- heat-tolerant crop varieties, 446–447
- pest-and disease-resistant varieties, 448–451

SMs. *See* Secondary molecules (SMs)

Snow blight (*Phacidium infestans*), 235–236

SOC. *See* Soil organic carbon (SOC)

SOD. *See* Superoxide dismutase (SOD)

Sodium chloride (NaCl), 270

Software, 117

- for quantifying greenhouse gases and NH_3 emissions, 127

Soil, 62–63, 75–76, 134–135, 205, 237, 345

- alteration in root morphology and soil composition, 185
- carbon storage in, 387
- compaction, 338
- conservation methods, 444
- degradation, 146, 336–339, 412–413
- fertility, 71, 312
- health, 451–453
- impact of xenobiotic on, 50
- microbes, 412–413
- microbial diversity, 343–344
- microbiome, 344–345
- regeneration, 439–440
- salinity, 139–140, 338
- salinization, 338
- sustainable approaches to soil conservation and improvement, 149

Soil microbes, 467–468

Soil organic carbon (SOC), 344–345

Solanum tuberosum. *See* Potato (*Solanum tuberosum*)

Solar irradiation variability, 136

Soluble starch synthase (SSS), 172–173

Solvent tolerance, 9

Soybean (*Glycine max*), 378

Sphaerotheca fuliginea, 381–382

Sphenophorus levis, 350

Spodoptera litura, 231

Spore traps, 235

SSS. *See* Soluble starch synthase (SSS)

Stakeholder engagement, 317

Starch branching enzyme (SBE), 172–173

Stenella coeruleoalba. *See* Striped dolphins (*Stenella coeruleoalba*)

Streptomyces spp. *See* Bacterial scab (*Streptomyces* spp.)

Stress, 338, 381–382

- activation of stress-responsive genes through plant-microbe interactions, 187–188
- resilience, 386
- response pathways, 384
- role in stress signaling and growth modulation, 373

Stressors

- beneficial effects of agrochemicals and improved resilience to stressors in changing climate, 405–409
- improved resilience to stressors in changing environment, 407–409
- role in enhancing abiotic stress tolerance, 407
- role in increasing yield and reducing crop losses, 409

Striped dolphins (*Stenella coeruleoalba*), 144

Striped rice stemborer (*Chilo suppressalis*), 232–233

Sugar beet (*Beta vulgaris*), 380

Sugarcane cysteine peptidase inhibitor 1 (*CaneCPI-1*), 350

Sulfur dioxide (SO_2), 140–141
Sulfur hexafluoride (SF_6), 271
Summer armyworm, 8–9
Summer worms, 8
Superoxide anion (O_2^-), 174
Superoxide dismutase (SOD), 172–173, 210, 446
Supervised learning, 456
Sustainability, 439–440
Sustainable agriculture, 74–75, 439–440
 adapting cropping practices, 470–471
 beneficial fungi in, 468, 469f, 479
 benefits, 472–473, 474t
 under changing climate scenarios, 477, 478t
 efficacy, 472–473
 enhance plant growth and resistance to pests and diseases, 477–479
 climate change impacts on, 468–470
 development, 148–149
 practices, 335
Sustainable agroecosystems, 60
Sustainable approaches to soil conservation and improvement, 149
Sustainable fertilizer production, 150
Symbiotic relationship, 282–283
Synthetic aperture radar (SAR), 28
 satellites, 30
Synthetic chemicals, 199–200

T
2,4,5-T. *See* 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)
Tamil Nadu, flood events, 31
Target pests, 230
Task Force on Climate-related Financial Disclosures (TCFDs), 154
Temperature, 52, 139, 235–236, 267–268
 effect of, 273
 influences, 230–231
 variability, 145
Terpenes, 374
Terpenoids, 270
Terrestrial ecosystem, 89, 144–145
 climate change affects, 144–145
Terrestrial environments, 298
Terrestrial organisms, impact on, 411–412
Tetranychus urticae, 230
TFs. *See* Transcription factors (TFs)

Titanium dioxide nanoparticles (nTiO_2), 152–153
TMs. *See* Trace metals (TMs)
Toxic compounds, 48–49
Toxic heavy metals, 134–135
Toxic pollutants, 50
Toxic Substances Control Act (TSCA), 316
Toxic xenobiotics, 47–48
Trace metals (TMs), 269–270
Traditional ground-based observation methods, 28–29
Transcription factors (TFs), 186
Transcriptomics, 384, 388
Transplanted rice, 248–249
2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 403–404
Trichoderma sp., 471–473, 474t
Triphragmium ulmarie. *See* Rust (*Triphragmium ulmarie*)
Triticum aestivum L. *See* Wheat (*Triticum aestivum* L.)
Tropical insects, 231–232
Troposphere, 137
TSCA. *See* Toxic Substances Control Act (TSCA)

U
Ultraviolet (UV), 268–269
Ultraviolet-B radiation, effect of, 277–278
UN. *See* United Nations (UN)
United Nations (UN), 93
United Nations Sustainable Development, 470
Unsupervised learning, 456
Urban flood management, 37
 hazard, 37
 risk, 38
 vulnerability, 37
Urban heat island effect, 25
Urbanization, 47–48, 53
 weather, 25
US Department of Agriculture (USDA), 457
USDA. *See* US Department of Agriculture (USDA)
UV. *See* Ultraviolet (UV)

V
Vertical resistance, 448–449
Vijayawada, flood events, 34

Viral infections, 7–8

VOCs. *See* Volatile organic compounds (VOCs)

Volatile organic compounds (VOCs), 118, 137, 182–183, 306
generation of, 182–183

Volatilization, 52

Volcanic eruptions, 136

VSA. *See* Vulnerable-smart agriculture (VSA)

Vulnerability, 37
in urban flood management, 37–38

Vulnerable-smart agriculture (VSA), 72, 74

W

Water, 1–2, 22–23, 70, 170, 343, 455
availability, 146–147
contamination and impact on nontarget organisms, 410–411
cycle, 308–309
deficiency, 172–173
emergencies, 5–6
Framework Directive classification, 300
logging-tolerant crops, 447–448
management innovations, 155
mountains receding, fewer resources of
water available for cultivation, 12
negative impact of xenobiotics on water bodies, 49
pollution, 146
potential strategies for water recycling and reuse, 150
resources, 70, 140
scarcity, 170, 228–229, 454–455
stress, 442–444

Water usage effectively (WUE), 446

Water use efficiency (WUE), 371, 385–386

Water vapor (H_2O), 271

Wayanad, flood events, 32–33

WDs. *See* Western Disturbances (WDs)

Weather
changes in global temperature and weather patterns, 308
direct effects of weather pattern changes, 4–6
factors contributing to unusual weather conditions lead to flooding events, 24–25
atmospheric circulation changes, 25
changing rainfall distribution patterns, 24
increased precipitation and extreme rainfall events, 24
melting glaciers and ice sheets, 25
rising sea levels and coastal flooding, 25
urbanization and heat island effect, 25

Weather patterns
human health risk assessment due to
xenobiotic exposure under climate
change conditions, 312–313
impact of climate change on toxicity and
bioavailability of xenobiotics, 311
impact of xenobiotics on climate change,
312
interactions between xenobiotics and
climate change, 309–310
modification in degradation, transport,
and distribution of xenobiotics
due to climate change, 309–310
policies and regulations for the
management of xenobiotics under
climate change scenarios, 316–317
research needs in area of xenobiotics and
climate change, 317

Weed innovative remedies for insect as well as weed problems, 9

Weeds impact of climate change on, 244–245

Western Disturbances (WDs), 27

Wheat (*Triticum aestivum* L.), 378, 447

Wheat crown rot (*Fusarium* spp.), 237

Wheat take-all (*Gaeumannomyces graminis* var. *tritici*), 237

Whether natural enemies, 234

White lupin (*Lupinus albus*), 378–379

White rot (*Sclerotium cepivorum*), 237

White-beaked dolphins (*Lagenorhynchus albirostris*), 144

WHO. *See* World Health Organization (WHO)

Wireworms, 408

World Food Conference, 331–332

World Food Programme, 405

World Health Organization (WHO), 417

World Wide Fund (WWF), 146

WUE. *See* Water usage effectively (WUE)

WWF. *See* World Wide Fund (WWF)

X

Xanthomonas oryzae, 450

Xenobiotic(s), 47–48, 50, 298

- alterations in biogeochemical cycles, 308–309
- challenges in the implementation of management strategies, 318–319
- chemical nature of, 49
- climate change and impacts on environmental processes, 52, 308
- compounds, 47–49, 51–52, 306
 - biodegradation of, 52–53
- databases and development of predictive models for xenobiotic behavior, 318
- definition of, 298
- effects on different environmental compartments, 306–308
- effects on human health and ecosystems, 312–313
 - human health risk assessment due to xenobiotic exposure under climate change conditions, 312–313
- emission sources and dispersion routes, 300–305
- in environment, 299–300
 - types of, 299–300
- exposure, 51
- future research and challenges, 317
 - research needs in area of xenobiotics and climate change, 317
 - impact in air, 50
 - on biodiversity and ecosystem functioning, 313–315
- on climate change and biogeochemical cycles, 312
- of climate change on toxicity and bioavailability of, 311
- on environment, 49–52
- on mammals, 51
- on marine life, 51–52
- on plants, 50–51
- on soil, 50
- on water-bodies, 49

importance of studying xenobiotics in context of climate change, 299

interactions between xenobiotics and climate change, 309–310

mitigation and adaptation strategies, 315–316

modification in degradation, transport, and distribution of xenobiotics due to climate change, 309–310

ozone formation and destruction reactions in atmosphere, 304f

polices and regulations for the management of xenobiotics under climate change scenarios, 316–317

pollutants, 317

sources of, 50

substances, 49

types of, 48

- endogenous xenobiotics, 48
- exogenous xenobiotics, 48

Z

Zymoseptoria tritici, 236

CLIMATE CHANGE AND AGRICULTURAL ECOSYSTEMS

CURRENT CHALLENGES AND ADAPTATION

Second Edition

Edited by

Ajay Kumar,
Amity University, Noida, India

Olubukola Oluranti Babalola,
North-West University, South Africa

Joginder Singh,
Nagaland University, Nagaland, India

Gustavo Santoyo,
Universidad Michoacana de San Nicolas de Hidalgo, Mexico

Fully revised to include the latest scientific developments, *Climate Change and Agricultural Ecosystems: Current Challenges and Adaptation, Second Edition* continues to provide vital insights into the complex and dynamic relationship between climate, agriculture, soil, and plants. Building on its proven value in guiding real-world application as well as inspiring further research, this new edition includes new insights and practices. Agricultural ecosystems are highly dependent on weather and climate for the production of necessary foods to sustain human life. Despite leading cutting-edge tools and technologies for developing improved varieties, genetically modified organisms, and irrigation systems, climate change is still a major constraint to agricultural productivity. It takes years to assess the impacts of climate change and vulnerability to it and to prepare proper countermeasures against it. Developing countermeasures drawn based on scientific diagnosis and assessment of the impacts of climate change on agriculture are essential in establishing the vision and administrative policies of future agriculture. This book focuses on recent research and updates on interactions between agriculture, ecosystems, environment, and climate change bringing together ideas and innovations of the latest scientific findings on climate change and enriched by renowned researchers' knowledge and experience in this field. It reflects the importance of acting now on climate change: to eliminate hunger and to enable the agriculture sectors to adapt to climate change.

Key Features:

- Covers latest advances in climate resilient agriculture and food security
- Focuses on factors of climate change and their impact on food crops
- Features the latest metagenomic and informatics approaches to studying response strategies to climate change

WP
WOODHEAD
PUBLISHING

An imprint of Elsevier
elsevier.com/books-and-journals

ISBN 978-0-443-26520-4

