
1 
 

TIME AND SPACE COMPLEXITY ANALYSIS OF RSA AND 

ELGAMAL CRYPTOGRAPHIC ALGORITHMS ON MIXED DATA 

 

M.SC. PROJECT 

BY 

ADENIYI ABIDEMI EMMANUEL 

19PGCD000079 

 

SUPERVISOR 

PROFESSOR A. E. OKEYINKA 

 

CO-SUPERVISOR 

DR. (MRS.) M. O. ADEBIYI 

 

DEPARTMENT OF COMPUTER SCIENCE, 

LANDMARK UNIVERSITY, OMU-ARAN. 

 

 

MAY, 2021. 



ii 
 

TIME AND SPACE COMPLEXITY ANALYSIS OF RSA AND 

ELGAMAL CRYPTOGRAPHIC ALGORITHMS ON MIXED DATA 

 

ADENIYI ABIDEMI EMMANUEL 

(19PGCD000079) 

 

A DISSERTATION SUBMITTED TO THE DEPARTMENT 

OF COMPUTER SCIENCE, COLLEGE OF PURE AND 

APPLIED SCIENCES, LANDMARK UNIVERSITY, OMU-

ARAN, NIGERIA. 

 

IN PARTIAL FULFILMENT OF THE REQUIREMENT 

FOR THE AWARD OF THE DEGREE OF MASTER OF 

SCIENCE (MSc.) IN COMPUTER SCIENCE. 

 

MAY, 2021. 



iii 
 

DECLARATION 

I, Abidemi Emmanuel ADENIYI an M.Sc. student in the Department of Computer 

Science, Landmark University, Omu-Aran, hereby declare that this thesis entitled “Time 

and Space Complexity Analysis of Rivest-Shamir-Adleman (RSA) and Elgamal 

Cryptographic Algorithms on Mixed Data”, submitted by me is based on my original 

work. Any material(s) obtained from other sources or work done by other persons or 

institutions have been duly acknowledged. 

 

Abidemi Emmanuel ADENIYI (19PGCD000079) 

Student’s Full Name and Matriculation Number 

 

_________________ 

Signature & Date 

 

 

 

 

 

 



iv 
 

CERTIFICATION 

This is to certify that this dissertation has been read and approved as meeting the 

requirements of the Department of Computer Science, Landmark University, Omu-Aran, 

Nigeria, for the Award of M.Sc. Degree. 

 

_____________________      ______________ 

Professor A. E. Okeyinka       Date 

(Supervisor) 

 

_____________________      ______________ 

Dr. (Mrs.) M. O. Adebiyi       Date 

(Co-Supervisor) 

 

_____________________      ______________ 

Dr. (Mrs.) M. O. Adebiyi         Date 

(Head of Department) 

 

___________________      _____________ 

Professor P. A. Idowu        Date 

(External Examiner) 

 

 

 

 



v 
 

DEDICATION 

This project is dedicated to the Lord Almighty who made this programme a success, also 

to my wife Adepeju Adeniyi, my Children,   Elizabeth and Emmanuel Adeniyi, and my 

siblings for their continuous care and support towards me. 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ACKNOWLEDGEMENT 

My profound gratitude goes to Almighty God the giver of wisdom, for guidance and 

protection throughout this programme.  

I appreciate the efforts of my supervisors Professor A. E. Okeyinka and Dr. (Mrs). M. O. 

Adebiyi for the time taken to read, correct and proofread this project and also for their 

parental advice for the success of this project. 

I also acknowledge my parents, and family members for the love and support they gave me 

throughout this programme, May God Bless you. To my siblings, wife and children sister 

Bola, Brother Victor, Lekan, Ajoke, Adepeju, Elizabeth and Emmanuel Adeniyi I say many 

thanks to you all. 

Also, I will like to appreciate Mr Asani and Dr Gbadamosi for their support. Thanks for 

your patience with me. I want to appreciate my course mates Jesutofunmi, Pelumi, I say 

thank you for the friendship bond of good memories. To the School of Postgraduate 

Landmark University, I say thank you. 

Lastly, I want to acknowledge all the lecturers I passed through in the Department of 

Computer Science and University-Wide Courses Landmark, without them I will not be 

writing this project, I say a Big Thanks to you all. 

 

 



vii 
 

ABSTRACT 

The complexity study of algorithms, especially computationally intensive ones is of great 

significance in the field of complexity. Cryptographic algorithms are considered to be 

computationally intensive because they utilize a substantial number of computational 

resources, such as CPU memory and processing time. Cryptographic algorithms provide a 

solution to the security of data transmission whereby ensuring integrity, confidentiality and 

authentication of any form of data. However, there are still challenges of which 

cryptographic algorithms are suitable in terms of computation speed and memory usage. 

Whereas, a good number of research efforts have been put into experimenting on the 

complexities of the cryptographic algorithm on text, image and audio data, little has been 

done on video data. In this study, the time and space complexity of RSA and ElGamal 

cryptographic algorithms on mixed data was carried out. RSA and ElGamal cryptographic 

algorithms was implemented using C-sharp (C#) programming language to encrypt and 

decrypt text, image, audio and video dataset. In achieving the objectives of the study, both 

the implemented algorithms (RSA and ElGamal) are depicted using pseudocodes and 

flowcharts, while some of the datasets used were sourced from various online repositories. 

The time complexities of each dataset was obtained using the CPU internal clock while the 

space usage for each operations on each of the dataset was obtained using the computer 

internal memory. Tables and graphs was used to carry out the comparative analysis of both 

algorithms. The time and space complexity of RSA and ElGamal algorithms were 

experimented on text, image, audio and video dataset. The experimental results revealed 

that RSA outperformed ElGamal in terms of computational time during encryption of all 

categories of data. ElGamal outperformed RSA in terms of computational time during 



viii 
 

decryption of all categories of data. ElGamal algorithm outperformed RSA in terms of 

memory usage during encryption of all categories of data while both algorithms used 

relatively the same amount of space during decryption of all categories of data used. Based 

on the comparative analysis of the time and space complexity on both RSA and ElGamal 

algorithms, it was discovered that RSA is a better algorithm when it comes to time 

complexity, that is, RSA can be said to be a time-efficient algorithm. ElGamal algorithm 

performed better than RSA in the memory usage aspect, therefore the ElGamal algorithm 

is said to be a memory-efficient algorithm. Therefore, this study hereby recommend that 

other measurement metrics may be used to compare both algorithms in future works. 

 

 

 

 

 

 

 

 

 



ix 
 

TABLE OF CONTENTS 

Title Page -------------------------------------------------------------------------------------------- ii 

Declaration ------------------------------------------------------------------------------------------iii 

Certification ---------------------------------------------------------------------------------------- iv 

Dedication -------------------------------------------------------------------------------------------v 

Acknowledgement --------------------------------------------------------------------------------- vi 

Abstract --------------------------------------------------------------------------------------------- vii 

Table of Contents --------------------------------------------------------------------------------- viii 

List of Tables -------------------------------------------------------------------------------------- xii 

List of Figures ------------------------------------------------------------------------------------ xiii 

CHAPTER ONE 

1.0. INTRODUCTION 

1.1 Background to the Problem ………………………………………………….…..1 

1.2 Statement of the Problem ………………………………………………………...4 

1.3 Justification for the Study ………………………………………………………..5 

1.4 Aim and Objectives of Study……………………………………………………..6 

1.5 Research Methodology ………………………………………………….………..6 

1.6 Scope of  the Study ...………………………………………………………..........7 

1.7 Significance of the Study ………………………………………………………....7 

1.8 Organization of Study……………………………………………………………..7 

 



x 
 

CHAPTER TWO 

2.0. REVIEW OF LITERATURE 

2.1 Conceptual Issues ………………………………………………………..…...…..9 

 2.1.1 Symmetric Cryptography ………………………………………………….11 

 2.1.2 Asymmetric Cryptography …………………………...…………………....15 

2.2 RSA Cryptographic Algorithm ……………………………………………..…...16 

2.3 Elgamal Cryptographic Algorithm ……………………………………………...17 

2.4  The Elliptic Curve Cryptographic Algorithm ……………………………….….18 

2.5 Diffie–Hellman Cryptographic Algorithm ……………………………………. 18 

2.6 Review of Methodological Approach ………………………………………… 20 

2.7 Gap Identified in literature ………………………………..……………………28     

CHAPTER THREE 

3.0. METHODOLOGY 

3.1 Research Design ………………………………………………….…...….29 

3.2 Research Design Layout ………………………………………………....…….32 

 3.2.1 RSA Cryptographic Algorithm …………………………………………33 

  3.2.1.1 Key Generation………………………………………………….34 

  3.2.1.2 Encryption and Decryption……..……………………………....34 

  3.2.1.3 Illustration of RSA Cryptographic Algorithm..…………..…….36 

 3.2.2 Elgamal Cryptographic Algorithm..…………………………….….......37 



xi 
 

  3.2.2.1 Key Generation..………………………………………...……..37 

  3.2.2.2 Encryption and decryption ……………………………….……37 

  3.2.2.3 Illustration of the ElGamal Cryptographic Algorithm.……….. 38 

 3.2.3 Analysis of Time and Space Cryptographic Algorithm ……………… 40 

3.3 Data Collection …………………………………………………………….… 41 

3.4 Data Analysis Algorithm……………………………………………………… 42 

3.5 Research Instruments/Tools ………………………………………………….. 43 

3.6 Mixed Data Analysis …………………………………………………………. 44 

3.7 Implementation ……………………………………………………………….. 45 

CHAPTER FOUR 

4.0. RESULTS AND DISCUSSIONS OF FINDINGS 

4.1  Experimental Interfaces …….………………………………………………… 46 

4.2  Experimental Results…………………………………………………………… 48 

 4.2.1 Discussion of Results for RSA and ElGamal on Text Data……….……..54 

 4.2.2 Discussion of Results for RSA and ElGamal on Image Dataset...………60 

 4.2.3 Discussion of Results for RSA and ElGamal on Audio Data….………..66 

 4.2.4 Discussion of Results for RSA and ElGamal on Video Dataset ………..73 

4.3 Discussions of Findings …………………………………………………………74 

 



xii 
 

CHAPTER FIVE 

5.0. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary………………………………………………………………………..76 

5.2 Conclusion…..………………………………………………………………… 78 

5.3 Limitation ..…………………………………………………………………… 79 

5.4 Recommendation ……..………………………………………………………. 79 

5.5 Contribution to Knowledge……………………………………………………. 79 

5.6 Future Work ………………...……………………………………………….... 80 

References ……………………………………………………………………….…… 81 

Appendix ……………………………………………………………………………… 90 

 

 

 

 

 

 



xiii 
 

LIST OF TABLES 

Table 1: Research Methodology Table …………………………………………..…....31 

Table 2: Terminology of Complexity of Algorithms ………………………………….41 

Table 4.1 Tabular representation of Text Data encryption for RSA and ElGamal 

algorithms …………………………………………………………………..49 

Table 4.2 Tabular representation of Text Data decryption for RSA and ElGamal 

algorithms…………………………………………………………………...52 

Table 4.3 Tabular representation of Image Data encryption for RSA and ElGamal 

algorithms……………………………………………………………….…..55 

Table 4.4 Tabular representation of Image Data decryption for RSA and ElGamal 

algorithms.......................................................................................................58 

Table 4.5: Encryption Time and Space Usage of RSA and ElGamal for  

Audio Data…………………………………………………………………..61 

Table 4.6: Decryption Time and Memory Usage of RSA and ElGamal for  

Audio Data………………………………………………………………....64 

Table 4.7: Encryption Time and Space Usage of RSA and ElGamal for  

Video Data …………………………………………………….…………..68 

Table 4.8: Decryption Time and Space Usage of RSA and ElGamal for  

Video Data ……………………………………………………….……..…71 

 

 

 

 



xiv 
 

LIST OF FIGURES 

Figure 1: Encryption and Decryption Process …………..……………………………... 2 

Figure 2.1: Classification of Cryptography    …………..……………………………... 10 

Figure 2.2: Overview of Symmetric Encryption Process..……………………………...11 

Figure 2.3: Overview of Asymmetric Encryption process..……………………………..16 

Figure 3.1: Conceptual Framework of the study.………………………………………..30 

Figure 3.2: Research Design Layout ……………………………………………………32 

Figure 3.3: Flowchart of RSA Cryptographic Algorithm ………………………………35 

Figure 3.4: Flow Diagram of ElGamal Algorithm …………………………………...…38 

Figure 3.4: Categories of Data ………………………………………………………….42 

Figure 4.1: Interface of Birth and Birth rate dataset of text data.  ……………………...46 

Figure 4.2: Interface of Image data and its corresponding hexadecimal form. …...……47 

Figure 4.3: Interface of Audio and Video dataset ……………………………………...48 

Figure 4.3: Encryption Time Analysis for RSA and ElGamal cryptographic algorithms 

for text dataset…………………………………………………..…………50                                                                              

Figure 4.4: Memory Used Analysis for RSA and ElGamal for Text Dataset during 

Encryption Process………………………………………….……………. 51 

Figure 4.5: Decryption Time Analysis of RSA and ElGamal Algorithms for  

Text Dataset. ………………………………………………………………53 

Figure 4.6: Memory Usage during Decryption of Text Dataset..………………………54 

Figure 4.7: RSA and ElGamal Encryption Time Analysis for Image Data…………… 56 

Figure 4.8: RSA and ElGamal Space used for encrypting Image data. ...…………….. 57 

Figure 4.9: RSA and ElGamal Decryption Time for Image data.………………………59 

Figure 4.10: Space used by RSA and ElGamal during Decryption of Image Data...…..60 

Figure 4.11: Encryption Time of RSA and ElGamal Algorithms for Audio Data……..62 



xv 
 

Figure 4.12: Memory Usage of RSA and ElGamal Algorithms during Encryption of 

Audio data….……………………………………………………………..63 

Figure 4.13: Decryption time for RSA and ElGamal Algorithms for Audio Data……..65 

Figure 4.14: Decryption Memory Usage of Audio Data using RSA and ElGamal 

Algorithms………………………………………………………………..66 

Figure 4.15: Encryption Time of RSA and ElGamal Cryptographic algorithms for video 

data.............................................................................................................69 

Figure 4.16: Memory usage during encryption of video data with RSA and ElGamal 

cryptographic algorithms………………….....………………………….. 70 

Figure 4.17: RSA and ElGamal Decryption Time obtained from Video Data….…….. 72 

Figure 4.18: RSA and ElGamal Memory Usage from Video data Decryption  

Process. …...………………………………………………………………73 

 

 

 

 

 

 

 

 



1 
 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

Data security is the science and study of strategies of securing data from unauthorized 

disclosure and alteration in computer and communication systems (Mondal et. al., 2020). 

With the exponential increase in the volume of data communication and transfer, and with 

the proliferation, diversification and intensity of malicious activities, the need to ensure 

and sometimes enforce the security of data has become even more urgent and critical 

(Hong, 2012; Asani et al., 2018; Statistica, 2018). Consequently, research activities in Data 

security have evolved rapidly and have produced exciting developments in related 

application fields of computer security such as cryptography. Cryptography is a technique 

of preventing illegitimate access to information and data (Singanjude and Dalvi, 2020). 

Cryptography is the act of securing data and information through encryption and 

decryption. It is always synonymous with transforming plain text (ordinary text, also 

referred to as simple text) into cipher text (a method called encryption), then back again as 

plain text (known as decryption) (Aldullah, 2017). Current cryptography is concerned with 

the following goals: 

a) secrecy (the data cannot be understood by any person for whom it was not 

deliberate) 

b) Integrity (the data cannot be changed in storage or transfer between source and 

proposed receiver without the amendment being noticed) 



2 
 

c) Non-repudiation (the composer of the content cannot dispute, at a later point, his 

intention to create or distribute the information) 

d) Authentication (the transmitter and the recipient can affirm the presence of each 

other and the source of the data). 

The primary application of cryptography is encryption; it helps data to ensure its 

confidentiality by producing incomprehensible output (Mondal et al., 2020). Various 

cryptographic methods are used to ensure data security, each approach having unique 

encryption and decryption processes that only enables approved individuals to read the 

encrypted message. Figure 1 displays the process of encryption and decryption; a plaintext, 

𝑃 is encrypted through a cypher process 𝐸, with an input Key, 𝐾, to generate ciphertext, 𝐶 

as the output. This relation can be denoted as 𝐶 =  𝐸(𝐾, 𝑃). The inverse cypher process of 

decryption 𝐷 converts the cyphertext 𝐶 back to plaintext. This relation is depicted as 

𝐷(𝐾, 𝐶). 

 

Figure. 1. Encryption and Decryption Process 

Cryptography can be categorized as symmetric or asymmetric key. Symmetric 

cryptography uses single key encryptions. The same key is used for both encryption and 

decryption. The strength of symmetric key encryption depends on the secrecy of encryption 

E

K

CP D

K

PC



3 
 

and decryption keys. Asymmetric cryptography on the other hand demands different keys 

to be used for the encryption and decryption process. Asymmetric encryption uses hidden 

(private) and distributed (public) keys to solve computationally complex problems. Some 

popular Symmetric cryptography includes the Data Encryption Standard (DES), Advanced 

Encryption Standard (AES). Some Asymmetric techniques include the Diffie Hellman 

Algorithm, Rivest–Shamir–Adleman (RSA), Elgamal among others (Suguna, Dhanakoti, 

and Manjupriya, 2016). The RSA and ElGamal are classic asymmetric cryptographic 

algorithms that provide security for data. RSA has dynamic keys, which can vary 

depending on the key generation (Shah, et. al., 2018). The El-Gamal algorithm is a public-

key cryptosystem that was developed based on the discrete logarithm problem. The 

algorithm provides both encryption and signature algorithms (Rashmi and Shiv, 2012). 

The intricacy of an algorithm is the measure that evaluates the number of resources, such 

as time, space, energy and so on, that the algorithm requires. It is a measure of how ‘good’ 

the algorithm is at solving the problem. It can also be described as the efficiency of the 

algorithm in terms of the amount of data the algorithm must process (Aljawarneh, and 

Yassein, 2017). Typically, the complexity of an algorithm is a function that maps the input 

length/size to the number of main stages (time complexity) or specific storage position 

(space complexity) (Kumar et. al., 2016). Complexity can be described as the highest limit 

of primitive operations a function can perform. There are two main complexity metrics for 

the reliability of an algorithm, Time and Space Complexity (Kumar et. al., 2016). The time 

complexity of an algorithm is a function that defines the length of time the algorithm takes 

when it comes to the amount of input to the algorithm. Time may represent the amount of 

memory accesses that have been made, the numbers of measurements between integers, 



4 
 

the number of times any inner iterations are run, and the amount of real time the algorithm 

would take. The use of time complexity makes it easy to estimate the running time of a 

program. Performing an accurate calculation of a program’s operation time is a very 

labour-intensive process. It depends on the compiler and the type of computer or speed of 

the processor. Best-case, worst-case and average-case are the three ways of measuring time 

complexity. The space complexity of an algorithm is a function that defines the quantity of 

memory (space) an algorithm uses in terms of the amount of input to the algorithm. Space 

complexity includes all the variables, both global and local. Some algorithms are more 

efficient than others, so having metrics for comparing their efficiency will be necessary; 

therefore, this study aims to determine the time and space complexity of RSA and Elgamal 

cryptographic algorithms on mixed data. 

1.2     Statement of the Problem 

Cryptographic algorithms are known to be computationally intensive; they consume a 

substantial quantity of computing resources such as CPU time, and memory. Hence, a good 

number of research efforts have been put into experimenting on the complexity of 

cryptographic algorithms on text, image, and audio data without much effort on video data. 

Also previous research dwells more on time complexity of cryptographic algorithms for 

text, image and audio dataset with limited file size without putting into consideration the 

memory used by the algorithm (Dindayal and Dilip, 2018; Kyaw, Kyaw and Nya, 2019; 

Zarni et. al., 2019). The amount of resources (time and space) to be used by cryptographic 

algorithms when it comes to encrypting and decrypting mixed data cannot be 

predetermined as the cryptographic algorithms speed need to be measured in terms of either 

fast, slow or moderate scenario. Additional, literature on the complexity of mixed data is 



5 
 

scarce. Determining the time and space complexities of cryptographic techniques helps to 

improve infrastructure design, decision making, and allocation of resources. A study on the 

complexities of mixed data vis-à-vis time and space has therefore become imperative. 

Hence, this study is an attempt to consider video data in addition to text, audio, and image 

data. Furthermore, this study has considered the performance of the RSA and ElGamal 

cryptographic algorithms on each of the mixed data.  

1.3      Justification for the study 

The cryptographic algorithm can be categorized into two basic forms, which are symmetric 

and asymmetric algorithms. But asymmetric algorithms are associated with complexity 

challenges due to the two keys used for encryption and decryption. Therefore, there is a 

need to study these algorithms in terms of their time and space performance. Analysis of 

Cryptographic algorithms are an important part of computational complexity theory, which 

provides theoretical estimation of the required resources of an algorithm to solve a specific 

computational problem. The running time of a cryptographic algorithm is stated as a 

function relating the input length to the number of steps (time complexity) or storage 

locations (space complexity), thus, makes it crucial to study the performance of the 

cryptographic algorithms in terms of time and space consumption. This research 

implements two popular asymmetric cryptographic algorithms to determine their time and 

space complexity on mixed data. The outcome of this study is intended to assist the 

expertise in the field of computational complexity to identify optimal cryptographic 

algorithms to solve a computational problem. 

1.4      Aim and Objectives 



6 
 

This study aims to determine the space and time complexity of RSA and Elgamal 

cryptographic algorithms on mixed data. The specific objectives are to: 

1. Implement both the RSA and Elgamal algorithms in encrypting and decrypting 

mixed data using C-sharp (C#) programing language.  

2. Compute the time and space complexities of the two algorithms using CPU internet 

clock and computer primary memory. 

3. Determine the behaviour of the algorithms on the mixed data. 

1.5  Research Methodology 

The RSA and Elgamal are classic cryptographic techniques, known for their computational 

abilities. The objective is to encrypt and decrypt mixed data using both the RSA and 

Elgamal and compare their performances based on their time and space complexities. In 

achieving the first objective, both the RSA and Elgamal algorithms are depicted using 

pseudocodes and flowcharts while the algorithms are implemented in C# programming 

environment. The second objective was achieved using the CPU internal clock to compute 

the encryption time and decryption time of both RSA and ElGamal algorithms while 

Computer internal memory was used to compute the encryption space usage and decryption 

space usage of both RSA and ElGamal algorithms. The third objective was achieved using 

various tables and graphs to analyze and compare the time and space usage of both RSA 

and ElGamal algorithm on text, image, audio and video dataset. Some datasets shall be 

sourced from online repositories such as Lipsum, datahub and Kaggle, others shall be 

generated randomly using a random number generator function. The study chose C# 



7 
 

programming language to implement both algorithms because C# is particularly strong at 

building windows desktop applications. 

1.6  Scope of the Study 

This study is limited only to the analysis of time and space complexities of the RSA and 

ElGamal cryptographic algorithms.  

1.7  Significance of the Study 

In the real world, users are constrained by the primary storage of the devices on which they 

want to execute their programs. This is where space complexity comes into play, so we 

never want to run a process or procedure that takes up more space than the machine has 

available at any given time. On the other hand, we don't want our procedure to be so lengthy 

that our processes get congested and get slower. Thus, this study identifies the suitable 

algorithms for obtaining optimal time and space complexity in a real world application and 

also compares their performance on text, image, audio and video datasets. Also, this will 

help to make a precise decision when it comes to the choice of algorithm to be used in 

solving a computational problem. 

1.8 Organization of Dissertation 

This project is organized into five chapters. The remaining part of the dissertation is as 

follows: The second chapter covers the review of literature covering already existing 

research on the RSA and ElGamal cryptographic algorithms. The third chapter covers the 

research methodology, the design of the RSA cryptographic algorithm, the design of the 

ElGamal cryptographic algorithm, the terminology of time and space of an algorithm. The 



8 
 

fourth chapter presents a discussion of the results obtained. The fifth, which is the final 

chapter discusses the summary of the findings, conclusions and recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

CHAPTER TWO 

REVIEW OF LITERATURE 

2.1 Conceptual Issues 

A large volume of data is accessed daily and transferred from one person to another for 

real-life applications. When the information is transmitted from the sender to the recipient, 

it can be eavesdropped by the attacker and thus presents a continuous threat to the secrecy 

or security of the results. The famous technique to maintain confidentiality of such a large 

amount of data is cryptography (Preeti et. al., 2018).   

Cryptography is an important part of the new field of information technology, making the 

digital world a safer environment. Cryptography is a method that makes knowledge 

unreadable to an unauthorized individual (Priyadarshini, et. al., 2015). However, offering 

confidentiality of legitimate customers. Various cryptographic algorithms can be used. 

Ideally, a consumer requires a low-cost, high-performance cryptographic algorithm. In 

fact, however, there is no such algorithm as a one-stop solution. There are some algorithms 

with a cost-effective trade-off (Haitner and Vadhan, 2017). For instance, a banking firm 

wants the highest degree of security at a significant expense, and a game software that 

sends a player template for analytics does not care much about privacy, but needs to be fast 

and cost-effective. 

The Cryptographic method uses an algorithm and a hidden (key) value. The key can be the 

same with all encryption-decryption procedures or it can be different for each type of 

encrypted message used (Viney and Sandeep, 2016). Based on the type of key utilized, 



10 
 

cryptography methods can be divided into two distinct categories: symmetrical (secret) and 

asymmetrical (public) key encryption. 

 

Figure 2.1: Classification of Cryptography 

A system which handles encryption and decryption is labeled a cryptosystem. The 

difficulty of the encryption method lies on the algorithm used for encryption, the program 

used and the key used in the algorithm for encrypting or decrypting data (Abdullah, 2017). 

Based on the number of keys required, encryption techniques may be categorized as 

asymmetrical algorithms (public key) and symmetrical algorithms (secret key). In 

Symmetric data cryptography or hidden key encryption, the same key is used by transmitter 

and recipient. Data Encryption Standard (DES), 3DES, and Advanced Encryption Standard 

(AES) are instances of a symmetric key encryption technique (Suguna, Dhanakoti and 

Manjupriya, 2016). Asymmetric key encryption uses two separate keys (public and private 

keys) for encoding and decoding. The public key is used for encryption and the private key 

Cryptography

Symmetric 
Cryptography

Stream 
Cipher

Block Cipher

Asymmetric 
Cryptography

RSA and 
others



11 
 

is used for decryption purposes. Instances of asymmetric key algorithms are Rivest-

Shamir-Adelman (RSA) and Elliptic Curve Cryptosystem (ECC). 

2.1.1 Symmetric Cryptography 

Symmetric cryptography is known as secret key encryption which uses the same key for 

encryption and decryption. The symmetrical key (secret key) encryption requires a similar 

key to encrypt and decode a document. Encryption and decryption keys are kept 

confidential and are accessible only to registered senders and receivers who wish to 

connect. The strength of symmetric key cryptography depends on the privacy of senders 

and recipients keys. Symmetric key encryption algorithms can be grouped into a block and 

stream cipher based on document bit clustering (Mushtaq et. al., 2017; Gupta, Saluja, and 

Tiwari, 2018). In a block cypher, a set of texts of a fixed size (a block) is encoded at once 

and sent to the recipient. In addition, the block cipher can be further separated into binary 

and non-binary block ciphers depending on the final effects of the code, keys and cipher 

text. The message bit size for the binary block cypher is 64, 128, 192, and 256.  

 

 

 

 

Figure 2.2: Overview of Symmetric Encryption Process 

There are quite number of symmetric algorithms like Blowfish, DES, Triple DES, AES 

among others. Each algorithm uses a different method of encrypting and decrypting data, 



12 
 

each of which often encrypts and decrypts set data sizes as blocks and fixed key sizes 

(Stallings, 2014; Panda, 2017). These algorithms can only permit the Common letter, 

special characters and numerical values to be entered as plaintext. 

A. Data Encryption Standard Symmetric Algorithm 

Data Encryption Standard (DES) was the very first cryptography protocols to be 

established by the National Institute of Standards and Technology (NIST). It was created 

in 1974 by the IBM group and accepted as a global practice in 1997 (Rabah, 2005). DES 

is a common system for the protection of confidential and unlabeled data (Suo et. al., 2012). 

Over the last years, DES has been very common in industrial, armed forces and other 

domains (Rabah, 2005).  

Originally, DES uses 64 bits as input block, a 56-bit key and the outstanding 8 bits for odd 

parity checks. Numerous threats and techniques have found the vulnerabilities of DES from 

the time, which rendered it an unsafe cypher block (Oduyiga, 2018). The decryption of the 

cypher data is done with the reversed steps of the encryption mechanism with the same 

key. Using identical key for the encoding and the decoding mechanisms gives the attackers 

of the cypher data a big opportunity to attack the encryption system, which forms an 

important weakness of this algorithm. 

 

 

 

 



13 
 

B. Triple Data Encryption Standard (3DES) Symmetric Algorithm 

Brute-force assaults became more possible given the abundance of rising computing 

resources. The initial 56-bit key size of the DES cypher was defective in cryptography, 

3DES is an upgrade to the DES which was produced in 1998; it is 64-bit block length, 

expanding the block length to 192 bits. This encryption technique is similar to the previous 

DES but applied 3 times, so 3DES is 3 times comparatively slow compared to DES, low 

power consumption and throughput performance but more stable (Thambiraja, 2012).  

The message in 3DES is encoded with the first key, decoded with the second key, and 

encoded with the third key. Decryption is done in reversal and also in the encryption 

procedure. This algorithm defines the three primary sorting steps of the package (Singh, 

2013): 

Step 1: The chosen level consists of three mutually independent keys (K1 to K2 to K3 to 

K1). Gives a 3 x 56 = 168 bit keyspace. 

Step 2: Using two mutually exclusive keys and a final key that is the same as the first key 

(K1 name K2 and K3 = K1). This offers a main area of 2×56 = 112 bits. 

Step 3: Is a key package that uses the same parameters (K1 = K2 = K3). It's the same DES 

algorithm. 

 

C. Blowfish Symmetric Algorithm 

This recently designed encryption method is a regular symmetric block cypher. It should 

be easy to encrypt data with a 32-bit processor at a clock speed of 18 cycles per byte. A 



14 
 

small memory capacity of 5K less can be used. This norm has a basic framework that is 

easy to enforce and use. The strength of the norm could also be easily measured. The length 

of the Blowfish standard key is variable and can be 448 bit long (Singh and Singh, 2013). 

This offers the operator of this method greater stability, but the operator should recognize 

speed concerns when implementing larger key length values with a Block size of 64bits at 

defaults.  

Blowfish is a 64-bit block cypher that can be taken from 32-bit to 448-bit variable-length 

keys; 128-bit standard bit. Built to substitute the DES cryptographic algorithms, so 

blowfish is a better cryptographic algorithm than other cryptographic algorithms described 

earlier. Blowfish is license-free and easily accessible for all applications (Rahim, 2017). 

Usually, data encryption in a blowfish algorithm is achieved with a 16-round. Each round 

includes two parts: dependent variable substitution cipher and key-and data-dependent 

substitution; all procedures are XORs and additions to 32-bit words; the only operation 

introduced is fourth ordered array data using S-boxes for each round. 

D. Advanced Encryption Standard (AES) Symmetric Algorithm 

AES is planned to be a modern encryption standard endorsed by NIST to succeed DES. 

AES is a block cypher named Rijndael, created in 1997 by Joan and Rijmen. It has a 

separate key size of 128, 192, or 256 bits; the standard is 256. The cryptography method 

has varying circles based on key duration, it requires 10 sequences for key size 128, 12 

rounds for key size 192 and 14 rounds for key size 256. In the AES cryptography algorithm; 

the sequence phase is done recursively several times depending on the key length. The 

decryption algorithm method is the same as the encryption algorithm phase, but with each 

transition stage inversely.  



15 
 

The AES algorithm has been developed to solve the shortcomings of the Data Encryption 

Standard. It is a regular block cypher with a symmetric key solution (Talirongan, 2018). It 

offers a superior encryption option than 3DES with an increased level of protection and 

improved performance quality. AES is based on the theory of architecture identified as the 

substitution-the permutation framework. And AES is running on a 4x4 column-major byte 

order matrix. The key size used by the AES cypher determines the number of 

transformation round repeats. For 128-bit keys, 10 replicate cycles were required, 12 

replicate cycles were needed for 192-bit keys and 14 replicate cycles were needed for 256-

bit keys. Each round has specific operations, such as SubBytes, ShiftRows, MixColumns 

and AddRoundKey (Lee, et. al., 2018). 

2.1.2 Asymmetric Cryptography 

Asymmetric cryptography is an encryption category where a hidden key can be split into 

two sections, a public key and a private key. With asymmetrical encryption, its secret key 

can only decrypt a message encrypted with a public key, and inversely (Mavroeidis, 2018). 

Asymmetric encryption fixes the issue of sharing without encrypted transmission by 

encouraging parties to share their public keys and encrypt data utilizing mathematical 

equations so that the message cannot be decrypted by eaves-dropper. 

 Asymmetric encryption has been created to solve the challenges of key exchange. The 

private key of asymmetric is never shared; it is kept secret and is used only by its owner 

while the public key is made available to anyone who wants to use it, this is the main 

strength of asymmetric encryption that makes it to be more secure. RSA, Elgamal, Diffie-

Hellman, DSA among others are major asymmetric algorithms used for data security. 



16 
 

 

 

 

 

Figure 2.3: Overview of Asymmetric Encryption process. 

The encryption process of asymmetric is as follows:  

1    The sender of a message uses the intended recipient's public key, which is freely 

available, to encrypt a message. 

2    The recipient decrypts the message using his or her private key. Only the private key 

associated with the public key that encrypted it can be used to decrypt the message. 

 

2.2 RSA Cryptographic Algorithm 

In 1977 Rivest, Shamir and Adelman of the Massachusetts Institute of Technology 

proposed the RSA algorithm which is an asymmetric cryptographic algorithm (Singh, 

2013). It is one of the best techniques of public-key cryptosystems for key swap and 

encryption of blocks of data. It requires two keys, one is the public key for encryption and 

the other is the private key to decrypt a message. The key size of RSA is 1024 to 4096 bits. 

It uses two prime numbers to generate a public-key and a private key. The sender encrypts 

the message using the receiver’s public key and on the decryption side, the message is 

decrypted using the receiver’s private key, because of this attribute the Rivest, Shamir and 

Adleman have been the widely used algorithm (Kyaw, Kyaw and Nay, 2019). 



17 
 

The RSA algorithm involves three steps which include Key generation, encryption and 

decryption. The RSA key was made as strong as possible to increase ciphertext robustness. 

A key that is difficult to crack and requires a lot of time certainly has higher robustness. 

Two initial variables that are very important in building RSA keys are prime number 𝑝 and 

prime number 𝑞. RSA algorithm, choosing prime number 𝑝 and prime number 𝑞 can affect 

the key and also the ciphertext. 

 

2.3 Elgamal Cryptographic Algorithm 

The ElGamal encryption method is an asymmetric key encryption technique for public-key 

cryptography based on the Diffie–Hellman key exchange. Taher Elgamal presented it in 

1985. ElGamal cryptography is often used in unlimited GNU Privacy Shield, latest models 

of PGP, and other cryptography. Digital Signature Algorithm (DSA) is a modified version 

of the ElGamal signature scheme that should not be mistaken with ElGamal cryptography 

(Rashmi and Shiv, 2012). Encryption and decryption for ElGamal was established on the 

complexity of the discrete algorithm problem directed to increase numbers of big powers. 

However, it is much harder to do the reverse calculation of the discrete logarithm (Rashmi 

and Shiv, 2012). 

ElGamal cryptography is probabilistic, which means that a specific plaintext can be 

encoded to several potential ciphertexts, with the effect that the standard ElGamal 

encryption generates a 2:1 extension in length from plaintext to ciphertext. Encoding under 

ElGamal needs two exponentiations; thus, these exponentiations are independent of the 

text and can be calculated long in advance if required. Decryption involves one 



18 
 

exponentiation and one reverse category calculation, which can conveniently be merged 

into one exponentiation. 

 

2.4 The Elliptic Curve Cryptographic Algorithm 

The Elliptic Curve Cryptography (ECC) is an asymmetric cryptographic technique based 

on an elliptic curve theory that can be used to create faster, smaller, and more efficient 

cryptographic keys (Johnson et. al., 2001; Mahmood et. al., 2018). It offered a new level 

of security for Public Key Cryptographic (PKC) which provides both encryption and digital 

signature services. ECC certificate allows the Key size to stay compact while offering a 

stronger degree of protection. Its key generation process is distinct from RSA and Elgamal, 

though focusing on the use of a shared encryption key and a private decryption key.  It was 

designed for devices with limited computing power and/or memory, such as smart cards 

and PDAs (Kessler, 2010). 

 

2.5 Diffie–Hellman Cryptographic Algorithm 

The Diffie-Hellman algorithm was one of the earliest known asymmetric key 

implementations that are typically used to swap keys. While symmetric key algorithms are 

fast and reliable, the exchanging of keys is often a concern. The user have to work out a 

way to get a secret key to all the networks that the Diffie-Hellman algorithm is helping 

with (Costello et. al., 2016). The Diffie-Hellman algorithm would be used to set up a stable 

communications network. The device uses this mechanism to share a private key. This 



19 
 

secret key is then used to make symmetrical encryption of the two schemes. The Diffie-

Hellman key exchange, also known as the exponential public key, is a digital encoding 

system that uses digits lifted to particular powers to create decryption keys centered on 

elements that are never explicitly distributed, making the role of a possible code breaker 

numerically daunting (Suganya and Ramya, 2014). The Diffie–Hellman public key system 

helps two people who have no previous knowledge of each other to mutually create a 

mutual private key over an unprotected communication medium (Boni et. al., 2015). This 

key will then be used to encode future communications using a symmetric key cipher.  

The system was first reported by Whitfield Diffie and Martin Hellman in 1976, whereas it 

had been independently conceived several years ago by Malcolm J. Williamson, the British 

Signals Intelligence Service, but remained secret (Kaur and Kaur, 2017). In 2002, Hellman 

proposed that the technique be renamed Diffie–Hellman–Merkle Key Exchange in 

acknowledgment of Ralph Merkle's contribution to the development of public-key 

encryption (Biswas, 2012; Suganya and Ramya, 2014). Although Diffie–Hellman key 

agreement itself is an anonymous (non-authenticated) key-agreement protocol, it provides 

the basis for a variety of authenticated protocols and is used to provide perfect forward 

secrecy in Transport Layer Security's ephemeral modes (referred to as EDH or DHE 

depending on the cypher suite). The method was followed shortly afterwards by RSA and 

the implementation of public-key cryptography using asymmetric algorithms. Diffie–

Hellman establishes a shared secret that can be used for secret communications by 

exchanging data over a public network (Kaur and Kaur, 2017; Vasundhara, 2017). 

To introduce Diffie-Hellman, the two end-users Alice and Bob, when talking over a 

medium they consider to be personal, settle on positive integer values 𝑝 and 𝑞, so that 𝑝 is 



20 
 

a prime number and 𝑞 is a 𝑝 generator. Generator 𝑞 is a variable that, when lifted to positive 

full-number powers less than 𝑝, never generates the same outcome for any two such whole 

values. The 𝑝 value can be high, but the 𝑞 value is typically small. 

 

2.6 Review of Methodological Approach 

Recently, several studies have examined the performance evaluation of RSA and Elgamal 

cryptographic algorithms on text data, audio and image data. This section gives a detailed 

summary of studies conducted concerning the time and space complexity of RSA and 

Elgamal cryptographic algorithms. The methods applied are reviewed based on their 

relatedness to this study. 

Kayalvizhi, Vijayalakshmi and Vaidehi (2010) worked on the performance and 

comparison of RSA and ElGamal cryptography algorithms by assessing their power 

productivity and network lifespan. The researcher used a group-based wireless network 

topology situation with NS2 to investigate the performance of the collection. The 

information was scrambled at the foundation node and the ciphertext was sent to the target 

node through the cluster heads. The power consumption of RSA and ElGamal algorithms 

was analyzed and showed that RSA uses less resources and thus improves the life of the 

network relative to ElGamal. From the findings, the RSA algorithm has improved support 

for wireless communications and absorbs 14.5 per cent less power than the ElGamal 

algorithm. The study was limited to 10 sensor nodes of the wireless network. 



21 
 

Shashi and Rajan (2011) worked on performance comparison for proposed approach of 

symmetric and asymmetric encryption algorithms, i.e. AES, DES and RSA, in terms of 

processing time, memory consumption and processing bytes of various file sizes. The 

results of the analyses revealed that, among other things, the DES algorithm provides better 

performance of encryption time, AES had the lowest memory consumption and RSA 

algorithm produced the minimum output disk. The study was limited to text data only. 

Farah et. al., (2012) worked on the performance evaluation of asymmetric encryption. The 

study presented the evaluation of RSA, Elgamal and Pallier in terms of encryption and 

decryption processing time, throughput, encrypted data size and decrypted data size. The 

study used 68KB, 105KB, 124KB and 235KB text file sizes for the analysis. The result 

showed that RSA performs better in terms of encryption time, Elgamal performs better in 

terms of decryption time. It was observed also that RSA is faster in the encryption process 

than all those in terms of its throughput. The RSA needs a minimum volume of storage 

capacity. RSA's average result is higher than Elgamal and Paillier in terms of the criteria 

employed. The study is limited to the four text file size given above. 

Arora et. al., (2013), suggested the introduction of cryptographic algorithms in Java 

programming language to create a safe cloud data by using diverse features to make a 

distinction between symmetric and asymmetric techniques such as AES, DES, Blowfish, 

and RSA. They reported that AES used the minimum time to execute cloud data. Blowfish 

used less memory consumption. DES has invested the least amount of time in 

cryptography. RSA has spent the most time in cryptography and the highest memory 

capacity. 



22 
 

Ankush, et.al., (2014), discussed the security and time-consuming analysis of RSA and 

Elgamal algorithms. The study implements RSA and Elgamal Algorithms on JCrypt Tool 

1.0.0 to determine the security level of the two algorithms and time consumption for 

encryption and decryption. The result obtained from the plaintext shows that the Elgamal 

algorithm is more secure compared to the RSA algorithm because it generates more 

complex ciphertext, meanwhile, RSA performs better in terms of encryption and 

decryption time. The study was limited to the use of characters entered by users. 

Shaify and Meenakshi (2014), worked on the performance evaluation of different 

symmetric encryption algorithms DES, 3DES, AES for different parameters and data types 

like text files and image to analyze their encryption and decryption time, throughput and 

memory utilization. They reported that AES consume less time than other algorithms in 

terms of encryption and decryption time as the number of rounds is comparatively less in 

the case of AES while 3DES has more encryption and decryption time as to apply the 

algorithm three times. The throughput varies inversely to the encryption or decryption time, 

thus AES has more and 3DES has less throughput than the other algorithms. AES takes 

more memory while DES utilizes less memory than the other symmetric key encryption 

algorithms. 

Tin and Su (2014), worked on the performance comparison of RSA and Elgamal for audio 

protection, based on the period of operation. They used an audio (.mp3) file type with 

varying file sizes but the same data format. The work was projected to apply 

confidentiality, secrecy in the real data communication environment. The performance 

analysis of the two algorithms used shows clearly that the RSA algorithm is significantly 

faster than the Elgamal algorithm for encryption and decryption time of audio data. The 



23 
 

work was limited to the single audio file format (.mp3) and only the execution time was 

analyzed. 

Boni et. al., (2015), suggested a novel methodology to enhance the Diffie-Hellman 

algorithm, thereby involving complicated calculations that increase the computational 

complexity when producing shared keys called the Multipliers Key Exchange Technique. 

They reported that the Multiplicative Key Exchange is better than the Diffie-Hellman 

algorithm in terms of execution time, thus need few computations compared with the 

Diffie-Hellman algorithm the new method is used when keys are to be generated frequently 

and faster instead of protection where systems are not complicated or have a reduced setup. 

Okeyinka (2015) worked on RSA and ElGamal Algorithms computing speeds performance 

for securing, confidentiality and authentication of Text Data. The researcher used a 

computer internal clock for both RSA and Elgamal to compare and determine the execution 

times of each input text data and which one of the two methods is more computationally 

effective. The implementation of the work was checked with text details in different sizes. 

The result showed that RSA is more computationally efficient than Elgamal which makes 

it to perform better than Elgamal. However, the limitation of this research work is that text 

data was used with limited character size.  

Kumar et. al., (2016), proposed an evaluation of the efficiency of some cryptographic 

methods DES, AES, and Blowfish. They reported that Blowfish produces better 

performance in several block cypher forms with minimal weaknesses. AES demonstrated 

low efficiency compared to other methods. In particular, symmetric encryption techniques 

are quicker than the asymmetric techniques, but there was only one fragile fact where it 



24 
 

exchanged the key with other parties interested in the procedure. Asymmetric encryption 

has the power that two separate keys are used, but more computation time is taken than 

symmetric encryption. 

Muneer et. al., (2017) presented a systematic analysis of Symmetric key and Asymmetric 

key cryptographic protocols that improved information security in a cloud storage 

environment. AES, DES, 3DES and Blowfish were explored for symmetric key encryption 

and RSA, DSA, Diffie-Hellman and Elliptic Curve for asymmetric cryptography. They 

reported that the performance of the different algorithms is influenced by the discrepancy 

factor. They observed that it is crucial to provide effective, reliable and high-security 

algorithms that are appropriate for all huge datasets and that pace and protection are the 

most essential in evaluating the performance of any cryptographic algorithms. 

Andysah, Elviwani, and  Boni (2018) studied comparative analysis of RSA and Elgamal 

public key. The work focused on the bit length of the public key which is the strength of 

the two cryptographic algorithms. The RSA used the factorization process to determine the 

value of the two large prime numbers as the degree of difficulty while Elgamal uses discrete 

logarithms for its calculations. They used key generation techniques to compare which of 

the two algorithms performs better during the encryption and decryption process. At the 

process of main production, RSA generates six variables (P, Q, N, F, E, D). Parameters 'N' 

and 'E' are keys used for encoding, and 'N' and 'D' are keys used for decryption. At the 

process of main generation, ElGamal generates four variables (P, G, X, Y). During the 

encryption scheme, parameters "P," "G" and "Y" are used, while parameters "P" and "X" 

are used during the decryption process. In the main generation, RSA and ElGamal have 

essentially the same duration. It doesn't take long to produce a key for a quantity that isn't 



25 
 

that high. RSA and ElGamal would take longer to produce 2048 bit keys since the equation 

results in a must-have compact phrase. The work was limited to the key generation time of 

RSA and Elgamal cryptographic algorithm. 

Dindayal and Dilip (2018) the authors presented in their paper, the performance study and 

analysis of RSA and Elliptic Curve cryptography. The study suggests the supremacy 

between the two algorithms. The study used different key sizes for RSA and ECC to 

analyze the execution time and the security level. 1024, 2048 and 3072-bit key sizes were 

used for RSA while 160, 224 and 256-bit key sizes were used for ECC. The result of the 

experiment shows that ECC is better than RSA and best suits memory-constrained devices, 

as an ECC-based cryptosystem requires fewer resources than an RSA-based cryptosystem. 

The performance analysis in terms of encryption and decryption time and operational 

efficiency and security shows that ECC outperforms RSA. The study was limited to the 

use of certain key size for the analysis. 

Nureni and Sayyidina (2018), evaluated the comparative analysis of encryption algorithms. 

AES, RSA and DES encryption algorithms were implemented on audio and video files of 

different sizes to determine the encryption and decryption time. The result showed that 

AES is best in terms of encryption and decryption time when compared with the 

performances of RSA and DES under the same condition. The study was limited to certain 

metrics for comparative analysis.  

Kyaw, Kyaw and Nay (2019) discussed the encryption and decryption time performance 

analysis of RSA and Elgamal public-key cryptosystems. The researcher encrypted the 

plaintext (text, image and audio) file with a public key for RSA and Elgamal and show the 



26 
 

comparison of encryption time for the two algorithms. The result shows that RSA is about 

4 times faster than Elgamal during the encryption process and also RSA is faster than 

Elgamal during the decryption process. The result contradicted the previously reviewed 

works that Elgamal is faster than RSA during the Decryption process. However, the 

comparison is only based on encryption and decryption time for Text, Image and Audio 

data. 

Omar et. al. (2019) used the Elgamal algorithm to encrypt and decrypt speech signal 

process transmitted to a particular recipient. The Elgamal algorithm is a special type of 

public-key technology used in this article for speech signals encryption/decryption. The 

security of this cryptosystem is based on the difficulty of calculating the discrete logs 

modulus of a large prime. Elgamal was applied on speech signals to perform secrecy, 

confidentiality and security of important information. The performance analysis of the 

presented cryptosystem in terms of different encryption and decryption speech quality 

measures indicates a satisfactory level of security while maintaining a good quality of the 

restored speech signal as compared with the original signal. 

Zarni et. al, (2019) used ElGamal encryption and the RSA algorithm to secure mail-

message before storing mails to the mail server. These algorithms consume a considerable 

amount of time and resources of memory, CPU time, and computation time to encrypt and 

decrypt data, therefore the researcher finds the performance comparison of these 

algorithms in terms of encryption time, decryption time, and memory usage over variable 

file sizes. The result showed that ElGamal and RSA have relatively similar time in 

generating the key. The encryption time of ElGamal is greater than RSA encryption time. 

The decryption time of ElGamal is a little less than the RSA algorithm. RSA requires the 



27 
 

least amount of storage space for encrypted files. It was concluded that RSA performs 

better in terms of encryption time, ElGamal performs better in terms of decryption time. In 

the use of RSA and Elgamal for an email message, it was observed that large scale file 

won’t be able to be sent because of the longer time it will take to encrypt; therefore the 

work was based on the limited file size of the mail message.  

Putri, Erna and Muhammad (2020), examined the comparative study of LUC, Elgamal and 

RSA algorithms in Encoding texts. The study implements each algorithms using several 

different texts to determine the encryption and decryption time. The result showed that the 

RSA algorithm performed better in the encryption process time of text file while the LUC 

algorithm performed better in decryption process time. The work was limited to encrypting 

the secret message in text form. 

 

2.7 Gap Identified in the literature 

Conscious awareness of previously published detailed literature survey about the 

performance analysis of RSA, Elgamal cryptographic algorithms in terms of Encryption 

time, decryption time, storage usage of both algorithms on Text data, Audio data, images 

data, and the use of key sizes; it was found that there are several works on the comparative 

analysis of RSA and Elgamal cryptographic algorithms. This current research work in 

contrast to the one reviewed so far is concerned with the time and space complexity of 

RSA and Elgamal on mixed data. From existing literature, most of the studies focused 

mainly on text data, images, audio, and mail-message with limited file size. Some of the 

reviewed study compared each of the algorithms (RSA and Elgamal) with either ECC or 



28 
 

Paillier. Some of the studies only analyze the encryption and decryption time of RSA and 

Elgamal. The study extends the Performance analysis of RSA and Elgamal using mixed 

data to improve infrastructure design, decision making, and allocation of resources on a 

computer system. 

 

 

 

 

 

 

 

 

 

 

 



29 
 

CHAPTER THREE 

METHODOLOGY 

3.1 Research Design 

This study implements RSA and Elgamal cryptographic algorithms to obtain Encryption 

time, Decryption time, and the memory usage of both algorithms using mixed data. The 

data used were extracted from various data repositories such as (lipsum, datahub, kaggle 

and random text generator). Figure 3.1 displays the framework that was used in this study. 

The framework shows the phases involved in the development of the models which 

includes the loading of mixed data for processing encryption and decryption with RSA and 

Elgamal cryptographic algorithm for further analysis like time and space complexities.  

 

 

 

 

 

 

 

 



30 
 

 

 

 

 

 

 

 

 

Figure 3.1: Conceptual Framework of the study 

Figure 3.1 shows the hierarchical input-process-output (HIPO) of the study. This display 

the stages involve to obtain the desired result of this research. The mixed data which 

includes (text, image, audio and video) are the input tools in the study. The second stage 

of the framework is the process tool which includes RSA and Elgamal cryptographic 

algorithms to scramble the input data into unreadable content. The third stage is the result 

stage, this display the complexities of each of the algorithms used. The time and memory 

usage of RSA and Elgamal are obtained and their performance was compared to determine 

which of the algorithms performs better on mixed data. Table 1 display the methodology 

table and each activity that was performed on each objective. 

 

 

Obtain the Encryption 

time and space 

complexities of RSA and 

Elgamal 

Obtain the Decryption 

time and space 

complexities of RSA and 

Elgamal 

Load Mixed 

Data 
Process the Mixed Data 

Output the 

Result  

Text Data 

Image Data 

Audio Data 

Video Data 

M

i

x

e

d 

 

D

a

t

a 

Encrypt Mixed Data 

with RSA and 

Elgamal 

Decrypt Mixed Data 

with RSA and 

Elgamal 



31 
 

Table 1: Research Methodology Table 

S/N Objective Methodology 

1 Implement both the RSA and 

Elgamal algorithms in encrypting 

and decrypting mixed data using C-

sharp (C#) programing language  

Psuedocode and Flowcharts were 

used to depict the RSA and ElGamal 

cryptographic algorithms. 

C# programming language was used 

to code the RSA and ElGamal 

algorithms to obtain the desired 

results.  

Various online repositories such as 

lipsum, datahub, kaggle and random 

text generator were consulted to 

obtain mixed dataset. 

2 Compute the time and space 

complexities of the two algorithms 

using CPU internet clock and 

computer primary memory. 

CPU internal clock was used to 

obtain the computational time 

during encryption and decryption 

process of RSA and ElGamal 

algorithms for all categories of 

dataset used. 

Computer primary memory was 

used to compute the space usage 

during encryption and decryption 

process of RSA and ElGamal 



32 
 

algorithms for all categories of 

dataset used. 

3 Determine the behaviour of the 

algorithms on the mixed data. 

The data obtained from objective 2 

was analyzed using Tables and 

Graphs. 

 

 

3.2 Research Design Layout 

 

Figure 3.2: Research Design Layout:  

Figure 3.2 display the process of how the dataset was loaded into the RSA and ElGamal 

implemented program and display the computational time and memory utilized during 

encrypting and decrypting the mixed data. 

Time and Space Complexity of RSA and Elgamal Cryptographic using Mixed Data

RSA Algorithm

Encryption Decryption

Elgamal Algorithm

Encryption Decryption

Time/Space Time/Space



33 
 

Methodology Used to Implement RSA and ElGamal Algorithms 

1. Implement both the RSA and Elgamal algorithms in encrypting and decrypting 

mixed data using C-sharp (C#) programing language 

Programming Language used: C# 

The method used: RSA/Elgamal Cryptographic Algorithms with Mixed Data. 

Performance Evaluation: Encryption time, Decryption time, Encryption Memory and 

Decryption Memory. 

3.2.1 RSA Cryptographic Algorithm 

Security of the RSA is based on the difficulty of factoring large integers. The encryption 

and decryption processes of the RSA algorithm require modular exponentiation. This 

section will outline how encryption, decryption, and key generation for RSA are performed 

in theory and some actual implementations and illustrations. Figure 3.3 display the design 

of flowchart for RSA cryptographic algorithm which is used to address objective one of 

this study. 

 

 

nCMocessDecryption

nMCocessEncryption

Ndxed

NeeN

qpN

qxpn

qpthatsuchqpnumberprimeRandomSelect

d

e

modPr

modPr

1)(mod

)(1)),((

)1)(1()(

,























34 
 

3.2.1.1 Key Generation 

The key generation process is detailed below; 

1. Get two integers, 𝑝 𝑎𝑛𝑑 𝑞 from the user.  

2. Check if 𝑝 𝑎𝑛𝑑 𝑞 are prime.  

2.1 If prime, continue the process, else exit the code.  

3. Calculate (𝑝 − 1) ∗ (𝑞 − 1) and name it ɸ(𝑛).  

4. Calculate 𝑛 = 𝑝 ∗ 𝑞.  

5. Get an input e to act as a private key, under the condition that 1 < 𝑒 < ɸ(𝑛) and 

𝑔𝑐𝑑(𝑒, ɸ (𝑛)) = 1. (gcd-greatest common divisor)  

6. Compute the value of 𝑑 such that 1 <  𝑑 < ɸ(𝑛) and 𝑒. 𝑑 ≡  1 (𝑚𝑜𝑑 ɸ(𝑛)).  

NOTE: The public key is (𝑛, 𝑒) and the private key is (𝑛, 𝑑).  

The values of 𝑝, 𝑞 and ɸ(𝑛) are private. ‘𝑒’ is the public or encryption exponent. ‘𝑑’ is the 

private or decryption exponent. 

3.2.1.2 Encryption and decryption 

Given the message to be 𝑀 and Cipher 𝐶 

i. Encryption is done using the public key (𝑒, 𝑛) 

ii. 𝐶= 𝑀ᵉ mod 𝑛 

iii. Decryption is done using the private key (𝑑, 𝑛) 

iv. 𝑀 = 𝐶 ͩ 𝑚𝑜𝑑 𝑛. 

 

 



35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flowchart of RSA Cryptographic Algorithm 

Start 

Generate primes 𝑝 𝑎𝑛𝑑 𝑞 

Compute  𝑛 = 𝑝 ∗  𝑞 

Ø(𝑛)  =  (𝑝 − 1)  ∗ (𝑞 − 1) 

Are 𝑝 𝑎𝑛𝑑 𝑞 

prime 

numbers? 

Calculate  𝑒  
𝑒 < 0 < 𝑒 <  Ø(𝑛) 

Compute 𝑑 

𝑑 =  𝑒−1 𝑚𝑜𝑑 Ø(𝑛) 

Input Message (M) to 

encrypt and decrypt.  

Compute  𝐶 

𝐶 =  𝑀𝑒𝑚𝑜𝑑 𝑛 

Compute  𝑀 

𝑀 =  𝐶𝑒𝑚𝑜𝑑 𝑛 

Stop 

No 

Yes 



36 
 

3.2.1.3 Illustration of RSA Cryptographic Algorithm  

For example, Sender A (the source) requests to encrypt and send a letter to Recipient B 

(the receiver). Receiver B has to generate a public key and private key for encryption and 

decryption processes respectively. 

Step 1: choose two prime number 𝑝 and 𝑞. Let’s take 𝑝 = 3 and 𝑞 = 11 

Step 2: compute the value of 𝑛 and Ø. It is given as, 𝑛 =  𝑝 𝑥 𝑞 and Ø =  (𝑝 − 1) 𝑥 (𝑞 −

1). Here in the example, 𝑛 =  3 𝑥 11 =  33 and Ø =  (3 − 1) 𝑥 (11 − 1)  =  2 𝑥 10 =

 20. 

Step 3: Find the value of 𝑒 (public key). Choose 𝑒, such that 𝑒 should be co-prime. Co-

prime means it should not multiply by factors of Ø and also not divide by Ø. Example factor 

of Ø are, 20 = 5𝑥4 = 5𝑥2𝑥2 so 𝑒 should not multiply by 5 𝑎𝑛𝑑 2 and should not divide 

by 20. So primes are 3,7,11,17,19. . , 𝑎𝑠 3 𝑎𝑛𝑑 11 are taken to choose 𝑒 as 7. Therefore, 

𝑒 = 7. 

Step 4: compute the value of 𝑑 (private key). The condition is given as 𝑔𝑐𝑑(Ø, 𝑥) =  Ø𝑥 +

𝑒𝑦 = 1 where 𝑦 is the value of 𝑑. 

Step 5: do the encryption and decryption 

Encryption is given as, 𝑐 = 𝑡𝑒  𝑚𝑜𝑑 𝑛 

Decryption is given as 𝑡 = 𝑐𝑑  𝑚𝑜𝑑 𝑛 

Suppose 𝑡 = 2, so 

Encryption is 𝑐 =  27 𝑚𝑜𝑑 33 =  29 



37 
 

Decryption is 𝑡 =  293 𝑚𝑜𝑑 33 =  2 

Therefore in the final, 𝑝 = 3, 𝑞 = 11, Ø = 20, 𝑛 =  3, 𝑒 = 7 𝑎𝑛𝑑 𝑑 = 3 

3.2.2 Elgamal Cryptographic Algorithm 

The ElGamal algorithm which was designed by Dr Taher ElGamal is a public-key 

cryptosystem. It depends on the one-way function which means that the encryption and 

decryption are done in separate functions. Figure 3.4 display the flow diagram of ElGamal 

algorithm to achieve objective one. 

3.2.2.1 Key Generation 

The key generation module has the following procedures 

i. Generate a large random prime number (𝑝) 

ii. Choose a generator number (𝑎)   

iii. Choose an integer (𝑥) less than (𝑝 − 2), as the secret number. 

iv. Compute (𝑑) where 𝑑 =  𝒂𝒙 𝑚𝑜𝑑 𝑝   

v. The private key is given as (𝑥) and the public key as (𝑝, 𝑎, 𝑑) 

3.2.2.2 Encryption and decryption 

Represent the plaintext as an integer m where: 0 <  𝑚 <  𝑝 − 1 

Encryption is done using the public key (𝑝, 𝑎, 𝑑) 

i. Choose an integer 𝑘 such that: 1 <  𝑘 <  𝑝 − 2 

ii. Compute 𝑦, 𝑦 =  𝑎𝑘  𝑚𝑜𝑑 𝑝 

iii. Compute 𝑧, 𝑧 =  (𝑑𝑘  ∗  𝑚 ) 𝑚𝑜𝑑 𝑝 



38 
 

iv. The ciphertext is given as 𝐶 =  (𝑦, 𝑧) 

Decryption is done using the private key (𝑥) 

i. The receiver obtains the ciphertext 𝐶 = (𝑦, 𝑧) 

ii. Compute (𝑟) as follows: 𝑟 =  𝑦𝑝−1−𝑥𝑚𝑜𝑑 𝑝 

iii. Recover the plain text as follows: 𝑚 =  ( 𝑟 ∗  𝑧 ) 𝑚𝑜𝑑 𝑝  

 

 

 

 

 

 

 

 

 

Figure 3.4: Flow Diagram of Elgamal Algorithm 

3.2.2.3 Illustration of the ElGamal Cryptographic Algorithm 

For example, sender A (the source) desires to encrypt and send a message to recipient B 

(the receiver). Receiver B has to generate a public key and private key for encryption and 

Selected integers  

p, g, Y, k 

K = Y^k mod p 

C1 = g^k mod p 

C2 = M.y mod p 

Ciphertext 

(C1, C2) 

M= Message 



39 
 

decryption processes respectively. The encryption and decryption process is performed as 

follows to achieve objective one. 

Sender A encrypts the message, given Receiver B public key (𝑝, 𝑎, 𝑑) 𝑖𝑠 (83, 5, 66) 

 Given message 𝑀 = 3 

 Sender A chooses random 𝑘 = 29, and then computes a stream key: 𝑘 = 6629 mod 

83 = 22 

 𝑦 = 529 𝑚𝑜𝑑 83 = 67 

 𝑧 = (22 ∗ 3)𝑚𝑜𝑑 83 = 66 

 𝐶(𝑦, 𝑧)  =  (67, 66) 

To decrypt the message, receiver B receives the cypher text and decrypts the message 

making use of his private key given as (37) 

 𝐶 = (67,66) 

 Receiver B recovers the message key 𝑟 = 6737 𝑚𝑜𝑑 83 =  22 

 Compute the inverse of 𝑟, 𝑟_𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 1/22 

 𝑀 = (1/22) ∗ 66 𝑚𝑜𝑑 83 =  3  

 𝑀 =  3 

Methodology Used to Compute Time and Space Complexities of both 

Algorithms 

2. Compute the time and space complexities of the two algorithms using CPU 

internet clock and computer primary memory. 



40 
 

3.2.3 Analysis of Time and Space Cryptographic Algorithm 

The time complexity of an algorithm is commonly expressed through asymptotic notations: 

Big O which is denoted as 𝑂(𝑛), Big Theta denoted as Θ(n) and Big Omega demoted as 

Ω(n). The analysis of an algorithm for time complexity begins by trying to count the 

number of elementary operations that must be performed when the algorithm is executed. 

The elementary operations are addition, subtraction, multiplication, division and 

comparison. The space complexity is the amount of space (or memory) the algorithm takes 

to run as a function of its input-length, n. The spatial complexity includes both auxiliary 

space and input space. Many algorithms have inputs, e.g. an array, which may differ in 

size. In such instances, the complexity of the space will depend on the input size and 

therefore cannot be less than 𝑂(𝑛) for a size n input. Complexity for fixed-size inputs 

should be a constant 𝑂(1). 

If for a given size the complexity is taken as the maximum complexity over all inputs of 

that size, then the complexity is called the worst-case complexity. In the case of time 

complexity, it is the maximum number of operations needed to solve the given problem 

using the algorithm on an input of a specified size. If the complexity is taken as the average 

complexity over all inputs of a given size, then the complexity is called the expected 

complexity. The expected complexity of an algorithm is usually more difficult to ascertain 

than the worst-case complexity. Table 2 displays some common terminology used to 

describe the time complexity algorithms to achieve objective two of this study. For 

example, an algorithm is said to have logarithmic complexity if it has a time complexity of 

algorithms. For example, an algorithm is said to have logarithmic complexity if it has time 

complexity O (log n). 



41 
 

Table 2: Terminology of Complexity of Algorithms 

Complexity Terminology 

O )(log n  Logarithmic complexity 

O )(n  Linear complexity 

O (n log n) n log n complexity 

O )( an  Polynomial complexity 

O )( nb , where b > 1 Exponential complexity 

 

Methodology Used to determine the behavior of both Algorithms 

3. Determine the behaviour of the algorithms on the mixed data. 

3.3 Data Collection 

The mixed dataset used in this study were collected from various online repositories such 

as lipsum, datahub, kaggle and random text generator. The figure 3.4 display the various 

categories of dataset used, which each result obtained through encryption and decryption 

was analyzed with tables and graphs to achieve objective three. 

 



42 
 

 

Figure 3.4: Categories of Data 

 

3.4 Data Analysis Algorithm 

The following are steps carried out in RSA and ElGamal cryptographic algorithms to 

determine their behaviours on text, image, audio and video files. 

1. Mixed data (text, image, audio and video) of different sizes are supplied into the 

implemented RSA and ElGamal algorithms. 

2. When each data have been supplied into the executed program, the time and space 

functions are initiated. 

3. The contents of each mixed data are read, and implemented while RSA and ElGamal 

Algorithms are initiated. 

4. After execution, the time and space of execution for each mixed data file are produced 

for each of the algorithms and analyzed using tables and figures. 

• txt, rft, doc.

Text 

• jpg, jpeg, png

Image

•mpeg, avi, mp4

Audio and Video



43 
 

3.5 Research Instruments/Tools 

The following development tools were used to implement the RSA and ElGamal 

cryptographic algorithms. 

a. C-Sharp (C#) Programming Language of Visual Studio 2015. 

The C# programming Language is a high-level language, which is simple, general-purpose 

and known as an object-oriented language. The language which was developed by 

Microsoft and runs on the dot net framework is used to develop various applications 

including web applications, mobile applications, and desktop applications among others. 

 b. Cryptographic algorithms. 

The cryptographic algorithms are known to be the most frequently used privacy protection 

method for data encryption, authentication, and digital signatures. There are various classes 

of cryptographic algorithms which include Hash functions, symmetric-key algorithms and 

asymmetric-key algorithms. This study uses two popular asymmetric algorithms (RSA and 

ElGamal). 

c. Cryptographic Algorithm Efficiency Functions 

The algorithm efficiency functions deal with the Time complexity and Space complexity 

functions of the cryptographic algorithms. The time and space functions were used in this 

study to determine the behaviour of the asymmetric cryptographic algorithms on mixed 

data. 



44 
 

Time complexity is a function describing the amount of time that an algorithm takes in 

terms of the amount of input data while space complexity is a function describing the 

amount of memory used. 

3.6 Mixed Data Analysis 

This study used mixed dataset which is defined as text, image, audio and video data. 

a. Text Data 

Text data generally comprises records that can describe expressions, phrases or even 

columns of a free-flowing document. The intrinsic unstructured (no perfectly ordered data 

columns!) and noisy design of text data make it more difficult for machine learning 

approaches to operate exclusively on actual textual information.  

b. Image Data 

Image data is quite widely used to depict visual or pictures data. Usually, this data must be 

transformed into a raster format (and possibly a vector) to be used analytically for the GIS. 

Image data is usually stored in a range of industry-standard proprietary de facto formats.  

 

c. Audio Data 

These are analogue sound waves that are saved in digital format on the computer system. 

Sounds produced on laptop exist as digital media stored as audio clips. The sound input 

through the microphone is transformed to digital for storage and handling. Digital audio is 



45 
 

decomposed to thousands of samples per second. Each sample of voice is kept as binary 

code. 

d. Video Data 

Video data typically exists as continuous analogue signals. For the device to interpret this 

video data, analogue signals must be transferred to a non-continuous digital format. Video 

data can be stored in a digital format as a sequence of bits on a hard drive or in memory 

space.  

3.7 Implementation 

The system was implemented on a Windows Operating System using the C-Sharp (C#) 

programming language. All Development, Testing, and Design were implemented on a 

Windows 10 of Intel core i5 processing power of 3.40 GHz CPU with 6 GB Ram. 

A Hardware Requirements 

a. Personal computer with Intel Core i3 or higher processor recommended. 

b. 4 GB of RAM or higher recommended. 

c. The processing speed of 2.4 GHz or higher recommended. 

d. Hard disk memory of 500GB or higher recommended. 

B Software Requirements 

a. Operating System: Windows 7 or macOS El Capitan or higher. 

b. Microsoft Visual Studio 12. 



46 
 

CHAPTER FOUR 

RESULTS AND DISCUSSION OF FINDINGS 

4.1 Experimental Interfaces 

Figures 4.1 to 4.3 display the experimental interfaces used to achieve the implementation 

of RSA and ElGamal algorithms of this study. Figure 4.1 shows how text dataset is loaded 

into the RSA and ElGamal algorithms implemented in C# programming language.  Figure 

4.2 shows the image dataset and how it was encrypt and decrypt to achieve objective one. 

Figure 4.3 shows how audio and video dataset is loaded into the C# programming 

environment. 

 

Figure 4.1: Experimental Interface of Birth and Birth rate dataset of text data.   



47 
 

The dataset in figure 4.1 is processed to perform encryption and decryption using RSA and 

ElGamal algorithms which was implemented in C# programming language. The displayed 

birth rate dataset will be converted to cipher unreadable text after the encryption button is 

being pressed.  

 

Figure 4.2: Interface of Image data and its corresponding hexadecimal form. 

The image dataset is converted to hexadecimal form and the hexadecimal form is encrypted 

using RSA and ElGamal cryptographic algorithms to achieve the objective two (2). During 

which the encryption time, decryption time and memory usage for both algorithms are 

obtained for further analysis. 



48 
 

 

Figure 4.3: Interface of Audio and Video dataset. 

The audio and video data are uploaded and converted to its hexadecimal form. The 

hexadecimal form is encrypted using RSA and ElGamal algorithms to obtain the 

encryption time, decryption time and memory usage for both algorithms to achieve the 

computation of time and space of both algorithms. 

4.2 Experimental Results 

To determine the behavior of both algorithms on mixed data, RSA and Elgamal 

Cryptographic algorithms were implemented in C-sharp programming language on mixed 

data (text, image, audio and video). The experimental results of each dataset is indicated 

using tables and figures. The time taken to encrypt and decrypt each dataset is given in 

seconds (s), while space (memory) used to encrypt and decrypt each dataset are given in 



49 
 

kilobytes (KB). Table 4.1 displays the time and space usage during encryption and 

decryption process on text dataset using RSA and ElGamal cryptographic algorithms. 

A. Results for RSA and ElGamal on Text Data 

Table 4.1 Tabular representation of Text Data encryption for RSA and ElGamal 

algorithms.  

The above table 4.1 shows the data values of encryption time and space obtained from the 

text data of different file sizes in kilobytes (KB). The encryption time of both RSA and 

ElGamal algorithms are captured and recorded in seconds (s) while the memory usages for 

both algorithms are captured and recorded in kilobytes (kb). Figure 4.3 displays the 

graphical analysis of encryption time of RSA and ElGamal cryptographic algorithms on 

text data. 

S/N File Size (KB) Time of Encryption Space of Encryption 

RSA (s) ElGamal (s) RSA (kb) ElGamal (kb) 

1 22 0.1082 1.55 169.82 0.1650 

2 80 0.3545 2.57 623.5 77.93 

3 120 0.4835 2.92 925.85 115.71 

4 140 0.5664 3.80 1054.83 131.84 

5 230 0.9315 4.67 1740.99 217.62 

6 2048 5.8852 15.12 11133.64 1391.70 

7 5120 16.1733 43.90 30116.30 3764.52 



50 
 

 

Figure 4.3: Encryption Time Analysis for RSA and ElGamal cryptographic algorithms 

for text dataset. 

The graphical interface in figure 4.3 shows the computational time analysis of RSA and 

ElGamal algorithms. The line in colour red was used to denotes the encryption time of 

ElGamal while the colour blue denote the encryption time of RSA. The ElGamal line grows 

wider as the file size gets larger. This shows that Elgamal consumes more CPU time during 

the encryption of text data while RSA consumes less time. Figure 4.4 shows the encryption 

space used for RSA and ElGamal for text dataset. 

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000

Ti
m

e 
u

se
d

 f
o

r 
En

cr
yp

ti
n

g 
Te

xt
 D

at
a

Text Data File Size

Time of Encryption RSA (s) Time of Encryption ElGamal (s)



51 
 

 

Figure 4.4: Analysis of Memory Used for RSA and ElGamal for Text Dataset during 

Encryption Process. 

The colour blue line which was used to denote the RSA algorithm consumes more space 

during the encryption process of text dataset while the red line which denotes the ElGamal 

algorithm uses the least amount of memory during encryption of text dataset. Table 4.2 

shows the tabular representation of text dataset values of RSA and ElGamal algorithms 

during the decryption process. 

 

 

0

5000

10000

15000

20000

25000

30000

35000

22 80 120 140 230 2048 5120

Sp
ac

e 
u

se
d

 f
o

r 
en

cr
yp

ti
n

g 
te

xt
 d

at
a

File size for text data

Space of Encryption RSA (kb) Space of Encryption ElGamal (kb)



52 
 

Table 4.2 Tabular representation of Text Data decryption for RSA and ElGamal 

algorithms.  

The values in the above table 4.2 describe the decryption time and memory usage of RSA 

and ElGamal cryptographic algorithms on the text dataset. From the table, various file sizes 

were used to experiment with the implemented algorithms. The decryption time of the text 

data was captured and recorded in seconds (s) while the decryption space was captured and 

recorded in kilobytes (kb). Figure 4.5 shows the graphical interface of decryption time of 

RSA and ElGamal algorithms for text dataset. 

S/N File Size (KB) Time of Decryption Space of Decryption 

RSA (s) ElGamal (s) RSA (kb) ElGamal (kb) 

1 22 1.0756 0.0802 21.22 0.1650 

2 80 3.9254 1.6674 77.93 77.93 

3 120 5.7463 1.9284 115.71 115.71 

4 140 6.8078 2.2112 131.84 131.84 

5 230 11.1189 3.2596 217.62 217.62 

6 2048 74.9069 19.3083 1391.69 1391.70 

7 5120 194.2630 56.1963 3764.52 3764.52 



53 
 

 

Figure 4.5: Decryption Time Analysis of RSA and ElGamal Algorithms for Text Dataset. 

The computational time of decryption for text data of RSA and ElGamal algorithms with 

blue and red colour lines respectively shows that RSA consumes more CPU time during 

decryption of text data while the ElGamal algorithm consumes least CPU time during 

decryption of text data. Figure 4.6 describes the memory usage of RSA and ElGamal for 

text data during the decryption process. 

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000

D
ec

ry
p

ti
o

n
 P

ro
ce

ss
in

g 
Ti

m
e

Text Data File Size

Time of Decryption RSA (s) Time of Decryption ElGamal (s)



54 
 

 

Figure 4.6: Memory Usage of RSA and ElGamal during Decryption of Text Dataset 

Figure 4.6 shows that both RSA and ElGamal cryptographic algorithms consumed 

relatively the same amount of space during the decryption of text data. 

4.2.1 Discussion for RSA and ElGamal on Text Data 

During the analysis of the time of encryption for RSA and ElGamal algorithms for Text 

dataset, Table 4.1 and Figure 4.3, showed that the RSA algorithm uses less time during 

encrypting text data while the ElGamal algorithm consumes more time during encrypting 

text data. Figure 4.4 uses more space (memory) during encrypting text data while the 

21.22 77.93 115.71 131.84
217.62

1391.69

3764.52

0

500

1000

1500

2000

2500

3000

3500

4000

22 80 120 140 230 2048 5120

Sp
ac

e 
u

se
d

 f
o

r 
D

ec
ry

p
ti

o
n

Text Data File Size

Space of Decryption RSA (kb) Space of Decryption ElGamal (kb)



55 
 

ElGamal algorithm consumes less or relatively small space in encrypting text data 

compared to the RSA algorithm. 

From Table 4.2 and Figure 4.5, the time and space used for both algorithms during the 

decryption process was analyzed and showed that the RSA algorithm uses more time to 

decrypt any given text data of different file sizes while ElGamal uses the less or minimal 

time to decrypt text data of different file sizes. Figure 4.6, showed the memory usage of 

both algorithms during the decryption process. It was discovered that both algorithms 

consume the same amount of space (memory) during the decryption process of Text Data. 

Table 4.3 describe the tabular representation of image data. 

B. Results for RSA and ElGamal on Image Data 

Table 4.3 Tabular representation of Image Data encryption for RSA and ElGamal 

algorithms.  

S/N File Size (KB) Time of Encryption Space of Encryption 

RSA (s) ElGamal (s) RSA (kb) ElGamal (kb) 

1 63 0.9896 2.9947 1890.32 236.29 

2 85 1.0023 3.3907 2439.15 295.41 

3 120 1.6205 8.7705 3088.11 385.73 

4 130 1.7495 9.3232 3129.38 399.20 

5 200 1.9853 10.5232 3764.52 470.56 

6 300 2.9534 12.2056 5470.91 683.85 

7 550 5.6149 16.2851 10597.82 1324.71 



56 
 

Table 4.3 displays the data obtained from encrypting image data using RSA and ElGamal 

cryptographic algorithms. The third column of the table shows the encryption time of both 

algorithms in seconds (s) while the forth column shows the space usage during the 

encryption process of image data of both algorithms. The figure 4.7 described the graphical 

representation of encryption time of image data using RSA and ElGamal. 

 

Figure 4.7: RSA and ElGamal Encryption Time Analysis for Image Data 

The red line which denotes the ElGamal encryption time shows that the ElGamal algorithm 

consumes more computational time to encrypt image data compared to RSA in blue colour 

which uses less computational time during encryption of image data. Figure 4.8 described 

the space usage during encryption of image data using RSA and ElGamal algorithm. 

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600

En
cr

yp
ti

o
n

 T
im

e

File Size

Time of Encryption RSA (s) Time of Encryption ElGamal (s)



57 
 

 

 

Figure 4.8: RSA and ElGamal Space used for encrypting Image data.  

From the figure 4.8, the blue line which is used to denote RSA grows taller than the red 

line (ElGamal). This implies that the RSA algorithm consumed more space than ElGamal 

during the encryption of image data. Table 4.4 shows that time and space values generated 

during the decryption process using RSA and ElGamal algorithms. 

 

 

0

2000

4000

6000

8000

10000

12000

63 85 120 130 200 300 550

En
cr

yp
ti

o
n

 S
p

ac
e 

U
se

d

File Size 

Space of Encryption RSA (kb) Space of Encryption ElGamal (kb)



58 
 

Table 4.4 Tabular representation of Image Data decryption for RSA and ElGamal 

algorithms.  

The generated data obtained from the image dataset decryption process was captured and 

tabulated. The decryption time and space were labelled in seconds (s) and kilobytes (kb) 

respectively for both RSA and ElGamal cryptographic algorithms. Figure 4.9 shows the 

graph of RSA and ElGamal decryption time for image data. 

S/N File Size (KB) Decryption Time Space of Decryption  

RSA (s) ElGamal (s) RSA (kb) ElGamal (kb) 

1 63 11.8935 2.4517 236.29 236.29 

2 85 12.6888 3.8033 295.41 295.41 

3 120 19.6372 4.3965 386.00 386.00 

4 130 19.9276 4.9207 399.20 399.20 

5 200 23.6912 6.3696 470.56 470.56 

6 300 34.7945 8.0873 683.85 683.85 

7 550 67.0517 12.4493 1324.71 1324.71 



59 
 

 

Figure 4.9: RSA and ElGamal Decryption Time for Image data. 

The red line which denotes ElGamal algorithm uses less computational time during the 

decryption of image data while the blue line which denotes RSA uses more time 

complexity during the decryption of image data. The larger the file size, the wider the space 

between the two lines. Figure 4.10 shows the graphical interface of space usage during 

decryption of image data.  

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

D
ec

ry
p

ti
o

n
 T

im
e

File Size

Decryption Time RSA (s) Decryption Time ElGamal (s)



60 
 

 

Figure 4.10: Space used by RSA and ElGamal during Decryption of Image Data. 

From the decryption of image data, it shows that both RSA and ElGamal use relatively the 

same amount of space during the decryption of image data of different file size. 

4.2.2 Discussion for RSA and ElGamal on Image Dataset 

Tables 4.3 to 4.4 and figures 4.7 to 4.10 represents the execution time and memory usage 

for both RSA and ElGamal algorithms for Image data. The statistical data in table 4.3 and 

graph in figures 4.7 and 4.8 showed that ElGamal processing time is higher than RSA 

processing time during encryption of image data, but consumes less space during the 

0

200

400

600

800

1000

1200

1400

63 85 120 130 200 300 550

D
ec

ry
p

ti
o

n
 S

p
ac

e 
U

se
d

File Size

Space of Decryption  RSA (kb) Space of Decryption  ElGamal (kb)



61 
 

encryption process of image dataset while RSA consumes relatively high memory during 

the encryption process. 

Table 4.4 and figure 4.9 shows that ElGamal uses less processing time for decrypting image 

data while RSA processing time for decrypting image data is higher. Figure 4.10 depicts 

that RSA and ElGamal used the same amount of memory for decrypting image data. Table 

4.5 shows the statistical data of encryption time and space usage for RSA and ElGamal 

algorithm on audio data. 

C. Results for RSA and ElGamal on Audio Data 

Table 4.5: Encryption Time and Space Usage of RSA and ElGamal for Audio Data 

 

 

 

S/N File Size (Kb) Encryption Time Memory Usage 

RSA ElGamal RSA ElGamal 

1 50 0.6186 5.7240 1167.72 145.96 

2 55 0.6806 5.9135 1289.66 161.21 

3 60 0.7383 6.4193 1384.90 173.10 

4 70 0.8740 7.9503 1663.56 207.92 

5 90 1.1263 8.1892 2131.86 266.48 

6 120 1.3651 12.2567 2606.37 325.79 

7 200 1.8295 16.7535 3483.51 435.55 



62 
 

From the statistical data of encryption time and space usage on audio data, it was observed 

that RSA has the least computational time while Elgamal consumes a minimal amount of 

space during the encryption process for the various file sizes used. The figure 4.11 shows 

the chart of encryption time for RSA and ElGamal algorithms on audio data. 

 

Figure 4.11: Encryption Time of RSA and ElGamal Algorithms for Audio Data.  

From the chart above, the blue which denotes the RSA algorithm takes less computational 

time during the encryption of audio data. This makes the RSA algorithm perform better 

than ElGamal with longer time of computation during the encryption of audio data. Figure 

4.12 shows the chart of memory usage for RSA and ElGamal during the encryption process 

of audio data. 

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

En
cr

yp
ti

o
n

 T
Im

e

File Size

Encryption Time RSA Encryption Time ElGamal



63 
 

 

Figure 4.12: Memory Usage of RSA and ElGamal Algorithms during Encryption of Audio 

data. 

The computational speed of RSA is relatively higher than that of ElGamal during the 

encryption of audio data of different file sizes. The table 4.6 shows the statistical table of 

computational time and space for RSA and ElGamal decryption process on audio data. 

 

 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

50 55 60 70 90 120 200

M
em

o
ry

 U
sa

ge

File Size
Memory Usage RSA Memory Usage ElGamal



64 
 

 

 

Table 4.6: Decryption Time and Memory Usage of RSA and ElGamal for Audio Data  

From the audio data statistical table, it was observed that the decryption time of RSA is 

less than that of ElGamal while both algorithms use the same computational speed during 

decryption of audio data. Figure 4.13 shows the chart of computation time for RSA and 

ElGamal algorithms on audio data during the decryption process. 

S/N File Size (Kb) Decryption Time Decryption Memory Usage 

RSA ElGamal RSA ElGamal 

1 50 7.3565 1.6570 145.96 145.96 

2 55 8.2104 1.8803 161.21 161.21 

3 60 8.6874 2.1033 173.10 173.10 

4 70 10.4017 2.3383 207.92 207.92 

5 90 13.7977 2.5158 266.48 266.48 

6 120 16.4544 4.4145 325.79 325.79 

7 200 21.9815 4.7963 435.55 435.55 



65 
 

 

Figure 4.13: Decryption time for RSA and ElGamal Algorithms for Audio Data. 

The computation time of RSA is longer than that of the ElGamal algorithm during the 

decryption of audio data of different file sizes. This shows that ElGamal algorithm 

performance is better in terms of computation time during the decryption process. Figure 

4.14 shows the chart of computation speed for RSA and ElGamal algorithms on audio data 

of different file sizes. 

0

5

10

15

20

25

0 50 100 150 200 250

Sp
ac

e 
U

sa
ge

File Size

Decryption Time (s) RSA Decryption Time (s) ElGamal



66 
 

 

Figure 4.14: Decryption Memory Usage of Audio Data using RSA and ElGamal 

Algorithms. 

The chart in figure 4.14 shows that both RSA and ElGamal algorithms consume the same 

amount of computation speed during decryption of audio data. 

4.2.3 Discussion for RSA and ElGamal on Audio Data  

The analysis of result from Table 4.5 and Figure 4.11 showed that the RSA algorithm was 

faster in terms of encrypting audio data it used a small time in encrypting audio data while 

ElGamal used higher time processing for encrypting audio data. Figure 4.12 showed that 

0

50

100

150

200

250

300

350

400

450

500

50 55 60 70 90 120 200

M
em

o
ry

 U
sa

ge

File Size

RSA and ElGamal Decryption Memory of Audio Data

Memory Usage (kb) RSA Memory Usage (kb) ElGamal



67 
 

ElGamal used a small amount of space for encrypting audio data while RSA used a high 

portion of memory for encrypting audio data.  

From Table 4.6 and Figure 4.13, it was observed that ElGamal is faster in decrypting the 

encrypted files, and it has small time processing for decrypting audio file while RSA has a 

higher time processing for decrypting audio data. Figure 4.14 displayed that memory usage 

for decrypting audio data and it was observed that both RSA and ElGamal consume the 

same amount of memory for decrypting audio data. 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

D. Results for RSA and ElGamal on Video Data 

Table 4.7: Encryption Time and Space Usage for RSA and ElGamal on Video Data 

The statistical table shows the encryption time for both RSA and ElGamal in column 3, 

column 4 shows the computational speed while the second column shows the various video 

file sizes that were used for the encryption process. Figure 4.15 shows the chart of 

computational time for RSA and ElGamal algorithms on video data during the encryption 

process. 

S/N File Size (Kb) Video Data Encryption Time 

(s) 

Video Data Memory Usage 

(Encryption) (kb) 

RSA ElGamal RSA ElGamal 

1 452 5.7833 54.8000 10853.30 1356.66 

2 700 8.6895 81.5632 16585.40 2073.17 

3 900 9.6173 88.5221 17841.30 2230.15 

4 1372 17.3919 161.4096 32559.90 4069.97 

5 3072 24.0244 222.1748 44514.91 5564.35 

6 7608 52.1230 412.3847 56691.24 16691.01 

7 10639 80.9202 749.1150 97942.83 18360.01 



69 
 

 

Figure 4.15: Chart of encryption time for RSA and ElGamal algorithm on video. 

It is evident from figure 4.15 that the red line which denotes the ElGamal algorithm always 

takes longer computational time during the encryption process while the blue line which 

denotes RSA takes less computational time during the encryption process. Figure 4.16 

shows the chart of computational speed for RSA and ElGamal on video data during the 

encryption process. 

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

En
cr

yp
ti

o
n

 T
im

e

File Size

Video Data Encryption Time (s) RSA Video Data Encryption Time (s) ElGamal



70 
 

 

Figure 4.16: Memory usage during encryption of video data with RSA and ElGamal 

algorithms. 

The column bar chart presented in figure 4.16 shows that the blue bar (RSA) has higher 

computational speed during the encryption of video data. The red bar (ElGamal) has 

smaller computational speed during encryption of video data. Table 4.8 shows the 

statistical data obtained from decrypting video data using RSA and ElGamal algorithms. 

 

 

0

20000

40000

60000

80000

100000

120000

452 700 900 1372 3072 7608 10639

M
em

o
ry

 U
sa

ge

File Size

Video Data Memory Usage (Encryption) (kb) RSA Video Data Memory Usage (Encryption) (kb) ElGamal



71 
 

 

Table 4.8: Decryption Time and Space Usage of RSA and ElGamal for Video Data 

The table gives the statistical data of computational time and speed generated during the 

decryption of video data using RSA and ElGamal algorithms. Figure 4.17 depicts the 

computation time for the RSA and ElGamal algorithms during video data decryption. 

S/N File Size (Kb) Video Data Decryption Time (s) Video Data Memory Usage 

(Decryption) (kb) 

RSA ElGamal RSA ElGamal 

1 452 69.3627 14.7762 1356.66 1356.66 

2 700 105.5035 22.4683 2073.17 2073.17 

3 900 114.6094 23.9383 2230.15 2230.15 

4 1372 207.9480 45.0798 4069.97 4069.97 

5 3072 268.2103 61.0020 5564.35 5564.35 

6 7608 394.8201 98.5002 16691.01 16691.01 

7 10639 566.3400 133.4137 18360.01 18360.01 



72 
 

 

Figure 4.17: RSA and ElGamal Decryption Time obtained from Video Data 

The computational time of the RSA algorithm (blue line) is longer during the decryption 

process of video data of different file sizes. While the ElGamal algorithm (red line) enjoys 

smaller computational time during the decryption process of video data. Figure 4.18 shows 

the chart of computational speed for RSA and ElGamal on video data during the decryption 

process. 

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000 12000

D
ec

ry
p

ti
o

n
 T

im
e

File Size

Video Data Decryption Time (s) RSA Video Data Decryption Time (s) ElGamal



73 
 

 

Figure 4.18: RSA and ElGamal Memory Usage from Video data Decryption Process. 

The RSA algorithm, which is represented with a blue bar, and the ElGamal algorithm, 

which is represented with a red bar, have the same computational speed during decryption 

of video data. 

4.2.4 Discussion for RSA and ElGamal on Video Dataset 

 Table 4.7, Figure 4.15 and Figure 4.16 displayed the time and space data result generated 

during the encryption of video data and the result was analyzed using graphs. From those 

tables and figures, RSA used smaller time during the encryption process of video data while 

ElGamal used higher time processing to encrypt video data. ElGamal used smaller memory 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

452 700 900 1372 3072 7608 10639

M
em

o
ry

 U
sa

ge

File Size

Video Data Memory Usage (Decryption) (kb) RSA Video Data Memory Usage (Decryption) (kb) ElGamal



74 
 

during the encryption process of video data while RSA generated large file which 

consumed more space during the encryption process. 

Table 4.8, figure 4.17 and figure 4.18 displayed the result of time and memory usage during 

the decryption process. It was observed that ElGamal used lesser time during the 

decryption process compared to that of RSA. Both RSA and ElGamal used the same 

amount of memory during the decryption process of video data. 

4.3 Discussions of Findings 

In an attempt to evaluate the time and space complexity of RSA and ElGamal 

cryptographic algorithms, mixed data, consisting of text, image, audio and video data of 

different sizes were used in the computational evaluation to determine the behaviours of 

the algorithms. During the analysis, it was observed that RSA performed better than 

ElGamal  

The experimental results obtained from all the dataset used (text, image, audio and video) 

as displayed in the tables and figures showed that the RSA algorithm outperformed the 

ElGamal algorithm during the encryption time of all categories of the dataset. This is in 

accordance with the existing works of literature (Farah et. al., 2012; Kyaw, Kyaw and Nay, 

2019; Zarni et. al., 2019; Putri, Erna and Muhammad, 2020). Elgamal algorithm 

outperformed RSA algorithm during decryption time of all categories of data. This is 

consistent with the existing pieces of literature (Farah et. al., 2012; Andysah, Elviwani, 

and Boni, 2018; Zarni et. al., 2019).  It was observed that the RSA algorithm-generated 

large file, and consumed more space (memory) during the encryption process of all 

categories of data. This is consistent with the existing literature (Andysah, Elviwani, and 



75 
 

Boni, 2018). ElGamal algorithm outperformed the RSA algorithm in terms of memory 

usage. It was also observed that both RSA and ElGamal algorithms consumed similar 

computational space for decrypting mixed data. 

Therefore, this study used time and space performance metrics to evaluate which of the 

RSA algorithm and the ElGamal algorithm performs better when it comes to mixed data. 

RSA algorithm have lower computational time during encryption of text, image, audio and 

video dataset. ElGamal algorithm have lower computational time during the decryption of 

text, image, audio and video dataset. ElGamal algorithm consume less computational speed 

during the encryption of text, image, audio and video dataset compare to RSA that consume 

higher computational speed during the encryption process. Both algorithms (RSA and 

ElGamal) consume the same amount of computational speed during the decryption of text, 

image, audio and video dataset. Based on the various experimental results generated it was 

observed that the RSA algorithm is time-efficient while the ElGamal algorithm is a 

memory-efficient algorithm for all categories of data.  

 

 

  

 

 

 

 



76 
 

CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary 

In this study, the time and space of asymmetric cryptographic algorithms was studied due 

to the complexity challenges of two keys being used during encryption and decryption 

process. In determining the complexity of the cryptographic algorithm, it is important to 

consider the time complexity and space usage for effective comparative study. The 

comparative study of a cryptographic algorithm is the evaluation of the performance of the 

various cryptographic algorithm concerning time and memory usage based on the inputted 

values. Cryptographic algorithm complexity is a metric that determines the order of the 

number of operations executed by an algorithm depending on the scale of the data entry. 

Complexity is a general approximation of the activities to be conducted to execute an 

algorithm. The complexity of the algorithm is usually expressed by the 𝑂(𝑓) notation, also 

known as the asymptotic notation or the "Big 𝑂 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛," where 𝑓 is a function of the 

size of the input data. Asymptotic computational complexity 𝑂(𝑓) calculates the order of 

the used resource (CPU time, memory, etc.) by some algorithm represented as a function 

of the input file sizes. 

The time complexity of the cryptographic algorithm is most generally calculated by 

calculating the number of elementary steps required by every algorithm to complete the 

execution. This is generally represented using the big 𝑂 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛, which indicates the 

cumulative time the program has to run before it is finished. Space complexity is 



77 
 

characterized as the process of determining a function for predicting how much storage 

space is needed for the efficient execution of the algorithm. Memory space is commonly 

considered to be the main memory. 

Data security is a major concern involving many areas, including computers and 

communications. A cryptography algorithm is a way to ensure data secrecy, authentication, 

integrity, availability and identity of user data. It helps to maintain and provide protection 

and privacy to user data. RSA and ElGamal algorithms are known as an asymmetric 

cryptographic algorithm that use both public and private key to encrypt and decrypt user 

data. RSA is a public-key encryption algorithm developed by Ron Rivest, Adi Shamir and 

Len Adleman. It is the most common cryptographic key asymmetric algorithm. It offers 

user information with both privacy and digital signature. It uses prime factors to produce 

public and private keys based on mathematical facts and to multiply large numbers 

together. ElGamal is an asymmetric key encryption algorithm based on the Diffie-Helman 

key exchange as an option to RSA for public-key encryption. ElGamal is also used for the 

generation of a digital signature algorithm called the ElGamal signature scheme. This study 

used both RSA and ElGamal cryptographic algorithms to determine the time and space 

usage on mixed (text, image, audio, and video) data. 

From the literature, the performance evaluation of RSA and ElGamal has been compared 

with text, image and audio data in determining the running time of each of the algorithms 

and which of the algorithms performs better. The time performance of RSA and ElGamal 

were compared in the findings. RSA was picked to have performed better during the 

encryption time while ElGamal was picked to have performed better during the decryption 



78 
 

time (Zarni et. al., 2019). RSA algorithm was concluded to have performed better than the 

ElGamal algorithm (Tin and Su, 2014; Kyaw, Kyaw and Nay, 2019). 

5.2 Conclusion 

In this study, RSA and ElGamal cryptographic algorithms were implemented to determine 

the time and space complexity of both algorithms on mixed (text, image, audio, video) data 

to achieve objective one. The experimental results showed that the RSA algorithm 

performs better in time complexity for all categories of data set (text, image, audio, and 

video) during the encryption process. RSA algorithm is better in terms of time complexity 

during the decryption of mixed data. ElGamal algorithm performs better in terms of 

memory consumption for both encryption and decryption process for all the categories of 

the dataset as the objective two was achieved.  

The objectives three of this study was achieved as we were able to determine and analyzed 

the time and space complexity of both RSA and ElGamal cryptographic algorithms on text, 

image, audio and video data. Based on the comparative analysis of the time and space 

complexity of both RSA and ElGamal algorithms, it was discovered that RSA is a better 

algorithm when it comes to time complexity, that is, RSA can be said to be a time-efficient 

algorithm. ElGamal algorithm performed better than RSA in the memory usage aspect, 

therefore the ElGamal algorithm is said to be a memory-efficient algorithm.  

 

 

5.3 Limitation 



79 
 

The following are some of the limitations of the study: 

a. This work was implemented in a single programming language (C-Sharp). 

b. Only two measurement metrics were used during implementation, that is, the time and 

space complexity. 

5.4 Recommendation 

The following propositions are recommended to further this research: 

a. Additional larger data size should be used to implements both algorithms. 

b. Complexity analysis should be carried out on other asymmetric algorithms for better 

decision making. 

c. Other measurement metrics can be used to compare both algorithms. 

 

5.5 Contribution to Knowledge 

 

This study provides an addition to the body of knowledge by investigating the performance 

of selected cryptographic algorithms (RSA and ElGamal) in terms of computer resources 

usage (time and memory) on a mixed dataset (text, image, audio and video). This seeks to 

enhance decision making on which algorithms performs better concerning time and 

memory usage as well as the design of a high impact computer system. 

5.6 Future works 



80 
 

As seen from the results obtained, the RSA algorithm is a more efficient algorithm for time 

complexity while ElGamal is a more efficient algorithm for space complexity. As future 

work, the two algorithms can be studied with the goal of getting more optimal space and 

time complexity for RSA and ElGamal respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 



81 
 

Andysah P., Elviwani, and Boni O. (2018). Comparative Analysis of RSA and ElGamal 

Cryptographic Public-key Algorithms. Ina-Rxiv papers 1(6):1-10. 

Ankush S., Jyoti A., Aarti D. and Pratibha S. (2014) Implementation & Analysis of RSA 

and ElGamal Algorithm. Asian J. of Adv. Basic Sci.: 2(3): 125-129.  

Asani, E.O, Omotosho, A. and Longe, O. B. (2018). A Real-time Gesture Engineered 

CAPTCHA. International Journal of Mechanical Engineering and Technology 9(12): 

618-629. 

Choi, J., Shin, Y., and Cho, S. (2018, January). Study on information security sharing 

system among the industrial IoT service and product provider. In 2018 International 

Conference on Information Networking (ICOIN):551-555. IEEE.  

Dindayal M and Dilip K.Y. (2018). Performance Analysis of RSA and Elliptic Curve 

Cryptography. International Journal of Network Security, 20(4): 625-635. 

Farah, S., Javed, Y., Shamim, A., and Nawaz, T. (2012, December). An experimental study 

on performance evaluation of asymmetric encryption algorithms. In Recent Advances 

in Information Science, Proceeding of the 3rd European Conf. of Computer 

Science.121-124. EECS-12. 

Gonzalez, C., Ben-Asher, N., and Morrison, D. (2017). Dynamics of decision making in 

cyber defense: Using multi-agent cognitive modeling to understand cyberwar. In 

Theory and Models for Cyber Situation Awareness. 113-127. Springer, Cham. 

Haitner, I., and Vadhan, S. (2017). The many entropies in one-way functions. In Tutorials 

on the Foundations of Cryptography. 159-217. Springer, Cham. 



82 
 

Hong, J (2012). The state of phishing attacks. Communications of the ACM, 55 (1): 74-81.  

Kayalvizhi, R., Vijayalakshmi, M., and Vaidehi, V. (2010, July). Energy analysis of RSA 

and ELGAMAL algorithms for wireless sensor networks. In International 

Conference on Network Security and Applications. 172-180. Springer, Berlin, 

Heidelberg. 

Kyaw M.T., Kyaw S.H., and Nay A.A. (2019) Time Performance Analysis of RSA and 

Elgamal Public-Key Cryptosystems. International Journal of Trend in Scientific 

Research and Development. 3(6): 18-29. 

Mondal, H. S., Hasan, M. T., Hossain, M. M., Arifin, M. M., and Saha, R. (2020, June). 

An RSA-Based Efficient Dynamic Secure Algorithm for Ensuring Data Security. In 

Proceedings of International Joint Conference on Computational Intelligence. 643-

653. Springer, Singapore. 

Okeyinka, A. E. (2015, October). Computational speeds analysis of RSA and ElGamal 

algorithms on text data. In Proceedings of the world congress on engineering and 

computer science. 

Osman, A. M., Dafa-Allah, A., and Elhag, A. A. M. (2017, January). Proposed security 

model for web based applications and services. In 2017 International Conference on 

Communication, Control, Computing and Electronics Engineering. 1-6. IEEE. 

Paverd, A., Tamrakar, S., Nguyen, H. L., Pendyala, P., Nguyen, D. T., Stobert, E., ... and 

Sadeghi, A. R. (2018). OmniShare: Encrypted Cloud Storage for the Multi-Device 

Era. IEEE Internet Computing. 22(4): 27-36. 



83 
 

Preeti C., Arjun C., and Atul K. (2018, July) “Multimedia Big Data Security”, International 

Conference on Recent Innovations in Electrical, Electronics & Communication 

Engineering. 112-117 

Priyadarshini P., Prashant N., Narayan D. and Meena S. (2015, December). “A 

Comprehensive Evaluation of Cryptographic Algorithms: DES”. International 

Conference on Information Security & Privacy. 11-12. Nagpur, INDIA.  

Rashmi Singh, and Shiv Kumar (2012). Elgamal’s Algorithm in Cryptography. 

International Journal of Scientific & Engineering Research. 3(12): 1-4. 

Sann, Z., thi Soe, T., Knin, K. W. M., and Win, Z. M. (2019). Performance comparison of 

asymmetric cryptography (case study-mail message). APTIKOM Journal on 

Computer Science and Information Technologies. 4(3): 105-111. 

Shah, H., Sharma, V., Panchal, D., Patel, S., and Degadwala, S. (2018). A Comparative 

Study on Digital Encryption Algorithms. Journal of Scientific & Engineering 

Research. 3(2):101-121. 

Shashi M. S., and Rajan M.,   (2011).  Comparative       Analysis       Of       Encryption       

Algorithms for  Data  Communication,  International Journal of Clothing Science 

and Technology.  2(2): 11-31. 

Siahaan A. P. (2016). “Genetic Algorithm in Hill Cipher Encryption,” American 

International Journal of Research in Science, Technology, Engineering & 

Mathematics. 15(1): 84–89. 



84 
 

Siahaan, A. P. U. (2018). Comparative Analysis of RSA and ElGamal Cryptographic 

Public-key Algorithms. American International Journal Research in Science, 

Technology, Engineering & Mathematics. 16(3): 45-51. 

Singanjude, M. D., and Dalvi, R. (2020). Secure and Efficient Application of Manet Using 

RSA Using Vedic Method Combine With Visual Cryptography and Identity Based 

Cryptography Technique. Available at SSRN 3570567. Accessed 20/09/20. 

Statistica, (2018). The number of active e-mail accounts worldwide from 2014 to 2019 (in 

millions). Available online: https://www.statista.com/statistics/456519/forecast-

number-of-active-email-accounts-worldwide/ Accessed 22/10/20. 

Tin Z. N., and Su W.P. (2014) Performance Analysis of RSA and ElGamal for Audio 

Security.  International Journal of Scientific Engineering and Technology Research. 

3(11): 2494-2498. 

Viney B. P., and Singh, S. (2015, December). A hybrid data encryption technique using 

RSA and Blowfish for cloud computing on FPGAs. In 2015 2nd International 

Conference on Recent Advances in Engineering & Computational Sciences. 1-5. 

IEEE. 

Wigderson, A. (2019). Mathematics and Computation: A Theory Revolutionizing 

Technology and Science. Princeton University Press. 

Mahmood, K., Chaudhry, S. A., Naqvi, H., Kumari, S., Li, X., and Sangaiah, A. K. (2018). 

Elliptic curve cryptography based lightweight authentication scheme for smart grid 

communication. Future Generation Computer Systems. 81(1): 557-565. 



85 
 

Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signature 

algorithm (ECDSA). International Journal of Information Security, 1(1): 36-63. 

Zarni S, Thi T.S., Kaythi W. M., and Zin M.W. (2019). Performance comparison of 

asymmetric cryptography (case study-mail message). APTIKOM Journal on 

Computer Science and Information Technologies. 4(3):105-111. 

Suguna, S., Dhanakoti, V., and Manjupriya, R. (2016). A Study on Symmetric and 

Asymmetric Key Encryption Algorithms. International Research Journal of 

Engineering and Technology (IRJET). 3(4): 27-31. 

Aljawarneh, S., and Yassein, M. B. (2017). A resource-efficient encryption algorithm for 

multimedia big data. Multimedia Tools and Applications, 76(21): 22703-22724. 

Abdullah, A. (2017). Advanced encryption standard (AES) algorithm to encrypt and 

decrypt data. Cryptography and Network Security, 16(1):1-10. 

Mushtaq, M. F., Jamel, S., Disina, A. H., Pindar, Z. A., Shakir, N. S. A., and Deris, M. M. 

(2017). A survey on the cryptographic encryption algorithms. International Journal 

of Advanced Computer Science and Applications, 8(11): 333-344. 

Nureni A. A. and Sayyidina’Aliyy B.A. (2018). Comparative Analysis of Encryption 

Algorithms. Covenant Journal of Informatics & Communication Technology. 6(1):13-

22. 

Putri P.S, Erna B. N and Muhammad Z. (2020, June). Comparative study of LUC, Elgamal 

and RSA Algorithms in Encoding Texts. In 2020 3rd International Conference on 



86 
 

Mechanical, Electronics, Computer, and Industrial Technology (MECnIT). 148-151. 

IEEE. 

Kumar, P., Rawat, S., Choudhury, T., and Pradhan, S. (2016, November). A performance 

based comparison of various symmetric cryptographic algorithms in run-time 

scenario. In 2016 International Conference System Modeling & Advancement in 

Research Trends (SMART). 37-41. IEEE. 

Arora, Rachna, Anshu Parashar, and Cloud Computing Is Transforming. "Secure user data 

in cloud computing using encryption algorithms." International journal of engineering 

research and applications. 3(4): 1922-1926. 

Boni, Sharad, Jaimik Bhatt, and Santosh Bhat (2015). "Improving the Diffie-Hellman Key 

Exchange Algorithm by Proposing the Multiplicative Key Exchange Algorithm." 

International Journal of Computer Applications 130(15): 8-19. 

Yassein, M. B., Aljawarneh, S., Qawasmeh, E., Mardini, W., and Khamayseh, Y. (2017, 

August). Comprehensive study of symmetric key and asymmetric key encryption 

algorithms. In 2017 International conference on engineering and technology (ICET). 

1-7. IEEE. 

Kansal, S., and Mittal, M. (2014, December). Performance evaluation of various symmetric 

encryption algorithms. In 2014 International Conference on Parallel, Distributed and 

Grid Computing. 105-109. IEEE. 



87 
 

Costello, C., Longa, P., and Naehrig, M. (2016, August). Efficient algorithms for 

supersingular isogeny Diffie-Hellman. In Annual International Cryptology 

Conference. 572-601. Springer, Berlin, Heidelberg. 

Suganya, K., and Ramya, K. (2014). Performance study on Diffie Hellman Key Exchange 

Algorithm. International Journal for Research in Applied Science and Engineering 

Technology. 12(7): 68-75. 

Kaur, M., and Kaur, J. (2017). Data Encryption Using Different Techniques: A Review. 

International Journal of Advanced Research in Computer Science, 8(4). 12-19 

Vasundhara, S. (2017). Elliptic curve Cryptography and Diffie-Hellman Key exchange. 

IOSR Journal of Mathematics. 13(1): 56-61. 

Biswas, B. (2012). On a key exchange technique, avoiding man-in-the-middle-attack. 

Journal of Global Research in Computer Science, 3(9): 28-30. 

Rabah, K. (2005). Theory and implementation of data encryption standard: A review. 

Information Technology Journal, 4(4): 307-325. 

Suo, H., Wan, J., Zou, C., and Liu, J. (2012, March). Security on the internet of things: a 

review. In 2012 International Conference on Computer Science and Electronics 

Engineering. 648-651. IEEE. 

Oduyiga, A. O. (2018). Security in Cloud Storage: A Suitable Security Algorithm for Data 

Protection. 



88 
 

Thambiraja, E., Ramesh, G., and Umarani, D. R. (2012). A survey on various most 

common encryption techniques. International Journal of Advanced Research in 

Computer Science and Software Engineering, 2(7):7-15. 

Singh, G. (2013). A study of encryption algorithms (RSA, DES, 3DES and AES) for 

information security. International Journal of Computer Applications, 67(19): 19-25. 

Singh, P., and Singh, K. (2013). Image encryption and decryption using the blowfish 

algorithm in MATLAB. International Journal of Scientific & Engineering Research. 

4(7): 150-154. 

Rahim, R. (2017). Combination of the Blowfish and Lempel-Ziv-Welch algorithms for text 

compression. 

Lee, B. H., Dewi, E. K., and Wajdi, M. F. (2018, April). Data security in cloud computing 

using AES under HEROKU cloud. In 2018 27th Wireless and Optical Communication 

Conference. 1-5. IEEE. 

Talirongan, H., Sison, A. M., and Medina, R. P. (2018, November). Modified Advanced 

Encryption Standard using Butterfly Effect. In 2018 IEEE 10th International 

Conference on Humanoid, Nanotechnology, Information Technology, Communication 

and Control, Environment and Management. 1-6. IEEE. 

 

 

 



89 
 

APPENDIX 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using System.Runtime.InteropServices; 

using System.Security; 

using System.Security.Cryptography; 

using System.IO; 

using System.Collections; 

using System.Diagnostics; 

 

namespace File_Encrypter_Decrypyer 

{ 

    public partial class frmEncDec: Form 

    { 

        private static int _keyLength = 0; 

        private String _key = null; 

        private String _cryptedText = ""; 

        private static Boolean _flag = false; 

        private String _randomKey = ""; 

        string[] FileName, FilePath; 

        

         

 

        private static String APPLICATION_NAME = "Time and Space Complexities of 

RSA and ElGamal on Mixed Data"; 

 

        //image 

        static int RSA_P = 0; 

        static int RSA_Q = 0; 

        static int RSA_E = 0; 

        static int d = 0; 

        static int n = 0; 

 

        static string loadImage = ""; 

        static string loadcipher = ""; 

        static string loadvideo = ""; 

        

    //image stop 



90 
 

 

        public frmEncDec() 

        { 

            InitializeComponent(); 

        } 

 

        private void frmEncDec_Load(object sender, EventArgs e) 

        { 

            btnEncrypt.Enabled = false; 

            btnDecrypt.Enabled = false; 

            disable_all(); 

            _flag = true; // by default ELGAMAL encryption is chosen 

        } 

         

        //Image Encryption and Decrypion Process 

        public string encrypt(string imageToEncrypt) 

        { 

            //Stopwatch stopwatch = new Stopwatch(); 

            //stopwatch.Start(); 

            string hex = imageToEncrypt; 

            char[] ar = hex.ToCharArray(); 

            String c = ""; 

            //MessageBox.Show("ar"); 

            progressBar1.Maximum = ar.Length; 

            for (int i = 0; i < ar.Length; i++) 

            { 

                Application.DoEvents(); 

                progressBar1.Value = i; 

                if (c == "") 

                    c = c + File_Encrypter_Decrypyer.RSAalgorithm.BigMod(ar[i], RSA_E, n); 

                else 

                    c = c + "-" + File_Encrypter_Decrypyer.RSAalgorithm.BigMod(ar[i], 

RSA_E, n); 

            } 

            return c; 

            //stopwatch.Stop(); 

            //TimeSpan duration = stopwatch.Elapsed; 

            //label6.Text = "Time Used: " + duration.TotalSeconds; 

            //label5.Text = "Space Used: " + (pictureBox1.Width/pictureBox1.Height) 

/1024.0 + "KB"; //rTxtBox.TextLength / 1024.0 + "KB"; 

        } 

 

        public string decrypt(String imageToDecrypt) 

        { 

            char[] ar = imageToDecrypt.ToCharArray(); 

            int i = 0, j = 0; 



91 
 

            string c = "", dc = ""; 

            progressBar2.Maximum = ar.Length; 

            try 

            { 

                for (; i < ar.Length; i++) 

                { 

                    Application.DoEvents(); 

                    c = ""; 

                    progressBar2.Value = i; 

                    for (j = i; ar[j] != '-'; j++) 

                        c = c + ar[j]; 

                    i = j; 

 

                    int xx = Convert.ToInt16(c); 

                    dc = dc + ((char)File_Encrypter_Decrypyer.RSAalgorithm.BigMod(xx, d, 

n)).ToString(); 

                } 

            } 

            catch (Exception ex) { } 

 

            return dc; 

        } 

    //End of the Process 

        public String ReadFullFileData(string fileName) 

        { 

            TextReader tr = null; 

            try 

            { 

                tr = File.OpenText(fileName); 

 

                if (tr != null) 

                    return tr.ReadToEnd(); 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message, APPLICATION_NAME, 

MessageBoxButtons.OK, MessageBoxIcon.Information); 

            } 

            finally 

            { 

                tr.Close(); 

            } 

 

            return null; 

        } 

 



92 
 

        public void OpenFile(String title) 

        { 

            OpenFileDialog fileDialog = new OpenFileDialog(); 

            fileDialog.Title = title; 

            fileDialog.Filter = "files (*.txt)|*.txt|Word Document (*.docx)|*.docx|PDF 

(*.pdf)|*.pdf"; //"TEXT Files(*.txt)|*.txt"; 

 

            if (fileDialog.ShowDialog() == System.Windows.Forms.DialogResult.OK) 

            { 

                txtPath.Text = fileDialog.FileName; 

                string dataToEncrypt = ReadFullFileData(fileDialog.FileName); 

                rTxtBox.Text = dataToEncrypt; 

                chkData.Checked = true; 

            } 

            else 

            { 

                return; 

            } 

        } 

 

        public void SaveFile(String title) 

        { 

            TextWriter tw = null; 

            try 

            { 

                SaveFileDialog saveFileDialog = new SaveFileDialog(); 

                saveFileDialog.Title = title; 

                saveFileDialog.Filter = "TEXT Files(*.txt)|*.txt"; 

                if (saveFileDialog.ShowDialog() == 

System.Windows.Forms.DialogResult.OK) 

                { 

                    tw = File.CreateText(saveFileDialog.FileName); 

                    tw.WriteLine(rTxtBox.Text); 

                    /*if ((myStream = browsedfile.OpenFile()) != null) 

                    { 

                        txtBrowse.Text = browsedfile.SafeFileName; 

                        string strfilename = browsedfile.FileName; 

                        string filetext = File.ReadAllText(strfilename); 

                        txtEncryptPlainText.Text = filetext; 

                    }*/ 

                } 

                else 

                { 

                    return; 

                } 

            } 



93 
 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message, APPLICATION_NAME, 

MessageBoxButtons.OK, MessageBoxIcon.Information); 

            } 

            finally 

            { 

                tw.Close(); 

            } 

        } 

 

        public static String RandomKeyString() // random key generator 

        { 

            StringBuilder builder = new StringBuilder(); 

            Random r = new Random(); 

            char ch; 

            int size = r.Next(35, 70); 

 

            for (int i = 0; i < size; i++) 

            { 

                ch = Convert.ToChar(r.Next(65, 122)); 

                builder.Append(ch); 

            } 

 

            return builder.ToString(); 

        } 

 

        private void btnBrowse_Click(object sender, EventArgs e) 

        { 

            OpenFile("Open A File To Encrypt"); 

            btnEncrypt.Enabled = true; 

            btnDecrypt.Enabled = true; 

        } 

 

        public void ELGAMALEncryption() 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            ELGAMALEncryptionDecryption ElGamalEnc = new 

ELGAMALEncryptionDecryption(); 

            ElGamalEnc.EncryptionKey = _randomKey; 

            lblKey.Text = "Elgamal Encryption Key"; 

            rTxtKey.Text = _randomKey; 

            ElGamalEnc.InClearText = rTxtBox.Text; 

            ElGamalEnc.ELGAMALEncryption(); 

            this._cryptedText = ElGamalEnc.CryptedText; 



94 
 

            rTxtBox.Clear(); 

            rTxtBox.Text = this._cryptedText; 

            stopwatch.Stop(); 

            TimeSpan duration = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + duration.TotalSeconds * 60; 

            label5.Text = "Space Used: " + rTxtBox.TextLength / 1024.0 + "KB"; 

        } 

 

        public void ELGAMALDecryption() 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            ELGAMALEncryptionDecryption ElGamalEnc = new 

ELGAMALEncryptionDecryption(); 

            ElGamalEnc.EncryptionKey = _randomKey; 

 

            lblKey.Text = "ElGamal Decryption Key"; 

            rTxtKey.Text = _randomKey; 

 

            ElGamalEnc.CryptedText = rTxtBox.Text; 

            ElGamalEnc.ELGAMALDecryption(); 

            rTxtBox.Clear(); 

            rTxtBox.Text = ElGamalEnc.InClearText; 

            stopwatch.Stop(); 

            TimeSpan decrytime = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + decrytime.TotalSeconds * 60; 

            label5.Text = "Space Used: " + rTxtBox.TextLength / 1024.0 + "KB";  

        } 

 

        public void RSAEncryption() 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            _keyLength = Convert.ToInt32(numericUpDown.Value.ToString()); 

            string encryptedString = 

RSAEncryptionDecryption.RSAEncryption(rTxtBox.Text, _keyLength, _key); 

            lblKey.Text = "RSA Encryption Key"; 

            rTxtKey.Text = _key; 

            rTxtBox.Clear(); 

            rTxtBox.Text = encryptedString; 

            chkData.Checked = true; 

            //label6.Text = "Time Used: " + (rTxtBox.TextLength / _keyLength)/60.0; 

            //Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Stop(); 

            TimeSpan duration = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + duration.TotalSeconds; 



95 
 

            label5.Text = "Space Used: " + rTxtBox.TextLength/1024.0 + "KB"; 

        } 

 

        public void RSADecryption() 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            string decryptedString = 

RSAEncryptionDecryption.RSADecryption(rTxtBox.Text, _keyLength, _key); 

            rTxtBox.Clear(); 

            rTxtBox.Text = decryptedString; 

            //calculate time of decryption 

            stopwatch.Stop(); 

            TimeSpan decrytime = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + decrytime.TotalSeconds; 

            label5.Text = "Space Used: " + rTxtBox.TextLength/1024.0 + "KB";  

        } 

 

        private void btnEncrypt_Click(object sender, EventArgs e) 

        { 

            try 

            { 

                if (String.IsNullOrEmpty(rTxtKey.Text)) 

                { 

                    MessageBox.Show("You must generate key first to encrypt or decrypt text.", 

APPLICATION_NAME, MessageBoxButtons.OK, MessageBoxIcon.Information); 

                    return; 

                } 

                else if (!String.IsNullOrEmpty(rTxtKey.Text)) 

                { 

                    if (rTxtBox.Text != null && !chkData.Checked) // data is from file 

                    { 

                        if (_flag) // user select ELGAMAL encrytion from Encryption Menu 

                        { 

                            ELGAMALEncryption(); 

                        } 

                        else // user select RSA encrytion from Encryption Menu 

                        { 

                            RSAEncryption(); 

                        } 

 

                        DialogResult result = MessageBox.Show("Want to save encrypted text to 

file?", APPLICATION_NAME, MessageBoxButtons.YesNo, 

MessageBoxIcon.Information); 

                        if (result == System.Windows.Forms.DialogResult.Yes) 

                        { 



96 
 

                            // then save the encrypted text to file 

                            SaveFile("Save a encrypted text to file"); 

                        } 

                        else 

                        { 

                            return; 

                        } 

                    } 

                    else if (chkData.Checked && rTxtBox.Text != null) 

                    { 

                        // user write directly to a rich text box, not open a file from the browse 

button 

                        // now first convert text to encrypted text, then prompt a user to save that 

text or not 

 

                        if (_flag) 

                        { 

                            ELGAMALEncryption(); 

                        } 

                        else 

                        { 

                            RSAEncryption(); 

                        } 

 

                        DialogResult result = MessageBox.Show("Want to save encrypted text to 

file?", APPLICATION_NAME, MessageBoxButtons.YesNo, 

MessageBoxIcon.Information); 

                        if (result == System.Windows.Forms.DialogResult.Yes) 

                        { 

                            // then save the encrypted text to file 

                            SaveFile("Save a encrypted text to file"); 

                        } 

                        else 

                        { 

                            return; 

                        } 

                    } 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message, APPLICATION_NAME, 

MessageBoxButtons.OK, MessageBoxIcon.Information); 

            } 

        } 

 



97 
 

        private void btnDecrypt_Click(object sender, EventArgs e) 

        { 

            try 

            { 

                if (rTxtBox.Text != null && !chkData.Checked) 

                { 

                    // means data that is to be decrypted is from a file, so first open the file by 

clicking the button browse 

 

                    OpenFile("Open A Encrypted File To Decrypt"); 

 

                    if (_flag) 

                    { 

                        ELGAMALDecryption(); 

                    } 

                    else 

                    { 

                        RSADecryption(); 

                    } 

 

                    DialogResult result = MessageBox.Show("Want to save decrypted text to 

file?", APPLICATION_NAME, MessageBoxButtons.YesNo, 

MessageBoxIcon.Information); 

                    if (result == System.Windows.Forms.DialogResult.Yes) 

                    { 

                        // then save the encrypted text to file 

                        SaveFile("Save a decrypted text to file"); 

                    } 

                    else 

                    { 

                        return; 

                    } 

                } 

                else if (chkData.Checked && rTxtBox.Text != null) 

                { 

                    // means data that is to be decrypted is written by the user directly to a rich 

textbox,  

                    // so simple decrypt it and prompt the user for its saving 

 

                    if (_flag) 

                    { 

                        ELGAMALDecryption(); 

                    } 

                    else 

                    { 

                        RSADecryption(); 



98 
 

                    } 

 

                    DialogResult result = MessageBox.Show("Want to save decrypted text to 

file?", APPLICATION_NAME, MessageBoxButtons.YesNo, 

MessageBoxIcon.Information); 

                    if (result == System.Windows.Forms.DialogResult.Yes) 

                    { 

                        // then save the encrypted text to file 

                        SaveFile("Save a decrypted text to file"); 

                    } 

                    else 

                    { 

                        return; 

                    } 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message, APPLICATION_NAME, 

MessageBoxButtons.OK, MessageBoxIcon.Information); 

            } 

        } 

 

        private void chkData_CheckedChanged(object sender, EventArgs e) 

        { 

            if (chkData.Checked) 

            { 

                btnEncrypt.Enabled = true; 

                btnDecrypt.Enabled = true; 

            } 

            else 

            { 

                btnEncrypt.Enabled = false; 

                btnDecrypt.Enabled = false; 

            } 

        } 

 

        private void exitToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            Application.Exit(); 

        } 

 

        private void ElGamalToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            _flag = true; 

        } 



99 
 

 

        private void rSAToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            _flag = false; 

        } 

 

        private void btnClear_Click(object sender, EventArgs e) 

        { 

            rTxtBox.Clear(); 

            rTxtKey.Clear(); 

        } 

 

        private void btnClose_Click(object sender, EventArgs e) 

        { 

            Application.Exit(); 

        } 

 

        private void btnGenerateKey_Click(object sender, EventArgs e) 

        { 

            if (_flag) 

            { 

                lblKey.Text = "ElGamal Encryption Key"; 

                _randomKey = RandomKeyString(); // generating random key 

                rTxtKey.Text = _randomKey; 

            } 

            else 

            { 

                _key = RSAEncryptionDecryption.RSAGenerateKey(_keyLength); 

                string bitStrengthString = _key.Substring(0, _key.IndexOf("</BitStrength>") + 

14); 

                _key = _key.Replace(bitStrengthString, ""); 

                lblKey.Text = "RSA Encryption Key"; 

                rTxtKey.Text = _key; 

            } 

        } 

 

        private void btnImage_Click(object sender, EventArgs e) 

        { 

            OpenFileDialog open1 = new OpenFileDialog(); 

            open1.Filter = "Image File(*.JPG)|*.JPG"; 

 

            if (open1.ShowDialog() == DialogResult.OK) 

            { 

                textBox1.Text = open1.FileName; 

                pictureBox1.Image = Image.FromFile(textBox1.Text); 

                button2.Enabled = true; 



100 
 

                FileInfo fi = new FileInfo(textBox1.Text); 

 

                label9.Text = "File Name: " + fi.Name; 

                label10.Text = "Image Resolution: " + 

pictureBox1.Image.PhysicalDimension.Height + " X " + 

pictureBox1.Image.PhysicalDimension.Width; 

 

                double imageMB = ((fi.Length / 1024f) / 1024f); 

 

                label11.Text = "Image Size: " + imageMB.ToString(".##") + "MB"; 

            } 

            else 

            { 

                textBox1.Text = ""; 

                label9.Text = "File Name: "; 

                label10.Text = "Image Resolution: "; 

                label11.Text = "Image Size: "; 

 

                //pictureBox1.Image = Properties.Resources.blank; 

                button2.Enabled = false; 

 

            } 

        } 

 

        private void disable_all() 

        { 

            button2.Enabled = false; 

            groupBox4.Enabled = false; 

            button4.Enabled = false; 

            button5.Enabled = false; 

 

            button9.Enabled = false; 

            groupBox5.Enabled = false; 

            button7.Enabled = false; 

            button6.Enabled = false; 

        } 

 

        private void enable_all() 

        { 

            btnImage.Enabled = true; 

            button2.Enabled = true; 

            groupBox4.Enabled = true; 

            button4.Enabled = true; 

            button5.Enabled = true; 

        } 

 



101 
 

        private void button5_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void button4_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void button3_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void button2_Click(object sender, EventArgs e) 

        { 

            loadImage = 

BitConverter.ToString(File_Encrypter_Decrypyer.library.ConvertImageToByte(pictureB

ox1.Image)); 

            MessageBox.Show("Image Load Successfully"); 

            groupBox4.Enabled = true; 

        } 

 

        private void button1_Click(object sender, EventArgs e) 

        { 

            loadImage = 

BitConverter.ToString(File_Encrypter_Decrypyer.library.ConvertImageToByte(pictureB

ox1.Image)); 

            rTxtBox.Text = loadImage; 

            MessageBox.Show("Image Load Successfully"); 

            groupBox4.Enabled = true; 

        } 

         

        private void button3_Click_1(object sender, EventArgs e) 

        { 

            if (button3.Text == "Set Details") 

            { 

                if (textBox2.Text == "" || textBox3.Text == "" || textBox4.Text == "") 

                { 

                    MessageBox.Show("Enter Valid Detail For RSA", "ERROR"); 

                } 

 

                else 

                { 



102 
 

                    if 

(File_Encrypter_Decrypyer.library.IsPrime(Convert.ToInt16(textBox2.Text))) 

                    { 

                        RSA_P = Convert.ToInt16(textBox2.Text); 

                    } 

                    else 

                    { 

                        textBox2.Text = ""; 

                        MessageBox.Show("Enter Prime Number"); 

                        return; 

                    } 

                    if 

(File_Encrypter_Decrypyer.library.IsPrime(Convert.ToInt16(textBox3.Text))) 

                    { 

                        RSA_Q = Convert.ToInt16(textBox3.Text); 

                    } 

                    else 

                    { 

                        textBox3.Text = ""; 

                        MessageBox.Show("Enter Prime Number"); 

                        return; 

                    } 

 

                    RSA_E = Convert.ToInt16(textBox4.Text); 

 

                    textBox2.Enabled = false; 

                    textBox3.Enabled = false; 

                    textBox4.Enabled = false; 

                    button4.Enabled = true; 

                    button3.Text = "ReSet Details"; 

                } 

            } 

            else 

            { 

                textBox2.Text = ""; 

                textBox3.Text = ""; 

                textBox4.Text = ""; 

                textBox2.Enabled = true; 

                textBox3.Enabled = true; 

                textBox4.Enabled = true; 

                button4.Enabled = false; 

                button3.Text = "Set Details"; 

            } 

        } 

 

        private void button5_Click_1(object sender, EventArgs e) 



103 
 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            n = File_Encrypter_Decrypyer.RSAalgorithm.n_value(RSA_P, RSA_Q); 

            btnImage.Enabled = false; 

            disable_all(); 

            String en = encrypt(loadImage); 

            File.WriteAllText(textBox5.Text, en); 

            //MessageBox.Show("Image Encrypted Successfully"); 

            btnImage.Enabled = true; 

            stopwatch.Stop(); 

            TimeSpan duration = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + duration.TotalSeconds; 

            label5.Text = "Space Used: " + 

(1024)/(pictureBox1.Image.PhysicalDimension.Width + 

pictureBox1.Image.PhysicalDimension.Height) + "KB"; //rTxtBox.TextLength / 1024.0 

+ "KB"; 

        } 

 

        private void button4_Click_1(object sender, EventArgs e) 

        { 

            SaveFileDialog save1 = new SaveFileDialog(); 

            save1.Filter = "TEXT|*.txt"; 

            if (save1.ShowDialog() == DialogResult.OK) 

            { 

                textBox5.Text = save1.FileName; 

                button5.Enabled = true; 

            } 

            else 

            { 

                textBox5.Text = ""; 

                button5.Enabled = false; 

            } 

        } 

 

        private void button10_Click(object sender, EventArgs e) 

        { 

            OpenFileDialog open1 = new OpenFileDialog(); 

            open1.Filter = "TEXT|*.txt"; 

            if (open1.ShowDialog() == DialogResult.OK) 

            { 

                textBox7.Text = open1.FileName; 

                button9.Enabled = true; 

            } 

            else 

            { 



104 
 

                textBox7.Text = ""; 

                button9.Enabled = false; 

            } 

        } 

 

        private void button9_Click(object sender, EventArgs e) 

        { 

            loadcipher = File.ReadAllText(textBox7.Text); 

            MessageBox.Show("Load Cipher Image Successfully"); 

            groupBox5.Enabled = true; 

        } 

 

        private void button8_Click(object sender, EventArgs e) 

        { 

            if (button8.Text == "Set Details") 

            { 

                if (textBox9.Text == "" || textBox8.Text == "") 

                { 

                    MessageBox.Show("Enter Valid Detail For RSA", "ERROR"); 

                } 

                else 

                { 

                    if (Convert.ToInt16(textBox9.Text) > 0) 

                    { 

                        d = Convert.ToInt16(textBox9.Text); 

                    } 

                    else 

                    { 

                        textBox9.Text = ""; 

                        MessageBox.Show("Enter Valid Number"); 

                        return; 

                    } 

                    if (Convert.ToInt16(textBox8.Text) > 0) 

                    { 

                        n = Convert.ToInt16(textBox8.Text); 

                    } 

                    else 

                    { 

                        textBox8.Text = ""; 

                        MessageBox.Show("Enter Valid Number"); 

                        return; 

                    } 

 

                    textBox9.Enabled = false; 

                    textBox8.Enabled = false; 

                    button8.Text = "ReSet Details"; 



105 
 

                    button7.Enabled = true; 

 

                } 

            } 

            else 

            { 

                textBox9.Text = ""; 

                textBox8.Text = ""; 

                textBox9.Enabled = true; 

                textBox8.Enabled = true; 

                button8.Text = "Set Details"; 

                button7.Enabled = false; 

            } 

        } 

 

        private void button7_Click(object sender, EventArgs e) 

        { 

            SaveFileDialog save1 = new SaveFileDialog(); 

            save1.Filter = "JPG|*.JPG"; 

            if (save1.ShowDialog() == DialogResult.OK) 

            { 

                textBox6.Text = save1.FileName; 

                button6.Enabled = true; 

            } 

            else 

            { 

                textBox6.Text = ""; 

                button6.Enabled = false; 

            } 

        } 

 

        private void button6_Click(object sender, EventArgs e) 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            button10.Enabled = false; 

            disable_all(); 

            String de = decrypt(loadcipher); 

            pictureBox1.Image = 

File_Encrypter_Decrypyer.library.ConvertByteToImage(File_Encrypter_Decrypyer.libra

ry.DecodeHex(de)); 

            //MessageBox.Show("Decryption Done"); 

            pictureBox1.Image.Save(textBox6.Text, 

System.Drawing.Imaging.ImageFormat.Jpeg); 

            //MessageBox.Show("Picture Saved"); 

            button10.Enabled = true; 



106 
 

            TimeSpan duration = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + duration.TotalSeconds; 

            label5.Text = "Space Used: " + (1024) / 

(pictureBox1.Image.PhysicalDimension.Width + 

pictureBox1.Image.PhysicalDimension.Height) + "KB"; //rTxtBox.TextLength / 1024.0 

+ "KB"; 

        } 

 

        private void btnElga_Click(object sender, EventArgs e) 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            ELGAMALEncryptionDecryption ElGamalEnc = new 

ELGAMALEncryptionDecryption(); 

            string jay = encrypt(loadImage); 

            ElGamalEnc.EncryptionKey = _randomKey; 

            lblKey.Text = "Elgamal Encryption Key"; 

            rTxtKey.Text = _randomKey; 

            ElGamalEnc.InClearText = jay; 

            ElGamalEnc.ELGAMALEncryption(); 

            this._cryptedText = ElGamalEnc.CryptedText; 

            rTxtBox.Clear(); 

            rTxtBox.Text = this._cryptedText; 

            stopwatch.Stop(); 

            TimeSpan duration = stopwatch.Elapsed; 

            label6.Text = "Time Used: " + duration.TotalSeconds; 

            label5.Text = "Space Used: " + rTxtBox.TextLength / 1024.0 + "KB"; 

        } 

 

        private void btnVideo_Click(object sender, EventArgs e) 

        { 

            OpenFileDialog open1 = new OpenFileDialog(); 

            open1.Filter = "Video 

File(mp3,wav,mp4,mov,wmv,mpg,avi,3gp,flv)|*.mp3;*.wav;*.mp4;*.3gp;*.avi;*.mov;*.

flv;*.wmv;*.mpg|all files|*.*"; 

            if (open1.ShowDialog() == DialogResult.OK) 

            { 

                textBox10.Text = open1.FileName; 

                FileName = open1.SafeFileNames; 

                FilePath = open1.FileNames; 

                for (int i = 0; i <= FileName.Length - 1; i++) 

                { 

                    textBox10.Text=textBox10.Text + FileName[i]; 

                } 

                axWindowsMediaPlayer1.URL = open1.FileName; 

            } 



107 
 

        } 

 

        private void btnLoadVideo_Click(object sender, EventArgs e) 

        { 

            //byte[] bytes =System.IO.File.ReadAllBytes(Selected-File); 

            //txtyes.text=BitConverter.ToString(byte); 

            byte[] bytes = System.IO.File.ReadAllBytes(axWindowsMediaPlayer1.URL); 

            loadvideo = BitConverter.ToString(bytes); 

            rTxtBox.Text = loadvideo; 

            File.WriteAllText(textBox10.Text, loadvideo); 

            MessageBox.Show("Video Load Successfully"); 

            //loadvideo = 

BitConverter.ToString(File_Encrypter_Decrypyer.library.ConvertImageToByte(pictureB

ox1.Image)); 

        } 

 

        private void btnKeyGen_Click(object sender, EventArgs e) 

        { 

            if (_flag) 

            { 

                lblKey.Text = "ElGamal Encryption Key"; 

                _randomKey = RandomKeyString(); // generating random key 

                rTxtKey.Text = _randomKey; 

            } 

            else 

            { 

                _key = RSAEncryptionDecryption.RSAGenerateKey(_keyLength); 

                string bitStrengthString = _key.Substring(0, _key.IndexOf("</BitStrength>") + 

14); 

                _key = _key.Replace(bitStrengthString, ""); 

                lblKey.Text = "RSA Encryption Key"; 

                rTxtKey.Text = _key; 

            } 

        } 

 

        private void btnEncryptVideo_Click(object sender, EventArgs e) 

        { 

            Stopwatch stopwatch = new Stopwatch(); 

            stopwatch.Start(); 

            String en = encrypt(loadvideo); 

            //File.WriteAllText(textBox5.Text, en); 

            string encryptedString = 

RSAEncryptionDecryption.RSAEncryption(rTxtBox.Text, _keyLength, _key); 

            rTxtBox.Text = encryptedString; 

            stopwatch.Stop(); 

            TimeSpan duration = stopwatch.Elapsed; 



108 
 

            label6.Text = "Time Used: " + duration.TotalSeconds; 

            label5.Text = "Space Used: " + (1024) / (axWindowsMediaPlayer1.URL.Length); 

//(pictureBox1.Image.PhysicalDimension.Width + 

pictureBox1.Image.PhysicalDimension.Height) + "KB"; //rTxtBox.TextLength / 1024.0 

+ "KB"; 

        } 

 

        private void btnUploadAudio_Click(object sender, EventArgs e) 

        { 

            OpenFileDialog open1 = new OpenFileDialog(); 

            open1.Filter = "Audio File(*.mp3)|*.wav;*.ogg"; //open1.Filter = "Image 

File(*.JPG)|*.JPG"; 

            if (open1.ShowDialog() == DialogResult.OK) 

            { 

                textBox11.Text = open1.FileName; 

                FileName = open1.SafeFileNames; 

                FilePath = open1.FileNames; 

                for (int i = 0; i <= FileName.Length - 1; i++) 

                { 

                    textBox11.Text = textBox10.Text + FileName[i]; 

                } 

                axWindowsMediaPlayer2.URL = open1.FileName; 

            } 

        } 

 

        private void btnAudio_Click(object sender, EventArgs e) 

        { 

            //var bytes = File.ReadAllBytes(axWindowsMediaPlayer2.URL); 

            //string result = System.Text.Encoding.ASCII.GetString(bytes); 

              //  rTxtBox.Text=result; 

                byte[] bytes = System.IO.File.ReadAllBytes(axWindowsMediaPlayer2.URL); 

                loadvideo = BitConverter.ToString(bytes); 

                rTxtBox.Text = loadvideo; 

                MessageBox.Show("Audio File Loaded Successfully"); 

        } 

    } 

} 

 

 

namespace File_Encrypter_Decrypyer 

{ 

    partial class FrmSplash 

    { 

        /// <summary> 

        /// Required designer variable. 

        /// </summary> 



109 
 

        private System.ComponentModel.IContainer components = null; 

 

        /// <summary> 

        /// Clean up any resources being used. 

        /// </summary> 

        /// <param name="disposing">true if managed resources should be disposed; 

otherwise, false.</param> 

        protected override void Dispose(bool disposing) 

        { 

            if (disposing && (components != null)) 

            { 

                components.Dispose(); 

            } 

            base.Dispose(disposing); 

        } 

 

        #region Windows Form Designer generated code 

 

        /// <summary> 

        /// Required method for Designer support - do not modify 

        /// the contents of this method with the code editor. 

        /// </summary> 

        private void InitializeComponent() 

        { 

            this.components = new System.ComponentModel.Container(); 

            System.ComponentModel.ComponentResourceManager resources = new 

System.ComponentModel.ComponentResourceManager(typeof(FrmSplash)); 

            this.groupBox1 = new System.Windows.Forms.GroupBox(); 

            this.label3 = new System.Windows.Forms.Label(); 

            this.label2 = new System.Windows.Forms.Label(); 

            this.label1 = new System.Windows.Forms.Label(); 

            this.label8 = new System.Windows.Forms.Label(); 

            this.label7 = new System.Windows.Forms.Label(); 

            this.label6 = new System.Windows.Forms.Label(); 

            this.label5 = new System.Windows.Forms.Label(); 

            this.label4 = new System.Windows.Forms.Label(); 

            this.timer1 = new System.Windows.Forms.Timer(this.components); 

            this.progressBar1 = new System.Windows.Forms.ProgressBar(); 

            this.label9 = new System.Windows.Forms.Label(); 

            this.label10 = new System.Windows.Forms.Label(); 

            this.groupBox1.SuspendLayout(); 

            this.SuspendLayout(); 

            //  

            // groupBox1 

            //  



110 
 

            this.groupBox1.BackgroundImage = 

((System.Drawing.Image)(resources.GetObject("groupBox1.BackgroundImage"))); 

            this.groupBox1.Controls.Add(this.label3); 

            this.groupBox1.Controls.Add(this.label2); 

            this.groupBox1.Controls.Add(this.label1); 

            this.groupBox1.Font = new System.Drawing.Font("Tahoma", 12F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.groupBox1.ForeColor = 

System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(64)))), 

((int)(((byte)(0))))); 

            this.groupBox1.Location = new System.Drawing.Point(12, 12); 

            this.groupBox1.Name = "groupBox1"; 

            this.groupBox1.Size = new System.Drawing.Size(509, 153); 

            this.groupBox1.TabIndex = 4; 

            this.groupBox1.TabStop = false; 

            //  

            // label3 

            //  

            this.label3.AutoSize = true; 

            this.label3.BackColor = System.Drawing.Color.Transparent; 

            this.label3.Font = new System.Drawing.Font("Georgia", 21.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label3.ForeColor = System.Drawing.Color.Blue; 

            this.label3.Location = new System.Drawing.Point(23, 104); 

            this.label3.Name = "label3"; 

            this.label3.Size = new System.Drawing.Size(451, 34); 

            this.label3.TabIndex = 5; 

            this.label3.Text = "Cryptographic on Mixed Data"; 

            this.label3.Click += new System.EventHandler(this.label3_Click); 

            //  

            // label2 

            //  

            this.label2.AutoSize = true; 

            this.label2.BackColor = System.Drawing.Color.Transparent; 

            this.label2.Font = new System.Drawing.Font("Monotype Corsiva", 26.25F, 

((System.Drawing.FontStyle)((System.Drawing.FontStyle.Bold | 

System.Drawing.FontStyle.Italic))), System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label2.ForeColor = System.Drawing.Color.Blue; 

            this.label2.Location = new System.Drawing.Point(99, 61); 

            this.label2.Name = "label2"; 

            this.label2.Size = new System.Drawing.Size(303, 43); 

            this.label2.TabIndex = 4; 

            this.label2.Text = "of ElGamal and RSA"; 

            //  

            // label1 

            //  



111 
 

            this.label1.AutoSize = true; 

            this.label1.BackColor = System.Drawing.Color.Transparent; 

            this.label1.Font = new System.Drawing.Font("Georgia", 21.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label1.ForeColor = System.Drawing.Color.Blue; 

            this.label1.Location = new System.Drawing.Point(23, 11); 

            this.label1.Name = "label1"; 

            this.label1.Size = new System.Drawing.Size(457, 34); 

            this.label1.TabIndex = 3; 

            this.label1.Text = "Time and Space Complexities "; 

            this.label1.Click += new System.EventHandler(this.label1_Click); 

            //  

            // label8 

            //  

            this.label8.AutoSize = true; 

            this.label8.BackColor = System.Drawing.Color.Transparent; 

            this.label8.Font = new System.Drawing.Font("Georgia", 15.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label8.ForeColor = System.Drawing.Color.White; 

            this.label8.Location = new System.Drawing.Point(39, 253); 

            this.label8.Name = "label8"; 

            this.label8.Size = new System.Drawing.Size(228, 25); 

            this.label8.TabIndex = 13; 

            this.label8.Text = "Prof. A. E. Okeyinka"; 

            //  

            // label7 

            //  

            this.label7.AutoSize = true; 

            this.label7.BackColor = System.Drawing.Color.Transparent; 

            this.label7.Font = new System.Drawing.Font("Georgia", 15.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label7.ForeColor = System.Drawing.Color.White; 

            this.label7.Location = new System.Drawing.Point(182, 209); 

            this.label7.Name = "label7"; 

            this.label7.Size = new System.Drawing.Size(172, 25); 

            this.label7.TabIndex = 12; 

            this.label7.Text = "19PGCD00079"; 

            //  

            // label6 

            //  

            this.label6.AutoSize = true; 

            this.label6.BackColor = System.Drawing.Color.Transparent; 

            this.label6.Font = new System.Drawing.Font("Georgia", 15.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label6.ForeColor = System.Drawing.Color.White; 

            this.label6.Location = new System.Drawing.Point(82, 184); 



112 
 

            this.label6.Name = "label6"; 

            this.label6.Size = new System.Drawing.Size(367, 25); 

            this.label6.TabIndex = 11; 

            this.label6.Text = "ADENIYI ABIDEMI EMMANUEL"; 

            //  

            // label5 

            //  

            this.label5.AutoSize = true; 

            this.label5.BackColor = System.Drawing.Color.Transparent; 

            this.label5.Font = new System.Drawing.Font("Times New Roman", 12F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label5.ForeColor = System.Drawing.Color.Red; 

            this.label5.Location = new System.Drawing.Point(83, 234); 

            this.label5.Name = "label5"; 

            this.label5.Size = new System.Drawing.Size(108, 19); 

            this.label5.TabIndex = 10; 

            this.label5.Text = "Supervised by:"; 

            //  

            // label4 

            //  

            this.label4.AutoSize = true; 

            this.label4.BackColor = System.Drawing.Color.Transparent; 

            this.label4.Font = new System.Drawing.Font("Times New Roman", 12F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label4.ForeColor = System.Drawing.Color.Red; 

            this.label4.Location = new System.Drawing.Point(219, 168); 

            this.label4.Name = "label4"; 

            this.label4.Size = new System.Drawing.Size(106, 19); 

            this.label4.TabIndex = 9; 

            this.label4.Text = "Developed by:"; 

            //  

            // timer1 

            //  

            this.timer1.Tick += new System.EventHandler(this.timer1_Tick); 

            //  

            // progressBar1 

            //  

            this.progressBar1.BackColor = System.Drawing.Color.Red; 

            this.progressBar1.ForeColor = 

System.Drawing.Color.FromArgb(((int)(((byte)(64)))), ((int)(((byte)(64)))), 

((int)(((byte)(64))))); 

            this.progressBar1.Location = new System.Drawing.Point(35, 281); 

            this.progressBar1.Name = "progressBar1"; 

            this.progressBar1.Size = new System.Drawing.Size(457, 23); 

            this.progressBar1.TabIndex = 14; 

            //  



113 
 

            // label9 

            //  

            this.label9.AutoSize = true; 

            this.label9.BackColor = System.Drawing.Color.Transparent; 

            this.label9.Font = new System.Drawing.Font("Times New Roman", 12F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label9.ForeColor = System.Drawing.Color.Red; 

            this.label9.Location = new System.Drawing.Point(364, 234); 

            this.label9.Name = "label9"; 

            this.label9.Size = new System.Drawing.Size(132, 19); 

            this.label9.TabIndex = 15; 

            this.label9.Text = "Co-Supervised by:"; 

            //  

            // label10 

            //  

            this.label10.AutoSize = true; 

            this.label10.BackColor = System.Drawing.Color.Transparent; 

            this.label10.Font = new System.Drawing.Font("Georgia", 15.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.label10.ForeColor = System.Drawing.Color.White; 

            this.label10.Location = new System.Drawing.Point(303, 253); 

            this.label10.Name = "label10"; 

            this.label10.Size = new System.Drawing.Size(193, 25); 

            this.label10.TabIndex = 16; 

            this.label10.Text = "Dr. M.O. Adebiyi"; 

            //  

            // FrmSplash 

            //  

            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 

            this.BackgroundImage = 

((System.Drawing.Image)(resources.GetObject("$this.BackgroundImage"))); 

            this.ClientSize = new System.Drawing.Size(531, 304); 

            this.Controls.Add(this.label10); 

            this.Controls.Add(this.label9); 

            this.Controls.Add(this.progressBar1); 

            this.Controls.Add(this.label8); 

            this.Controls.Add(this.label7); 

            this.Controls.Add(this.label6); 

            this.Controls.Add(this.label5); 

            this.Controls.Add(this.label4); 

            this.Controls.Add(this.groupBox1); 

            this.Name = "FrmSplash"; 

            this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen; 

            this.Text = "Splash Screen"; 

            this.Load += new System.EventHandler(this.FrmSplash_Load); 



114 
 

            this.groupBox1.ResumeLayout(false); 

            this.groupBox1.PerformLayout(); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

 

        } 

 

        #endregion 

 

        private System.Windows.Forms.GroupBox groupBox1; 

        private System.Windows.Forms.Label label3; 

        private System.Windows.Forms.Label label2; 

        private System.Windows.Forms.Label label1; 

        private System.Windows.Forms.Label label8; 

        private System.Windows.Forms.Label label7; 

        private System.Windows.Forms.Label label6; 

        private System.Windows.Forms.Label label5; 

        private System.Windows.Forms.Label label4; 

        private System.Windows.Forms.Timer timer1; 

        private System.Windows.Forms.ProgressBar progressBar1; 

        private System.Windows.Forms.Label label9; 

        private System.Windows.Forms.Label label10; 

    } 

} 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Collections; 

using System.Drawing; 

 

namespace File_Encrypter_Decrypyer 

{ 

    class RSA algorithm 

    { 

 

        public static long square(long a) 

        { 

            return (a * a); 

        } 

 

        public static long BigMod(int b, int p, int m) //b^p%m=? 

        { 

            if (p == 0) 

                return 1; 

            else if (p % 2 == 0) 



115 
 

                return square(BigMod(b, p / 2, m)) % m; 

            else 

                return ((b % m) * BigMod(b, p - 1, m)) % m; 

        } 

 

        public static int n_value(int prime1, int prime2) 

        { 

            return (prime1 * prime2); 

        } 

 

        public static int cal_phi(int prime1, int prime2) 

        { 

            return ((prime1 - 1) * (prime2 - 1)); 

        } 

 

        public static Int32 cal_privateKey(int phi, int e, int n) 

        { 

            int d = 0; 

            int RES = 0; 

 

            for (d = 1; ; d++) 

            { 

                RES = (d * e) % phi; 

                if (RES == 1) break; 

            } 

            return d; 

        }  

 

    }} 
 

 


