

BIOTIC STRESS TOLERANCE IN HORTICULTURAL CROPS

CHALLENGES AND MITIGATION STRATEGIES

Edited by

AVINASH CHANDRA RAI

VED PRAKASH RAI

AJAY KUMAR

GUSTAVO SANTOYO

LUCAS CARVALHO BASILIO DE AZEVEDO

Biotic Stress Tolerance in Horticultural Crops

Woodhead Publishing Series in Food Science, Technology and Nutrition

Biotic Stress Tolerance in Horticultural Crops

Challenges and Mitigation Strategies

Edited by

Avinash Chandra Rai

Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel

Ved Prakash Rai

Navsari Agricultural University, Tanchha, Bharuch, Gujarat, India

Ajay Kumar

Amity University, Noida, Uttar Pradesh, India

Gustavo Santoyo

Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

Lucas Carvalho Basilio de Azevedo

Federal University of Uberlândia, Brazil

WP

WOODHEAD
PUBLISHING

An imprint of Elsevier
elsevier.com/books-and-journals

Woodhead Publishing is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2025 Elsevier Inc. All rights reserved, including those for text and data mining, AI training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

For accessibility purposes, images in electronic versions of this book are accompanied by alt text descriptions provided by Elsevier. For more information, see <https://www.elsevier.com/about/accessibility>.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-27324-7

For Information on all Woodhead Publishing publications visit
our website at <https://www.elsevier.com/books-and-journals>

Publisher: Mara Conner

Acquisitions Editor: Nancy Maragioglio

Editorial Project Manager: Asmi Bharati

Production Project Manager: Sruthi Satheesh

Cover Designer: Miles Hitchen

Typeset by Aptara, New Delhi, India

Working together
to grow libraries in
developing countries

www.elsevier.com • www.bookaid.org

Contents

Contributors	xii	
About the Editors	xv	
1 Horticultural crops' biotic stresses in the present climatic scenario	1	
<i>Elizabeth Temitope Alori, Ayibanoa Lekoo Ibaba, Glory Adesola Alabi, Abidemi Olubusayo Onaolapo and Olubukola Oluranti Babalola</i>		
1.1 Introduction	1	
1.2 Emerging diseases in horticultural crops under changing climatic conditions	2	
1.2.1 Changes in the distribution of pests and pathogens	2	
1.2.2 Changes in host-pathogen interactions	3	
1.2.3 Changes in plant phenology	3	
1.2.4 Loss of biodiversity	3	
1.2.5 Increased stress on plants	3	
1.3 Role of climate change in altering disease dynamics	3	
1.4 Beneficial plant-microbe interactions for disease suppression	5	
1.5 Agroecological approaches to enhance crop resilience and minimize biotic stress	6	
1.6 Organic farming methods for pest and disease control	6	
1.6.1 Weed management	7	
1.6.2 Insect pest management	7	
1.6.3 Disease management	9	
1.7 Integrated pest management (IPM) approaches for horticultural crops	10	
1.8 Conclusion	11	
References	11	
2 Biotic stresses of horticultural crops: Present and future challenges	19	
<i>Fabiola Esquivel Chávez, Ixchel Campos-Avelar, Roel Alejandro Chávez Luzanía, Amelia Cristina Montoya-Martínez, Fannie Isela Parra-Cota and Sergio De Los Santos Villalobos</i>		
2.1 Horticultural crops: Importance and vicissitudes for their production	19	
2.2 Biotic stress of horticultural crops in the current climate scenario	20	
2.2.1 Insects	21	
2.2.2 Fungus	22	
2.2.3 Bacteria	22	
2.2.4 Virus	23	
2.2.5 Nematodes	23	
2.2.6 Weeds	23	
2.3 Patterns of climate change that promote biotic stress	23	
2.3.1 Displacement of pests and pathogens due to climate change	24	
2.4 Factors affecting responses to biotic stress in horticultural crops	26	
2.4.1 Plant genetics (Pests and diseases to resistance)	26	
2.4.2 Crop management	26	
2.5 Innovate strategies for tolerance of biotic stress by horticultural crops (from genetic improvement tools to the use of biological control agents)	27	
2.5.1 Biotic stress management through a transgenic approach	27	
2.5.2 Biotic stress management through biological control approach	28	
2.6 Conclusions	28	
References	29	
3 Conventional breeding for biotic stress management in horticultural crops	33	
<i>Akash Gaurav Singh, M Vani Praveena, Palaparthi Dharmateja, Avinish Panday, Tulsi Gurjar, Diwakar Singh and Manoj Vishnoi</i>		
3.1 Introduction	33	
3.2 Biotic stresses affecting major horticultural crops	34	
3.3 Diseases	34	
3.3.1 Fungal diseases	35	
3.3.2 Fungal leaf spot	35	
3.3.3 Leaf bright light	35	

3.3.4	Fire blight	35	4.5.2	Combination of speed breeding with artificial intelligence (AI)	63
3.3.5	Fusarium wilt	35	4.6	Achievements of speed breeding	63
3.3.6	Leaf rust	36	4.6.1	Speed breeding in biotic (disease) resistance	64
3.3.7	Late blight	36	4.6.2	Speed breeding in abiotic stress tolerance	64
3.3.8	Early blight	36	4.7	Constraints and forthcoming visions in speed breeding	65
3.3.9	Powdery mildew	36	4.7.1	Absence of skillful researchers	65
3.3.10	Downy mildew	36	4.7.2	Lack of adequate infrastructure	65
3.4	Plant disease resistance	36	4.7.3	Improper power and water supply	65
3.4.1	Genetic basis of disease resistance	38	4.7.4	Unpredicted performance of developed cultivars	65
3.5	Studies addressing factors affecting biotic stress responses in horticultural crops	45	4.8	Conclusion	66
3.6	Conventional breeding techniques for biotic resistance	46	References		66
3.6.1	Introduction	46			
3.6.2	Selection	46			
3.6.3	Hybridization	46			
3.6.4	Backcross method	46			
3.6.5	Pedigree method	46			
3.6.6	Mutation breeding	52			
3.6.7	Biotechnological approaches	52			
3.7	Conclusion	52			
References		52			
4	Speed breeding for breeding the resistant or tolerant crops	57			
<i>Anil Kumar Singh, Shatrudhan Kumar Choudhary, Reena Kumari, Aayushma Budha Chhetri and Mandip Sharma</i>					
4.1	Introduction	57	5.1	Introduction	69
4.2	Understanding the resilience in crop	58	5.2	Genetic resistance	70
4.2.1	Resistant vs. tolerant crops	58	5.3	Genetic engineering	70
4.2.2	Genetic basis of resistance	59	5.4	Recognition and signal transduction	71
4.2.3	Environmental stressors	59	5.4.1	Recognition genes (R genes)	71
4.3	Major components of speed breeding	60	5.4.2	Pattern recognition receptors (PRRs)	71
4.3.1	Growth chambers	60	5.4.3	Transcription factors (TFs)	71
4.3.2	Light	61	5.5	Defense gene expression	72
4.3.3	Temperature	61	5.5.1	Pathogenesis-related (PR) proteins	72
4.3.4	Photoperiod	61	5.5.2	Phytoalexins	72
4.3.5	Relative humidity	61	5.5.3	Systemic acquired resistance (SAR)	72
4.3.6	Soil moisture	61	5.5.4	Hypersensitive response (HR)	72
4.3.7	CO ₂ levels	62	5.5.5	Cross-talk between defense signaling pathways	72
4.3.8	Plant density	62	5.6	Transcriptional components in biotic stress	72
4.3.9	Plant growth regulators	62	5.7	TFs as transcriptional component	73
4.4	Approaches of speed breeding (SB) for climate resilient varieties	62	5.7.1	WRKY TFs	73
4.4.1	Controlled environment testing	62	5.7.2	NAC (NAM, CUC and ATAF) TFs	73
4.4.2	Photoperiod modification	62	5.7.3	MYB TFs (Myeloblastosis viral oncogene homolog)	73
4.5	Combination of speed breeding and advanced technology	63	5.7.4	BZIP (Basic leucine zipper) TFs	73
4.5.1	Combination of speed breeding with molecular biology and biotechnology	63	5.7.5	ERF/DREB (Ethylene-responsive factor/dehydration-responsive element-binding) TFs	73
			5.7.6	Dof TFs (DNA binding with one ZF protein)	74
			5.7.7	NF-Y TFs (Nuclear factor Y)	74
			5.7.8	HSF TFs	74
			5.7.9	Zinc-finger proteins	74
			5.8	Hormonal signaling pathway	74
			5.9	Hormones as players in plant defence	75

5.9.1	Ethylene	75	7.1	Introduction	101
5.9.2	Jasmonic acid	75	7.2	Fundamental problem of the developing biotic stress tolerance	102
5.9.3	Salicylic acid	75	7.3	Improving the horticultural crops against biotic stresses	104
5.9.4	Auxins (IAA)	75	7.4	Marker-assisted selection (MAS)	105
5.9.5	Abscisic acid	76	7.5	Limitations of MAS	106
5.9.6	Cytokinins	76	7.6	Genomic selection (GS)	106
5.9.7	Gibberellins	76	7.7	RNA sequencing (RNA-Seq) and transcriptomics	107
5.9.8	Brassinosteroids	76	7.8	Genome editing techniques	109
5.10	Systemic resistance set in motion	76	7.9	Ethical and regulatory considerations	109
5.11	RNA silencing	77	7.10	Integrating genomic tools for enhanced breeding	111
5.12	CRISPR in biotic stress	77	7.11	Future prospects and conclusion	111
5.12.1	Targeting resistance genes	77		References	112
5.12.2	Target susceptibility genes	77			
5.12.3	Stack multiple resistance genes	78			
5.12.4	Modulating plant immune response	78			
5.12.5	Targeting RNA viruses	78			
5.12.6	Reducing dependency on pesticides	78			
5.12.7	Improving disease resistance in citrus	78			
5.12.8	Improving fungal resistance in soybean	79			
5.13	Conclusion and future prospective Contribution References	79			
6	Epigenetics in horticultural crops: Consequences and application in biotic stress	87			
	<i>Suman Jyoti Bhuyan and Prashant Kumar Singh</i>				
6.1	Introduction	87	8.1	Introduction	119
6.2	Unveiling plant epigenetic mechanisms in horticulture crops (Fig. 6.2)	89	8.2	Biotic constraints in horticultural crop production	120
6.2.1	Insights into DNA methylation in horticulture crops under biotic stress	89	8.3	Genomic-assisted breeding	120
6.2.2	Understanding histone modifications in horticultural crops during biotic stress	93	8.3.1	Genome sequencing in horticultural crops	121
6.2.3	Epigenetic changes in plant defense mechanisms regulated by small noncoding RNAs in response to biotic stress	94	8.3.2	Genetic diversity in horticultural crops	122
6.3	Conclusion	95	8.3.3	QTLs discovery in horticultural crops	126
	References	95	8.3.4	Marker-assisted selection	129
7	Genomic assisted breeding approaches for biotic stress tolerance in horticultural crops	101	8.3.5	Genomic selection	130
	<i>Priti Upadhyay and Manish Kumar Vishwakarma</i>		8.4	Conclusion	130
				References	131
9	Crosstalk between miRNAs and horticultural plants during biotic stresses	141			
	<i>Sarah Kirchhofer de Oliveira Cabral, Rafaela Marcondes Hasse and Franceli Rodrigues Kulcheski</i>				
9.1	Introduction	141			
9.2	MicroRNA biogenesis and function	142			
9.2.1	From transcription to mature miRNA	142			
9.2.2	Mechanism of miRNA-mediated gene silencing	142			
9.3	MicroRNAs in horticultural crops involved in biotic stress responses	145			

9.3.1	Role of miRNAs in bacterial stress	145	10.9.4	Auxin response factors	175
9.3.2	Role of miRNAs in virus stress	151	10.9.5	MYBs	175
9.3.3	Role of miRNAs in fungal stress	153	10.10	Organelle involved in programmed cell death in plants against biotic stresses	176
9.3.4	Role of miRNAs in oomycete Stress	154	10.10.1	Cellular regulation of programmed cell death by vacuoles	176
9.3.5	Role of miRNAs in nematode Stress	155	10.10.2	The pathogen's target: Mitochondria in programmed cell death	177
9.3.6	Role of miRNAs in insect stress	156	10.10.3	Chloroplasts drives programmed cell death	177
9.4	Pathogens small RNAs involved in cross-kingdom communication	157	10.11	Conclusions and future prospects	177
9.5	Biotechnology tools applying miRNAs to control plant diseases	158	References		177
9.5.1	Artificial microRNAs: New miRNAs for targets of interest	158			
9.5.2	Target mimicry: Hijacking miRNAs through false targets	159			
9.6	Summary and prospects	161			
References		162			
Further-reading		168			
10	Programmed cell death in plants: A key player in combating biotic stresses	169			
<i>Chunoti Changwal, Gurupada Balol, Avinash Chandra Rai, Prashant Kumar Singh, Sandip Ghuge and Anil Kumar</i>					
10.1	Introduction	169	11	Exploring innovative strategies for enhancing virus resistance in horticultural crops	183
10.2	The significance of programmed cell death in plants during biotic stresses	169			
10.3	Plant defense system: An evolutionary battle during biotic stresses	170			
10.4	Discovery and role of plant metacaspase in programmed cell death during biotic stresses	170			
10.4.1	Reports on induction of plant metacaspase in programmed cell death pathogen attack	171			
10.5	Biotic stress: Programmed cell death is triggered by the hypersensitive response	171			
10.6	The function of calcium (Ca^{2+}) in programmed cell death during biotic stresses	172			
10.7	Hormonal signaling during pathogen programmed cell death	173			
10.8	Regulation, execution, and confinement of pathogen programmed cell death	174			
10.9	Role of transcription factors in programmed cell death during biotic stresses	174			
10.9.1	NAC transcription factors	174			
10.9.2	WRKY transcription factors	174			
10.9.3	Ethylene-responsive element binding factors	175			
			<i>Ved Prakash Rai, Avinash Chandra Rai and Ashutosh Rai</i>		
11.1	Introduction	183			
11.2	Disruptions in plant growth due to viral diseases	184			
11.3	Mechanisms of virus resistance	185			
11.3.1	Cell wall	185			
11.3.2	Cuticle	185			
11.3.3	Stomatal and trichome defense	185			
11.4	Development of virus resistance inside host cell	186			
11.4.1	Gene silencing and RNA interference	186			
11.4.2	General mechanisms of gene silencing	186			
11.4.3	Types of gene silencing	187			
11.5	Transgenic approaches	190			
11.6	Genome editing	191			
11.6.1	Genome editing strategies for virus resistance	192			
11.6.2	CRISPR/Cas system	192			
11.7	Conclusion and future perspectives	195			
	References	196			
12	Advancement in transgenics for combating biotic stresses in horticultural crops	203			
<i>P S Soumia, Ram Krishna, Sudhir Kumar, Durgesh Kumar Jaiswal, Pratap A Divekar and Achuit Kumar Singh</i>					
12.1	Introduction	203			
12.2	Insect pest resistance in horticultural crops	204			

12.3	Disease resistance in horticultural crops	210	15	Microbial inoculants: A sustainable approach to mitigate biotic stresses in tomato plants	243
12.4	Virus resistance in horticultural crops	212		<i>Sara Sangi Dra and Fábio Lopes Olivares</i>	
12.5	Abiotic stress management in horticultural crops	213	15.1	Introduction	243
12.6	Conclusion	213	15.2	Biotic stresses and challenges in tomato production	244
	References	214	15.3	Limitations of traditional pest and disease control methods	245
13	Recent applications of biotechnological approaches to elucidate the host-pathogen interactions	219	15.4	Role of microbial inoculants in plant health	245
	<i>Palak Gupta, Arathi Radhakrishnan, Ajay Kumar and Rajpal Srivastav</i>		15.4.1	Microbial inoculants for pest management and disease suppression in tomato plants	246
13.1	Introduction	219	15.5	Challenges and future perspectives	247
13.2	Host-pathogen interactions	220		AI disclosure	249
13.3	Host-pathogen-endophyte interactions	221		References	249
13.4	Antagonistic interactions	223	16	Phytohormonal signaling as a response to drought stress	255
13.5	Harvest and postharvest factors influence host-pathogen interaction	224		<i>Yesenia Jasso Arreola and Paulina Estrada de los Santos</i>	
13.6	Genomic advances and host-pathogen interaction	224	16.1	Introduction	255
13.7	Conclusive remarks	225	16.2	Consequences of water stress on plant physiology	256
	Acknowledgements	225	16.3	Phytohormones: The conductors of stress resistance responses	258
	References	225	16.3.1	Abscisic acid	259
14	Advanced technological innovations for mitigating biotic stresses in horticulture: From remote sensing to AI-Driven solutions	231	16.3.2	Auxins	261
	<i>Reetesh Kumar, Dilip Kumar Chaurasiya and Sarvesh Singh</i>		16.3.3	Ethylene	263
14.1	Introduction	231	16.3.4	Cytokinins	264
14.2	Automated crop trait detection	232	16.3.5	Jasmonates	265
14.3	Satellite imaging	232	16.3.6	Gibberellins	265
14.4	Remote-controlled aircraft/drones	233	16.3.7	Salicylic acid	266
14.5	Phenotyping for precision horticulture	233	16.3.8	Brassinosteroids	267
14.6	Detection of architecture parameters of horticultural crops	234	16.4	Phytohormone-producing bacteria as an agroecological alternative	268
14.7	Evaluation of water availability	234	16.5	Conclusions and perspectives	269
14.8	Evaluation of nutrient supply	235		Acknowledgments	271
14.9	Evaluation of diseases and pests	236		References	271
14.10	Evaluation of weeds	237	17	Latest Molecular and Biochemical Approaches for Mitigating the Effects of Biotic Stresses	281
14.11	Remote sensing and imaging technologies	237		<i>Muhammad Siddique Afridi, Muhammad Noman, Abdul Salam and Sumaira</i>	
14.12	Multispectral imaging	237	17.1	Introduction	281
14.13	Hyperspectral imaging	237	17.2	Molecular approaches	282
14.14	Ground-based technologies	238	17.2.1	CRISPR/Cas9 and gene editing	282
14.15	Robotic weeders	238	17.2.2	RNA interference (RNAi)	284
14.16	Artificial intelligence and data analytics	238			
14.17	Conclusion	239			
	References	239			

17.2.3 Synthetic biology	285	18.1 Introduction	297
17.2.4 Proteomics and metabolomics	285	18.1.1 <i>Trichoderma</i> and its traits to mitigate horticultural crop's stress	298
17.2.5 Nanotechnology	286	18.1.2 <i>Trichoderma</i> as an alleviator of abiotic stress in horticultural crops	299
17.2.6 Breeding for disease resistance	287	18.1.3 <i>Trichoderma</i> as an alleviator of biotic stress in horticultural crops	300
17.3 Biochemical approaches	288	18.2 Conclusions and perspectives	303
17.3.1 Plant hormones	288	References	303
17.3.2 Phytoalexins	289		
References	290	Index	309
18 The tricoderma strategy to mitigate stress in horticulture crops	297		

18 The tricoderma strategy to mitigate stress in horticulture crops

*Gustavo Santoyo, Ajay Kumar,
Ma. del Carmen Orozco-Mosqueda and
Paulina Guzmán-Guzmán*

Contributors

Michael Abberton, Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Nigeria

Muhammad Siddique Afridi, Department of Phytopathology, Federal University of Lavras, Lavras, MG, Brazil

Radhika Agrawal, Department of Botany, Sri Venkateswara College, Daula Kuan, University of Delhi, New Delhi, India

Ufuoma Akpojotor, Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Nigeria; Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, Nigeria

Glory Adesola Alabi, Landmark University, SDG 2 (Zero Hunger), Omu-Aran, Kwara, Nigeria; Landmark University, SDG 15 (Life on Land), Omu-Aran, Kwara, Nigeria

Andrew Aladele, Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Nigeria; Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria

Elizabeth Temitope Alori, Landmark University, SDG 2 (Zero Hunger), Omu-Aran, Kwara, Nigeria; Landmark University, SDG 15 (Life on Land), Omu-Aran, Kwara, Nigeria; Crop and Soil Science Department, Landmark University, Omu-Aran, Kwara, Nigeria; Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa

Ananya, Department of Botany, Sri Venkateswara College, Daula Kuan, University of Delhi, New Delhi, India

Olubukola Oluranti Babalola, Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa; Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom

Gurupada Balol, All India Coordinated Research Project (AICRP) on MULLaRP, MARS, University of Agricultural Sciences, Dharwad, Karnataka, India

Suman Jyoti Bhuyan, Department of Biotechnology, Pacchunga University College, Mizoram University (A Central University), Aizawl, Mizoram, India

Sarah Kirchhofer de Oliveira Cabral, Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, Brazil

Ixchel Campos-Avelar, Technological Institute of Sonora, Obregon, Mexico

Chunoti Changwal, Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States

Dilip Kumar Chaurasiya, Department of Plant Pathology, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India

Aayushma Budha Chhetri, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Shatrudhan Kumar Choudhary, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Roel Alejandro Chávez Luzanía, Technological Institute of Sonora, Obregon, Mexico

Sergio De Los Santos Villalobos, Technological Institute of Sonora, Obregon, Mexico

Palaparthi Dharmateja, Department of Genetics & Plant Breeding, Central Agricultural University, Imphal, Manipur, India

Pratap A Divekar, ICAR-Indian Institute of Vegetable Research, Jakhini, Varanasi, Uttar Pradesh, India

Sara Sangi Dra, Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil

Purvi Dubey, Department of Botany, Sri Venkateswara College, Daula Kuan, University of Delhi, New Delhi, India

Fabiola Esquivel Chávez, Technological Institute of Sonora, Obregon, Mexico

Paulina Estrada de los Santos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México, CP, México

Sandip Ghuge, VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium

Palak Gupta, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India

Tulsi Gurjar, College of Horticulture, Navsari Agriculture University, Navsari, Gujarat, India

Paulina Guzmán-Guzmán, Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

Rafaela Marcondes Hasse, Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil

Ayibanoa Lekoo Ibaba, Landmark University, SDG 15 (Life on Land), Omu-Aran, Kwara, Nigeria; Crop and Soil Science Department, Landmark University, Omu-Aran, Kwara, Nigeria

Durgesh Kumar Jaiswal, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India

Yesenia Jasso Arreola, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México, CP, México; Departamento de Unidades de Aprendizaje del Área Básica, Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos 16 “Hidalgo”, CP, México

Ram Krishna, ICAR-Indian Institute of Vegetable Research, Jakhini, Varanasi, Uttar Pradesh, India

Franceli Rodrigues Kulcheski, Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, Brazil

Ajay Kumar, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India

Anil Kumar, Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States

Reetesh Kumar, Department of Biotechnology, Galgotias Multi-Disciplinary Research & Development Cell (G-MRDC), Galgotias University, Greater Noida, Uttar Pradesh, India

Sudhir Kumar, ICAR-Indian Institute of Vegetable Research, Jakhini, Varanasi, Uttar Pradesh, India

Reena Kumari, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Amelia Cristina Montoya-Martínez, Technological Institute of Sonora, Obregon, Mexico

Muhammad Noman, Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Institute of Natural Sciences, Federal University of Lavras, Lavras, MG, Brazil

Fábio Lopes Olivares, Laboratório de Biologia Celular e Tecidual, Centro de Bociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil

Abiodun Olutegbe, Bioscience Center, International Institute of Tropical Agriculture, Ibadan, Nigeria

Abidemi Olubusayo Onaolapo, Landmark University, SDG 2 (Zero Hunger), Omu-Aran, Kwara, Nigeria; Landmark University, SDG 15 (Life on Land), Omu-Aran, Kwara, Nigeria; Crop and Soil Science Department, Landmark University, Omu-Aran, Kwara, Nigeria

Ma. del Carmen Orozco-Mosqueda, Department of Biochemical and Environmental Engineering, Tecnológico Nacional de México en Celaya, Celaya, Mexico

Riya Pal, Department of Botany, Sri Venkateswara College, Dhaula Kuan, University of Delhi, New Delhi, India

Rajneesh Paliwal, Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Nigeria

Avinish Panday, College of Horticulture, Navsari Agriculture University, Navsari, Gujarat, India

Fannie Isela Parra-Cota, Norman E. Borlaug Experimental Field, National Institute of Forestry, Agriculture and Livestock Research, Sonora, México

Arathi Radhakrishnan, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India

Ashutosh Rai, Department of Basic Sciences, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India

Avinash Chandra Rai, Department of Biological Sciences, Roma Tre University, Rome, Italy; Department of Plant Sciences, Roma Tre University, Rome, Italy

Ved Prakash Rai, Agricultural Research Station, Navsari Agricultural University, Tanchha, Bharuch, Gujarat, India

Madhu Raina, Department of Botany, Sri Venkateswara College, Dhaula Kuan, University of Delhi, New Delhi, India; Department of Botany, University of Jammu, Jammu and Kashmir, India

Gulzar A Rather, Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, Volcani Center, ARO, Rishon LeTsiyon, Israel

Abdul Salam, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China

Gustavo Santoyo, Universidad Michoacana de San Nicolás de Hidalgo, Institute of Chemical and Biological Research, Morelia, Mexico

Mandip Sharma, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Achuit Kumar Singh, ICAR-Indian Institute of Vegetable Research, Jakhnani, Varanasi, Uttar Pradesh, India

Akash Gaurav Singh, Department of Genetics & Plant Breeding, Acharya Narendra Dev University of Agriculture & Technology, Ayodhya, Uttar Pradesh, India

Anil Kumar Singh, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Diwakar Singh, Department of Biochemistry, Acharya Narendra Dev University of Agriculture & Technology, Ayodhya, Uttar Pradesh, India

Prashant Kumar Singh, Department of Biotechnology, Pacchunga University College, Mizoram University (A Central University), Aizawl, Mizoram, India

Sarvesh Singh, Department of Horticulture, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India

P S Soumia, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India

Rajpal Srivastav, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India

Sumaira, School of BioSciences, University of Melbourne, Parkville, VIC, Australia; School of Life Sciences, La Trobe University, Bundoora, VIC, Australia; Centre for AgriBiosciences, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia

Mihir Ujjwal, Department of Botany, Sri Venkateswara College, Dhaula Kuan, University of Delhi, New Delhi, India

Priti Upadhyay, Crop Advisor, Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India

Chizaram Uzoma, Genetic Resources Center, International Institute of Tropical Agriculture, Ibadan, Nigeria; Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria

M Vani Praveena, PhD Scholar, Acharya N G Ranga Agricultural University, Guntur, Andhra Pradesh, India

Manoj Vishnoi, Department of Plant Breeding and Genetics, Agricultural Research Station, Ummedganj, Agriculture University, Kota, Rajasthan, India

Manish Kumar Vishwakarma, Plant Breeder, Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India

About the Editors

Dr. Avinash Chandra Rai is currently working as a visiting scientist at the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel. Dr. Rai has been completed his Ph.D. degree in Biotechnology from Banaras Hindu University, Uttar Pradesh, India. He is currently serving as a visiting scientist at the Institute of Plant Sciences, Agricultural Research Organization, The Volcani Centre, Israel. He has more than 13 years of research experience, particularly in the area of plant molecular biology, and plant physiology. His research interest is in deciphering the insights of plant abiotic stresses with the applications of molecular, and physiological tools. He also has a keen interest in emerging environmental, and physiological issues of crop plants. He is currently working to see the effect of auxin and ethylene in the process of abscission in mango and find out the role of essential genes involved in the pathways mechanism in abscission of fruit. He is a lifetime member of the Biotech Research Society of India (BRSI), and Society of Vegetable Sciences, India. He has also actively participated in many national, and international conferences, symposia, and workshops related to his research field in India, and abroad.

Dr. Ved Prakash Rai is working as an Assistant Research Scientist at the Agricultural Research Station, Navsari Agricultural University, Tanchha, Bharuch, Gujarat, India. He completed his doctoral degree from the Department of Genetics, and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. He has 14 years of research experience in molecular breeding for biotic and abiotic stresses in pepper, rice, wheat, and pulse crops. Presently, he is working on abiotic stress tolerance in sorghum, pulse, and vegetable crops.

Dr. Ajay Kumar is currently working as an Assistant Professor at Amity Institute of Biotechnology, Amity University, Noida, India. Dr. Kumar recently completed his tenure as a visiting scientist from the Agriculture Research

Organization, The Volcani Center, Israel. He has published more than 175 research, review articles, and book chapters in international, and national journals. He serves as an Associate Editor for *Frontiers in Microbiology*, and as guest editor for various journals such as *Plants*, *Microorganisms*, and *Sustainability*. Dr. Kumar's research experience is in the field of plant-microbe interactions, postharvest management, cyanobacterial biology, and related fields.

Dr. Gustavo Santoyo obtained his Doctor of Science degree in Biomedical Sciences at the National Autonomous University of Mexico (UNAM) and did postdoctoral studies at the Center for Cancer Research, NIH, USA, as well as a sabbatical year at the Wilfrid Laurier University, Canada. He is currently a full-time research professor at the Institute of Chemical, and Biological Research of the Universidad Michoacana de San Nicolás de Hidalgo, in Morelia, Mexico. His research interest is led toward plant-microbe interactions, biocontrol of fungal pathogens, development of bioinoculants for agricultural crops, and basic research on microbial diversity of extreme environments. Dr. Santoyo is a member of the Mexican Academy of Sciences, and the National Research System (SNI) of the National Council of Science, and Technology (CONACYT) in Mexico.

Dr. Lucas C. B. Azevedo holds a degree in Agronomy from the State University of Londrina (UEL), Brazil, MSc in Soil Science from the Federal University of Lavras (UFLA), Brazil, and PhD in Soil Science, and Plant Nutrition from University of São Paulo (USP), Brazil, which included an internship at Kansas State University (KSU), USA. He is an Associate Professor teaching the subjects of Soil Microbiology, Bioremediation, and Soil Science. As a researcher, he has studied and collaborated in investigations of soil quality indicators, soil microbiology, soil contamination, and remediation, and plant growth-promoting microorganisms.

Chapter 1

Horticultural crops' biotic stresses in the present climatic scenario

Elizabeth Temitope Alori^{a,b,c,d,*}, Ayibanoa Lekoo Ibaba^{b,c}, Glory Adesola Alabi^{a,b},
Abidemi Olubusayo Onaolapo^{a,b,c} and Olubukola Oluranti Babalola^{d,e}

^a Landmark University, SDG 2 (Zero Hunger), Omu-Aran, Kwara, Nigeria, ^b Landmark University, SDG 15 (Life on Land), Omu-Aran, Kwara, Nigeria, ^c Crop and Soil Science Department, Landmark University, Omu-Aran, Kwara, Nigeria, ^d Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa, ^e Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom

* Corresponding author. e-mail address: alori.elizabeth@lmu.edu.ng

1.1 Introduction

Horticultural crops play a vital role in global food production, contribute significantly to economic prosperity, have many health-promoting benefits, and are essential components in our daily lives (Chen et al., 2024). Fruit and vegetable production contributes to household food security (Sithole et al., 2023). Horticultural crops such as fruits, vegetables; aromatic and ornamental plants are important dietary nutritional components and sources of medicines and aroma, along with significant aesthetic values for human beings (Mall et al., 2021). However, in the face of a rapidly changing climate, these crops are vulnerable to various challenges, particularly from biotic stresses. Climate change raises the incidence of pests and diseases (Thakre and Bisen, 2023). Extreme variability in climatic factors such as temperature or rainfall often threatens food security (Pawlak and Kołodziejczak, 2020). Horticulture and climate change share a complex interrelation, influencing each other in numerous ways. Climate change is a primary driver of both biotic and abiotic stresses, significantly impacting the health and productivity of horticultural crops within a given region (Thakre and Bisen, 2023). Agriculture, which includes the production of horticultural crops, is being affected by climate changes in different ways, including modifications in weeds, pests, or microbes (Raza et al., 2019). The shifting global climate poses a significant threat to horticultural crop production as plants become increasingly susceptible to various abiotic and biotic stresses (Manzoor et al., 2023). These plants are vulnerable to a wide variety of biotic stressors, which play a significant role in restricting production and productivity in the agricultural sector (Altaf et al., 2021).

Biotic stresses encompass many living organisms, including pests, diseases, and other pathogens, which can profoundly impact crop health and productivity. As climate change continues to alter environmental conditions, the incidence and severity of biotic stresses are on the rise, posing significant threats to horticultural systems worldwide. Continual climate change is resulting in more frequent occurrences of extreme events, which are detrimental to food production. These events include rising temperatures, drought, soil salinization, as well as the proliferation of invasive arthropod pests and diseases (González Guzmán et al., 2022). Crop plants are continuously exposed to biotic stressors, leading to hindered growth and development and, subsequently, loss of productivity and crop quality. Examples of such biotic stressors are attacks by fungal pathogens and insects, among others (González Guzmán et al., 2022). Climate change exacerbates the likelihood of outbreaks by changing the evolution of pathogens and the interactions between hosts and pathogens. It also fosters the emergence of novel pathogenic strains. Consequently, pathogen distribution may shift, spreading plant diseases into previously unaffected regions (Singh et al., 2023). In a shifting climate, the impact of biotic stresses such as pathogens, weeds, and pests on crop growth and yields is anticipated to increase (Elias et al., 2019). Increased temperature leads to higher pest infestation, and a shift in weed flora (Malhi et al., 2021). Table 1.1 outlines some of the biotic stresses affecting horticultural crops in the present climatic scenario and their impacts on the crops.

TABLE 1.1 Biotic stresses affecting horticultural crops in the present climatic scenario and their effects.

Type of biotic stress	Effects on horticultural crop	Reference
Pests and Diseases	Increased pest and disease pressure due to changes in temperature and precipitation patterns	Smith et al. (2020)
Invasive Species	Expansion of invasive species ranges facilitated by climate change, affecting crop health	Jones and Johnson (2018)
Pathogen Evolution	Climate-driven shifts in pathogen populations leading to new strains and disease outbreaks	Brown and Robinson (2019)
Weed Competition	Changes in temperature and precipitation favoring aggressive weed species, reducing crop yield	Garcia and Smith (2017)
Pollinator Decline	Disruption of pollinator populations due to climate fluctuations, impacting crop pollination	Gómez-Ruiz and Lacher (2019)
Soil-Borne Diseases	Altered soil conditions and moisture levels favoring soil-borne pathogens	Velásquez et al. (2018)
Herbivore Infestation	Changes in plant chemistry and phenology affecting susceptibility to herbivore damage	Hamann et al. (2021)
Fungal Infections	Expansion of fungal diseases ranges due to warmer and moister climates	Alkhalfah et al. (2023)
Viral Outbreaks	Increased prevalence and spread of viral diseases favored by changing environmental conditions	Srivastava et al. (2022)
Nematode Infestation	Shifts in nematode populations and distribution patterns influenced by climate change	Khana and Land (2023)

Understanding the dynamic interactions between horticultural crops and various biotic stress agents is crucial for devising effective strategies to mitigate their adverse effects (Biswas and Das, 2024). By examining the challenges posed by biotic stresses in the context of changing climate patterns, we can gain insights into the resilience of horticultural crops and the strategies needed to develop more sustainable and adaptive agricultural practices (Chattopadhyay et al., 2019). This research, therefore, explored the current state of biotic stresses in horticultural crops within the present climatic scenario. It delved into the underlying mechanisms driving the proliferation of pests and diseases, the complex interplay between climatic factors and biotic stressors, and the implications for global food security and agricultural sustainability.

1.2 Emerging diseases in horticultural crops under changing climatic conditions

One of the most pressing concerns of changing climatic conditions is the emergence and spread of diseases in horticultural crops (Singh et al., 2023). The emergence of diseases in horticultural crops amid shifting climatic conditions poses a significant challenge for growers globally (Mwangi et al., 2023). Vegetable crops, which play a crucial role in the global food system, can be deeply affected by climate fluctuations (Porter et al., 2019). As climate patterns undergo transformations, the habitats and behaviors of pests and pathogens evolve, thereby imposing new pressures on crop health (Subedi et al., 2023). The incidence and severity of pest infestations will escalate with global warming. This is driven by various factors such as the direct impact of higher temperatures on insect survival, development, and reproduction. Additionally, expanding their geographical ranges, often facilitated by global trade and introducing exotic pests, further exacerbates this trend (Skendžić et al., 2021). Under changing climatic conditions, non-native species of crop pests are poised to become invasive, while native species are anticipated to shift their geographic ranges into novel habitats (Finch et al., 2021). Numerous factors contribute to the susceptibility of horticultural crops to emerging diseases. Examples include:

1.2.1 Changes in the distribution of pests and pathogens

As temperatures increase, pests and pathogens expand their geographical ranges, thereby exposing previously unaffected regions to new disease threats (Skendžić et al., 2021). There is clear evidence that climate change is altering the distribution, incidence, and intensity of plant pests and diseases. For example, migrant moths of the Old World bollworm (*Helicoverpa armigera*) had a phenomenal increase in the United Kingdom from 1969 to 2004 and there have been outbreaks at the northern edge of its range in Europe; cottony cushion scale (*Icerya purchasi*) populations appear to be spreading northwards perhaps as a consequence of global warming; and cottony camellia scale (*Pulvinaria-Chloropulvinaria-floccifera*) has become much more common in the United Kingdom, extending its range northwards in England and increasing its host range in the last decade or so, which is almost certainly in response to climate change (FAO, 2008). Similarly, the migration of insect vectors introduces and spreads pathogens to horticultural crops (Mwangi et al., 2023).

1.2.2 Changes in host-pathogen interactions

Variations in temperature and humidity affect the physiology and susceptibility of horticultural crops to diseases (Hirpo and Gebeyehu, 2019). Elevated temperatures have the potential to compromise plant defenses, rendering them more vulnerable to invasion by pathogens (Velásquez et al., 2018). Elevated temperature can enhance *Pseudomonas syringae* effector delivery into plant cells and suppress salicylic acid biosynthesis while also finding a temperature-sensitive branch of the salicylic acid signaling pathway (Huot et al., 2017). Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions (Singh et al., 2023). Changes in precipitation patterns might foster conditions favorable for the proliferation of fungal and bacterial pathogens (Velásquez et al., 2018). Fungi produce abundant spores during periodic conditions of high moisture and moderate temperatures (Talley et al., 2002).

1.2.3 Changes in plant phenology

Climate change affects the timing of plant growth stages, flowering, and fruiting (Craufurd and Wheeler, 2009). Warming temperatures associated with climate change will affect plant growth and development along with crop yield (Hatfield and Prueger, 2015). Among angiosperms, flowering times have been observed to advance with climate change (Sandor et al., 2021). Rising temperatures may also affect the timing and success of reproductive development (Gray and Brady, 2016). Shifts in phenological stages can disturb the synchronicity between crops and their accompanying pests and pathogens, resulting in heightened disease pressure (McDevitt-Galles et al., 2020).

1.2.4 Loss of biodiversity

Climate change contributes to habitat destruction and loss of biodiversity, disrupting ecological balances and natural pest control mechanisms (Weiskopf et al., 2020). Climate change can affect biodiversity in many ways, including altering life cycles by shifting habitat ranges and species distribution (Sintayehu, 2018). Diminished biodiversity undermines the resilience of agricultural ecosystems, heightening the vulnerability of horticultural crops to outbreaks of diseases (Singh et al., 2023).

1.2.5 Increased stress on plants

Extreme weather events such as heat waves, droughts, floods, and storms impose physiological stress on horticultural crops (Raza et al., 2019), compromising their immune systems and making them more susceptible to opportunistic pathogens. Temperature variations significantly impact plant physiology (Hatfield and Prueger, 2015). Climatic challenges profoundly disrupt plant growth and productivity, triggering extensive molecular, biochemical, physiological, and morphological responses (Zandalinas et al., 2018).

1.3 Role of climate change in altering disease dynamics

Plant disease is regarded as any impairment of the normal morphological and physiological state of plants that interrupts or modifies their vital functions (Pelczar et al., 2023). It is important to note that one of the major threats to food production is the incidence of plant disease (Bisht et al., 2021). Plant disease is caused by different microbes regarded as pathogens (Balloux and van Dorp, 2017). These pathogens include; viruses, bacteria, fungi, etc. Before this pathogen can have an effect and cause the disease, it requires a susceptible host (usually those with low resistivity) (Kozieł et al., 2021); they must be able to gain entry either through abrasion (Zhu et al., 2023) or the burrowing nature of nematodes. Viruses, in particular, cannot cause disease without the help of other factors that can allow their entry into their host (Rubio et al., 2020).

Generally, plants affected by disease show some physiological signs, which include discoloration of leaves, chlorosis, wilting, and scabs (Laine, 2023). These signs are early indicators that the plant is diseased and needs immediate attention; if such signs are ignored, it can lead to Atrophy. A series of processes precede the incidence of disease (Rizzo et al., 2021).

The first condition for plant disease is the presence of a pathogen capable of causing infection (Nazarov et al., 2020). Pathogens include fungi, bacteria, viruses, nematodes, and other microorganisms that can invade plant tissues and cause disease symptoms (Wielkopolan et al., 2021). A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea (Harris and Hill, 2021). The nematodes, roundworms, or eelworms constitute the phylum Nematoda (Rodrigues and Faria, 2021). They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living,

feeding on microorganisms, but there are many that are parasitic. The parasitic worms are the cause of soil-transmitted helminthiases (Karshima, 2018). After their presence has been established, they require a suitable host. Plant diseases occur when a susceptible host plant is exposed to a pathogen. Susceptibility varies among plant species, cultivars, and individual plants within a population (Riolo et al., 2023). Some plants may exhibit genetic resistance or tolerance to certain pathogens, while others are more susceptible to infection and disease development.

Environmental factors also play a crucial role in the development and severity of plant diseases (Laine, 2023). Favorable environmental conditions, including temperature, humidity, rainfall, soil moisture, and light intensity, can create optimal conditions for pathogen growth, reproduction, and infection. Conversely, adverse environmental conditions such as drought, extreme temperatures, or waterlogged soils may stress plants and weaken their defenses against pathogens (Mareri et al., 2022). Temperature, in some cases, influences the development and reproductive activities of plant pathogens; it also has an impact on plant susceptibility to disease (Das et al., 2017). The growth of some pathogens may be favored by warmer temperatures; likewise, any shift in temperature regime can alter the timing of disease outbreaks.

Climate change is regarded as the periodic alteration of Earth's climate as a result of changes in the atmosphere as well as interactions between the atmosphere and various other geologic, chemical, biological, and geographic factors within the Earth system. Climate change brings changes in carbon dioxide levels, temperature, humidity, and precipitation patterns, which can directly impact the growth and development of plants (Kabir et al., 2023). These changes can modify the susceptibility of plants to diseases. For example, increased humidity can create favorable conditions for fungal diseases (Romero et al., 2022) while warmer temperatures can promote the growth and reproduction of some plant pathogens. Maydis leaf blight (or southern maize leaf blight) is prevalent in hot, humid, maize-growing areas (Kumar et al., 2022; Mahapatra et al., 2022). The fungus requires slightly higher temperatures for infection than *Exserohilum turcicum*; however, both species are often found on the same plant. This disease is most common in very moist areas with moderate temperatures. Different industrial activities are instrumental in the change in climate; some diseases occur where they are not usually found because of a modification in the atmosphere, which makes the environment conducive to them. Climate changes can influence plant pathogens' geographic distribution (Raza and Bebber, 2022). Temperature change can allow pathogens to survive in regions where they were previously unable to establish. Also, some pathogens may decline in areas where temperatures become less suitable for their survival (Ogden, 2018). These shifts in pathogen distribution can result in the emergence or re-emergence of diseases in new areas.

Climate change can extend the growing season of plants, allowing plants that would have finished their growth season to be susceptible to disease. The dry season occurs between November and March, and the rainy season between April and October (Gabriel et al., 2023). Any alteration in this growing cycle can predispose plants to pathogenic attack. This change can also influence the interactions between the host plant and the pathogen. For example, moist atmospheric conditions may accelerate the lifecycle of pathogens, thus resulting in more rapid disease incidence. Wind, as a dispersal agent, can disperse fungal spores; as wind-dispersed fungal spores settle onto plant surfaces, they may germinate and infect susceptible host tissues, initiating the development of fungal diseases. These spores may land on leaves, stems, flowers, fruits, or other plant parts, which coupled with favorable conditions favors germination, penetration, and colonization. Changes in wind patterns can impact the distribution of fungal spores (Wójcik and Kasprzyk, 2023). Other environmental factors such as humidity, and rainfall also influence the germination of fungal spores. The shift in host-pathogen interaction can lead to changes in disease severity and prevalence.

The effect of climate change can also be seen in the genetic and physiological traits of plants, including their resistance and immune responses to pathogens. (Gullino et al., 2018) Stated that Increases in carbon dioxide (CO₂) and temperature are expected to induce complex effects on plant pathogens. Plant stress factors, such as nutrient deficiencies, drought, waterlogging, heat stress, mechanical injury, and environmental pollutants which are all attributed to climate change can weaken plant defenses and increase susceptibility to disease (Gong et al., 2014). Stressed plants may exhibit reduced vigor, compromised immune responses, and impaired physiological functions, making them more susceptible to pathogen attack and colonization.

Changes in climate conditions can also be attributed to methane emission (Mar et al., 2022), this release of methane can affect soil microbial communities and ecosystem processes. Methane is one of the gases released by ruminant animals during the fermentation process which takes place in the rumen (Ungerfeld, 2018), this methane is produced during the process of microbial degradation of fibrous feed. Rumen methane emission is one of the largest sources of methane in agriculture. Nitrification is the biological conversion of ammonia or ammonium to nitrite or nitrate. Nitrate is mobile in soil and subject to loss by leaching and denitrification (Desormeaux et al., 2019). In agricultural soils, loss of nitrate leads to decreased plant available nitrogen and reduces nitrogen use efficiency. Denitrification is the microbial process of reducing nitrate and nitrite to gaseous forms of nitrogen, principally nitrous oxide (N₂O) and nitrogen (N₂). These two processes contribute to methane emission through the application of organic and synthetic fertilizers.

Methane availability and concentrations can influence the composition, diversity, and function of soil microbial communities, including bacteria, archaea, fungi, and other microorganisms. Methanotrophs and methanogens interact with other soil microbes through metabolic pathways, nutrient cycling processes, and competitive interactions for resources. Changes in methane concentrations may alter microbial community structure and dynamics, affecting soil ecosystem functions, nutrient cycling processes, and greenhouse gas emissions. Soil microorganisms play critical roles in nutrient cycling, organic matter decomposition (Alori et al., 2024), and disease suppression (Jayaraman et al., 2021). Changes in soil microbial diversity, abundance, and activity may influence the dynamics of soil-borne pathogens and plant diseases.

1.4 Beneficial plant-microbe interactions for disease suppression

Plants engage in dynamic interactions with their surroundings, including various microbiota, which impart a range of beneficial traits to the plants such as stress resilience, improved nutrient absorption, and protection against diseases. Conversely, host plants supply carbon to the microbes they host (Amoo et al., 2023). Microbes affiliated with plants can be either advantageous, such as plant growth-promoting rhizobacteria and biocontrol rhizobacteria, or harmful, leading to plant diseases characterized by tissue destruction, wilting, lesions, drying, and ultimately, plant death (Ghadamgahi et al., 2022).

Plant-associated microorganisms are also prevalent in the rhizosphere, where they establish connections with plants as biocontrol agents, fostering plant growth. Additionally, they inhabit the phyllosphere, plant tissue (endosphere), and occasionally stems. These microbes collaborate symbiotically with plants, influencing their development and functionality (Hassani et al., 2018). These impacts include the release of metabolites and hormones from bacteria that improve crop growth and production (Gómez-Godínez et al., 2023) and protection of host plants against pathogen infection by disease suppression, parasitism, induced systemic resistance (ISR) and metabolite production (Adeleke et al., 2019).

Beneficial microbes are often used as inoculants (Temitope et al., 2020). They can be classified according to the goal of their application: biofertilizers (such as rhizobia, which has been applied commercially for over a century), phytostimulators (such as auxin-producing, root-elongating Azospirillum), rhizoremediators (pollutant degraders which use root exudate as their carbon source), and biopesticides (Alori et al., 2019). The plant-microbe interactions take place above and below ground; however, plant-microbe interactions are more complex below the ground than above the soil surface (Alori and Babalola, 2018).

Microbes such as mycorrhizal fungi and rhizobia, which associate with plant roots, provide mineral nutrients to plants in exchange for carbon required for their growth. A number of bacterial strains have been reported that cause significant effects on plant growth and development under stressed conditions including salinity, drought, heavy metal, temperature, and pathogen (Alori and Fawole, 2012, 2017; Kumar et al., 2020; Numan et al., 2018). Mycorrhizal fungi also play a role in environmental science by forming a symbiotic relationship with plants that reduces the nitrous oxide (N_2O) emission from soil and is helpful for the environment as N_2O causes the destruction of the ozone layer. Therefore, this symbiotic relationship shows dual benefits in terms of plants as well as in reducing global warming (Khaliq et al., 2022; Li et al., 2023); (Alori et al., 2017). These interactions are based on complex exchanges between both partners i.e.; microbes and plants. The beneficial and harmful nature of these relationships is all regulated by complex molecular signaling (Zhang et al., 2017).

These beneficial bacteria not only improve plant growth under normal conditions but also protect the plant from negative impacts like stresses. These bacteria mitigate the stress-induced impact by the activity of their ACC deaminase enzyme, exopolysaccharides production enhancing the activity of antioxidant enzymes and regulating the nutrient uptake (Abdelaal et al., 2021); (Orozco-Mosqueda et al., 2020).

In plant-bacteria interactions, the introduced bacteria initiate a reaction in the plant root that results in the transfer of signals throughout the plant. This activates the plant's defense mechanisms against the pathogen attack. These mechanisms include strengthening cell walls, synthesis of pathogen-related proteins, and production of antimicrobial phytoalexins (Kaur et al., 2022). To obtain food for growth, fungi interact with the host plant cell wall that contains substances like minerals, simple sugars, nucleotides, and amino acids used by fungi for their growth (Lübeck and Lübeck, 2022). Interaction of fungi with host plants involves their physical contact, followed by different modes of penetration into the host cells (Zeilinger et al., 2016). Some fungi apply mechanical force on their host plant surface for penetration. Most of the time fungi interact with their host at the plant surface which is covered with a waxy layer (Moazami, 2019). Studies at the molecular level showed that some fungi like *Puccinia hordei* and *Pestalotia malicola* produce enzymes that degrade cuticular waxes (Agrios, 2005). It is also good to realize that, although one uses the term microbe-plant interactions, the reality is that in the rhizosphere and in the phyllosphere microbes also interact with each other (Shi et al., 2024).

1.5 Agroecological approaches to enhance crop resilience and minimize biotic stress

Agroecological approaches offer a promising avenue to bolster crop resilience while minimizing biotic stress, marking a significant shift toward sustainable and holistic agricultural practices (Sinclair et al., 2019). In essence, agroecology integrates ecological principles into agricultural systems, emphasizing the intricate relationships between plants, animals, humans, and the environment (Parthiban, 2024). By leveraging natural processes and biodiversity, agroecology aims to create resilient agroecosystems capable of withstanding various stressors, including pests, diseases, and climate fluctuations (Parthiban, 2024).

One key strategy within agroecology is the promotion of biodiversity on farms (Kremsa, 2021). Diverse ecosystems are inherently more resilient to pest and disease outbreaks. By cultivating a variety of crops, incorporating cover crops, and maintaining habitat for beneficial insects and other organisms, farmers can disrupt pest cycles and reduce the need for chemical interventions (Brodt et al., 2011; Phatak and Diaz-Perez, 2007). Additionally, polycultures and intercropping systems can enhance resource use efficiency and minimize the spread of pests and diseases (Pierre et al., 2023).

Another vital aspect of agroecology is soil health management (Shahane and Shivay, 2021). Healthy soils teeming with microbial life not only provide essential nutrients to plants but also contribute to their resilience against biotic stressors (Bekele and Getaneh, 2022; Tiedje et al., 2001). Practices such as crop rotation, conservation tillage, and the use of organic amendments help maintain soil structure, fertility, and biological activity (Ahmad et al., 2022); (Vida et al., 2020). Healthy soils also foster a diverse array of beneficial microbes that can suppress plant pathogens and enhance plant immunity (Jayaraman et al., 2021).

Furthermore, agroecological approaches prioritize the conservation and enhancement of natural enemies of pests (Belmain et al., 2022). By creating habitat corridors, such as hedgerows and insectary plants, farmers can support populations of predators, parasitoids, and pollinators that contribute to pest control (Gurr et al., 2017); (Morandin et al., 2014). Integrated Pest Management (IPM) strategies, which combine biological, cultural, and mechanical controls with minimal pesticide use, are central to agroecological practices (Angon et al., 2023). These approaches focus on monitoring pest populations, implementing preventive measures, and only resorting to chemical control as a last resort (Hans, 2024).

Additionally, agroecology emphasizes farmer knowledge and participation in decision-making processes (Kremsa, 2021). By engaging farmers as active participants in research and innovation, agroecological practices can be tailored to local contexts and contribute to the empowerment of farming communities (Bisht et al., 2021). Farmer-to-farmer knowledge exchange and participatory research initiatives play a crucial role in disseminating successful practices and fostering collective learning (Vlontzos et al., 2021). Agroecological approaches offer a holistic and sustainable paradigm for enhancing crop resilience and minimizing biotic stress in agriculture.

1.6 Organic farming methods for pest and disease control

Organic agriculture is the holistic production management system that enhances the biological cycles soil biological activity, and health of the agro-ecosystem, avoids the use of chemicals, promotes biodiversity, works in harmony with nature, and combines tradition, science, and innovation (Gomiero, 2021). It is based on different farming practices that aim to reduce the environmental impacts by minimizing the use of nonrenewable resources and sustaining the soil life (Gomiero, 2021). Organic farming helps to sustain and balance the ecosystem by reducing fossil fuel consumption, biodiversity conservation, sustaining soil fertility, and landscape preservation. Organic agriculture is controlled by four principles- health, ecology, care, and fairness (International Federation of Organic Agriculture Movements Organic International, 2021).

Pest management in Organic Agriculture is a whole-farm approach. It largely depends on the biodiversity and ecological phenomenon of the agricultural ecosystem. Pest management centers around 'live and let live' principle in organic agriculture. Different aspects like competition, predation, parasitism, and limited resources play a key role in maintaining the equilibrium of the agroecosystem (AbdulRahman et al., 2021).

The maintenance of biodiversity is the cardinal principle of organic farming (Jäggi, 2021). Pest management in organic farming is done through biological control, biopesticides, and botanical pesticides and it is guided by four principles: prevention, avoidance, suppression, and monitoring (Meena and Rao, 2022). The fundamental components and natural processes of ecosystems like nutrient cycling, soil organisms, species distribution, and competition are directly or indirectly used as farm management tools to control and prevent pest populations from reaching economically damaging situations in organic farming.

1.6.1 Weed management

Weed management in organic agriculture is done through the adoption of various techniques. Certain natural chemicals are used to discourage the growth and development of the weeds. Pine oil, which is obtained from steam distillation of needles, twigs, and cones of *Pinus sylvestris* and a variety of other pine species, consists of terpene alcohols and saponified fatty acids. It is sold as a 10% aqueous emulsion for weed control and requires application amounts ranging from 50 to 100 kg of pine oil/ha for moderate weed control (Dayan and Duke, 2010). Similarly, Peppermint (*Mentha piperita*) oil is rich in 2-phenethyl propionate, menthol, and menthone. 2-Phenethyl propionate has been patented as an herbicide and can be found as a component of the formulations of many natural herbicides, usually in combination with clove oil and other products (Dayan et al., 2009).

Cultural practices also are modified in such a way as to discourage the emergence and the survival of weed in the field. Effective water management is key to controlling weeds in a vegetable operation (Bajwa et al., 2019). There are a number of ways that careful irrigation management can help reduce weed pressure on the crops some of which are:

Pre-germination of weeds: In pregermination, irrigation or rainfall germinates weed seeds. Pregermination should occur as close as possible to the date of planting to ensure that changes in weather conditions do not have an opportunity to change the spectrum of weeds (cool vs. warm season) in the field (El-Shafie, 2019).

Planting to moisture: After weeds are killed by cultivation, the top 2–3 inches of soil are allowed to dry and form dust mulch. At planting, the dust mulch is pushed away and large-seeded vegetables such as corn or beans can be planted into the zone of soil moisture. These seeds can germinate, grow, and provide partial shading of the soil surface without supplemental irrigations that would otherwise provide for an early flush of weeds (Singh and Kumar, 2023).

Practices that reduce the production of weed seed also reduce weed pressure and can help keep weeding costs down over time. In an ideal situation, no weed would be allowed to go to seed. Any that do go to seed can aggravate weed problems for many years to come. As an example, common purslane seed has been shown to remain viable for over 20 years in the soil, and black mustard seed survives for over 40 years. The longevity of weed seeds, together with the large numbers of seeds produced by individual plants, can lead to the long- term build-up of enormous seed banks in the soil. If you make it a policy to remove weeds prior to seed production, you can reduce weed pressure in subsequent seasons (Horvath et al., 2023).

Crop rotation resides at the highest level of farm organization and is the foundation on which an ecologically based weed management program can be built (Gallandt, 2014). Here, cash and cover crops are chosen thereby defining the temporal sequence of management and disturbance “filters” that will contribute to the control of certain weed species and the proliferation of others. In fact, crop rotation is a required practice in the US National Organic Program. The producer must implement a crop rotation including but not limited to sod, cover crops, green manure crops, and catch crops that provide the following functions: (a) maintain or improve soil organic matter content; (b) provide pest management in annual and perennial crops; (c) manage deficient or excess plant nutrients; and (d) provide erosion control (Dufour, 2015).

In recent years, the population of many pests has developed resistance to many commercially available pesticides. Pest resistance is limiting the efficiency of many insecticides, fungicides, and herbicides, and there are some bugs for which there are no effective pesticides. Pest management tactics in organic farming are generally preventative rather than reactive. It is a collection of strategies aimed at lowering costs, maintaining the environment, and safeguarding human health by avoiding the use of harmful agricultural chemicals (El-Shafie, 2019).

1.6.2 Insect pest management

Pest insect problems are influenced by three components of a farming system. Farmers can manipulate all of these components to suppress pest species: crop species and cultivar present, growth habits, and structure. Production practices, such as rotation, timeliness of planting and harvesting, spacing of plants, fertility and water management, tillage, mulching, sanitation, and companion planting influence the population of insects in the field (Linker et al., 2018). Agroecosystem structure includes field borders, natural vegetation, and other crop production areas that resupply fields with pest insects and beneficial species when crops are replanted (Ofuya et al., 2023).

In order to survive and reproduce, insects require a basic set of materials. Production strategies that deny a pest species at least one essential component of life can keep pest populations at levels that are not economically destructive for long periods of time. However, cultural methods are unlikely to provide long-term control since the most bothersome insect species are ones that are well-adapted to agricultural production systems. Under a given production system, populations of these nuisance insects will tend to rise, whereas numbers of less well-adapted species will decrease (Linker et al., 2018). Farmers in organic systems employ a variety of cultural methods and raise a diverse range of crops. The interplay of these

interacting components on pests is difficult to anticipate, and can generally only be determined via research and experience ([Linker et al., 2018](#)).

1.6.2.1 Cultural measures

Higher seed rate: Increasing the seed rate can assist in sustaining the required plant population, even in the event of pest infestations like shoot borers and stem borers causing damage to the targeted plants ([El-Shafie, 2019](#)).

- (a) Planting distances: A high plant density lowers groundnut necrosis, whereas a low plant density minimizes nursery damping and sorghum charcoal rot. Rice with wider row spacing has less BPH. Higher seed rates would aid in maintaining the requisite plant population even after pests such as shoot borer and shoot fly have uprooted and destroyed the afflicted plants.
- (b) Use of trap crops: Bhendi/Okra can be used as a trap crop in cotton (10:1) to help trap boll worms and stem weevils; similarly, Castor can be used as a trap crop against Spodoptera in groundnut and tobacco; and Marigold can be used as a trap crop in tomato (16:1) to help reduce the incidence of *Helicoverpa*.
- (c) Fertilizer usage: Excessive fertilizer application creates favorable conditions for insect pests and diseases, making plants more vulnerable. Consequently, overusing nitrogen fertilizer in most crops can worsen pest problems. However, employing organic manures enhances pest and disease resistance, offering a more sustainable approach ([Ashok Kumar and Topagi, 2014](#)).
- (d) Crop Variety: Pest and disease resistance has been bred into several crop varieties. If you've had problems with a pest or disease, search for organic seeds that have been designated as resistant to that pest or disease.
- (e) Trap Cropping: This is when a secondary crop is planted near a cash crop to draw pests away from the primary crop. The trap crop should be more appealing to the insect you're attempting to eradicate than the main crop.

1.6.2.2 Mechanical methods

- (a) Collection and destruction of insect pests: Handpicking insects or pulling weeds is one of the most basic manual or mechanical pest management methods. When the pests are visible and easily accessible, this strategy is most effective.
- (b) Destruction of stubbles and agricultural residues: Sorghum and maize stubbles are known to provide shelter to stem borer larvae, which reproduce after the summer. As a result, the stem borer larvae and pupae will be killed if such stubbles are burned or buried in the soil. Spodoptera, Bihar laity caterpillar egg masses, and early larval stages may be readily gathered and destroyed on tobacco, soybean, peanuts, and other crops shortly after hatching to prevent the pest from spreading further. Crop rotation (rotation of crops with nonhost plants) and intercropping will assist in lowering the prevalence of numerous important pests in various ecosystems ([Ashok Kumar and Topagi, 2014](#)).
- (c) Pheromones and other attractants: They are mostly utilized for monitoring purposes. Monitoring does not have to be a time-consuming process, but it must be carried out on a regular basis and according to the correct procedures ([Linker et al., 2018](#)). Pheromones and other chemical attractants can be employed in a variety of ways, including monitoring pests, disrupting mating, mass capturing, spreading insect disease, and luring pests to eat poisoned bait. Any attractant-baited trap must be utilized with caution. According to certain studies, a trap might actually import more pests into an agro-environment than it kills. Overall, the pheromones and traps may be employed in three ways: to monitor insect populations, to disrupt mating, and to mass trap ([Ashok Kumar and Topagi, 2014](#)).
- (d) Companion planting or intercropping: Growing pest-repellent plants alongside pest-prone plants can help minimize pest burden.

1.6.2.3 Chemical measures

There are a variety of organically appropriate pesticides on the market, and each one may be effective in certain situations. In the environment, many organically approved insecticides disintegrate quickly. Repeated treatments may be required to control a persistent insect infestation. Some of the chemicals that are approved to be used in organic agriculture are:

- (a) Oils, soaps, and pyrethrum/rotenone mixtures can help lower aphid numbers. If ants are protecting the aphids from predators and parasites, eliminating the ants and allowing biological management to restart the crop is frequently the most effective control method. Ant colonies can be physically destroyed or boric acid baits can be used to cure them.

If flea beetle numbers are high when young plants are in the cotyledon stage, the use of soaps and pyrethrin/rotenone combinations to decrease adult damage is found to be effective.

- (b) Leaf miner control may require several applications within a 2-week period. Many of the pupae are in the soil and will not be controlled with short-residual materials. Sprays containing azadirachtin, pyrethrins, and rotenone will kill some of the adults and help to limit the population. Sprays for leaf miners will slow the build-up of native wasp parasites. Leafhopper numbers can be reduced with applications of pyrethrins and rotenone if the nymphs come into contact with the materials.
- (c) Sulfur dusts or sprays can be used to combat russet mites. Against pest mites, light mineral, vegetable-based, or neem seed oils can be beneficial.

1.6.2.4 Biological methods

Identification of insect pests and their herbal enemies is a vital step in any pest control program. Biological manage is grouped into three categories: importation or classical organic manage, which introduces pest's herbal enemies to the places in which they do now no longer arise naturally, augmentation includes the supplemental release of natural enemies, boosting the naturally occurring population, and conservation, which involves the conservation of existing natural enemies in the environment (Sanda and Sunusi, 2014; El-Shafie, 2019). Natural enemies encompass parasitoids, predators, entomopathogenic nematodes, and pathogens (Sedardatian-Jahromi, 2021). Biological strategies also incorporate pheromones for pest population monitoring and mating disruption, sterile insect releases, and biopesticides, which are pesticide formulations derived from living organisms or their byproducts (Baker et al., 2020). Certain biopesticide definitions encompass genetically modified organisms, in addition to plants (Baker et al., 2020). Enhancing the effectiveness and local abundance of natural enemies can effectively manage many pest populations. This approach, known as conservation biological control, involves modifying the environment or existing practices to support natural enemy communities (Maurya et al., 2022). There is minimal use of disruptive broad-spectrum pesticides (El-Shafie, 2019). Enhancing natural processes, such as the ecosystem service of biological pest control provided by predators and parasitoids, can help reduce the reliance on synthetic inputs (Sedardatian-Jahromi, 2021). The soil acts as a natural habitat and repository for various types of insect pathogens, comprising viruses, bacteria, protozoa, fungi, and nematodes (Khan et al., 2015). Insects can also be controlled by biological control using insect pathogens. The microbes involved in insect control are referred to as insect pathogens. To date, more than 3000 microorganisms have been identified as pathogens of insects. Some of these microorganisms are easily cultivated on a large scale and have been utilized as microbial insecticides for insect management. Certain mobile predators, like ground beetles (Carabidae) and jumping spiders (Salticidae), possess keen vision and actively pursue their prey. In contrast, predators with limited vision rely on a blend of visual cues and chemical signals to locate their prey (Costa et al., 2019).

1.6.3 Disease management

Disease management ranked eighth on the list of major search priorities for organic farmers, indicating that, similar to arthropod pest management, disease is not considered a top priority issue in most organic crop systems (El-Shafie, 2019). In organic farming, disease management is generally based on preventative measures rather than therapeutic procedures, which are based on environmentally safer management methods. Some of the strategies for disease management in organic farming are:

- (a) Modification of cultural practices: The modification of cultural practices can increase agricultural biodiversity and thus have a greater role to play in the management of pathogens. These methods have certain limitations as they have to be planned well in advance and these are preventive in nature rather than curative (Cozim-Melges et al., 2024).
- (b) Use of resistant cultivars: It is a matter of great importance to find out about the mechanism of disease resistance in a crop variety because genetically modified crops (GMOs, transgenic crops) most of which are not permitted in the organic production systems. Breeding methods such as introduction and selection, hybridization and selection, pedigree method, backcross method, composite cross, recurrent selection, and mutation breeding are followed for the development of resistant varieties (Wang and Dong, 2021).
- (c) Crop rotation: Crop rotation is used both to starve the pathogen and to kill it with poisonous root exudates (De & De, 2019). To be most effective, rotations between susceptible crops should be about 3–7 years. A number of soil-borne pathogens like *Fusarium* spp., and *Verticillium* spp (El-Shafie, 2019). and *Ralstonia* spp; that cause wilts can effectively be managed by crop rotation. Similarly, in fields where rice-solanaceous crop rotation is followed the severity of bacterial wilt is reduced (Zhou et al., 2023).

- (d) Planting time: Adjustment of sowing time helps in managing disease by avoiding the concurrence of susceptible host and favorable environment. For example, early sown crop escapes the blast in rice (Walters et al., 2013).
- (e) Plant density: Expanding the spacing between plants often proves effective in mitigating disease pressure, as seen in instances such as sheath blight in rice, caused by *Rhizoctonia solani* (El-Shafie, 2019).
- (f) Fertility management: Plants that receive excessive fertilization are more susceptible to diseases and are thus prone to becoming targets for attacks (Haldhar et al., 2017). Organic manures can initially induce a partial nitrogen stress, which, within a specific timeframe, doesn't adversely affect crop growth. Instead, it triggers the production of defense compounds like phenols, tannins, and lignins, enhancing leaf toughness and increasing the production of cell wall-related structural compounds. Several studies have noted antifungal properties in various organic composts against both soil-borne and foliar pathogens. Aqueous extracts from vermicompost and organic compost have been found to inhibit the mycelial growth of pathogens such as *Botrytis cinerea*, *Sclerotinia sclerotiorum*, *Sclerotium rolfsii*, *R. solani*, and *Fusarium oxysporum* f. sp. *lycopersici* (Haldhar et al., 2017).
- (g) Water management: Numerous naturally existing pathogens, notably insect-pathogenic fungi, exhibit potent pest control abilities in environments with elevated humidity levels. Likewise, in the context of potato scab, ensuring soil moisture remains close to field capacity during tuber formation shields the crop from scab infestation, thanks to the beneficial impact of irrigation on bacterial microflora that act as antagonists to *Streptomyces scabies* (Sharma et al., 2017).
- (h) Tillage: Reduced soil disturbance in natural ecosystems helps maintain diverse food webs, organisms, and habitats. Organic farming typically relies on tillage for weed control and soil preparation. However, strategies to minimize tillage in organic systems include zero tillage, ridge tillage, and incorporating perennial or sod-producing crops into the rotation (Haldhar et al., 2017).
- (i) Mulches: Mulching systems encompass both plastic and natural materials. However, plastic mulch is often restricted by organic certification agencies due to its dependence on non-renewable resources. While biodegradable plastic mulches are emerging, their impact on pests may resemble that of conventional non-biodegradable mulches (Mani, 2022). Organic farmers frequently utilize straw mulch for effective weed suppression. Innovations like hydro-mulch could potentially complement plastic and straw mulches if they are formulated with organic-approved ingredients (El-Shafie, 2019). Presently, plastic and straw mulches are gaining popularity among farmers.
- (j) Sanitation: Sanitation entails eliminating crop debris, weeds, and diseased plant parts, thereby reducing the inoculum load and consequently controlling disease (De & De, 2019). For instance, in the case of leaf blotch in turmeric, removing infected leaves diminishes disease severity and limits further spread (Gohel et al., 2022).
- (k) Use of biological control agents: Utilizing inundative and inoculative releases, or deploying biological control agents such as insect predators, parasitoids, and insect pathogens, can play a significant role in managing insect pests within an insecticide-free environment. These agents serve as curative control methods during sudden outbreaks in insect populations (Devi et al., 2019). A variety of biocontrol agents, including *Trichoderma* spp., *Gliocladium* spp., *Bacillus subtilis*, *Aspergillus niger*, *Azotobacter chroococcum*, *Azospirillum lipoforum*, *Pseudomonas fluorescens*, etc., have been employed in the management of major plant diseases (Pandit et al., 2022; Saldaña-Mendoza et al., 2023).
- (l) Use of organic pesticides and other pesticides: Kaolin, a clay formed naturally through the weathering of aluminous minerals containing kaolinite, like feldspar, is finely pulverized to a uniform particle size for application as a water suspension on plant parts. It offers control against both insects and diseases. Panchagavya, derived from a blend of five key ingredients sourced from cows—urine, dung, milk, curd, and ghee—along with tender coconut water, sugarcane juice, and ripe bananas, is prepared and matured before being diluted to a 3% concentration with water for use as a foliar spray. This method effectively enhances plant disease resistance (De & De, 2019).

1.7 Integrated pest management (IPM) approaches for horticultural crops

Integrated Pest Management (IPM) in horticultural crop production represents a comprehensive strategy for pest control in horticultural crops, prioritizing sustainability and eco-friendly methods. Unlike relying solely on chemical pesticides, IPM integrates diverse approaches to prevent and manage pests, all while mitigating risks to human health and the environment (Deguine et al., 2021).

One key aspect of IPM is the use of cultural practices such as crop rotation, proper irrigation, and planting resistant varieties to create unfavorable conditions for pests and reduce their populations. This helps to disrupt pest life cycles and prevent outbreaks (Angon et al., 2023). Crop rotation with nonhost or tolerant crops will break the pest cycles and reduce their build-up year after year (Dara, 2019).

Biological control is another integral component of IPM, involving the introduction or conservation of natural enemies of pests, such as predators, parasites, and pathogens (Jeffers and Chong, 2021). This approach harnesses the natural balance

of ecosystems to keep pest populations in check (Lbguytemecula, 2023). This alternative approach to conventional pesticide usage offers highly effective pest management while minimizing ecological disturbance and safeguarding biodiversity (Krishnamoorthi et al., 2024).

Mechanical and physical controls, such as traps, barriers, and netting, are employed to physically block pests from accessing crops or to remove them from the environment (Adhikari, 2022). These methods are often targeted and can help reduce the need for chemical interventions (Cherlinka, 2022).

When chemical control is necessary, IPM emphasizes the use of least-toxic pesticides, applied in a targeted manner to minimize harm to beneficial organisms and reduce the risk of pesticide resistance (Zhu et al., 2016). Additionally, alternative products, such as insecticidal soaps and botanical extracts, may be used as part of an IPM strategy (Curkovic, 2016).

Regular monitoring and scouting of crops for pest activity are essential in IPM to detect problems early and make informed management decisions (Schnelle, 2017). By using a combination of cultural, biological, mechanical, and chemical controls tailored to specific pests and cropping systems, IPM helps to maintain pest populations below economically damaging levels while promoting ecosystem health and sustainability in horticultural crop production (Angon et al., 2023).

1.8 Conclusion

It is imperative to address biotic stresses in horticultural crops given the current climatic conditions for the sake of sustainable agriculture. As climate change intensifies, managing the impacts of biotic stresses becomes ever more critical. Through the adoption of integrated pest management techniques, leveraging advancements in biotechnology, and advocating for ecosystem-based approaches, we can bolster the resilience of horticultural systems while safeguarding biodiversity and limiting ecological harm. Collaboration among researchers, farmers, policymakers, and other stakeholders is indispensable for devising and executing comprehensive strategies to protect horticultural crops amidst the changing climate.

References

- Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., Künstler, A., 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. *Biology* 10 (6), 520. doi:10.3390/biology10060520.
- AbdulRahman, N.S.N., AbdulHamid, N.W., Nadarajah, K., 2021. Effects of abiotic stress on soil microbiome. *Int. J. Mol. Sci.* 22 (16), 9036. doi:10.3390/ijms22169036. <https://www.mdpi.com/1422-0067/22/16/9036/pdf>.
- Adeleke, R.A., Nunthkumar, B., Roopnarain, A., Obi, L., 2019. Applications of Plant–Microbe Interactions in Agro-Ecosystems. In: Kumar, V., et al. (Eds.), *Microbiome in Plant Health and Disease: Challenges and Opportunities*. Springer, Singapore, pp. 1–34. <https://link.springer.com/book/10.1007/978-981-13-8495-0>.
- Adhikari, U., 2022. Insect pest management: mechanical and physical techniques. *Rev. Food Agric* 3 (1), 48–53. doi:10.26480/rfa.01.2022.48.53.
- Agrios, G.N., 2005. How Pathogens Attack Plants. In: Sonnack, K.D. (Ed.), *Plant Pathology*, 5th ed. Elsevier BV, pp. 175–205.
- Ahmad, S., Hussain, I., Ghaffar, A., Rahman, M.H.U., Saleem, M.Z., Yonas, M.W., Hussain, H., Ikram, R.M., Arslan, M., 2022. Organic amendments and conservation tillage improve cotton productivity and soil health indices under arid climate. *Sci. Rep.* 12 (1), 14072. doi:10.1038/s41598-022-18157-0. www.nature.com/srep/index.html.
- Alkhalfah, D.H.M., Damra, E., Melhem, M.B., Hozzein, W.N., 2023. Fungus under a changing climate: modeling the current and future global distribution of fusarium oxysporum using geographical information system data. *Microorganisms* 11 (2), 468. doi:10.3390/microorganisms11020468. www.mdpi.com/journal/microorganisms.
- Alori, E., Fawole, O., 2012. Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. *J. Agric. Sci.* 4 (8), 1916–9760. doi:10.5539/jas.v4n8p246.
- Alori, E.T., Babalola, O.O., Prigent-Combaret, C., 2019. Claire prigent-combaret, impacts of microbial inoculants on the growth and yield of maize plant. *Open Agric. J.* 13, 1–8 doi:10.2174/1874331501913010001.
- Alori, E.T., Dare, M.O., Babalola, O.O., 2017. Microbial Inoculants for Soil Quality and Plant Health. In: Lichfouse, E. (Ed.), *Sustainable Agriculture Reviews*, 22. Springer, Cham, Switzerland, pp. 281–307.
- Alori, E.T., Babalola, O.O., 2018. Microbial inoculants for improving crop quality and human health in Africa. *Front. Microbiol.* 9, 2213. doi:10.3389/fmib.2018.02213. www.frontiersin.org/Microbiology.
- Alori, E.T., Fawole, O.B., 2017. Microbial Inoculants-Assisted Phytoremediation for Sustainable Soil Management. In: Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L. (Eds.), *Phytoremediation: Management of Environmental Contaminants*, 5. Springer International Publishing, Switzerland, pp. 3–17. <http://dx.doi.org/10.1007/978-3-319-52381-1>.
- Alori, E.T., Osemwiegie, O.O., Ibaba, A.L., Daramola, F.Y., Olaniyan, F.T., Lewu, F.B., Babalola, O.O., 2024. The Importance of Soil Microorganisms in Regulating Soil Health. *Commun. Soil Sci. Plant Anal.*, 55 (17), 2636–2650. doi:10.1080/00103624.2024.2367246.
- Altaf, M.A., Shahid, R., Ren, M.X., Altaf, M.M., Jahan, M.S., Khan, L.U., 2021. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. *J. Soil. Sci. Plant Nutr.* 21 (3), 1842–1855. doi:10.1007/s42729-021-00484-2. <https://www.springer.com/life+sciences/plant+sciences/journal/42729>.

- Amoo, A.E., Olanrewaju, O.S., Babalola, O.O., Ajilogba, C.F., Chukwuneme, C.F., Ojuederie, O.B., Omomowo, O.I., 2023. The functionality of plant-microbe interactions in disease suppression. *J. King. Saud. Univ. Sci.* 35 (8), 102893. doi:10.1016/j.jksus.2023.102893. <http://www.sciencedirect.com/science/journal/10183647>.
- Angon, P.B., Mondal, S., Jahan, I., Datto, M., Antu, U.B., Ayshi, F.J., Shafiqul Islam, M., 2023. Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. *Adv. Agric.* 2023, 5546373. doi:10.1155/2023/5546373. www.hindawi.com/journals/aag/.
- Ashok Kumar, C.T., Topagi, S., 2014. Integrated Pest Management Strategies in Organic Farming. In: Shetty, P.K., Alvares, C., Yadav, A.K. (Eds.), *Farming and Sustainability*. National Institute of Advanced Studies Publisher, Bangalore, India, pp. 171–193.
- Bajwa, A.A., Khan, M.J., Bhowmik, P.C., Walsh, M., Chauhan, B.S., 2019. Sustainable Weed Management. In: Farooq, M., Pisante, M. (Eds.), *Innovations in Sustainable Agriculture*. Springer International Publishing, Australia, pp. 249–286. <https://www.springer.com/in/book/9783030231682>.
- Baker, B.P., Green, T.A., Loker, A.J., 2020. Biological control and integrated pest management in organic and conventional systems. *Biol. Control.* 140, 104095. doi:10.1016/j.biocntrol.2019.104095. <http://www.elsevier.com/inca/publications/store/6/2/2/7/9/1/index.htm>.
- Balloux, F., van Dorp, L., 2017. Q&A: what are pathogens, and what have they done to and for us? *BMC Biol.* 15 (1), 1741–7007. doi:10.1186/s12915-017-0433-z.
- Bekele, M., Getaneh, S., 2022. Function of microorganisms on soil health maintenance:a review article. *Int. J. Adv. Res. Biol. Sci.* 4, 82–93. doi:10.22192/ijarbs.2022.09.04.XXX2022.
- Belmain, S.R., Tembo, Y., Mkindi, A.G., Arnold, S.E.J., Stevenson, P.C., 2022. Elements of agroecological pest and disease management. *Elem. Sci. Anth.* 10 (1), 1026–2325. doi:10.1525/elementa.2021.00099.
- Bisht, I.S., Rana, J.C., Jones, S., Estrada-Carmona, N., Yadav, R., 2021. Agroecological approach to farming for sustainable development: The Indian scenario. In: Hufnagel, L. (Ed.), *Biodiversity of Ecosystems*, IntechOpen, London, UK, pp. 107–135.
- Biswas, S., Das, R., 2024. Organic farming to mitigate biotic stresses under climate change scenario. *Bull. Natl. Res. Cent.* 48, 71.
- Brodt, S., Six, J., Feenstra, G., Ingels, C., Campbell, D., 2011. Sustainable agriculture. *Nat. Educ. Knowl.* 3, 1.
- Brown, C., Robinson, D., 2019. Climate-driven evolution of plant pathogens. *Plant Pathol. J.* 22, 315–330.
- Chattopadhyay, C., Birah, A., Jalali, B.L., 2019. Climate Change: Impact on Biotic Stresses Afflicting Crop Plants. In: Peshin, R., Dhawan, A. (Eds.), *Natural Resource Management: Ecological Perspectives*. Sustainability in Plant and Crop Protection. Springer, Cham, pp. 133–146.
- Chen, T., Chen, Y., Li, B., Zhang, Z., 2024. Exogenous Application of RNS for Prolonging the Shelf-Life of Horticultural Crops Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops. In: Ziogas, V., Corpas, F.J. (Eds.), *Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops*. Academic Press, London, United Kingdom, pp. 207–226.
- Cherlinka, V., 2022. Integrated pest management strategies in agriculture. EOS Data Analytics Blog. <https://eos.com/blog/integrated-pest-management/>. Retrieved on 17 July, 2024.
- Costa, C.A., Guiné, R.P.F., Costa, D.V.T.A., Correia, H.E., Nave, A., 2019. Pest Control in Organic Farming. In: Sarath Chandran, Unni, M.R., Thomas, S., Meena, D.K. (Eds.), *Organic Farming (Second Edition)*. Woodhead Publishing, Cambridge, United Kingdom, pp. 41–90. doi:10.1016/b978-0-12-813272-2.00003-3.
- Cozim-Melges, F., Ripoll-Bosch, R., Veen, G.F., Oggiano, P., Bianchi, F.J.J.A., van der Putten, W.H., van Zanten, H.H.E., 2024. Farming practices to enhance biodiversity across biomes: a systematic review. *NPJ Biodivers.* 3 (1), 2731–4243. doi:10.1038/s44185-023-00034-2.
- Craufurd, P.Q., Wheeler, T.R., 2009. Climate change and the flowering time of annual crops. *J. Exp. Bot.* 60 (9), 2529–2539. doi:10.1093/jxb/erp196.
- Curkovic, S.T., 2016. Detergents and Soaps as Tools for IPM in Agriculture. In: H.K. Gill, H.K., Goyal, G. (Eds.), *Integrated Pest Management (IPM)*, IntechOpen, Rijeka-Croatia, London UK. pp 155-189.
- Dara, S.K., 2019. The new integrated pest management paradigm for the modern age. *J. Integr. Pest. Manage.* 10 (1), 21557470. doi:10.1093/jipm/pmz010. academic.oup.com/jipm.
- Das, T., Majumdar, M.H.D., Tombisana Devi, R.K., Rajesh, T., 2017. Climate change impacts on plant diseases. *SAARC J. Agric.* 14 (2), 200–209. doi:10.3329/sja.v14i2.31259.
- Dayan, F.E., Cantrell, C.L., Duke, S.O., 2009. Natural products in crop protection. *Bioorg. Med. Chem.* 17 (12), 4022–4034. doi:10.1016/j.bmc.2009.01.046.
- Dayan, F.E., Duke, S.O., 2010. Natural products for weed management in organic farming in the USA. *Outlook Pest. Manag.* 21 (4), 156–160. doi:10.1564/21aug02.
- De, T., De, L.C., 2019. Disease management in organic agriculture. *Int. J. Recent Sci. Res.* 10 (7), 33458–33461.
- Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F., Wyckhuys, K.A.G., Ratnadass, A., 2021. Integrated pest management: good intentions, hard realities – a review. *Agron. Sustain. Dev.* 41 (3), 38. doi:10.1007/s13593-021-00689-w. <http://www.springerlink.com/content/1773-0155>.
- Desormeaux, A., Annable, M.D., Dobberfuhl, D.R., Jawitz, J.W., 2019. In situ measurement of nitrate flux and attenuation using a soil passive flux meter. *J. Environ. Qual.* 48(3), 709–716.
- Devi, D., Verma, S.C., Sharma, P.L., Sharma, H.K., Gupta, N., Thakur, P., 2019. Effect of climate change on insect pests of fruitcrops and adaptation and mitigation strategies: A review. *J. Entomol. Zool. Stud.* 7, 507–512.
- Dufour, R., 2015. Crop rotation in organic farming systems attrra sustainable agriculture. ams.usda.gov website. https://www.ams.usda.gov/sites/default/files/media/Crop%20Rotation%20in%20Organic%20Farming%20Systems_FINAL.pdf. Retrieved on 8th February, 2025.
- Elias, E.H., Flynn, R., Idowu, O.J., Reyes, J., Sanogo, S., Schutte, B.J., Smith, R., Steele, C., Sutherland, C., 2019. Crop vulnerability to weather and climate risk: analysis of interacting systems and adaptation efficacy for sustainable crop production. *Sustainability* 11 (23), 6619. doi:10.3390/su11236619.
- El-Shafie, H.A.F., 2019. Insect Pest Management in Organic Farming System. In: Moudrý, J., Mendes, K.F., Bernas, J., Teixeira, R.d.-S., de Sousa, R.N., (Eds.), *Multifunctionality and Impacts of Organic and Conventional Agriculture*, IntechOpen, Rijeka-Croatia, London, England. p. 20.

- FAO, 2008. Climate-Related Transboundary Pests and Diseases Climate Change, Energy and Food. FAO. <https://www.fao.org/4/ai785e/ai785e.pdf>. Retrieved on 8th February, 2025.
- Finch, D.M., Butler, J.L., Runyon, J.B., Fettig, C.J., Kilkenny, F.F., Jose, S., Frankel, S.J., Cushman, S.A., Cobb, R.C., Dukes, J.S., Hicke, J.A., Amelon, S.K., 2021. Effects of Climate Change on Invasive Species. In: Poland, T.M., Patel-Weynand, T., Finch, D.M., Miniat, C.F., Hayes, D.C., Lopez, V.M. (Eds.), *Invasive Species in Forests and Rangelands of the United States*. Springer International Publishing, Cham, pp. 57–83. <https://link.springer.com/book/10.1007/978-3-030-45367-1>.
- Gabriel, I., Olajuwon, F., Klauser, D., Michael, B., Renn, M., 2023. State of climate smart agriculture (CSA) practices in the North Central and Northwest zones Nigeria. *CABI Agric. Biosci.* 4 (1), 2662–4044. doi:[10.1186/s43170-023-00156-4](https://doi.org/10.1186/s43170-023-00156-4).
- Gallandt, E., 2014. *Weed Management in Organic Farming Recent Advances in Weed Management*. Springer, New York, United States, pp. 63–85. <http://dx.doi.org/10.1007/978-1-4939-1019-9>. doi:[10.1007/978-1-4939-1019-9_4](https://doi.org/10.1007/978-1-4939-1019-9_4).
- Garcia, M., Smith, L., 2017. Climate change effects on weed dynamics in horticulture. *Weed. Sci.* 12, 78–92.
- Ghadamgahi, F., Tarighi, S., Taheri, P., Saripella, G.V., Anzalone, A., Kalyandurg, P.B., Catara, V., Ortiz, R., Vetukuri, R.R., 2022. Plant growth-promoting activity of *pseudomonas aeruginosa* FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. *Biology* 11 (1), 20797737. doi:[10.3390/biology11010140](https://doi.org/10.3390/biology11010140). <https://www.mdpi.com/2079-7737/11/1/140/pdf>.
- Gómez-Godínez, L.J., Aguirre-Noyola, J.L., Martínez-Romero, E., Arteaga-Garibay, R.I., Ireta-Moreno, J., Ruvalcaba-Gómez, J.M., 2023. A look at plant-growth-promoting bacteria. *Plants* 12 (8), 22237747. doi:[10.3390/plants12081668](https://doi.org/10.3390/plants12081668). www.mdpi.com/journal/plants.
- Gómez-Ruiz, E.P., Lacher, T.E., 2019. Climate change, range shifts, and the disruption of a pollinator-plant complex. *Sci. Rep.* 9 (1), 20452322. doi:[10.1038/s41598-019-50059-6](https://doi.org/10.1038/s41598-019-50059-6). <https://www.nature.com/srep/>.
- Gohel, N., Mistry, S., Rathava, A., Dhaduk, H., 2022. Management of Leaf Blotch (*Taphrina Maculans* Butler) and Leaf Spot (*Colletotrichum Capsici* (Syd.) Butler & Bisby) Diseases in Turmeric through Ready-Mix Fungicides Under Field Conditions. *Ind. Phytopathol.*, 75, 487–491.
- Gomiero, T., 2021. *Organic Agriculture: Impact on the Environment and Food Quality*. In: Galanakis, C.M. (Ed.), *Environmental Impact Of Agro-Food Industry And Food Consumption*. Academic Press, Elsevier BV, London, United Kingdom, pp. 31–58.
- Gong, F., Yang, L., Tai, F., Hu, X., Wang, W., 2014. Omics" of maize stress response for sustainable food production: opportunities and challenges. *OMICS* 18 (12), 714–732. doi:[10.1089/omi.2014.0125](https://doi.org/10.1089/omi.2014.0125).
- González Guzmán, M., Cellini, F., Fotopoulos, V., Balestrini, R., 2022. Vicent arbona, new approaches to improve crop tolerance to biotic and abiotic stresses. *Physiol. Plant.* 174 (1), 0031–9317. doi:[10.1111/ppl.13547](https://doi.org/10.1111/ppl.13547).
- Gray, S.B., Brady, S.M., 2016. Plant developmental responses to climate change. *Dev. Biol.* 419 (1), 64–77. doi:[10.1016/j.ydbio.2016.07.023](https://doi.org/10.1016/j.ydbio.2016.07.023). <http://www.elsevier.com/inca/publications/store/6/2/28/1/6/index.htm>.
- Gullino, M.L., Pugliese, M., Gilardi, G., Garibaldi, A., 2018. Effect of increased CO₂ and temperature on plant diseases: a critical appraisal of results obtained in studies carried out under controlled environment facilities. *J. Plant. Pathol.* 100 (3), 371–389. doi:[10.1007/s42161-018-0125-8](https://doi.org/10.1007/s42161-018-0125-8). <https://rd.springer.com/journal/42161>.
- Gurr, G.M., Wratten, S.D., Landis, D.A., You, M., 2017. Habitat management to suppress pest populations: progress and prospects. *Annu. Rev. Entomol.* 62, 91–109. doi:[10.1146/annurev-ento-031616-035050](https://doi.org/10.1146/annurev-ento-031616-035050). <http://arjournals.annualreviews.org/loi/ento>.
- Hailu Hirpo, F., Gebeyehu, M., 2019. Review on the effects of climate change variability on horticultural productivity. *Int. J. Environ. Sci. Nat. Resour.* 17 (4), 25721119. doi:[10.19080/ijesnr.2019.17.555969](https://doi.org/10.19080/ijesnr.2019.17.555969).
- Hans, R., 2024. Impact of integrated pest management on pest control manufacturing. Deskera website. <https://www.deskera.com/blog/impact-of-integrated-pest-management-on-pest-control-manufacturing/#:~:text=Overall%20the%20long%2Dterm%20impacts,costs%2C%20and%20improve%20customer%20satisfaction>. Retrieved on 8th August, 2024.
- Haldhar, S.M., Jat, G.C., Deshwal, H.L., Gora, J.S., Dhurendra, S., 2017. Insect Pest and Disease Management in Organic Farming. In: Gangwar, B., Jat, N. (Eds.), *Towards Organic Agriculture: Today and Tomorrow's*. Printers and Publishers, New Delhi, India, pp. 359–390.
- Hamann, E., Blevins, C., Franks, S.J., Jameel, M.I., Anderson, J.T., 2021. Climate change alters plant-herbivore interactions. *New Phytol.* 229 (4), 1894–1910. doi:[10.1111/nph.17036](https://doi.org/10.1111/nph.17036).
- Harris, H.M.B., Hill, C., 2021. A place for viruses on the tree of life. *Front. Microbiol.* 11, 1664302X. doi:[10.3389/fmicb.2020.604048](https://doi.org/10.3389/fmicb.2020.604048). <https://www.frontiersin.org/journals/microbiology#>.
- Hassani, M.A., Durán, P., Hacquard, S., 2018. Microbial interactions within the plant holobiont. *Microbiome* 6 (1), 58. doi:[10.1186/s40168-018-0445-0](https://doi.org/10.1186/s40168-018-0445-0).
- Hatfield, J.L., Prueger, J.H., 2015. Temperature extremes: effect on plant growth and development. *Weather Clim. Extrem.* 10, 4–10. doi:[10.1016/j.wace.2015.08.001](https://doi.org/10.1016/j.wace.2015.08.001). <http://www.journals.elsevier.com/weather-and-climate-extremes/>.
- Horvath, D. P., CLAY, S. A., Swanton, C. J., Anderson, J. V., Chao, W. S., 2023. Weed-induced crop yield loss: a new paradigm and new challenges. *Trends Plant Sci* 28, 567–582.
- Huot, B., Castroverde, C.D.M., Velásquez, A.C., Hubbard, E., Pulman, J.A., Yao, J., Childs, K.L., Tsuda, K., Montgomery, B.L., He, S.Y., 2017. Dual impact of elevated temperature on plant defence and bacterial virulence in *Arabidopsis*. *Nat. Commun.* 8 (1), 1808. doi:[10.1038/s41467-017-01674-2](https://doi.org/10.1038/s41467-017-01674-2). <http://www.nature.com/ncomms/index.html>.
- IFOAM Organic International, 2021. The four principles of organic agriculture. IFOAM Organic International website. <https://www.ifoam.bio/why-organic/shaping-agriculture/four-principles-organic>. Retrieved 10th July 2024.
- Jäaggi, C.J., 2021. *Biodiversity and Organic Farming*. Springer Science and Business Media LLC, pp. 99–103. doi:[10.1007/978-3-658-34672-0_6](https://doi.org/10.1007/978-3-658-34672-0_6).
- Jayaraman, S., Naorem, A.K., Lal, R., Dalal, R.C., Sinha, N.K., Patra, A.K., Chaudhari, S.K., 2021. Disease-suppressive soils—beyond food production: a critical review. *J. Soil. Sci. Plant Nutr.* 21 (2), 1437–1465. doi:[10.1007/s42729-021-00451-x](https://doi.org/10.1007/s42729-021-00451-x). <https://www.springer.com/life+sciences/plant+sciences/journal/42729>.

- Jeffers, A., Chong, J.-H., 2021. Biological Control Strategies in Integrated Pest Management (IPM) Programs. Clemson Cooperative Extension, Land-Grant Press by Clemson Extension LGP 1111, Clemson (SC).
- Jones, A., Johnson, B., 2018. Impact of climate change on invasive species in horticulture. *Environ. Biol.* 33, 532–546.
- Kabir, M., Habiba, U.E., Khan, W., Shah, A., Rahim, S., Rios-Escalante, P.R.D.I., Farooqi, Z.U.R., Ali, L., 2023. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. *J. King. Saud. Univ. Sci.* 35 (5), 102693. doi:[10.1016/j.jksus.2023.102693](https://doi.org/10.1016/j.jksus.2023.102693). <http://www.sciencedirect.com/science/journal/10183647>.
- Karshima, S.N., 2018. Prevalence and distribution of soil-transmitted helminth infections in Nigerian children: a systematic review and meta-analysis. *Infect. Dis. Poverty* 7 (1), 69. doi:[10.1186/s40249-018-0451-2](https://doi.org/10.1186/s40249-018-0451-2). <http://www.idpjurnal.com/>.
- Kaur, S., Samota, M.K., Choudhary, M., Choudhary, M., Pandey, A.K., Sharma, A., Thakur, J., 2022. How do plants defend themselves against pathogens-biochemical mechanisms and genetic interventions. *Physiol. Mol. Biol. Plants.* 28 (2), 485–504. doi:[10.1007/s12298-022-01146-y](https://doi.org/10.1007/s12298-022-01146-y). <https://www.springer.com/journal/12298>.
- Khaliq, A., Perveen, S., Alamer, K.H., Haq, M.Z.U., Rafique, Z., Alsudays, I.M., Althobaiti, A.T., Saleh, M.A., Hussain, S., Attia, H., 2022. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. *Sustainability* 14 (13), 7840. doi:[10.3390/su14137840](https://doi.org/10.3390/su14137840).
- Khan, M.A., Khan, Z., Ahmad, W., Paul, B., Paul, S., Aggarwal, C., Akhtar, M.S., 2015. Insect Pest Resistance: An Alternative Approach for Crop Protection Crop Production and Global Environmental Issues. Springer International Publishing, Saudi Arabia, pp. 257–282. <http://dx.doi.org/10.1007/978-3-319-23162-4>. doi:[10.1007/978-3-319-23162-4_11](https://doi.org/10.1007/978-3-319-23162-4_11).
- Khanal, C., Land, J., 2023. Study on two nematode species suggests climate change will inflict greater crop damage. *Sci. Rep.* 13 (1), 14185. doi:[10.1038/s41598-023-41466-x](https://doi.org/10.1038/s41598-023-41466-x).
- Kremsa, V.Š., 2021. 5 - Sustainable Management of Agricultural Resources (Agricultural Crops and Animals Sustainable Resource Management). Elsevier, pp. 99–145.
- Krishnamoorthi, A., Patel, P.K., Kumar, S., Khambhu, C.V., Sapna, Kumar, V., Selvam, H., 2024. The Future of Farming With Advances in Biological Control Techniques for Crop Health. *Microbiol. Res. J. Int.* 34 (7), 93–112.
- Koziel, E., Otlak-Koziel, K., Bujarski, J.J., 2021. Plant Cell Wall As A Key Player During Resistant And Susceptible Plant-Virus Interactions. *Front. Microbiol.* 12, 656809. doi:[10.3389/fmicb.2021.656809](https://doi.org/10.3389/fmicb.2021.656809).
- Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., Verma, J.P., 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. *Front. Microbiol.* 11, 1664302X. doi:[10.3389/fmicb.2020.01216](https://doi.org/10.3389/fmicb.2020.01216). <https://www.frontiersin.org/journals/microbiology#>.
- Kumar, B., Choudhary, M., Kumar, K., Kumar, P., Kumar, S., Bagaria, P.K., Sharma, M., Lahkar, C., Singh, B.K., Pradhan, H., Jha, A.K., Kumar, S., Rakshit, S., 2022. Maydis leaf blight of maize: update on status, sustainable management and genetic architecture of its resistance. *Physiol. Mol. Plant. Pathol.* 121, 101889. doi:[10.1016/j.pmp.2022.101889](https://doi.org/10.1016/j.pmp.2022.101889).
- Laine, A.L., 2023. Plant disease risk is modified by multiple global change drivers. *Curr. Biol.* 33 (11), R574. doi:[10.1016/j.cub.2023.03.075](https://doi.org/10.1016/j.cub.2023.03.075). <http://www.elsevier.com/journals/current-biology/0960-9822>.
- Linker, H.M., Orr, D.B., Barbercheck, M.E., 2018. Insect management in organic farming. NCSU website. <https://ccfs.ncsu.edu/wp-content/uploads/insectmgmtfinaljan09.pdf?x47549>. Retrieved on 12th August July.
- Lbguytemecula, 2023. BioPest: Harnessing Nature's Predators for Pest Control Medium. On Medium website. <https://medium.com/@lbguytemecula/biopest-harnessing-natures-predators-for-pest-control-b28375fce36b>. Retrieved on 6th July, 2024.
- Li, X., He, G., Li, D., Bei, S., Luan, D., Sun, X., Yang, G., Huo, L., Zhen, L., Zhao, R., 2023. Arbuscular mycorrhizal fungi reduce N₂O emissions from degraded residue patches. *Front. Ecol. Evol.* 11. doi:[10.3389/fevo.2023.1224849](https://doi.org/10.3389/fevo.2023.1224849), 2296–701X.
- Lübeck, M., Lübeck, P.S., 2022. Fungal cell factories for efficient and sustainable production of proteins and peptides. *Microorganisms* 10 (4), 753. doi:[10.3390/microorganisms10040753](https://doi.org/10.3390/microorganisms10040753). <https://www.mdpi.com/2076-2607/10/4/753/pdf>.
- Mahapatra, S., Chakraborty, V.S., Das, S., 2022. Prevalence of Southern leaf blight of maize in two major maize producing states of India. *J. Cereal Sci.* 14 (2), 161–167. doi:[10.25174/2582-2675/2022/123845](https://doi.org/10.25174/2582-2675/2022/123845).
- Mall, M., Kumar, R., Akhtar, M.Q., 2021. Horticultural Crops and Abiotic Stress Challenges. Elsevier BV, pp. 1–19. doi:[10.1016/b978-0-12-822849-4-00001-2](https://doi.org/10.1016/b978-0-12-822849-4-00001-2).
- Mani, M., 2022. Organic Pest Management in Horticultural Crops Trends in Horticultural Entomology. Springer Nature, India, pp. 211–241. <https://link.springer.com/book/978-9-811-90343-4>. doi:[10.1007/978-981-19-0343-4_7](https://doi.org/10.1007/978-981-19-0343-4_7).
- Manzoor, M.A., Xu, Y., Lv, Z., Xu, J., Wang, Y., Sun, W., Liu, X., Wang, L., Wang, J., Liu, R., Whiting, M.D., Jiu, S., Zhang, C., 2023. Fruit crop abiotic stress management: a comprehensive review of plant hormones mediated responses. *Fruit Res.* 3, 30. doi:[10.48130/FruRes-2023-0030](https://doi.org/10.48130/FruRes-2023-0030). <https://www.maxapress.com/article/doi/10.48130/FruRes-2023-0030>.
- Mareri, L., Parrotta, L., Cai, G., 2022. Environmental stress and plants. *Int. J. Mol. Sci.* 23 (10), 5416. doi:[10.3390/ijms23105416](https://doi.org/10.3390/ijms23105416).
- Maurya, R.P., Koranga, R., Samal, I., Chaudhary, D., Paschapur, A.U., Sreedhar, M., Manimala, R.N., 2022. Biological control: a global perspective. *Int. J. Trop. Insect Sci.* 42 (5), 3203–3220. doi:[10.1007/s42690-022-00881-9](https://doi.org/10.1007/s42690-022-00881-9). <https://www.springer.com/journal/42690>.
- McDevitt-Galles, T., Moss, W.E., Calhoun, D.M., Johnson, P.T.J., 2020. Phenological synchrony shapes pathology in host-parasite systems. *Proc. Biol. Sci.* 287 (1919), 20192597. doi:[10.1098/rspb.2019.2597](https://doi.org/10.1098/rspb.2019.2597). <http://rspb.royalsocietypublishing.org/>.
- Meena, R.M., Rao, R., 2022. Pest management strategies in organic farming. *Ind. J. Agric. Allied Sci.* 6 (4), 9–16.
- Moazami, N., 2019. Biological Control Comprehensive Biotechnology. Elsevier, Iran, pp. 772–784. <https://doi.org/10.1016/B978-0-12-809633-8-09186-X>. doi:[10.1016/B978-0-12-809633-8-09186-X](https://doi.org/10.1016/B978-0-12-809633-8-09186-X).

- Morandin, L.A., Long, R.F., Kremen, C., 2014. Hedgerows enhance beneficial insects on adjacent tomato fields in an intensive agricultural landscape. *Appl. Soil. Ecol.* 189, 164–170. doi:10.1016/j.agee.2014.03.030.
- Mwangi, R.W., Mustafa, M., Charles, K., Wagara, I.W., Kappel, N., 2023. Selected emerging and reemerging plant pathogens affecting the food basket: a threat to food security. *Hungary J. Agric. Food Res.* 14, 100827. doi:10.1016/j.jafr.2023.100827. www.journals.elsevier.com/journal-of-agriculture-and-food-research.
- Nazarov, P.A., Baleev, D.N., Ivanova, M.I., Sokolova, L.M., Karakozova, M.V., 2020. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. *Acta Naturae* 12 (3), 46–59. doi:10.32607/actanaturae.11026. <http://actanaturae.ru/>.
- Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Khan, A., AL-Harrasi, A., 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. *Microbiol. Res.* 209, 21–32. doi:10.1016/j.micres.2018.02.003. www.urbanfischer.de/journals/microbiolres/microbio.htm.
- Ofuya, T.I., Okunlola, A.I., Mbata, G.N., 2023. A review of insect pest management in vegetable crop production in Nigeria. *Insects* 14 (2), 111. doi:10.3390/insects14020111. <http://www.mdpi.com/journal/insects>.
- Ogden, L.E., 2018. Climate change, pathogens, and people. *BioScience* 68 (10), 733–739. doi:10.1093/biosci/biy101. <http://bioscience.oxfordjournals.org/>.
- Orozco-Mosqueda, M.d.C., Glick, B.R., Santoyo, G., 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. *Microbiol. Res.* 235, 09445013. doi:10.1016/j.micres.2020.126439. www.urbanfischer.de/journals/microbiolres/microbio.htm.
- Pandit, M.A., Kumar, J., Gulati, S., et al. 2022. Major Biological Control Strategies for Plant Pathogens. *Pathogens* 11 (2), 273. doi:10.3390/pathogens11020273.
- Parthiban, N.K., 2024. Agroecology: Sustainable Farming for Resilient Food Systems. *Int. J. Recent Adv. Multidiscip. Topics* 5 (2), 5–8.
- Pelczar, M., Shurtleff, M., Kelman, A., Pelezar, R., 2023. Plant disease. Encyclopedia Britannica website. <https://www.britannica.com/science/plant-disease>. Accessed 7th February, 2025.
- Pawlak, K., Kołodziejczak, M., 2020. The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. *Sustainability* 12 (13), 5488. doi:10.3390/su12135488.
- Phatak, S., Diaz-Perez, J., 2007. Managing cover crops profitably. *Sustain. Agric. Res. Educ.* 2007, 25–33.
- Pierre, J.F., Jacobsen, K.L., Latournerie-Moreno, L., Torres-Cab, W.J., Chan-Canché, R., Ruiz-Sánchez, E., 2023. A review of the impact of maize-legume intercrops on the diversity and abundance of entomophagous and phytophagous insects. *Peer J.* 11, e15640. doi:10.7717/peerj.15640. <https://peerj.com/articles/15640>.
- Porter, J.R., Challinor, A.J., Bugge Henriksen, C., Mark Howden, S., Martre, P., Smith, P., 2019. Invited review: intergovernmental panel on climate change, agriculture, and food—a case of shifting cultivation and history. *Glob. Chang. Biol.* 25 (8), 2518–2529. doi:10.1111/gcb.14700.
- Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., Xu, J., 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. *Plants* 8 (2), 34. doi:10.3390/plants8020034.
- Raza, M.M., Bebber, D.P., 2022. Climate change and plant pathogens. *Curr. Opin. Microbiol.* 70, 102233. doi:10.1016/j.mib.2022.102233. <http://www.elsevier.com/locate/mib>.
- Riolo, M., Pane, A., Santilli, E., Moricca, S., Cacciola, S.O., 2023. Susceptibility of Italian olive cultivars to various *colletotrichum* species associated with fruit anthracnose. *Plant Pathol.* 72 (2), 255–267. doi:10.1111/ppa.13652. [http://onlinelibrary.wiley.com/journal/10.1111/\(ISSN\)1365-3059](http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-3059).
- Rizzo, D.M., Lichtveld, M., Mazet, J.A.K., Togami, E., Miller, S.A., 2021. Plant health and its effects on food safety and security in a one health framework: four case studies. *One Health Outlook.* 3 (1), 2524–4655. doi:10.1186/s42522-021-00038-7.
- Rodrigues, A.M., Faria, J.M.S., 2021. Profiling the variability of eucalyptus essential oils with activity against the phylum nematoda. *Biol. Life Sci. Forum* 2 (1), 26. doi:10.3390/BDEE2021-09425.
- Romero, F., Cazzato, S., Walder, F., Vogelsgang, S., Bender, S.F., van der Heijden, M.G.A., 2022. Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. *New. Phytol.* 234 (5), 1553–1556. doi:10.1111/nph.17340.
- Rubio, L., Galipienso, L., Ferriol, I., 2020. Detection of plant viruses and disease management: relevance of genetic diversity and evolution. *Front. Plant Sci.* 11. doi:10.3389/fpls.2020.01092, 1664-462X.
- Sanda, N.B., Sunusi, M., 2014. Fundamentals of biological control of pests. *Int. J. Chem. Biochem. Sci.* 1 (6), 1–11.
- Sandor, M.E., Aslan, C.E., Pejchar, L., Bronstein, J.L., 2021. A mechanistic framework for understanding the effects of climate change on the link between flowering and fruiting phenology. *Front. Ecol. Evol.* 9, 1–16. doi:10.3389/fevo.2021.752110.
- Saldaña-Mendoza, S.A., Pacios-Michelena, S., Palacios-Ponce, A.S., Chávez-González, M.L., Aguilar, C.N., 2023. Trichoderma as a biological control agent: Mechanisms of action, benefits for crops, and development of formulations. *World J. Microbiol. Biotechnol.* 39, 269.
- Sedarati-Jahromi, A., 2021. Effects of Entomopathogens on Insect Predators and Parasitoids. In: Khan, M.A., Ahmad, W. (Eds.), *Microbes for Sustainable Insect Pest Management: Hydrolytic Enzyme & Secondary Metabolite – Volume 2*, Springer International Publishing, Cham, pp. 183–231.
- Shahane, A.A., Shivay, Y.S., 2021. Soil health and its improvement through novel agronomic and innovative approaches. *Front. Agron.* 3, 26733218. doi:10.3389/fagro.2021.680456. www.frontiersin.org/journals/agronomy#.
- Schnelle, M., Rebek, E., 2013. IPM: scouting and monitoring for pests in commercial greenhouses. Oklahoma State University Extension website. <https://extension.okstate.edu/fact-sheets/print-publications/hla/ipm-scouting-and-monitoring-for-pests-in-commercial-greenhouses-hla-6711.pdf>. (Accessed 7 February 2025).
- Sharma, M., Jatwa, T., Sharma, J., 2017. Plant disease management in organic farming. *Ind. Farmer* 4 (4), 314–320.
- Singh Malhi, G., Kaur, M., Kaushik, P., 2021. Impact of climate change on agriculture and its mitigation strategies: a review. *Sustainability* 13 (3), 1318. doi:10.3390/su13031318.

- Shi, X., Zhao, Y., Xu, M., Ma, L., Adams, J.M., Shi, Y., 2024. Insights into plant–microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era. *New Crops* 1, 100004. doi:[10.1016/j.ncrops.2023.11.002](https://doi.org/10.1016/j.ncrops.2023.11.002).
- Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H., Trivedi, P., 2023. Climate change impacts on plant pathogens, food security and paths forward. *Nat. Rev. Microbiol.* 21 (10), 640–656. doi:[10.1038/s41579-023-00900-7](https://doi.org/10.1038/s41579-023-00900-7). <https://www.nature.com/nrmicro/>.
- Sinclair, F., Wezel, A., Mbow, C., Chomba, S., Robiglio, V., Harrison, R., 2019. The contribution of agroecological approaches to realizing climate-resilient agriculture. *Global Centre on Adaptation..* <https://gca.org/wp-content/uploads/2020/12/TheContributionsOfAgroecologicalApproaches.pdf> (Accessed 7 February 2025).
- Singh, S., Kumar, V., 2023. Weed management under organic crop production in horticulture crops. In: Conference on Agro-ecology Based Agri-Food Transformation System At Meerut. p. 17.
- Singh, A., Mazahar, S., Chapadgaonkar, S., Giri, P., Shourie, A., 2023. Phyto-microbiome to mitigate abiotic stress in crop plants *Front. Microbiol.* 14, 1210890. doi:[10.3389/fmicb.2023.1210890](https://doi.org/10.3389/fmicb.2023.1210890).
- Sintayehu, D.W., 2018. Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. *Ecosyst. Health Sustain.* 4 (9), 225–239. doi:[10.1080/20964129.2018.1530054](https://doi.org/10.1080/20964129.2018.1530054).
- Sithole, Z., Siwela, M., Ojo, T.O., Hlatshwayo, S.I., Kajombo, R.J., Ngidi, M.S.C., 2023. Contribution of fruits and vegetables to the household food security situation of rural households in Limpopo. *Nutrients* 15 (11), 2539. doi:[10.3390/nu15112539](https://doi.org/10.3390/nu15112539). <http://www.mdpi.com/journal/nutrients/>.
- Skendžić, S., Zovko, M., Živković, I.P., Lešić, V., Lemić, D., 2021. The impact of climate change on agricultural insect pests. *Insects* 12 (5), 440. doi:[10.3390/insects12050440](https://doi.org/10.3390/insects12050440).
- Smith, et al., 2020. Climate change impacts on horticulture. *J. Agric. Sci.* 45 (2020), 210–225.
- Srivastava, A., Pandey, V., Gaur, R.K., Benkeblia, N., 2022. Climate Change and Its Effects on Plant Viruses Climate Change and Agriculture: Perspectives, Sustainability and Resilience. Wiley, Wiley, pp. 373–398. doi:[10.1002/9781119789789.ch15](https://doi.org/10.1002/9781119789789.ch15).
- Subedi, B., Poudel, A., Aryal, S., 2023. The impact of climate change on insect pest biology and ecology: implications for pest management strategies, crop production, and food security. *J. Agric. Food Res.* 14, 100733. doi:[10.1016/j.jafr.2023.100733](https://doi.org/10.1016/j.jafr.2023.100733).
- Talley, S.M., Coley, P.D., Kursar, T.A., 2002. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. *BMC. Ecol.* 2, 14726785. doi:[10.1186/1472-6785-2-7](https://doi.org/10.1186/1472-6785-2-7)UnitedStates. <http://www.biomedcentral.com/1472-6785/2/7>.
- Temitope, A.E., Patrick, A.A., Abiodun, J., Olasekan, A.A., Onye, A.C., Vincent, A.O.T., Abodunde, A.K., Wutem, E., Elliseus, R.J.P., 2020. Trichoderma asperellum affects *meloidogyne incognita* infestation and development in *celosia argentea*. *Open Agric.* 5 (1), 778–784. doi:[10.1515/opag-2020-0075](https://doi.org/10.1515/opag-2020-0075). www.degruyter.com/view/j/opag.
- Thakre, A., Bisen, A., 2023. Challenges of climate change on horticultural crops and mitigation strategies through adoption and extension based smart horticultural practices. *Pharm. Innov. J.* 12 (2023), 2003–2008.
- Tiedje, J., Cho, J.C., Murray, A., Treves, D., Xia, B., Zhou, J., 2001. Soil teeming with life: New frontiers for soil science. In: Rees, R.M., Ball, B.C., Campbell C.D., Watson C.A. (Eds.). *Sustainable Management of Soil Organic Matter*. CAB International, Wallingford, Oxfordshire, UK, pp. 393–412.
- Ungerfeld, E.M., 2018. Inhibition of Rumen Methanogenesis and Ruminant Productivity: A Meta-Analysis. *Front. Vet. Sci.* 5, 113. doi:[10.3389/fvets.2018.00113](https://doi.org/10.3389/fvets.2018.00113).
- Velásquez, A.C., Castroverde, C.D.M., He, S.Y., 2018. Plant–pathogen warfare under changing climate conditions. *Curr. Biol.* 28 (10), R619. doi:[10.1016/j.cub.2018.03.054](https://doi.org/10.1016/j.cub.2018.03.054). <http://www.elsevier.com/journals/current-biology/0960-9822>.
- Vida, C., de Vicente, A., Cazorla, F.M., 2020. The role of organic amendments to soil for crop protection: induction of suppression of soilborne pathogens. *Ann. Appl. Biol.* 176 (1), 1–15. doi:[10.1111/aab.12555](https://doi.org/10.1111/aab.12555).
- Vlontzos, G., Niavis, S., Kleisiari, C., Sotirios Kyriakos, L., Athanassiou, C., Pardalos, P., 2021. Why farmers get involved in participatory research projects? The case of arable crops farmers in greece. *Appl. Sci.* 11 (1), 6. doi:[10.3390/app1101006](https://doi.org/10.3390/app1101006).
- Walters, D.R., Ratsep, J., Havis, N.D., 2013. Controlling Crop Diseases Using Induced Resistance: Challenges for the Future. *J. Exp. Bot.*, pp. 64, 1263–1280.
- Wang, Y., Dong, S., 2021. A new roadmap for the breeding of disease-resistant and high-yield crops. *Stress. Biol.* 1 (1). doi:[10.1007/s44154-021-00023-0](https://doi.org/10.1007/s44154-021-00023-0).
- Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis, R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Muñoz, R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D., Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F., Whyte, K.P., 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. *Sci. Total. Environ.* 733, 18791026. doi:[10.1016/j.scitotenv.2020.137782](https://doi.org/10.1016/j.scitotenv.2020.137782). www.elsevier.com/locate/scitotenv.
- Wielkopolan, B., Jakubowska, M., 2021. Aleksandra obrepalska-steplowska, beetles as plant pathogen vectors. *Front. Plant. Sci.* 12. doi:[10.3389/fpls.2021.748093](https://doi.org/10.3389/fpls.2021.748093), 1664–462X.
- Wójcik, M., Kasprzyk, I., 2023. Seasonality and intensity of airborne boletus-type spores in relation to land use and weather pattern. *IMA Fungus* 14 (1), 2210–6359. doi:[10.1186/s43008-023-00135-4](https://doi.org/10.1186/s43008-023-00135-4).
- Zandalinas, S.I., Mittler, R., Balfagón, D., 2018. Vicent arbona, aurelio gómez-cadenas, plant adaptations to the combination of drought and high temperatures. *Physiol. Plant.* 162 (1), 2–12. doi:[10.1111/ppl.12540](https://doi.org/10.1111/ppl.12540).
- Zeilinger, S., Gupta, V.K., Dahms, T.E.S., Silva, R.N., Singh, H.B., Upadhyay, R.S., Gomes, E.V., Tsui, C.K.M., Nayak, S.C., 2016. Friends or foes? *FEMS Microbiol. Rev.* 40 (2), 182–207. doi:[10.1093/femsre/fuv045](https://doi.org/10.1093/femsre/fuv045). <http://femsre.oxfordjournals.org/>.
- Zhang, R., Vivanco, J.M., Shen, Q., 2017. The unseen rhizosphere root–soil–microbe interactions for crop production. *Curr. Opin. Microbiol.* 37, 8–14. doi:[10.1016/j.mib.2017.03.008](https://doi.org/10.1016/j.mib.2017.03.008). <http://www.elsevier.com/locate/mib>.

Zhou, Y., Yang, Z., Liu, J., Li, X., Wang, X., Dai, C., Zhang, T., Carrión, V.J., Wei, Z., Cao, F., Delgado-Baquerizo, M., Li, X., 2023. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. *Nat. Commun.* 14 (1), 20411723. doi:[10.1038/s41467-023-43926-4](https://doi.org/10.1038/s41467-023-43926-4). <https://www.nature.com/ncomms/>.

Zhu, F., Lavine, L., O'Neal, S., Lavine, M., Foss, C., Walsh, D., 2016. Insecticide resistance and management strategies in urban ecosystems. *Insects* 7 (1), 2. doi:[10.3390/insects7010002](https://doi.org/10.3390/insects7010002).

Zhu, J., Moreno-Pérez, A., Coaker, G., 2023. Understanding plant pathogen interactions using spatial and single-cell technologies. *Commun. Biol.* 6 (1), 2399–3642. doi:[10.1038/s42003-023-05156-8](https://doi.org/10.1038/s42003-023-05156-8).