
COMPUTATIONAL PERFORMANCE STUDY OF

SOME HEURISTICS FOR SOLVING

COMBINATORIAL OPTIMIZATION PROBLEMS

BY

ASANI EMMANUEL OLUWATOBI

(18PGCD000017)

MAY, 2021

COMPUTATIONAL PERFORMANCE STUDY OF

SOME HEURISTICS FOR SOLVING

COMBINATORIAL OPTIMIZATION PROBLEMS

Ph.D THESIS

BY

ASANI EMMANUEL OLUWATOBI

(18PGCD000017)

SUPERVISOR

PROF. A.E. OKEYINKA

CO-SUPERVISOR

PROF. A.A. ADEBIYI

DEPARTMENT OF COMPUTER SCIENCE,

LANDMARK UNIVERSITY, OMU-ARAN

MAY, 2021

COMPUTATIONAL PERFORMANCE STUDY OF

SOME HEURISTICS FOR SOLVING

COMBINATORIAL OPTIMIZATION PROBLEMS

ASANI EMMANUEL OLUWATOBI

(18PGCD000017)

A Thesis submitted to the Department of Computer

Science, College of Pure and Applied Sciences,

Landmark University, Omu-Aran. Nigeria.

In Partial Fulfilment of the Requirements for the

Award of the Degree of Doctor of Philosophy (PhD)

in Computer Science.

MAY, 2021

ii

DECLARATION

I, EMMANUEL OLUWATOBI ASANI, a PhD student in the Department of

Computer Science, Landmark University, Omu-Aran, hereby declare that this thesis

entitled “COMPUTATIONAL PERFORMANCE STUDY OF SOME

HEURISTICS FOR SOLVING COMBINATORIAL OPTIMIZATION

PROBLEMS”, submitted by me is based on my original work. Any material(s)

obtained from other sources or work done by any other persons or institutions have

been duly acknowledged.

EMMANUEL OLUWATOBI ASANI (18PGCD000017)

Signature & Date

iii

CERTIFICATION

This is to certify that this thesis has been read and approved as meeting the requirements

of the Department of Computer Science, Landmark University, Omu-Aran, Nigeria, for

the Award of PhD Degree.

Prof A.E. Okeyinka Date

 Supervisor

Prof. A.A. Adebiyi Date

(Co- Supervisor)

Dr. Mrs. M.O. Adebiyi Date

(Head of Department)

Prof. S.O. Olabiyisi Date

(External Examiner)

iv

ABSTRACT

The Optimization Problem of solving complex, mostly impracticable problems with

limited resources remains a research conundrum which has necessitated enormous

amount of intervention over the years. In addressing Combinatorial Optimization

Problems, many problems have been formulated, prominent among which is the

Travelling Salesman Problem (TSP). While the exact approach to solving the TSP

guarantees optimal solutions, more attention has been paid to approximate methods

over the years because they address the limitations of exact techniques by generating

solutions to complex problems within polynomial time 𝑝, especially with increasing

solution space. Thus, a considerable amount of research efforts has gone into obtaining

good lower bounds on the optimal tour quality of approximate methods of different

classes such as the Tour Construction, Improvement, Compound heuristics and

Metaheuristics.

The goal of this study is to investigate some Tour Construction heuristics with a view

to understanding their implementation details and how they are applied to the solution

process of the Travelling Salesman Problem, and to formulate a better solution in

solving the Travelling Salesman Problem. Two classic Tour Construction heuristics

were examined, namely the Nearest Neighbour Heuristic (NNH) and the Farthest

Insertion Heuristic (FIH). The NNH solves the Travelling Salesman Problem using a

greedy approach and suffers immensely from the “curse of dimensionality” phenomena.

The FIH on the other hand is considered as the best performing Insertion heuristic and

best among lower order complexity heuristics. However, its performance is impeded

by the distance between its partial circuit and the new node to be inserted.

v

In order to circumvent the limitation of the NNH and FIH, a new insertion technique

referred to as the Half Max Insertion Technique (HMIH) was evolved. The HMIH

randomly pick one node from 𝑄 by 𝑖𝑛𝑖𝑡(𝑄) and creates a partial circuit which is

expanded with every iteration. The partial circuit is made up of the points 𝑢, 𝑣, 𝑤 to

form a minimum polygon. In the (𝑖 + 1)𝑡ℎ iteration, the insertion heuristics attempt to

add one node into the current circuit by minimizing the increment of the total distance

of the circuit. The method first determines the longest distance 𝑑𝑚𝑎𝑥 of any node from

either of 𝑢 𝑜𝑟 𝑣 and computes 1
2⁄ 𝑑𝑚𝑎𝑥. The routine then finds a node 𝑤 not in the

subtour whose distance from either 𝑢 𝑜𝑟 𝑣 ≈ 1
2⁄ 𝑑𝑚𝑎𝑥. An edge (𝑢, 𝑣) of the subtour

to which the insertion of 𝑤 gives the smallest increase of length, that is for which ∆𝑓 =

𝑐𝑢𝑥 + 𝑐𝑥𝑣 + 𝑐𝑤𝑥 − 𝑐𝑢𝑣𝑤 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 is determined and 𝑥 is inserted between

𝑢, 𝑣 𝑎𝑛𝑑 𝑤. This process is iterated until a Hamiltonian cycle is formed.

The NNH, FIH and the newly devised HMIH were experimented on ten publicly

available benchmark instances from the Travelling Salesman Problem Library

(TSPLIB). The experimental results revealed that the Half Max Insertion Heuristic

consistently outperformed both the FIH and NNH across a wide spectrum of benchmark

instances with statistical significance of as much as 16% at some point. The average

goodness value of the proposed HMIH was 86.9% as against 81.7% for the FIH and

74.5% for the NNH. Hence, the HMIH has a higher accuracy than both the FIH and

NNH, and therefore yields a superior heuristic in tackling NP-Hard problems.

vi

DEDICATION

“To him that stretched out the earth above the waters: for his mercy endureth for

ever” Psalm 136:6

vii

ACKNOWLEDGMENT

I like to acknowledge the immense contributions of the following people to the success

of this work;

My supervisor, Prof. A.E. Okeyinka for being a father to me and a mentor, for the

unshakable trust you showed in my abilities and for leading so that I could follow. My

co-supervisor, Prof. A.A. Adebiyi for your support and understanding, thank you for

your calm demeanour and for always pushing me to do better.

My priceless parents, Revd., and Revd. (Mrs.) Asani for their unconditional love and

support, for guiding me to discover the greatest gift of all which is my salvation. The

family of Pastor and Deaconess Olowe for their unconditional support and for nurturing

the treasure that is my wife. My precious jewel, Oluwaseun Asani for believing in me,

for bearing with me during the period of this work and for the many days and nights of

prayers. My beloved son, Asher Ireoluwa and daughter, Anna Oluwatobi, thank you

for rocking my world.

Uncle Remi Ajala who travelled all the way from Lagos to Osogbo to birth this dream

by convincing me to study Computer Science. Prof. O.B. Longe, Prof. O.B. Akpor and

my aunties, Abosede Olufunmi, Monisola Fasakin, Adebola Adelodun for being great

mentors to me over the years. My brothers, Ikubanni Stephen, Ikubanni Peter, �̀�gb�́�n

Sola Owolabi, Akinwale Oshodi, Opeyemi Matiluko, A.A. Adegun, Olabode Ajagbe

and Ayo Aregbesola for providing timely supports and inspiration. Many thanks to

Ayoola Joyce, Ayegba Peace, Adeojo Emmanuel and Musa Joshua for their

contributions. To my senior colleagues as well as peers in the Department of Computer

Science, Landmark University, Dr. B. Gbadamosi, Dr. M. Adebiyi, Dr. A. Kayode,

Mrs. R.O. Ogundokun, Mr. N.O. Akande, Mr. J.K. Adeniyi, Mr. M. Arowolo Mr. A.E.

viii

Adeniyi and Mr. P.O. Ehiedu, thank you for your support, this might not have been

possible without you.

In conclusion, I like to pay tribute to Pastor J. Akintola and the memory of Late

Deaconess Ruth Oladunni Akintola of Good Tidings Nursery and Primary School for

believing in me at a very tender age and offering me scholarship in their institution of

learning at a time when I would have dropped out due to financial difficulties. Thank

you for offering that quality foundation upon which this achievement stands solid.

ix

TABLE OF CONTENT

TITLE PAGE i

DECLARATION ii

CERTIFICATION iii

ABSTRACT iv

DEDICATION vi

ACKNOWLEDGMENT vii

TABLE OF CONTENT ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ALGORITHMS xv

CHAPTER ONE 1

1.0. INTRODUCTION 1

1.1. Background to the Study 1

1.2. Statement of the Problem 6

1.2.1. Problem Formulation 7

1.3. Justification for the Study 8

1.4. Aim and Objectives 9

1.5. Research Questions 10

1.6. Overview of Research 10

1.7. Scope of the Study 13

1.8. Significance of the Study 14

1.9. Arrangement of the Thesis 14

CHAPTER TWO 16

2.0. REVIEW OF LITERATURE 16

x

2.1. Combinatorial Optimization Problems 16

2.1.1. The Knapsack Problem 18

2.1.2. The Assignment Problem 21

2.1.3. The Constraint Satisfaction Problem 25

2.1.4. The Travelling Salesman Problem 27

2.1.4.1. Symmetric Travelling Salesman Problems 29

2.1.4.2. Asymmetric Travelling Salesman Problems 30

2.1.4.3. Multiple Travelling Salesman Problems 31

2.2. Variants of the Travelling Salesman Problem 32

2.2.1. The Maximum Travelling Salesman Problem (MAX TSP) 32

2.2.2. The Bottleneck TSP (BTSP) 33

2.2.3. The Travelling Salesman Problem with Multiple Visits (TSPM) 35

2.2.4. The Clustered TSP (CTSP) 37

2.3. TSP Solutions 38

2.3.1. Exact Methods 39

2.3.1.1. The Brute Force Algorithm 39

2.3.1.2. The Branch-and-Bound (BB) Algorithm 41

2.3.1.3. The Branch-and-Cut (BC) Algorithm 43

2.3.1.4. The Branch-and-Price (BaP) Algorithm 44

2.3.1.5. The Cutting Plane Algorithm 45

2.3.1.6. The Dynamic Programming (DP) technique 46

2.3.1.7. The Dijkstra’s Algorithm 47

2.3.1.8. The Bellman-Ford Algorithm 48

2.3.2. Approximate Techniques 50

2.3.2.1. Tour Construction Heuristics 52

xi

2.3.2.2. Improvement/Local Search Methods 58

2.3.2.3. Compound Heuristics 61

2.3.2.4. Metaheuristics 62

2.3.3. The Held-Karp Lower Bound 66

2.4. Related State-of-the-Art Tour Construction Solutions 67

CHAPTER THREE 86

3.0. METHODOLOGY 86

3.1. Research Approach – Introduction 86

3.2. Building the Dataset 87

3.3. System Design 88

3.3.1. Framework for Tour Construction Heuristics 88

3.3.2. The Program Flow and Building Blocks 90

3.4. Research Materials and Methods. 93

3.4.1. Research Methods 93

3.4.1.1. The Nearest Neighbour Heuristic 94

3.4.1.2. The Farthest Insertion Heuristic 96

3.4.1.3. The Proposed Half Max Insertion Heuristic (HMIH) 100

CHAPTER FOUR 103

4.0. RESULTS AND DISCUSSSION OF FINDINGS 103

4.1. Results 103

4.2. Performance Evaluation and Discussion 114

4.2.1. Comparative Evaluation of the Heuristics’ Computational Speed 114

4.2.2. Comparative Evaluation of the Heuristics’ Solution Quality 114

4.3. Findings 118

xii

CHAPTER FIVE 120

5.0. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 120

5.1. Summary 120

5.2 Conclusion 121

5.3. Limitations 122

5.4 Recommendations for Future Research 122

5.5 Contributions to Knowledge 123

REFERENCES 124

APPENDICES 160

APPENDIX I: DATASET CONVERSION MODULE 160

APPENDIX II: CONSTRUCTOR – STRATEGY MODULE 162

APPENDIX III: NEAREST NEIGHBOUR HEURISTIC JAVA CODE 170

APPENDIX IV: FARTHEST INSERTION HEURISTIC JAVA CODE 173

APPENDIX V: HALF MAX INSERTION HEURISTIC JAVA CODE 177

APPENDIX VI: IMPLEMENTATION MODULE – MAIN CLASS 188

xiii

LIST OF TABLES

Table Page

1.1. Mapping Objectives to Activities/Methods 12

2.1. A cost matrix of the 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄ assignment 22

2.2. Description of some well-known tour construction heuristics 52

4.1. Ten benchmark instances and their optimal tour length (Km) 104

4.2. Computational speed of NNH, FIH and HMIH on ten benchmark Instances 105

4.3. Tour cost of NNH, FIH and HMIH on ten benchmark instances 106

4.4. Percentage error, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟 and goodness value for all the

heuristics on the ten benchmark instances 115

xiv

LIST OF FIGURES

Figure Page

1.1. A Hamiltonian weighted graph around a network of five nodes 3

2.1. Flowchart of the Hungarian Method for solving Assignment

Problems (Sengupta, 2017) 24

2.2. A distributed route-finding technique for clustered nodes modelling

the Bellman-Ford Method (Walrand and Varaiya, 2000) 49

2.3. An illustration of the greedy technique on six nodes

instance (Oliveira and Carravilla, 2009) 55

2.4. A Schematic Illustration of the 2-OPT Procedure (Yang et al., 2008) 59

3.1. Generic framework for tour construction heuristics 89

3.2. Research Conceptual Framework 90

3.3. Flowchart of the input phase 92

3.4. Flowchart of the Nearest Neighbour Heuristic 95

3.5. Flowchart of the Farthest Insertion Heuristic 98

3.6. Flowchart of the Half Max Insertion Heuristic 102

4.1a. Ulysses 16 in EUD_2D format 104

4.1b. Ulysses 16 in FULLMATRIX format 104

4.2a. Path graph of NNH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟎𝟓𝟐𝟒) 108

xv

4.2b. Path graph of FIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟕𝟕𝟒) 108

4.2c. Path graph of HMIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟔𝟓𝟕) 109

4.3a. Path graph of NNH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟓𝟏𝟎) 109

4.3b. Path graph of FIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏) 110

4.3c. Path graph of HMIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏) 110

4.4a. Path graph of NNH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟏) 111

4.4b. Path graph of FIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎) 111

4.4c. Path graph of HMIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎) 112

4.5a. Path graph of NNH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟗𝟏) 112

4.5b. Path graph of FIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟓𝟒𝟐) 113

4.5c. Path graph of HMIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟐𝟏𝟏) 113

4.6. Percentage error Value for FIH, NNH and HMIH 116

4.7. Percentage error of NNH, FIH and HMIH on the ten benchmark instances

depicting the quality improvement of the HMIH over NNH and FIH 117

4.8. Measure of goodness value of HMIH, FIH and NNH 118

xvi

LIST OF ALGORITHMS

Algorithms Page

2.1. Brute Force Function 40

2.2. Branch-and- Bound Algorithm 42

2.3. A Dynamic Programming Algorithm for TSP 47

2.4. The Christofides Algortihm 56

2.5. Clarke-Wright Savings Algorithm 57

3.1. Algorithm for converting TSP dataset from EUC_2D to

FULL MATRIX 91

3.2. Node-based Heuristic 94

3.3. A Pseudocode for the Nearest Neighbour Heuristic 94

3.4. The Farthest Insertion Heuristic Pseudocode 97

3.5. The Novel Half Max Insertion Heuristic Algorithm 101

1

CHAPTER ONE

1.0. INTRODUCTION

1.1. Background to the Study

The task of solving complex, often impracticable computational problems with limited

resources remains a research conundrum that continues to generate interests in the field

of Theoretical Computer Science. This scientific technique of finding the best solutions

of cost functions is referred to as Combinatorial Optimization. In other words,

Combinatorial Optimization is concerned with the task of obtaining the optimal or close

to the optimal set of solutions of a finite set, subject to predefined conditions or

constraints (Dowlatshashi et al, 2014). These sets of possible solutions can be depicted

with formal mathematical notations or structures, such as graphs, trees, and matroids,

among others.

Combinatorial Optimization spans the fields of Engineering, Bioinformatics, Artificial

Intelligence, Mathematics, Operations Research, Computer Science to complete tasks

such as memory register allocation, planning and scheduling, project management,

internet data packet routing, protein structure prediction and so on. Models are built to

formulate and solve real-life problems. Examples include the Travelling Salesman

Problem (TSP), Satisfiability Problems (SAT), Graph Colouring Problems (GCP),

Cutting Stock Problem, Minimum Spanning Tree (MST), Constraint Satisfaction

Problem (CSP), Bin Parking Problem (BPP) and so on. (Neos, 2018; Becker and Buriol,

2019). Combinatorial Optimisation Problems (COP) are categorized as either P-

problems or NP-hard problems. COPs whose solutions can be obtained in polynomial

time are referred to as P-problems. They are mostly decision problems and their

2

solution spaces can be built in polynomial time p. The COPs whose solutions are

obtainable in non-deterministic polynomial time are referred to as NP-hard Problems

(Woeginger, 2003). Some of these problems can be solved using either exact algorithms

or approximate methods. However, because most of these problems are NP-hard

problems and since the search space of the factorial number of solutions becomes so

large that they are impractical to solve using exhaustive processing, the use of heuristics

is often resorted to.

Combinatorial Optimization aims to provide solutions by deploying efficient

algorithmic techniques whose runtime is bounded by a polynomial in the input size.

Thus, in solving Combinatorial Optimisation Problems, the concerns are:

i. How quickly can one (or all) optimal solution(s) be obtained?

ii. And in cases where, due to complexities, the optimal solution is impracticable,

what is the most appropriate solution that can be found using efficient

algorithmic techniques?

In this study, the Travelling Salesman Problem is considered as a classic Combinatorial

Optimization Problem. The Problem was first formulated in the nineteenth century and

enhanced in the 1930s by M.M. Flood, and it has become the benchmark for several

other techniques of optimization (Ajaz and Himani, 2016). The TSP is a shortest tour

(or path) problem to find the optimal route while traversing a set of cities (or nodes),

ensuring each city (or node) is visited exactly once before returning to the start node

(or city), the tour thus made is referred to as Hamiltonian Cycle. It is assumed that the

cost of the distance between any pair of cities is predefined. In this regard, the cost often

refers to distance but may represent other notions such as time or money. A Hamiltonian

cycle as depicted in Figure 1.1. refers to a graph cycle that traverses all the graph’s

3

vertices exactly once before returning to its starting vertex. The Travelling Salesman

must traverse cities 1 𝑡𝑜 𝑛 in a Hamiltonian cycle that is; Start from city 1, traverse the

remaining 𝑛 − 1 cities in a specified order and then connect back to the starting city,

having touched each of the cities only once at a minimal cost.

Figure 1.1. A Hamiltonian weighted graph around a network of five nodes

Where 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = 5

𝐼, 𝐽, 𝐾, 𝐿, 𝑀 = 𝑛𝑜𝑑𝑒𝑠/𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

𝑐𝐼,𝐽 = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑡𝑜𝑢𝑟 𝑐𝑜𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝐼 𝑎𝑛𝑑 𝐽 = 30

𝐼 − 𝐽 − 𝐾 − 𝐿 − 𝑀 − 𝐼 = 𝑡𝑜𝑢𝑟/ℎ𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑐𝑦𝑐𝑙𝑒

The distance 𝑑(𝑎, 𝑏) depicts the distance from the city 𝑎 𝑡𝑜 𝑏. Thus TSP is formally

defined as presented in Equations (1.1) 𝑡𝑜 (1.3);

𝐹 = 𝑚𝑖𝑛 ∑ ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

𝑛

𝑏=1

𝑛

𝑎=1

 (1.1)

𝑤ℎ𝑒𝑟𝑒 ∑ 𝑥𝑎𝑏

𝑛

𝑏=1

= 1; 𝑎 = 1, … , 𝑛 (1.2)

𝑎𝑛𝑑 ∑ 𝑑𝑎𝑏

𝑛

𝑎=1

= 1; 𝑏 = 1, … , 𝑛 (1.3)

4

The objective function is marked with F. With a limitation,

𝑥𝑎1𝑎2
+ 𝑥𝑎2𝑎3

+ … + 𝑥𝑎𝑟𝑎1
≤ 𝑟 − 1 (1.4)

𝑥𝑎𝑏 are the binary variables

 𝑥𝑎𝑏 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏
0 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏

 𝑑𝑎𝑏 is the cost of moving from city a to city b.

The TSP has applications in several areas, most especially in varying areas of

transportation. Being an NP-hard problem, the TSP has several solution algorithms

broadly categorized into Exact Algorithms and Approximate Algorithms (heuristics).

Solving TSP using Exact techniques involve the Explicit enumeration of the solution

space; this is also known as brute force. Brute force obtains an optimal tour by exploring

the entire search space and building all the possible solutions. There are instances where

it is possible to solve the TSP efficiently, especially those with a small degree of search

space, using exact algorithms. An example is the problem of obtaining the shortest route

on a graph, based on some practically achievable assumptions. This can be tackled

optimally in polynomial time by the “Dijkstra or Bellman-Ford algorithms” (Giovanni,

2017). More complex problems, with no “efficient” algorithms, may be approached by

first modelling the problem as a Mixed Linear Programming (MILP) paradigm, then

solving them using any suitable MILP solver such as Cplex, Gurobi, Xpress, AMPL,

OPL and so on. This utilizes the general-purpose exact algorithms which guarantee

optimal solutions at least hypothetically. The computational complexities of these

techniques are exponential in nature, thus, the time required to provide their solutions

grows exponentially with its solution space (Giovanni, 2017).

5

Although exact methods can potentially generate optimal tour, especially in theory, they

are often impracticable and especially unsuitable for NP-hard problems with large

solution space. For instance, the solution renown as the best performing exact technique

is based on dynamic programming with a complexity of 𝑂(2𝑛𝑛2), thus making it

impracticable to solve TSP as the search space expands (Deudon et al., 2018). This is

a result of two practically related phenomena which are: 1. the complexity of COPs,

which are generally NP-Hard in nature, and 2. the constraint of time. This explains the

drive for the design, development, and deployment of heuristics. In contrast to exact

techniques, heuristics provide solutions within polynomial 𝑝 time.

Heuristics are approximate techniques that apply ‘rules of thumb’ for solving

Combinatorial Optimization Problems without necessarily guaranteeing optimal

solutions. Heuristics provide approximate solutions within the constraint of polynomial

time. Heuristic solutions are referred to as approximate because they make use of

probabilities and some certain set of rules to finding solutions to problems. For an

iterative procedure, heuristics can be used when an optimal solution is guaranteed to

either obtain the solution with ease or make a decision within an exact procedure. In

other words, the use of heuristics to solve the TSP and problems related to the TSP

provides acceptable results that are not too far from the optimal and yet, are

computationally affordable. Heuristics may be classified based on the atomicity of their

solution procedures as Tour Construction, Improvement / Local Search Heuristics, and

Compound Heuristics (Oliveira and Carravilla, 2009; Marti and Reinelt, 2011; Kyritsis

et al., 2018). The Tour Construction heuristics are stand-alone techniques that generate

solutions by sequentially applying a set of predefined procedures to the problem space.

These procedures describe the processes involved in stages of Initialization; Selection

and; Insertion.

6

This study is focused on solving the TSP using Tour Construction heuristics. Tour

construction heuristics are not only suitable for solving TSPs, they are equally central

to the performance of the other classes of heuristics such as improvement techniques,

compound heuristics, and metaheuristics. Construction heuristics serve as a seed for the

development of some heuristics and can be used to build initial solutions for high

performing techniques (Rao and Jin,2010; Huang and Yu, 2017; Lity et al., 2017).

1.2. Statement of the Problem

Notwithstanding, the avalanche of computational techniques, many real-life problems

of great importance remain largely unsolvable within the constraint of polynomial time,

due to the intractability of Combinatorial Optimisation Problems and the limitations of

exact algorithms in solving them in polynomial time. It has, therefore, become pertinent

to study heuristics with a view to identifying the potentials for improving the

possibilities of attaining the best trade-off between quality of the solution and

computational time (Rego et al., 2011; Abid and Mohammed, 2015). Heuristics

algorithms play a prominent role in improving the search capability of exact algorithms.

A considerable amount of research efforts has gone into obtaining good lower bounds

on the optimal tour quality for benchmark instances especially using Construction

techniques (Bernardino and Paias, 2018; Kitjacharoenchaia et al., 2019; Victor et al.,

2020; Babel 2020). The development of a high performing Tour Construction heuristics

remains a research concern because they not only generate good approximate solutions

for TSPs, they are equally central to the performance of the other classes of heuristics

such as improvement techniques, compound heuristics, and metaheuristics.

Construction heuristics serve as a seed for the development of some heuristics and can

be used to build initial solutions for high performing techniques (Rao and Jin,2010;

7

Huang and Yu, 2017; Lity et al., 2017). Construction heuristics generally generate

better initial solutions in high performing improvement methods/metaheuristics than

random initial solutions, thereby enhancing the quality of solutions (Ali, 2016; Neelima

et al., 2016; Wang et al., 2016; Vaishnav et al., 2017).

Existing tour construction methods typically fall short by between 10-30% in terms of

solution quality with a worst-case complexity of 𝑇(𝑛) = 𝑂(𝑛2). The NNH for instance

is fast, flexible, and simple to implement; it however solves the Travelling Salesman

Problem using a greedy approach and suffers immensely from the “curse of

dimensionality” phenomenon (Chen and Shar, 2018). The FIH on the other hand is

renowned as the best performing lower-order complexity heuristic, yet suffers from a

high upper bound of error with farther distance (Huang et al., 2016). According to

Huang et al., (2016), if the distance can be reduced, the probability of attaining an

optimal tour is higher. Rao and Jin (2010); Pichpibul and Kawtummachai, (2012) and

Huang et al., (2016) have identified the need for the development of a better performing

tour construction technique. Thus, this study examines two classic construction

heuristics, namely the Nearest Neighbour Heuristic and the Farthest Insertion Heuristic

in order to evolve and experiment with a new and improved Tour Construction method

which addresses the inherent limitations of the NNH and FIH. Additionally, an

extensive performance evaluation of NNH, FIH and the newly developed heuristic is

of great interest in this study.

1.2.1. Problem Formulation

Consider a postal route problem; suppose that a utility vehicle has to deliver agricultural

products in 𝑚 cities. The vehicle must complete a Hamiltonian cycle by touring cities

1 𝑡𝑜 𝑚 exactly once and return to the starting city. The objective is to build the tour

order which will guarantee minimal cost as the vehicle visits the cities/nodes from start

8

till a Hamiltonian cycle is complete. The cost, in this case, refers to the distance or the

tour length required to complete the cycle. Let 𝑑𝑎,𝑏 be the distance from city 𝑎 𝑡𝑜 𝑏,

given that the tour from 𝑎 𝑡𝑜 𝑏 traverses all the nodes with an edge, this is a complete

graph. For each edge, therefore, a binary variable is associated.

𝑥𝑎𝑏 = {
1, 𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.5)

The total distance covered by the salesman can then be depicted as:

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏 (1.6)

(𝑎,𝑏)∈𝛦

The objective of the TSP is to minimize Equation (1.6), subject to two preconditions,

which are:

i. For every node 𝑎, exactly two of the 𝑥𝑎𝑏 binary variables should be equal to 1.

ii. All the nodes must be connected to make the tour a complete graph.

Thus, the TSP can be mathematically described as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑𝑎𝑏𝑥𝑎𝑏 (1.7)

(𝑎,𝑏)∈𝛦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑎𝑏 = 2 ∀𝑖 ∈ 𝑉 (1.8)

𝑏∈𝑉

∑ 𝑥𝑎𝑏 ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑉, 𝑆 ≠ ∅ (1.9)

𝑎,𝑏∈𝑆, 𝑎≠𝑏

𝑥𝑎𝑏 ∈ {0,1}

1.3. Justification for the Study

While there are numerous instances of the Combinatorial Optimization Problems, the

TSP is perhaps the most important of them all. Works on the TSP have catalyzed the

9

emergence of several revolutionary concepts in the field of combinatorics and have led

to notable advances in cutting edge researches in complexity theories and practices.

Furthermore, the TSP has also become a standard testbed for the design and

development of new, innovative techniques; numerous important methods devised to

provide generic solutions to Combinatorial Optimization Problems were first tested on

the TSP. These include cutting planes in integer programming, a precursor to high

performing techniques such as the branch & cut methods, polyhedral approaches,

branch & bound algorithms, as well as early local search algorithms. Other techniques

such as Simulated Annealing, Ant Colony Optimization, and so on were first tested on

the TSP. Thus, the outcome of this study is expected to further the frontiers of

knowledge in the field of combinatorics and result in the development of an improved

solution to the Travelling Salesman Problem and by extension, Combinatorial

Optimization Problems.

1.4. Aim and Objectives

Given the intractability of some computational problems as well as the need to solve

such problems using the available resources, the study of heuristics, both the existing

and newly derived ones, has become prominent in theoretical Computer Science. In this

study, the complexity of some heuristics is examined and evaluated and invoked to

formulate a better solution in solving the Travelling Salesman Problem. The study

therefore aims at improving on the performance of the NNH and FIH for solving

Combinatorial Optimization Problems

The specific objectives of the study are to:

1. Implement some classical tour construction heuristics on the Travelling

Salesman Problem;

10

2. Propose and implement a new heuristic model for solving the Travelling

Salesman Problem;

3. Evaluate the performance of the three heuristics in (1) and (2) vis-à-vis solution

quality and computational time;

4. Undertake a comparative study on the classical heuristics and the proposed

heuristics.

1.5. Research Questions

The experiment is expected to answer the following questions;

1. What is the performance of the Nearest Neighbour Heuristic and Farthest

Insertion Heuristic in terms of solution quality and time complexity for given

instances and parameter set?

2. Can the quality of the result of a tour construction heuristic be improved upon

to outperform the Farthest Insertion Heuristic which is the best performing

lower-order complexity heuristic, while still retaining the same complexity of

0(𝑛2)?

3. How does the improvement affect the computational time?

1.6. Overview of Research

The goal of this study is to investigate some approximate methods with a view to

understanding their implementation details and how they are applied to the solution

process of the Travelling Salesman Problems, to identify their limitations and

ultimately device a new technique to circumvent these limitations and produce better

solutions.

11

Given a tour distance 𝑑𝑎𝑏 and associated binary variable:

𝑥𝑎𝑏 = {
1, 𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.10)

An optimal solution is a solution in which:

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

(𝑎,𝑏)∈

𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (1.11)

The objective is to minimize the tour length, that is, obtain a solution that is as close to

the optimal solution as possible.

Thus, in achieving this goal, two tour construction heuristics were studied, namely,

Nearest Neighbour Heuristic and Farthest Insertion Heuristic. The NNH readily comes

to mind when solving the TSP and the FIH gives the best solution quality of all lower-

order complexity heuristics. Tour construction heuristics were considered in this study,

because of their importance both as viable solution techniques and as seed for the

performance of other classes of heuristics. Relevant literature on these techniques were

reviewed, then the methods were experimented on some benchmark instances and used

to solve a hypothetical Travelling Salesman Problem. A new insertion technique,

referred to in this study as the Half Max Insertion Heuristic (HMIH) was then derived

with the potentials of outperforming existing state-of-the-art techniques.

All algorithms were implemented using the Java programming language.

The performances of the new and existing methods were evaluated using two measures:

i. Solution quality: the solution quality of a heuristic technique is determined by

its tour cost relative to the optimal tour cost. The closer the tour cost is to the

optimal cost, the better the quality of the technique.

12

ii. Computational speed approach: The computational speed is determined by

computing the time taken to process the solution.

Table 1.1 maps the objective of this study to the materials and methods for achieving

them.

Table 1.1. Mapping Objectives to Activities/Methods

OBJECTIVES METHODOLOGY

Objective 1:

To implement some classical heuristics

on the Travelling Salesman Problem.

- Model the postal route problem as a

Travelling Salesman Problem.

- Obtain dataset (TSPLIB)

- Generate a distance matrix as input to

the program.

- Implement the NNH and FIH in the

Java Programming Environment.

Objective 2:

To propose and implement a new

heuristic in solving the Travelling

Salesman Problem.

- Model the proposed insertion

technique (Pseudocode, Flowchart)

- Implement the technique on ten

testbeds in the Java Programming

Environment

Objective 3:

To evaluate the performance of the

existing heuristics considered and the

proposed one.

- Computational speed approach

- Generate cost and determine Solution

quality (percentage deviation from

optimal solution)

- Percentage Error (𝛿)

13

- Quality improvement (Σ):

- Goodness Value (ℊ):

Objective 4:

To carry out a comparative study on the

classical heuristics and the proposed

heuristics.

- Tables, Charts

1.7. Scope of the Study

This study aims to investigate the performance of some heuristics, including, Nearest

Neighbour Heuristic and Farthest Insertion Heuristic on a Combinatorial Optimization

Problem vis-a-vis their solution quality and complexity. The Combinatorial

Optimization Problem considered is the Travelling Salesman Problem (TSP) due to its

wide acceptability as the model testbed for new algorithmic ideas in solving COPs. The

study is restricted to Tour Construction Heuristics. Other classes of heuristics are not

covered in this study. A novel Tour Construction heuristic was designed and

implemented and the result compared with that of existing methods.

Ten benchmark cases were considered from publicly available TSPLIB dataset because

of the availability of optimal results for comparison. The data are categorized into three

as follow:

▪ 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒𝑠 < 100

▪ 100 < 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒 < 1000,

▪ 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒𝑠 ≥ 1000

14

Java Programming Language was used for implementation on a Windows Operating

System platform.

1.8. Significance of the Study

This work is expected to extend the frontiers of knowledge in solving Combinatorial

Optimization Problems, especially the Travelling Salesman Problem. By designing and

implementing a new and improved construction tour technique, the solution quality of

construction method would be enhanced, and this might impact positively on the

performances of other classes of heuristics that depend on tour construction methods.

Results obtained in this study are good indices that can aid some crucial decisions of

experts in to relevant domains such as route-finding, transportation, circuitry, VLSI

design, logistics, pick-up and delivery of agricultural products, protein structure

prediction, Printed-circuit-boards manufacturing, data transmission in computer

networks, and so on.

1.9. Arrangement of the Thesis

This thesis is organised into five chapters. Chapter one includes an introduction to the

study carried out, statement of the problem, justification for the study, aim and

objectives, research questions, overview, significance, and scope of the study. The

second chapter covers a review of fundamental concepts and existing related studies on

Combinatorial Optimization Problems. Also contained in chapter two are detailed

discussion on TSPs, variations of TSPs and methods that have been used to solve them.

The concluding part of chapter two contains a detailed review of related literature that

tackle the Travelling Salesman Problem using Tour Construction methods. Chapter

three covers the description of the conceptual design, materials and method, as well as

dataset, performance model and metrics. Chapter four focuses on testing, discussion of

15

the results obtained, and evaluation of the techniques. The thesis is finally concluded in

chapter five with summarized discussion of results, contributions to knowledge,

recommendations, and suggestions for further work.

16

CHAPTER TWO

2.0. REVIEW OF LITERATURE

In this section, well-known Combinatorial Optimization Problems in literature such as

the Travelling Salesman Problem (with the objective of minimizing the cost of

completing a Hamiltonian cycle), the Knapsack problem (with the objective of

maximizing gain using limited resources are reviewed). Other COPs in literature

include, the Satisfiability Problem (SAT), the Graph Colouring Problem (GCP), the

Cutting Stock Problem, the Minimum Spanning Tree (MST), Constraint Satisfaction

Problems (CSP), Bin Parking Problems (BPP) and so on, (Neos, 2018; Becker and

Buroil, 2019). Relevant literature on exact and approximate methods of solving COPs

were also reviewed.

2.1. Combinatorial Optimization Problems

Combinatorial Optimization Problems often require the application of computational

techniques to find optimal solutions within a finite set of possible solutions using

limited resources, mostly defined in terms of space and time. Due to these constraints

and their extremely large search space, exhaustive search methods are often not a

realistic option in solving Combinatorial Optimisation Problems.

In formulating COPs, a finite set of variables with discrete domains is first defined; the

aim is for the solution to satisfy a predefined set of constraints while optimizing an

objective function. The optimality, based on some objective function that aims to either

minimize or maximize is also stated. For instance, the objective may be to minimize

distance, cost, time, weight, or maximize yield, efficiency, production, and so on.

17

A Combinatorial Optimization Problem is a four tuple (𝑋, Σ, 𝐶, 𝑓) defined as follow

(BUI, 2015):

▪ 𝑋 = {𝑥1, … , 𝑥𝑛} is the finite set of variables;

▪ 𝐷 = { 𝐷(𝑥1), … , 𝐷(𝑥𝑛)} is the set of domains of variables; consequently,

𝐷(𝑋𝑛) defines the domain of variable 𝑋𝑛;

▪ 𝐶 = {𝐶1, … , 𝐶𝑘} is the set of constraints over variables;

▪ 𝑓 is the objective function to be optimized.

Thus, given the objective function 𝑓: 𝐷 → ℝ and 𝑆 ⊆ 𝐷 as a set of feasible solutions

𝑥, defined according to some constraints 𝐶 = {𝐶1, … , 𝐶𝑘}, the generic optimization

problem may be formulated as follow:

(𝑂𝑃𝑇) 𝑚𝑖𝑛𝑖𝑚𝑎|𝑚𝑎𝑥𝑖𝑚𝑎 𝑓(𝑥) (2.1)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆

Combinatorial Optimization Problems may be solved using either exact methods or

heuristics. The objective of the non-heuristic (Exact) methods are to obtain optimal

solutions through exhaustive searches while minimizing to a large extent, the

computation time of the algorithm. For instance, Yu and Lin, (2004) designed and

developed a service selection technique to optimize the user-centric QoS constraints of

composite web services. They modelled the problem as a classic “Multiple-Choice

Knapsack Problem (MCKP)” and applied their optimal solution to minimize service’s

end-to-end delay constraint. In the same vein, Grabrel et al, (2014) obtained an optimal

solution to the Composite Web Services (CWS) problem using the 0-1 Linear

Programming approach. The objective was to obtain an optimal solution in shorter

computation time. They modelled the problem on a dependency graph and implemented

18

their novel method on the CPLEX solver. The result obtained was optimal over wide-

ranging benchmark instances and reduced response time for the transactional CWS.

Exact methods however tend to become grossly inadequate and incapable of dealing

with NP-Hard COPs, especially as the solution space grows exponentially. NP-Hard

problems, especially those with large solution space are impracticable for exact

techniques and often result in combinatorial explosion (Deudon et al., 2018). Heuristics

are deployed to circumvent these short-falls. Heuristics do not guarantee optimal

solutions but are able to obtain good enough results within the constraint of polynomial

time.

Some Combinatorial Optimization Problems are reviewed in the following sub-

sections.

2.1.1. The Knapsack Problem

The Knapsack Problem is a famous Combinatorial Optimization Problem applicable to

real-life scenarios such as in capital budgeting, bin packing problems, and so on. The

knapsack problem is illustrated as follows:

Suppose for instance, that a thief breaks into a shop with a container or a backpack, the

problem he needs to solve is to fill his container with an optimal subset of goods or

objects or items in the shop. This problem can be modelled mathematically (Martello

and Toth, 1990; Kellerer et al., 2004; Peasah et al, 2011; Christian and Cremaschi,

2018), if the items in the shop are numbered 1 𝑡𝑜 𝑛 with a vector 𝑋𝑖(𝑖 = 1, … , 𝑛) such

that;

𝑥𝑖 = {
1 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑔𝑒𝑡𝑠 𝑝𝑖𝑐𝑘𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2)

19

Thus, given that 𝑝𝑖 is the price on item 𝑖, and 𝑤𝑖 is the weight of 𝑖, and 𝑘 is the size of

the knapsack, the problem is to select the vector 𝑥 that satisfies the constraint;

∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘 (2.3)

that optimizes the objective function

∑ 𝑝𝑖𝑥𝑖 (2.4)

𝑛

𝑖=1

The Knapsack Problem is a decision problem and can be modelled to suit wide-ranging

application area of optimization such as Logistic, Investment, cutting problem and so

on. Consequently, there are more than one variant of the Knapsack Problem. The

Knapsack problem has equally been adapted as basis for or as subproblems to other

Combinatorial Optimization Problems (Kellerer et al. 2010; Christian and Cremaschi,

2018). The Knapsack Problem (KP) may either be bounded or unbounded.

KP is said to be bounded, if there exists an upper limit 𝑙𝑖𝑚𝑖, (represented as an integer

variable) on each possible instance of item 𝑖 that can be selected in the knapsack

(Myasnikov et al., 2015; Frenkel et al., 2016). Thus:

max ∑ 𝑝𝑖𝑥𝑖 (2.5)

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘 (2.6)

𝑙𝑖𝑚𝑖 ≥ 𝑥𝑖 ≥ 0, 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

In contrast, there are no bounds on the selection of variable instance in unbounded

Knapsack Problems. Thus:

20

max ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

 (2.7)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘 (2.8)

𝑥𝑖 ≥ 0, 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

The Multiple Knapsack Problem (MKP) is another variant of the Knapsack Problem.

A Knapsack Problem is referred to as MKP if there exists a set of items 𝑛 and a set of

knapsacks 𝑚 where each knapsack has an associated capacity 𝑘𝑖 (Fukunaga, 2011;

Balbal et al., 2015; Martello and Monaci, 2020). Thus:

max ∑ ∑ 𝑝𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 (2.9)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖𝑗 ≤

𝑛

𝑖=1

𝑘𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑚

 ∑ 𝑥𝑖𝑗 ≤

𝑚

𝑗=1

1, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑛

 𝑥𝑖𝑗𝜖{0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑚 𝑎𝑛𝑑1 ≤ 𝑖 ≤ 𝑛

Notable variants of the MKP are the Multiple Knapsack Problem with Identical

capacities - MKP-I, Multiple Subset Sum Problem with random capacities given by

constraint, the Multiple Subset Sum Problem (MSSP-I) with Identical capacities and

constraints (Kellerer et al., 2004).

Other formulated variants of the Knapsack Problem include the Multiple-Choice

Knapsack Problem – MCKP (Zhong and Young 2010; Bednarczuk et al., 2018), the

Quadratic Knapsack Problem (Fomeni et al., 2020; Schulze et al., 2020), the Subset

(2.10)

21

Sum Problem – SSP (Jain et al., 2014; Xu et al., 2020), the Multidimensional Knapsack

Problem d-KP (Puchinger et al., 2010; Laabadi et al., 2019), the Set-Union Knapsack

Problem – SUKP (Kellerer et al., 2004).

From a computational point of view, the Knapsack Problem is intractable, thus the

solution approaches include exact techniques (Gupta et al., 2014; Hifi, 2014; Jain et al.,

2014; Leão et al., 2014; Fomeni et al., 2020) and approximation methods (Bansal and

Deep, 2012; Bednarczuk et al., 2018; Gurski et al., 2019; Laabadi et al., 2019; Martello

and Monaci, 2020; Schulze et al., 2020).

2.1.2. The Assignment Problem

The Assignment Problem, also referred to in Graph Theory as the Bipartite Perfect

Matching Problem is described as follows:

Given 𝑛 number of agents assigned to 𝑚 number of tasks with associated cost. Also

given that at most, one agent can be assigned to a task and vice-versa, the problem is to

obtain the optimal way of assigning tasks to agents such that they perform as many

tasks as possible with minimal associated cost (Singh, 2012; Faudzi et al., 2018). In

graph theory, the Assignment Problem is modelled as a weighted bipartite graph with

the objective of obtaining the maximum matching, for which the sum of weights of the

edges is minimal.

Formally, the Assignment Problem is defined by Silvano (2011) as follows:

Given a (𝑛 × 𝑛) cost matric of the 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄ assignment (𝒞𝑎𝑏) as in table 2.1.:

22

Table 2.1: A cost matrix of the 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄ assignment

𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄ 1 2 . . . 𝑗 . . . 𝑛

1 𝒞11 𝒞12 . . . 𝑗 . . . 𝑗

2 𝒞21 𝒞22 . . . 𝑗 . . . 𝑗

.

.

.

𝑖

.

.

.

𝒞𝑖1

.

.

.

𝒞𝑖2

… … ….

… … ….

… … . …

… 𝒞𝑖𝑗

… … ….

… … ….

… … . …

… 𝒞𝑖𝑛

.

.

.

𝑛

.

.

.

𝒞𝑛1

.

.

.

𝒞𝑛2

… … ….

… … ….

… … . …

… 𝒞𝑛𝑗

… … ….

… … ….

… … . …

… 𝒞𝑛𝑛

𝒞𝑖𝑗 = {
1 if row i is alloted to column j

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝑖, 𝑗 = 1, . . . , 𝑛) (2.11)

The problem is to determine which 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄ assignment will guarantee the

minimum cost of completion of the task. This can be expressed mathematically as:

min ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 (2.12)

𝑛

𝑗=1

𝑛

𝑖=1

∑ 𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝑛

𝑖=1

 (2.13)

∑ 𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑗 = 1, … , 𝑛

𝑛

𝑗=1

 (2.14)

𝑥𝑖𝑗 ∈ {0,1} 𝑓𝑜𝑟 𝑖, 𝑗 = 1, … , 𝑛

23

The assignment is referred to as balance if the number of agents is the same as the

number of tasks to be assigned, but referred as unbalanced if otherwise. On the other

hand, the Assignment Problem is said to be a Linear Assignment if the cost of the

assignment for all tasks is the same as the total costs for each agent (Ramshaw and

Tarjan, 2012).

The assignment component of the Assignment Problem underlies its combinatorial

structure. Thus, the solution approaches include exact techniques such as Integer

Programming, Column generation, Hungarian method and so on (Ayorkor et al., 2007;

Qu et al., 2009; Salehi, 2014; Shah et al., 2015; Date and Nagi, 2016; Woumans et al.,

2016; Lesca et al., 2019).

The Hungarian Algorithm for the 𝑛 × 𝑛 cost matrix to determine the optimal

assignment is as follows (Ayorkor, et al, 2007; Shah et al., 2015; Date and Nagi, 2016):

i. A bipartite graph {𝑉, 𝑈, 𝐸} (𝑤ℎ𝑒𝑟𝑒 |𝑉| = |𝑈| = 𝑛) and an 𝑛 ∗ 𝑛 matrix of

edge costs 𝐶

ii. initialization:

(a) Start with an empty matching, 𝑀0 = ɸ.

(b) Assign feasible values to the variables 𝛼𝑖 and 𝛽𝑗 as follows:

1. ∀𝑣𝑖 ∈ 𝑉, 𝛼𝑖 = 0 (1) (2.15)

2. ∀𝑢𝑖 ∈ 𝑈, 𝛽𝑗 = 𝑚𝑖𝑛𝑖(𝑐𝑖𝑗) (2.16)

iii. Do this for n stages of the algorithm,

iv. After the 𝑛𝑡ℎ stage, output the matching: 𝑀 = 𝑀𝑛.

24

Algorithmic Presentation of the Hungarian Process:

The flowchart for the Hungarian Method algorithmic stages is depicted in Figure 2.1.

Figure 2.1. Flowchart of the Hungarian Method for solving Assignment Problems

(Sengupta, 2017).

1. Every unmatched node in 𝑉 is designated as the root node of a Hungarian tree.

2. In the equality sub-graph, Hungarian trees are grown at the exposed nodes. The

indices 𝑖 of nodes 𝑣𝑖 found in the tree by the set 𝐼∗, and the indices 𝑗 of nodes

25

𝑢𝑗 found by the set 𝐽∗ are designated. If an augmenting path is constructed, go

to (4), else the Hungarian trees cannot be grown any further, hence go to step

(3).

3. New edges are included in the equality sub-graph by modifying 𝛼 and 𝛽

variables as;

𝜃 =
1

2
𝑚𝑖𝑛

𝑖∈𝐼∗ 𝑗∉𝐽∗
(𝑐𝑖𝑗 − 𝛼𝑖 − 𝛽𝑗)

𝛼𝑖 ← {
𝛼𝑖 + 𝜃 𝑖 ∈ I∗

𝛼𝑖 − 𝜃 𝑖 ∉ 𝐼∗

𝛽𝑗 ← {
𝛽𝑗 − 𝜃 𝑗 ∈ J∗

𝛽𝑗 + 𝜃 𝑗 ∉ 𝐽∗

Go to step (2) to find an augmenting path.

4. The new matching, 𝑀𝑘 (at stage 𝑘), is augmented by flipping unmatched and

matched edges along the augmenting path selected. That is, (𝑀𝑘−1 − 𝑃) ∪

(𝑃 – 𝑀𝑘−1), where 𝑀𝑘−1 is the matching from the previous stage and 𝑃 is the

set of edges on the augmenting path selected.

Heuristics techniques such as TABU search, Graph Colouring heuristics, hyper-

heuristics and so on are equally used in solving the Assignment Problem (Kaha and

Kendall, 2010; Burke et al., 2012; Sabar et al., 2012; Abdul-Rahman et al., 2017;

Muklason et al., 2017).

2.1.3. The Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSP) have their root in artificial intelligence dating

back to the 1970s, motivated by pioneering works in computer vision (Waltz, 1972;

Mackworth 1977). The research scope has since been greatly widened to cover relevant

application area in the domain of Artificial Intelligence and Operations Research such

as temporal reasoning, scheduling and so on. The objective of the Constraint

(2.17)

26

Satisfaction Problem is to be able to map a value within a specified finite domain to a

variable in such way that it satisfies all the constraint relating to the variable within its

domain (Zamani, 2013; Kadri and Boctor, 2018; Sahu et al., 2019). In essence, the

solution is valid only when the derived value satisfies all constraints which is within

the solution space. Roldán et al., (2011) defined the Constraint Satisfaction Problem as

a triple 𝑃 = (𝑋, 𝐷, 𝐶), where

▪ 𝑋 = {𝑥1, … , 𝑥𝑛} is the set of variables within the domain 𝐷;

▪ 𝐷 = {𝐷1, … , 𝐷𝑛} is the set of finite domains containing the solution

space for the possible values being searched.

▪ 𝐶 = {𝐶1, … , 𝐶𝑐} is the set of constraints. A constraint 𝑐1is the condition

defining the values which the set of variables {𝑥1, … , 𝑥𝑛} can take

simultaneously. In essence 𝑐1 ⊆ {𝐷𝑖1, … , 𝐷𝑖𝑘}. Thus, {𝑥𝑖1, … , 𝑥𝑖𝑘}

determines the scope of 𝑐1.

Several combinatorial problems in operations research can be modelled as a Constraint

Satisfaction Problem. These include, but not limited to the Graph Colouring Problems,

Time-tabling Problem and other resource allocation problems, eight-queens puzzle, the

Boolean Satisfiability Problem, Scheduling Problems, Bounded-error Estimation

Problems and so on.

Solutions to Constraint Satisfaction Problems on finite domains are characteristically

obtained using a search procedure. The most common procedures are some form of

backtracking, constraint propagation, and local search.

Most Constraint Satisfaction Problems are combinatorial and are thus NP-Hard.

Finding a search solution that satisfies all the constraints will involve enumerating all

the search space in exponential time at the worst case (Barto, 2015). Thus, solving them

27

using exact techniques is intractable. Some exact techniques used to solve Constraint

Satisfaction Problems include Integer Programming methods, Branch-and-Bound,

Branch-and-Cut techniques and so on (Lorterapong and Ussavadilokrit, 2013; Peng et

al., 2014; Barto, 2015; Mostafa et al, 2015; Sitek and Wikarek, 2016). Heuristic and

Metaheuristic methods have been equally deployed in solving the Constraint

Satisfaction Problems (Roldán et al., 2011; Zamani, 2013; Kadri and Boctor, 2018;

Rutishauser et al., 2018; Sahu et al., 2019).

2.1.4. The Travelling Salesman Problem

The Travelling Salesman Problem is a vastly researched Combinatorial Optimization

Problem. Its origin can be traced to the pioneering work in the 1800s of mathematicians

W.R. Hamilton and Thomas Kirkman. Hamilton formulated a puzzle problem with the

objective of completing a Hamiltonian cycle (Tutte, 2012). Works on the TSP was

further enhanced in the 1930s by Karl Menger and M.M. Flood. Karl Menger defined

the TSP and did some pioneering works on Brute-Force techniques as well as the

Nearest Neighbour Heuristic. M.M. Flood formulated the TSP mathematically to solve

the School Bus path finding problem.

The TSP is a shortest tour (or path) optimization problem with the objective to find the

shortest route while visiting a set of cities (or nodes), ensuring each city (or node) is

visited exactly once and regarding the Hamiltonian circuit, return to the start node or

city. It is assumed that the cost of the distance between any pair of cities is predefined.

In this regard, the cost often refers to distance but may represent other notions such as

time or money. Given a complete weighted undirected graph 𝐺 (𝑉, 𝐸), A Hamiltonian

cycle refers to a graph cycle that traverses all the graph’s vertices exactly once before

returning to its starting vertex. The Travelling Salesman must traverse cities 1 𝑡𝑜 𝑛 in

28

a Hamiltonian cycle that is; Start from city 1, traverse the remaining 𝑛 − 1 cities in a

specified order and then connect back to the starting city, having touched each of the

cities only once at a minimal cost.

The distance 𝑑(𝑎, 𝑏) depicts the distance from the city 𝑎 𝑡𝑜 𝑏. Thus TSP is formally

defined as below;

𝐹 = 𝑚𝑖𝑛 ∑ ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

𝑛

𝑏=1

 (2.18)

𝑛

𝑎=1

∑ 𝑥𝑎𝑏

𝑛

𝑏=1

= 1; 𝑎 = 1, … , 𝑛 (2.19)

∑ 𝑥𝑎𝑏

𝑛

𝑎=1

= 1; 𝑏 = 1, … , 𝑛 (2.20)

The objective function is marked with F. With a limitation,

 𝑥𝑎1𝑎2
+ 𝑥𝑎2𝑎3

+ … + 𝑥𝑎𝑟𝑎1
≤ 𝑟 − 1.

𝑥𝑎𝑏 𝑥𝑎𝑏 are the binary variables

 𝑥𝑎𝑏 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏
0 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏

 (2.21)

 𝑑𝑖𝑗 is the cost of moving from city a to city b.

The TSP has applications in several areas, most especially in varying areas of

transportation. Being an NP-hard problem, which is easily understood but

computationally difficult to solve, the TSP has several solution algorithms broadly

categorized into Exact Algorithms and Approximate Algorithms (heuristics).

The Travelling Salesman Problem is classified as either symmetric (STSP) or

asymmetric (ATSP) problems, depending on whether the distance or cost to travel

29

between any two cities is symmetric or asymmetric, respectively. In many cases, the

STSP is seen as a subproblem of the ATSP but there are cases where the STSP and the

ATSP are defined on separate graphs, that is, complete directed and undirected graphs.

However, the ATSP can be converted to STSP by doubling the number of nodes in the

given graph. There is an extension of the ATSP called multiple asymmetric travelling

salesmen problem (mATSP), which requires the collective performance of multiple

salesmen in touring each city exactly once at a minimal total cost. These categories of

the TSP have been discussed below.

2.1.4.1.Symmetric Travelling Salesman Problems

The Travelling Salesman Problem is said to be Symmetric if the travel cost is the same

between two nodes in both directions, that is, 𝑑𝑎𝑏 = 𝑑𝑏𝑎, thereby reducing the number

of possible solutions to half the initial (Hussain et al., 2017; Arthanari and Qian, 2018).

The STSP has half the solution space of the ATSP, thus it is considered as the more

basic form of the TSP and often solved as benchmark cases for the TSP.

Exacts techniques such as Branch-and-Bound, Branch-and-Cut, Mixed Integer Linear

Program, Dynamic Programming, Held Karp Algorithms and so on have been used to

obtain optimal solutions for the STSP (Chauhan, 2012; Demez, 2013; Fischer et al.,

2014; Sundar and Rathinam, 2017; Dijck, 2018). Approximate methods have also been

deployed in solving the STSP. They include heuristics such as NNH, Lin-Kernighan,

Savings, k-opt techniques and so on. Metaheuristics methods include Simulated

Annealing, local search, genetic techniques and so on (Demez, 2013; Fosin et al., 2013;

Kızılateş, 2015; Lim et al., 2016; Hussain et al., 2017; Kovácset al., 2018).

Formulations for the STSP include the Dantzig, Fulkerson and Johnson formulation

(Dantzig et al., 1954), the Bellman formulation (Bellman, 1962), the Held-Karp

30

formulation (Held and Karp, 1970), the Multistage Insertion formulation (Arthanari,

1983; 2000) and so on.

2.1.4.2.Asymmetric Travelling Salesman Problems

The Asymmetric Travelling Salesman Problem (ATSP) belongs to the class of NP-Hard

Problems concerned with finding the distance from one point to another in a given space

which differs from the inverse distance. There are various instances where the ATSP

can be applied; for instance, in a vehicle routing problem, a delivery man uses a vehicle

to travel through one-way streets in a city or minimizing the cost of petrol while driving

through mountain roads. According to (Roberti and Toth, 2012), the ATSP can be

defined formally as follows:

Given a directed graph 𝐺 = (𝑉 , 𝐴), where 𝑉 = {1, . . . , 𝑛} is the set of vertices, and 𝐴 =

{(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉 } is the set of arcs, The ATSP is a non-symmetric cost matrix (𝐶𝑖𝑗)

which is defined on 𝐴.

Many ATSP formulations consist of an assignment problem with integrality and

subtour elimination constraints. Such formulations include, the Dantzig, Fulkerson and

Johnson (DFJ) formulation (Dantzig et al., 1954), the Fox, Gavish and Graves (FGG)

formulations (Gavish and Graves, 1958), the Desrochers and Laporte (DL) formulation

(Desrochers and Laporte, 1991), the Gouveia and Pires (GP) formulations (Gouveia

and Pires, 1999) and the Sherali and Driscoll (SD) formulation (Sherali and Driscoll,

2002).

The ATSP has been solved using both the exact solution approaches (Ahmed, 2011;

Roberti and Toth, 2012; Aguayo et al., 2016; Campuzano et al., 2020) and the

approximate solution approaches (Arash et al., 2010; Hyung-Chan et al., 2010; Nima

and Shayan, 2015; Barketau and Pesch, 2016; Basu et al., 2017; Svensson et al., 2018).

31

2.1.4.3.Multiple Travelling Salesman Problems

The Multiple Travelling Salesman Problem (mTSP) more adequately models real-life

scenarios, as it can handle one or more salesmen. The mTSP contains a set of nodes, m

salesmen at a base node, and the remaining nodes to be visited which are intermediate

nodes. The mTSP finds tours for all m salesmen such that every intermediate node is

visited exactly once and the total cost of visiting all nodes is minimized. A more

detailed definition of the mTSP is: Given a graph with vertices V in which city, i,

denotes the base city, an asymmetric distance matrix [𝑐𝑖𝑗], 𝑖; 𝑗 ∈ 𝑉, and m salesmen

located at the base city, determine m tours that start and end at the base city after

collectively having visited city i exactly once, ∀𝑖 ∈ 𝑉, while minimizing the total

distance travelled (Cuevas et al., 2020).

The Multiple Travelling Salesman Problem can be modelled as a relaxation of the

Vehicle Routing Problems (VRPs) when side constraints are incorporated. Because of

its amenability to real-life scenarios, a number of variations of the mTSP have been

formulated in literature (Baranwal et ai., 2017; Neos, 2018). They include the Non-

Returning Multi-Travelling Salesmen Problem (Tang et al., 2000), Returning Multi-

Travelling Salesmen Problem (Gorenstein, 1970), Single-Depot Returning Multi-

Travelling Salesmen Problem (Baranwal et al., 2016), Multiple-Depot Returning Multi-

Travelling Salesmen Problem (Oberlin et al., 2009), Close Enough Travelling

Salesmen Problem (CETSP) (Mennell, 2009; Assaf and Ndiaye, 2017).

The mTSP has been solved using both the exact solution approaches (Baranwal et al.,

2016; Assaf and Ndiaye, 2017; Baranwal et al., 2017; Thenepalle and Singamsetty,

2019) and the approximate solution approaches (Shim et al., 2012; Labadie et al., 2014;

Liu and Zhang, 2014; Necula et al., 2015; Qing et al., 2015; Shuai et al., 2019).

32

2.2. Variants of the Travelling Salesman Problem

Several variants of the Travelling Salesman Problems have been studied by researchers,

some of which have been considered as follows.

2.2.1. The Maximum Travelling Salesman Problem (MAX TSP)

The Maximum Travelling Salesman Problem (MAX TSP) sometimes referred to as the

"taxicab ripoff problem" (Dudycz et al., 2017), finds a Hamiltonian circuit with

maximum total edge weight and uses its additive inverse to replace each cost edge

(Jawaid and Smith, 2013). The MAX TSP is NP-hard, hence there exist some constants

𝛽 < 1 such that obtaining a solution that guarantees better performance than 𝛽 is NP-

hard (Hassin and Rubinstein, 2000). If non-negative edge costs are required in the tour,

it is possible to assign a constant to each of the edge costs with no effect to the optimal

solutions of the problem edge (Punnen, 2007). Barvinok et al., (2007) defined the MAX

TSP as follows:

Given a weight matrix 𝑤 = 𝑤𝑖𝑗

The objective of the MAX TSP is to find a Hamiltonian cycle 𝑖0 → 𝑖2 →, … , → 𝑖𝑛 →

𝑖1, for which the maximum value of 𝑤𝑖1𝑖2
+𝑤𝑖3𝑖4

+, … , + + 𝑤𝑖𝑛−1𝑖𝑛
+ 𝑤𝑖𝑛𝑖1

 is obtained,

where (𝑖1, . . . , 𝑖𝑛) is the set of all possible combination of {1, . . . , 𝑛}.

The MAX TSP is unique because it contains some weights that the sign reversal does

not preserve which are interesting and natural special cases. Also, some combinatorial

and geometric problems can use MAX TSP methods.

The MAX TSP has been solved as a variety of related problems such as the Maximum

Travelling Salesman Path Problem - Max TSPP (Monnot, 2005; Jawaid and Smith,

2015), the Maximum Scatter TSP (Hoffmann et al., 2017; Kozma and Mömke, 2017;

33

Venkatesh et al., 2019), the Maximum Metric Symmetric TSP (Kowalik and Mucha,

2007; 2008) the Maximum Latency TSP (Hassin et al., 2009; Alamdari et al., 2013)

and so on.

Researches have deployed both the exact and approximate solution approach to the

MAX TSP. Barvinok et al. (2003) derived polynomial-time algorithms in which the

cities represent nodes of ℝd for given distances d, computed based on either the

polyhedral norm or quasi-norm; the computational time for the k-facet polyhedral was

O(nk-2 log n). The solution was equally extended to solve the quasi model with a

computational time of O(n2k-2 log n). The solution was then extended to solve the

Tunnelling TSP as a derivative of the MAX TSP. Given a set 𝑇 =

 {𝑡1, 𝑡2, . . . , 𝑡𝑘} 𝑜𝑓 𝑘 ≥ 2 auxiliary objects the distances are computed using a special

“tunnel system” distance function where all tunnels are bidirectional.

The approximate methods were able to obtain close approximations of the optimal

solutions in polynomial time (Sergeev, 2014; Hoffman, 2016; Kozma and Momke,

2016; Dong et al., 2017; Venkatesh et al., 2019).

2.2.2. The Bottleneck TSP (BTSP)

The Bottleneck TSP is a special case of the Travelling Salesman Problem that obtains

a tour that traverses each city exactly once with the objective of minimizing the farthest

distance between any two adjacent cities on the tour. Given a weighted graph 𝐺, the

objective of the BTSP is to keep the weight 𝑤 of the weightiest edge 𝑤𝑎𝑏 as minimal

as possible (Kao and Sanghi, 2009). Thus, the integer programming formulation of the

BTSP is defined (Kabadi and Punnen, 2007; LaRusic, 2010) as follows:

34

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑎𝑥{𝑤𝑎𝑏𝑥𝑎𝑏 , 1 ≤ 𝑎, 𝑏 ≤ 𝑛, 𝑎 ≠ 𝑏}

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

∑ 𝑥𝑎𝑏 = 1, 𝑏 ∈ 𝑁 (2.22)

𝑛

𝑎=1

∑ 𝑥𝑎𝑏 = 1, 𝑎 ∈ 𝑁 (2.23)

𝑛

𝑏=1

𝑥𝑎𝑏 = 0 𝑜𝑟 1

∑ ∑ 𝑥𝑎𝑏 ≥ 1∀𝑆 ⊂ 𝑁,

𝑏∈�̅�

 (2.24)

𝑎∈𝑆

𝑤ℎ𝑒𝑟𝑒 𝑆̅ = 𝑁\𝑆.

The BTSP can be classified as either Symmetric or Asymmetric BTSP, depending on

the nature of the cost matrix. The BTSP is Euclidean (EBTSP) if the tour costs from

node to node is Euclidean. Other variants of the BTSP include the Constrained BTSP

and the Maximum Scatter Travelling Salesman Problem (MSTSP). The Constrained

BTSP places an additional restriction on the total weight of the tour (Malawski et al.,

2013; Van den Bossche at al., 2013; Gahir, 2014; Wang et al., 2016). The MSTSP

obtains a tour 𝑇 that traverses each nodes of the weighted graph 𝐺 with the objective of

maximizing the shortest edge in 𝐺 (Hoffmann et al., 2017; Kozma and Mömke, 2017;

Venkatesh et al., 2019).

Some application areas of the BTSP include the Assembly line sequencing, sequencing

a One-State Variable Machine, Reconstructing Sequential Orderings from Inaccurate

Adjacency Information and Sequencing Rivet Operations (LaRusic, 2010).

35

Researches have deployed both the exact and approximate approach in solving the

BTSP. The approximate methods aim to obtain close approximations of the optimal

solutions in polynomial time. For instance, LaRusic (2010) developed an approximate

solution for the Symmetric Bottleneck Travelling Salesman Problem on a given graph

𝐺 with cost matrix 𝐶. This was based on the assumption that a lower bound 𝐿 had been

computed on the optimal BTSP objective value using the “Bottleneck Biconnected

Spanning Subgraph Problem” (BBSSP) lower bound. Extensive computational results

were presented for problems of up to 31,623 vertices and the heuristic algorithm was

able to obtain optimal solutions for almost all problems considered within a very

reasonable computational time; this was achieved using randomization in a controlled

way to guide the heuristic search. Helsgaun (2014) solved the BTSP with a Lin-

Kernighan-Helsgaun (LKH) Algorithm. The author used the “1-tree approximation”

technique to determine a possible edge set, then he deployed an extended search

technique, and finally, outliers were pruned. The performance of the LKH was

evaluated on a large BTSP test set, it found optimal results on instances with as much

as 115,475 nodes in a reasonable time. With some modifications made, the LKH was

able to solve BTSP instances of as much as one million nodes. Others such as (Kao and

Sanghi, 2009; Ahmed, 2013; Pelaez et al., 2016; Abdi et al., 2017; Zhang and Sun

2017) reported encouraging performance of approximate techniques in solving the

BTSP.

2.2.3. The Travelling Salesman Problem with Multiple Visits (TSPM)

As the name implies, the Travelling Salesman Problem with Multiple Visits (TSPM)

finds a Hamiltonian tour that visits each nodes of the graph 𝐺 more than once and

complete the cycle at minimal cost. This in contrast to the classic Travelling Salesman

Problem which must visit each node exactly once. Punnen (2007) showed that the

36

TSPM can be transformed to a classic TSP for a weighted graph 𝐺 if the edge costs are

substituted with the shortest path distances in 𝐺. Thus, given that the cycle is non-

negative, it is possible to determine the shortest path distances between all pairs of

vertices in 𝐺 through high performing algorithmic techniques. In the event where 𝐺

produces a non-negative cycle, the TSPM is said to be unbounded. Also, Oberlin et al.,

(2009) and (Assaf and Ndiaye, 2017) converted a Multiple Depot TSPM (MDMTSP)

into a Single, Asymmetric TSP. Oberlin et al., (2009)’s work was premised on the

condition that the cost of the edges satisfies the triangle inequality which was an

improvement on the 2-Depot TSPM conversion earlier designed. A modified LKH

heuristic was applied to test some computational results to determine the effectiveness

of the conversion made for instances involving Dubins vehicles. The LKH heuristic

was used because it is one of the best available solvers for the single Asymmetric TSP

on the transformed graph. The computational results on instances test showed that the

transformation was highly effective and produced quality, feasible solutions for large

instances involving 50 Unmanned Aerial Vehicles and 500 targets in less than 20

seconds. Also, the cost of generating the feasible solution was on an average of about

3% away from its optimum.

An Open-Close Multiple Travelling Salesmen Problem with Single Depot (OCMTSP)

was also proposed by (Thenepalle and Singamsetty, 2019) whereby all the salesmen

are positioned at the base city to generate an optimal route such that all salesmen start

from the base city and then visit a given set of cities exactly once but only the internal

salesmen have to return to the depot city whereas the external ones need not return. An

exact pattern recognition-based Lexi-Search Algorithm (LSA) was deployed to find

optimal solutions for the simulated problem. Computational experiments were carried

out, using arbitrarily generated test sets for OCMTSP. The performance of the LSA was

37

evaluated and results indicated that the proposed technique was an efficient method in

generating optimal and feasible solutions within reasonable times.

2.2.4. The Clustered TSP (CTSP)

In the Clustered TSP, the nodes (vertices) in a graph G are distributed into clusters

(𝑉𝑖, 𝑉2, . . . , 𝑉𝑛), the objective is to find a Hamiltonian tour in each cluster with

optimum cost, ensuring all nodes within the same cluster are traversed contiguously.

According to Punnen, (2007), the CTSP can be transformed to a classic Travelling

Salesman Problem by adding a maximum cost 𝑀 to the cost of each inter-cluster edge.

Like the study carried out by (Ahmed, 2011), Potvin and Guertin (1996) proposed a

genetic technique to solve the CTSP. The genetic algorithm used a sequence of integers,

each integer representing a node, and new orderings from old ones were produced using

specialized crossover and mutation operators. Problems with 500 vertices were used in

the computational experiment performed on the genetic algorithm and it was able to

solve them with an optimality of 5.5%. A computational comparison was also carried

out on the proposed algorithm and the GENIUS heuristic. The results obtained showed

that the proposed algorithm outperformed the GENIUS heuristic. Bazylevych et al.,

(2007) suggested decomposition algorithms for solving CTSP which allow a

considerable amount of decrease in the computation time. The CTSP model studied in

this work was categorized into macro-modelling, micro-modelling, finding initial route

and route optimization. Optimization of the route 𝑆0
∗ was realized by means of the

iterative improvement with minimization of its total distance: 𝐷0
∗ → 𝐷1

∗ → 𝐷2
∗ →, … , →

𝐷𝑐
∗. Local and global optimization were the optimizations considered. The local

optimization was obtained by using Scanning algorithm, which is an algorithm that

scans (or finds) optimal or very good solution to some sub-problems of the whole

problem. On the other hand, the global optimization was arrived at by the iterative

38

revision of the whole route. Ahmed (2014) proposed a heuristic technique to solve the

ordered CTSP. The technique was a hybrid genetic algorithm, with integrated modules

such as sequential constructive crossover, 2-opt search, and local search. The initial

sample space was generated using sequential sampling technique. The technique was

experimented on some benchmark instances from TSPLIB. The efficiency of the

technique was evaluated and compared with the exact partitioning algorithms. It was

observed that the developed algorithm outperformed the other techniques based on

quality of solutions and computational speed. Furthermore, the developed algorithm

obtained optimal solutions for the instances with as much as 51 nodes.

Other variants of the Travelling Salesman Problem that have been formulated and

solved in literature include, the Time-dependent TSP, the Black and White TSP, the

Period TSP, the Resource constrained TSP, the Selective TSP, and the Angle TSP

(Abeledo et al., 2010; Godinho et al., 2014; Arigliano et al., 2018; Keskin et al., 2019).

2.3. TSP Solutions

The Travelling Salesman Problem is relevant to several domain of knowledge and

practices. Apart from the popular transportation and vehicle routing problems, the TSP

is applied in the drilling and mask plotting of Printed Circuit Boards (PCB), overhauling

gas turbine engines, X-Ray crystallography, Computer wiring, order-picking problem

in warehouses and so on (Matai et al., 2010). Being an NP-hard problem, which is

easily understood but computationally difficult to solve, the TSP has several solution

algorithms broadly categorized into Exact Algorithms and Approximate Algorithms.

Solving TSP using Exact techniques involve the explicit enumeration of the solution

space. Exact techniques guarantee optimal solutions at least hypothetically. However,

as the solution space increases, the computational complexities of these techniques

39

become exponential in nature and are thus impracticable and unsuitable for NP-hard

problems with large solution space. Approximate techniques on the other hand

guarantees good enough solutions within the constraint of polynomial time 𝑝. Some

exact and approximate techniques are reviewed in the following subsections.

2.3.1. Exact Methods

Exact techniques, when used in finding solutions to TSPs try out all possible

permutations of the solution, thus they have a complexity of 𝑂(𝑛!). Exact techniques

such as Dijkstra or Bellman-Ford algorithms may be deployed to efficiently solve TSPs

with small degree of search space (Giovanni, 2017). More complex problems, however,

may require that the problem be first modelled as a Mixed Linear Programming (MILP)

paradigm, before solving them using any suitable MILP solver such as Cplex, Gurobi,

Xpress, AMPL, OPL and so on. While, exact methods can potentially generate optimal

tour, especially in theory, they are often impracticable and especially unsuitable for NP-

hard problems with large solution space. For instance, for a TSP of as little as 10 𝑛𝑜𝑑𝑒𝑠,

the execution time is about 3628800 which is impractical (Abdulkarim and

Alshammari, 2015). The solution renown as the best performing exact technique is

based on dynamic programming with a complexity of 𝑂(2𝑛𝑛2), thus making it

impracticable to solve TSP as the search space expands (Deudon et al., 2018). This is

a result the complexity of TSPs, and the constraint of time.

Some exact and approximate techniques are reviewed in the following subsections.

2.3.1.1.The Brute Force Algorithm

The Brute Force technique involves the explicit enumeration of the solution space.

Brute force obtains an optimal tour by exploring the entire search space and building

all the possible solutions. Although the Brute Force technique is simple to implement

40

and guarantees optimal solution, it is however a naive approach, because it chooses the

optimum solution from a wide search space of all possible solutions, thus in the worst

case, the complexity expands exponentially until it becomes impracticable in

polynomial time 𝑃, (Baidoo and Oppong, 2016).

The following are the stages involved in obtaining optimal solution by the brute-force

technique (Saiyed, 2012):

1. Explore all the solution space.

2. Enumerate and plot all the feasible tours.

3. Compute the tour cost of each of the solutions.

4. Select the shortest tour.

The following pseudocode depicts the brute-force function:

Algorithm 2.1: Brute Force function
Input: Q: a TSP query of a set of points
Output: T: the TSP for Q
1
2
3
4
5
6
7
8
9
10
11

Generate first tour solution, 𝑻𝑺
𝑶𝒑𝒕𝑻𝒐𝒖𝒓 ← 𝑻𝑺
𝑶𝒑𝒕𝑪𝒐𝒔𝒕 ← 𝑪𝒐𝒔𝒕(𝑻𝑺)
while there exists more permutations of 𝑻𝑺 do

generate a new permutation of 𝑻𝑺
if 𝑪𝒐𝒔𝒕(𝑻𝑺) < 𝑶𝒑𝒕𝑪𝒐𝒔𝒕 then

𝑶𝒑𝒕𝑻𝒐𝒖𝒓 ← 𝑻𝑺
𝑶𝒑𝒕𝑪𝒐𝒔𝒕 ← 𝑪𝒐𝒔𝒕(𝑻𝑺)

 end if
end while
print 𝑶𝒑𝒕𝑻𝒐𝒖𝒓 and 𝑶𝒑𝒕𝑪𝒐𝒔𝒕

𝑂𝑝𝑡𝑇𝑜𝑢𝑟 is optimal tour, 𝑂𝑝𝑡𝐶𝑜𝑠𝑡 is the cost of the optimal tour.

Kolog (2012) compared the optimality of the brute force algorithm with the Tabu search

algorithm for TSP. Results obtained from computational experiments indicated that the

brute force algorithm outperformed the Tabu search as it produced a significantly high

optimal solution but it could only work effectively in solving TSPs with less than 10

41

nodes compared to the TABU search which could find a solution without stern

complexities.

Baidoo and Oppong (2016) performed a comparative evaluation of the Brute Force

algorithm, the Greedy algorithm, the Branch-and-Bound technique, the Dynamic

programming technique and the Nearest Neighbor Heuristic for solving TSP, with a

focus on the distance traveled, execution time and effectiveness of these algorithms.

Four test instances were used in the evaluation process, the Brute force approach gave

the best results in all four instances but had a relatively low computational speed while

the Nearest Neighbor Heuristic had the fastest computational speed but produced

approximate values in all test instances. Conversely, the Dynamic programming

algorithm produced optimal solutions within a considerable execution time. Regarding

the given criteria, the researchers considered Dynamic programming as the best among

the five algorithms.

2.3.1.2.The Branch-and-Bound (BB) Algorithm

The Branch-and-Bound algorithm is a decision technique for solving Combinatorial

Optimization Problems. Given a list of vertices and a distance matrix, the Branch-and-

Bound solution process breaks the problem into smaller sub-groups represented in a

Branch-and-Bound tree. Dead nodes of the tree which cannot be further expanded are

jettisoned based on the criteria set for the upper and lower bound approximation

constraint. The upper bound is determined by first generating an initial solution and

designating the solution cost as the upper bound. This is maintained recursively until a

lower solution cost is generated (Baidoo and Oppong, 2016). The Branch-and-Bound

(BB) solution process may be viewed as a mathematical model with a modular approach

of initial constraint relaxation and incremental enumeration of solution. The quality of

42

the bound determines the quality of the Branch-and-Bound technique (Matai et al.,

2010).

The Branch-and-Bound algorithm is called an “exact” algorithm because it guarantees

an optimum solution, although it takes a lot of time (Chatting 2018). The Branch-and-

Bound technique generally go through three procedures vis-à-vis Splitting, Bounding

and Pruning. The steps performed by the Branch-and-Bound algorithm were

enumerated by Chatting (2018) as follows:

Algorithm 2.2: Branch-and-Bound Algorithm
Input: Q: a TSP query of a set of points
Output: T: the TSP for Q
1. Assign a bounding criterion and calculate an overall lower

bound;
2. Set an initial city, e.g., 𝒄𝒊𝒕𝒚 𝟏;
3. Evaluate valid neighbours adjacent to the current city;
4. Prune any branches which now exceed the bounding criterion;
5. Repeat steps 3 and 4 until all branches reach a ‘leaf’;
6. Identify the optimum solution from those remaining.

Hazra and Hore (2016) performed a comparative performance study on the algorithms

for solving the TSP, namely Branch-and-Bound, Backtracking, and Dynamic

Programming. The major factor for the comparison was the average running time of all

three algorithms for solving TSPs of varying sizes. From the analysis, the Branch-and-

Bound had a lesser running time than the Backtracking algorithm as it ignores sub-

problems that are unproductive while the backtracking takes into consideration every

possible path in solving the TSP problem. Although both the Backtracking and the

Dynamic Programming algorithms are recursive, the Dynamic Programming had the

least running time cost and gave the most optimal paths.

Droste (2017) studied the Branch-and-Bound and Ant Colony Optimisation algorithmic

solutions for the Travelling Salesman Problem. The Branch-and-Bound algorithm was

43

implemented using four different approaches. It was established that the addition of the

constraints in order of increasing length instead of in lexicographic order is better for

branching. While for bounding, the lower bound that adds up the two smallest allowed

edges of each city performed better than a lower bound based on a 1 − 𝑡𝑟𝑒𝑒. The

biggest instance for which an exact solution was found consisted of 23 cities. Also, the

Ant Colony Optimisation algorithm was implemented, and results showed that for

smaller instances (lesser than 100 cities), the algorithm performed well.

2.3.1.3.The Branch-and-Cut (BC) Algorithm

In the Branch-and-Bound algorithm, both cutting-plane and enumerative phases are

separated, hence update about the existing partial linear definition of inequalities cannot

be manipulated at the enumeration phase. Additionally, if the BB method terminates

with a sub-tour solution, the whole enumerative procedures must be restarted from the

beginning. Therefore, the branch-and-cut algorithm was developed to help overcome

these loopholes of the BB algorithm due to its inflexibility (Padberg and Rinaldi, 1991).

The BC algorithm is a combination of the BB algorithm and the cutting plane method.

The BC algorithm is said to simultaneously compute for a series of increasing lower

and decreasing upper bounds. In a situation where both coincide, the optimality of the

feasible solution is proven and even if this does not occur, the bounds help to proffer

quality guarantee on the best solution (Ascheuer et al., 1999).

The first procedure of the Branch-and-Cut technique is the initialization stage where

the linear programming relaxation for the problem is defined. In this phase, a cutting

plane method is iteratively deployed until the termination criteria is reached, that is no

more inequalities. The best solution of this phase is stored as the initial solution. The

next phase is the Branching phase. Here, a binary branching (0 or 1) of the fractional

44

variable is carried out to generate two new nodes. In the third phase, a new linear

programming relaxation is introduced and deployed iteratively until the enumeration

process is complete. During the iteration, the optimal solution module is updated with

solutions with better cost, but left unchanged if otherwise (Dijck, 2018).

Dumitrescu et al. (2010) solved a simulated integer linear programming TSP with

Pickup and Delivery (TSPPD) using a separation procedure involving a Branch-and-

Cut technique. The computational results obtained indicated that the BC algorithm

could find optimal solutions for instances with up to 35 pickup and delivery requests.

Battarra et al., (2014) carried out a performance study on three variations of the Branch-

and-Cut technique. They are the Branch-and-Cut algorithm with a compact formulation

that considers two sets of two-index binary variables and a polynomial number of

constraints, the Branch-and-Cut algorithm with a formulation that considers three index

variables, and the Branch-Cut-and-Price with a path interpretation of the preceding

formulation. When enhanced with sub-tour elimination and trivial constraints, the first

formulation is not empirically dominated, the second formulation was proven to have

theoretically and empirically dominated the previous, while the third dynamically

introducing ng-paths to the formulations to generate columns. It was observed that the

third algorithm could find optimality for all the benchmark instances used.

2.3.1.4. The Branch-and-Price (BaP) Algorithm

The Branch-and-Price is a high performing exact method based on integer

programming for solving the Travelling Salesman Problem (Christiansen et al., 2013;

Gendreau et al., 2014). The technique employs a similar approach of integer relaxation

as the Branch-and-Cut technique. However, in the BaP technique, the rows are

excluded, and column generation is emphasized. A large portion of feasible solutions,

45

represented by the columns, most of which have insignificant associated variables for

obtaining optimal solutions are excluded. This limits the number of columns that

require efficient handling to manageable sizes. Thus, column generation can be applied

throughout the Branch-and-Bound tree (Barnhart, 1998). The BaP typically consist of

two subproblems, namely the master and the pricing. The pricing subproblem is solved

to evaluate profitable columns whose cost is minimal, after which the integer

programming is then reoptimized. This procedure is done iteratively until the condition

for branching is reached, such that no more profitable columns are obtained

(Savelsbergh, 2001; Feillet et al., 2010).

Jepsen (2011) solved the Vehicle Routing Problem using a hybrid technique called the

Branch-and-Cut-and-Price. The problem was formulated as a Mixed-integer

Programming model. The edges of the VRPTW were assigned a fixed cost for the pilot

test and was experimented on an instance of 50 nodes. The technique outperformed

CPLEX and obtained solution within a reasonable time.

Kozanidis, (2018) modelled an aircraft routing problem as a TSP and solved it using

the Branch-and-Price algorithm. Only optimal air-routes were considered and fed into

the master process iteratively. The experimental results showed a promising

performance by the model.

2.3.1.5. The Cutting Plane Algorithm

Just like the branching techniques, the Cutting Plane technique belong to a class of

integer programming solution protocols in which a LP relaxation of the problem is

tightened and improved through the introduction of Cutting Planes (Stratopoulos,

2017). Any problem that can be reduced to integer programming can be solved by the

46

cutting-plane method. The technique solves some Integer Programming relaxation by

minimizing the cost of the solution space through a process of iterative refinement:

𝑀𝑖𝑛 𝑐𝑇𝑥, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆; (2.25)

The Cutting Plane technique can obtain approximate solutions for complex problems

where optimal solutions cannot be obtained (Applegate et al., 2001; Mitchell, 2008).

2.3.1.6. The Dynamic Programming (DP) technique

The Dynamic Programming (DP) method is an Optimization technique that finds

optimal or feasible solutions to Optimization Problems including the Travelling

Salesman Problem. The DP solution process involves recursively breaking problem

into simpler manageable modules or “sub-problems” and recursively solving them

optimally. This DP technique is able to efficiently deals with iterative computations or

processes by the process called “memoization”. This involves storing sub-solutions into

a table. Dynamic programming requires a very smart formulation of the problem and

simple thinking (Baidoo and Oppong, 2016). An essential feature of the dynamic

programming technique, as described by Fachini and Armentano (2018), is to model

the Optimization Problem in phases adaptable to an “optimal sub-structure” and

recursively generate optimal sub-solutions which is then mapped and updated per

iteration using a “resource extension function”.

Allaoua (2017) integrated Genetic Algorithm (GA) with Dynamic Programming (DP)

to solve the TSP. From the experimental results performed on some test instances, it

was observed that the combined GA-DP algorithm significantly minimized the

computational effort, produced an improved solution quality of the GA, and avoids

early premature convergence of GA.

47

A DP algorithm for TSP is given below (Bouman et al., 2018):

Algorithm 2.3: A Dynamic Programming Algorithm for TSP
Input: Set of cities 𝑽, an arbitrary city 𝒗𝝐𝑽, and cost function 𝑪.
Output: T: the TSP for V
1. Initialize 𝑫𝑻𝑺𝑷 with values ∞;
2. Initialize a table 𝑷 to retain predecessor cites;
3. Initialize 𝒗 as an arbitrary city in 𝑽;
4. Foreach 𝒘𝝐𝑽 do
5. 𝑫𝑻𝑺𝑷({𝒘}, 𝒘) ← 𝒗;
6. 𝑷({𝒘}, 𝒘) ← 𝒗;
7. For 𝒊 = 𝟐, … , |𝑽| do
8. For 𝑺 ⊆ 𝑽 𝒘𝒉𝒆𝒓𝒆 |𝑺| = 𝒊 do
9. For 𝒘𝝐𝑺 do
10. 𝒛 ← 𝑫𝑻𝑺𝑷(𝑺\{𝒘}, 𝒖) + 𝒄(𝒗, 𝒘);
11. if 𝒛 < 𝑫𝑻𝑺𝑷(𝑺, 𝒘) then
12. 𝑫𝑻𝑺𝑷(𝑺, 𝒘) ← 𝒛;
13. 𝑷(𝑺, 𝒘) ← 𝒖;
14. end if;
15. end loop;
16. end loop;
17. end loop.
18. return path obtained by backtracking over cities in 𝑷 starting

at 𝑷(𝑽, 𝒗);

2.3.1.7.The Dijkstra’s Algorithm

The Dijkstra’s algorithm helps to solve Optimization Problems by considering node

weight when computing the shortest path. It has an algorithmic complexity of 𝑂(𝑛2).

The Dijkstra’s algorithm has several advantages which include obtaining the shortest

path every pair of vertices, between two vertices through several nodes specific, and

from a given vertex to all other vertices (Ratnasari, 2013).

Nath (2016) developed Dijkstra’s and bitonic algorithms to help solve the TSP. For test

instances of small and medium sizes, optimal solutions were obtained. However, for

test instances of larger sizes, the proposed bitonic approach generated the best feasible

solutions. Therefore, the proposed bitonic approach outperformed the Dijkstra’s

algorithms and was concluded to be an efficient methodology for the TSP. however, it

48

was also observed that the bitonic algorithm had lesser computational speed in

comparison to the Dijkstra’s algorithm as the test instance size increased.

Syahputra (2016) simulated a logistic system using the Travelling Salesman Problem

and solved the problem using the Dijkstra algorithm. The technique was experimented

on an instance of 60 nodes. From the computational results, the Dijkstra’s algorithm

gave 100% accuracy in solving the TSP.

Ginting et al., (2019) modelled the efficient delivery of items by logistic companies as

a classic Travelling Salesman Problem. They obtained an optimal solution using a

modified Dijkstra technique. The Dijkstra algorithm was modified to recognize the

priority of some clusters of routes based on their distance and weight. The experimental

outcome of the method on some instances yielded a comparative efficiency of 47.8%

and with the computation time of 48.1%. This showed that the modified method with

priority outperformed the state-of-the-art Dijkstra technique.

2.3.1.8.The Bellman-Ford Algorithm

The Bellman-Ford Algorithm also known as the Ford-Fulkerson Algorithm is a

dynamic programming technique that extends the Dijkstra technique by including

negative node in its computations. Just like the Dijkstra's algorithm, it finds the shortest

path in a bottom-up approach (Patel and Baggar, 2014). Figure 2.2 shows a model of

the Bellman-Ford technique depicted by a “single source” route finding solution for

clustered nodes.

49

Figure 2.2: A distributed route-finding technique for clustered nodes modelling the

Bellman-Ford Method (Walrand and Varaiya, 2000)

Yuan (1999) solved the Constrained Quality of Service Path Routing Problem using a

modified Bellman-Ford technique. The modification was in the introduction of

constraints to the path and granularity of the computations. Additionally, the technique

was mapped uniformly. This technique was experimented on two test cases and yielded

promising result in improving the worst-case of the Constrained QoS routing problem.

Patel and Baggar (2014) carried out a performance comparative study on both Dijkstra

Algorithm and the Bellman-Ford Algorithm, in solving the shortest path problem in

GIS application for the government sector, emergency system, Business sector, etc.

From the study performed on both algorithms, the Dijkstra algorithm outperformed the

bellman ford algorithm in a very lager network and has wider use in the real-time

application of GIS technology.

50

2.3.2. Approximate Techniques

Approximate techniques generally refer to heuristics and metaheuristics.

Heuristics are approximate techniques that apply ‘rules of thumb’ for solving

Combinatorial Optimization Problems without necessarily guaranteeing optimal

solutions. Heuristics provide approximate solutions within the constraint of polynomial

time. Heuristic solutions are referred to as approximate because they make use of

probabilities and some set of rules to finding solutions to problems. For an iterative

procedure, heuristics can be used when an optimal solution is guaranteed to either

obtain the solution with ease or make a decision within an exact procedure. In other

words, the use of heuristics to solve the TSP and problems related to the TSP provides

acceptable results that are not too far from the optimal and yet, are computationally

affordable. A good heuristic must be effective, that is, must always lead to a solution,

must be able to obtain ‘good enough’ approximate solutions, easy to implement, and

flexible. Aside from the need to solve hard problems in polynomial time 𝑝, other

motivations for using heuristic methods in literature (Oliviera and Carravilla, 2009;

Marti and Reinelt, 2011; Giovanni, 2017; Kyritsis et al, 2018) include:

i. Unavailability of optimal methods for solving the problems

ii. The heuristic is part of a broader optimal solution procedure

iii. Incompatibility of existing exact solutions to available hardware

iv. The heuristic is more amenable to complexities than the available exact

technique and can integrate complex constraints that are difficult to

model.

Heuristics may be classified based on the atomicity of their solution procedures. In this

regard, heuristics are classified as Tour Construction, Improvement / Local Search

51

Heuristics, and Compound Heuristics (Oliveira and Carravilla, 2009; Marti and Reinelt,

2011; Kyritsis et al., 2018).

Heuristics may also be classified based on their solution paradigm, into space-

partitioning-based heuristics, edge-based heuristics, or node-based heuristics, (Huang

et al., 2016; Huang and Yu, 2017). The space-partitioning-based heuristics, build

solutions by first splitting the nodes into subsets (𝑠1, 𝑠2, … , 𝑠𝑛) based on their paired

distances, the nodes within the same subset are then connected into the tour path, and

then the Hamilton tour for 𝑆 is obtained by coupling the Hamiltonian paths of subsets

(𝑠1, 𝑠2, … , 𝑠𝑛). A common example under this category is the Strip and Hilbert

technique. Edge-based heuristics build solutions by first determining the edge with the

smallest distance and then placing it into the circuit. Most heuristics under the edge-

based category are built on the Minimum Spanning Tree (MST), they include multiple

fragment heuristic, double-MST (DMST), the Christofides algorithm (Chris), and so

on. In the third category, the node-based heuristics build the tour by expanding the

nodes one at a time till all the nodes have been inserted. Node-based heuristics must

first decide which node to be used as the initial node, then determine the succeeding

node to explore in each iteration, and where it will be inserted. Some known node-based

heuristics include the Addition techniques, the Nearest Neighbour techniques, the

insertion heuristics, the convex hull-based insertion heuristics, and so on. Apparently,

node-based heuristics are chiefly tour construction techniques as well (Huang et al.,

2016; Huang and Yu, 2017).

Approximate techniques may also refer to Metaheuristics. Unlike heuristic techniques

which are designed to solve specific optimization problems, metaheuristics are general

purpose approximate computational techniques for solving optimization problems and

may require few modifications to solve a given problem (Abdel-Basset et al., 2018).

52

The most popular and widely researched metaheuristics are the nature inspired

metaheuristic.

Some approximate techniques are reviewed in the following subsections.

2.3.2.1.Tour Construction Heuristics

Tour Construction heuristics are stand-alone techniques that generate solutions by

sequentially applying a set of predefined procedures to the problem space. These

procedures describe the processes involved in stages of Initialization; Selection and;

insertion. The construction heuristic techniques have been used extensively in solving

classic combinatorial optimization problems. Common techniques include the Nearest

Neighbour Heuristic, the Nearest Insertion, Cheapest Insertion, Random Insertion,

Addition heuristics, Savings Heuristics, and so on. Some well-known constructive

heuristic methods are described briefly in Table 2.2.

Table 2.2. Description of some well-known tour construction heuristics

HEURISTICS DESCRIPTION

Nearest

Neighbour

Heuristic

The NNH starts its tour with a single subtour of node/city 𝑖, chosen

randomly or purposively and then iteratively add the next node

𝑘 + 𝑖 not yet chosen but closest to subtour until all the nodes have

been added to the tour. This technique is naïve and result in the

occurrence of outliers as the search space and nodes increase. The

NNH has a complexity of 𝑂(𝑛2) and yields tours whose qualities

are within 25%-30% of the Held-Karp lower bound. (Rosenkrantz,

53

et al., 1977; Rao and Jin,2010; Huang and Yu, 2017; Lity et al.,

2017).

Nearest

Insertion

Heuristic

The NIH belong to the class of Insertion Heuristics. The Insertion

heuristics starts from an arbitrary point to form a sub tour or partial

circuit. Nodes not already in the sub tour are then inserted based

on predefined criteria such that the increment to the total distance

of the sub tour is minimized. Given the sub tour 𝑇𝑖, and given that

𝑥 is the next node to be inserted, then the insertion technique

inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to:

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥)

The NIH obtains a tour solution by first building its subtour; initial

node 𝑖 and a node 𝑗 nearest to 𝑖 to form a partial circuit 𝑇 = 𝑖 −

𝑗 − 𝑖. The next node 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖 is then

added iteratively till a Hamiltonian tour is formed (Huang et al.,

2016; Huang and Yu, 2017).

Farthest

Insertion

Heuristic

The FIH obtains a tour solution by first building its subtour; initial

node 𝑖 and a node 𝑗 nearest to 𝑖 to form a partial circuit 𝑇 = 𝑖 −

𝑗 − 𝑖. The next node 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖 is then

added iteratively till a Hamiltonian tour is formed. The FIH

solution when evaluated:
𝑆𝐹𝐼𝐻

𝑆𝑂𝑃𝑇
⁄ ≤ [log 𝑛] + 1

The FIH is executed in 𝑂(𝑛2) computational effort and since the

algorithm runs 𝑛 times starting it has a complexity of 𝑂(𝑛2) .

(Rosenkrantz, et al., 1977; Huang et al., 2016; Huang and Yu,

2017; Lity et al., 2017)

54

Cheapest

Insertion

Heuristic

This is similar to the Nearest Insertion heuristic. Start at node 𝑖

(arbitrary or fixed), find cities 𝑘, 𝑖 𝑎𝑛𝑑 𝑗 (𝑖 and 𝑗 being the

extremes of an edge belonging to the partial tour and k not

belonging to that tour) for which 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is minimized. If

all nodes have been selected STOP, else repeat the process.

Analysis by Rosenkrantz et al., (1977) shows that the complexity

of cheapest Insertion is 𝑇(𝑛) = 𝑂(𝑛2 log 𝑛). An experimental

evaluation of the solution is
𝑆𝐶𝐼𝐻

𝑆𝑂𝑃𝑇
⁄ ≤ 2. (Fan, 2011; Cruz et

al., 2012).

Random

Insertion

Heuristic

The Random Insertion Heuristic starts by choosing two arbitrary

nodes 𝑖, 𝑗 ∈ 𝑇, and form a sub tour 𝑖 − 𝑗 − 𝑖. Then, iteratively and

arbitrarily chooses a node 𝑘 of 𝑇 that is yet to be added to the cycle

such that the increase in the total cost of the tour is minimal. The

loop terminates when all nodes have been included in the tour

(Goetschalckx, 2011; Anbuudayasankar et al., 2014).

Others tour construction methods are described below:

The Greedy Heuristic:

The Greedy heuristic is a technique with a ‘simplest improvement’ approach. The

Greedy method’s solution paradigm is to obtain a global optimum by first obtaining

local optimal solution at each stage of the problem. This technique is naïve and usually

fall short of obtaining global optimum, although locally optimal solutions are often

reached. It is thus a good approximate technique. In solving the TSP, the Greedy

method iteratively adding a sorted node set starting with the minimum weight until the

55

tour is completed (Matai et al., 2010). Techniques such as Prim’s MST, Kruskal’s MST,

Dijkstra Shortest Route Algorithm, Huffman Coding and so on employ the greedy

solution paradigm. The complexity of the greedy heuristic is 𝑂(𝑛2 log2(𝑛)) (Ejim,

2016; Jain and Prasad, 2017). Figure 2.3. provides an illustration of the greedy

technique on six nodes instance.

Figure 2.3. An illustration of the greedy technique on six nodes instance (Oliveira and

Carravilla, 2009)

Abdulkarim and Alshammari (2015) used the Genetic Algorithm and the Greedy

Heuristic to solve a TSP. The computational experiment consists of three test instances

with 20, 100, and 1000 cities within the US border. The results obtained showed that

the Greedy Heuristic’s complexity was higher than that of the Genetic technique, due

to the higher number of iterations it took before the solution was reached. However,

the Greedy technique outperformed the Genetic Algorithm in terms of solution quality.

56

The Christofides Heuristic:

The Christofides algorithm was named after Nicos Christofides. This technique

specializes in solving symmetric TSPs, which of course, satisfy the triangle inequality

criteria. The Christofide techniques guarantees solutions which are 3 2⁄ of the Held

Karp lower bound (Štencek, 2013). The complexity of the Christofide techniques is

𝑂(𝑛3) (Chauhan et al., 2012).

The steps involved in the Christofides algorithm are given below (Matai et al., 2010):

Algorithm 2.4: The Christofides Algorithm
Input: Set of nodes 𝑺, an arbitrary city s𝝐𝑺, and cost function 𝑪.
Output: T: the TSP for S
Step 1: For a set of nodes 𝐒𝟏,𝟐,…,𝐧, generate a Minimal Spanning

Tree (MST).

Step 2: For a set 𝑂 ∈ 𝑆 of nodes having odd degree, generate
a Minimum-Weight Matching (MWM) and merge the MST with
the MWM to create a “multigraph” 𝑀.

Step 3: Generate an “Euler cycle” from M, while avoiding
visited nodes.

Research efforts extending the base Christofide technique have further improved the

performance of the method (Xu et al., 2011; An et al., 2012; Genova and Williamson,

2017; Xu and Rodrigues, 2017).

The Clarke-Wright Savings Heuristic:

The Clarke-Wright Savings Heuristic is reputed for solving the Vehicle Routing variant

of the Travelling Salesman Problem (Chauhan et al., 2012). The Clarke-Wright Savings

Heuristic excels in handling the Vehicle Routing Problem because of its flexibility and

abilities to handle divers constraints. Its experimental performance of approximately

2.5% over the optimal solution is equally high compared with some methods such as

the Nearest Neighbour Heuristic; its time and space complexities are O(n2 log(n)) and

O(n2) respectively (Chauhan et al., 2012; Jeřábek et al., 2016). The Clarke-Wright

57

Savings Heuristic’s approach to the Vehicle Routing Problem can be thought of as an

iterative refinement process. The process starts by finding an initial solution which is

then refined through a series of stepwise activities, thus giving room for the gradual

introduction, monitoring and control of constraints.

Chauhan et al., (2012) and Kampf et al., (2015) detailed the procedure used by the

Clarke-Wright Savings heuristic as in Algorithm 2.5:

Given a network 𝑆 of nodes 𝑛 and connecting edges 𝑒, where is the starting node 𝑛0

and 𝑛𝑖=1,2,…,𝑥 are the delivery nodes. Each of the nodes have attaches constraints, and

the vehicle has limited capacity, the objective is to generate sets of paths subject to

some constraints, that traverses each node and return to the starting node with a single

ride, without exceeding the capacity of the carrier at minimal cost.

Algorithm 2.5: Clarke-Wright Savings Algorithm
Input: Set of cities 𝒏
Output: T: the TSP
1. Form preliminary solution: select two feasible routes,

(𝒏𝟎−𝒏𝒊−𝒏𝟎) 𝒂𝒏𝒅 (𝒏𝟎 − 𝒏𝒋−𝒏𝟎) not yet in the hub and connect

them to the hub
2. Determine the savings coefficient for each pair of non-hub

nodes by computing the cost difference if the vehicle
bypassed the hub, rather than going through it.

3. The non-hub pairs of nodes are then passed through
iteratively in decreasing order of savings, performing the
bypass so long as it does not create a cycle of non-hub
nodes or cause a non-hub node to become adjacent to more
than two other non-hub nodes.

4. Terminate if when only two non-hub cities remain connected
to the hub, in which case we have a true tour.

Pichpibul and Kawtummachai (2012), proposed a Clarke-Wright (CW) Savings

technique in solving the Capacitated Vehicle Routing Problem that traverses all nodes,

but does not necessarily complete the Hamiltonian Cycle. The proposed technique

followed four procedures: firstly, the Clarke-Wright model was modified, then an open-

path was constructed, thirdly, the selection process was implemented in two phases,

58

and finally, route post-refinement. Experimental results showed that the proposed

technique did better than the classical CW method.

Addition Heuristics:

Addition Heuristics and Insertion Heuristics both solve the TSP by adding nodes to

partial tours based on some expansion rules. However, unlike the Insertion technique

which considers all the insertion points of the subtour, the Addition heuristic consider

only edges connecting the node 𝑢 nearest to the node 𝑣 that is to be inserted. Expectedly,

addition heuristics bettered the insertion techniques in terms of complexity but fall short

of insertion techniques in terms of solution quality (Bentley 1992; Huang and Yu,

2016). Like insertion techniques, there are four types of addition heuristics, namely

Nearest Addition Heuristic, Cheapest Addition Heuristic, Farthest Addition Heuristic

and Random Addition Heuristic. The complexity of these techniques is 𝑂(𝑛3).

2.3.2.2.Improvement/Local Search Methods

Improvement techniques build an initial solution, which is then iteratively refined until

the termination criterion is achieved at which stage, there is no way to further improve

it. This is derived from the concept that by iteratively refining solutions, the quality of

the solution can be enhanced to be as close to the optimal solution as possible. Some

common improvement heuristics include the Lin Kernighan, the 2-Opt, 3-Opt, and k-

Opt algorithms, and so on. Some Improvement techniques are discussed as follow:

a. Simulated Annealing (SA):

Simulated Annealing (SA) is primarily an arbitrary local search algorithm, which is

similar to the TABU Search approach, but differs in that it does not allow path exchange

that deteriorates the solution (Matai et al., 2010). The Simulated Annealing technique

59

has a complexity 𝑂(𝑛2) with a large constant of proportionality because it uses the 2-

Opt neighbourhood search. The primary difference of the SA from the 2-Opt is that the

local optimization algorithm is often restricted to their search for the optimal solution

in a downhill direction which means that the initial solution is changed only if it results

in a decrease in the objective function value. However, the 2-opt algorithm works well

when the problem size is less than 50 cities. The Simulated Annealing (SA) algorithm

obtains good tour quality because of its modular approach of going from one solution

to the next (Abid and Muhammad, 2015).

b. The 2-Opt and 3-Opt algorithms:

The 2-Opt procedure was first formulated by Croes in 1958 based an earlier work by

Flood in1956 (Saiyed, 2012). The 2-Opt procedure improves an initial tour through a

process of comparison of all admissible pair of valid edges and substitution based on

some criteria. This swapping procedure iteratively refines the tour until the route

converges to a locally optimal solution, in which case it is no longer possible to reduce

the tour length. At this point of local optimum, this procedure would have transformed

all crossing edges into non-crossing ones (see Figure 2.4.) (Matai et al., 2010).

Figure 2.4. A Schematic Illustration of the 2-OPT Procedure (Yang et al., 2008)

60

A naive implementation of 2-Opt runs in 𝑂(𝑛2). This involves selecting an edge (𝑐1, 𝑐2)

and searching for another edge (𝑐3, 𝑐4), completing a move only if 𝑑𝑖𝑠𝑡(𝑐1, 𝑐2) +

𝑑𝑖𝑠𝑡(𝑐3, 𝑐4) > 𝑑𝑖𝑠𝑡(𝑐2, 𝑐3) + 𝑑𝑖𝑠𝑡(𝑐1, 𝑐4), (Saiyed, 2012).

The 3-Opt algorithm’s structure is similar to that of the 2-Opt, except that it removes

three edges. The search is exhausted when no more 3-opt moves can improve tour

quality. A 3-Optimal tour is also a 2-Optimal tour.

Neissi and Mazloom (2009) made use of both local search heuristics and genetic local

search algorithms; a 2-Opt algorithm and a 3-Opt algorithm, to solve the TSP. From the

evaluation and comparison of the run time behaviour and fitness of their approach, 2-

Opt had better fitness for solving the TSP while it was observed that with the 3-Opt

algorithm the solution converges to the global optimum in more time. Hence, they

recommended that the 2-Opt algorithm be used in getting the optimum arrival time and

the 3-Opt algorithm be used to get global optimum where it is important.

c. k-Opt Algorithms:

The k-Opt move is applied to improve the generated tour from obtained tour

construction heuristic. The exchange heuristic for 𝑘 > 3 will take more computational

time as compared to that of 2-Opt and 3-Opt exchange heuristic. For instance, a 4-Opt

move, which is referred to as “the crossing bridges”, cannot be sequentially constructed

using 2-Opt moves and for this to be possible two of these moves would have to be

illegal (Matai et al., 2010).

Helsgaun (2009) implemented a general k-Opt sub-move for a variant of the Lin–

Kernighan heuristic, LKH-2. The computational experiments performed showed that

the implementation was both effective and scalable for Euclidean test instances from

10,000 to 10,000,000 cities. It was noted that the use of general k-Opt sub-moves

61

depends on the candidate graph, except the candidate graph is sparse hence the instance

should not be heavily clustered else this will lead to time consumption. Thus, the

runtime of the method increases almost linearly with the problem size.

d. Lin-Kernighan:

The Lin-Kernighan (LK) Algorithm is renown as a high performing technique for

obtaining optimal or approximate solutions for the TSP, although its implementation is

complex. The creation of the LK was based on the static 𝐾 in the K-Opt method. The

LK is a variable k-way exchange heuristic that introduces a powerful variable-Opt

algorithm to its implementation and dynamically changes the value of K during its

execution (Chauhan et al., 2012). The time complexity of LK is approximately 𝑂(𝑛2.2),

making it slower than a simple 2-Opt (Papadimitriou, 1992; Matai et al., 2010).

Lau (2002) developed a Search and Learning Algorithm (SLA*-TSP) for solving TSPs

which applies the heuristic estimation approach and made a comparison of the proposed

algorithm’s computation time and solutions with the Nearest Neighbour Heuristic and

Lin-Kernighan Heuristics. SLA*-TSP proffered more suitable results than Nearest

Neighbour heuristics and almost the same solutions as Lin-Kernighan Heuristics. It

however performed woefully in computational time as compared to the other algorithms

while Nearest Neighbour heuristics had the best computation time record. The poor

computational time performance of SLA*-TSP was attributed to its dynamic tour

construction and the inefficient data retrieval in its program.

2.3.2.3.Compound Heuristics

The constructive and local search methods form the foundations of the Compound

heuristic procedures. In this approach, two or more constructive and improvement

heuristics are applied separately and the best solution is chosen (Frederickson et al,

62

1978; Yao, 1980; Landston, 1987). Examples include CCAO (Convex Hull, Cheap

Insertion, Largest Angle and OR-Opt) (Golden and Stewart, 1985), GENIUS

(Gendreau et al, 1992) among others.

2.3.2.4.Metaheuristics

Metaheuristic algorithms are special form of heuristics used for solving specific but

complex optimization problems. They are classified either as metaphor based or non-

metaphor based (Damghanijazi and Mazidi, 2017). They differ mainly in the techniques

used in simulating the selected phenomenon behaviour in the search area. Examples of

metaphor-based metaheuristics include: Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Water Waves Optimization (WWO), Clonal Selection Algorithm

(CLONALG), Chemical Reaction Optimization (CRO), Harmony Search (HS), Sine

Cosine Algorithm (SCA), Simulated Annealing (SA), Teaching–Learning-Based

Optimization (TLBO), League Championship Algorithm (LCA), and so on (Matai et

al., 2010; Chauhan et al., 2012; Abdulkarim and Alshammari, 2015. Some non-

metaphor-based metaheuristics include TABU Search (TS), Variable Neighbourhood

Search (VNS) (Matai et al., 2010; Basu, 2012; Damghanijazi and Mazidi, 2017).

a. Ant Colony:

Ant Colony Optimization is a meta-heuristic technique whose principle was inspired

by the behaviour of real ants that find food resources by laying a trail of a chemical

substance called ‘pheromone’ along the path from the nest to the food source (Chauhan

et al., 2012). The amount of available pheromone determined if new ants are

encouraged to trail on the same path. Shorter routes to food sources have higher

amounts of pheromone. As time goes by, most of the ants are directed to use the shortest

path. The medium of indirect communication is referred to as ‘stigmergy’ (Dorigo et

63

al., 1999), in which the concept of positive feedback is exploited to find the best

possible path, based on the experience of previous ants (Chauhan et al., 2012).

Gupta (2013) carried a comparative performance analysis of some meta-heuristics in

solving the classic and Random Travelling Salesman Problem. Two classical meta-

heuristics (TABU search and Simulated Annealing), two evolutionary techniques

(Genetic and Memetic), and four nature-inspired algorithms (Ant Colony Optimization,

Bee Colony Optimization, Firefly, and Cuckoo-Search) were considered. The

performances of these meta-heuristic algorithms were compared based on quality of the

tour solution. It was observed that the Nature-inspired algorithms outperformed both

Traditional and Evolutionary algorithms and obtained optimal solutions for some

instances. Particularly, the Cuckoo Search algorithm produced the best solutions in

terms of solution quality.

Droste (2017) studied the Branch-and-Bound algorithm and the Ant Colony

Optimisation algorithm for solving the TSP. The computational results indicated that

the Branch-and-Bound algorithm could not solve for test instances with more than 23

cities. While the Ant Colony Optimisation algorithm provided solutions for instances

with nodes of almost 100 cities. Result showed that the accuracy of the Ant Colony

technique decreases with increasing number of nodes.

b. Genetic Algorithm:

Genetic Algorithm (GA) is a heuristic algorithm that simulates the evolution principles

in finding solutions to complex problems that cannot be solved with any other exact

algorithms. These evolution principles include inheritance, mutation, natural selection,

hybridization – for “selective breeding” of a solution of a basic problem. A basic GA

starts with a randomly generated population of candidate solutions for different

64

problems. The candidates are saved and are then mated to produce offspring, while

some go through a mutating process, and as the population develops, the solutions are

improved (Matai et al., 2010). The algorithm calculates the fitness function for each

member of the population expressing the quality of solution for all members. By

selecting the fittest candidates for mating and mutation the overall fitness of the

population improves (Abdulkarim and Alshammari, 2015). The algorithm terminates

after a considerable improvement to the quality has been achieved or after a time-out.

Applying GA to the TSP involves implementing a crossover routine, a measure of

fitness, and a mutation routine. A good measure of fitness is the actual length of the

solution (Štencek, 2013).

Using GA for TSP has disadvantages of premature convergence and poor local search

capability. These problems can be circumvented by integrating other high performing

techniques such artificial immune systems into it (Abid and Muhammad, 2015).

Gupta and Kakkar (2012) solved the Travelling Salesman Problem using a modified

Genetic Algorithm. The Parallel search-and-learn technique, Hybrid Method, Neural

Network Techniques, TABU search were used as a curtail the complexity of the Genetic

Algorithm and generate and optimized solution.

AlSalib et al., (2013) investigated the performance of the Genetic algorithm and

Nearest Neighbour Heuristic in terms of cost and running time, using four datasets of

varying cities. It was observed that the Nearest Neighbour Heuristic proffered very

suitable results for datasets with less than 50 cities, its results were either close to or

better than the optimal solutions. It produced solutions farther away from the optimal

for large datasets but recorded an overall better execution time which was lesser than a

second for all four instances used. Genetic Algorithm, on the other hand, was more

65

stable as near-optimal tour costs producing solutions that were much closer to each

other and proved to have an overall lesser amount of errors, as computed by the MED

formula, hence indicating that it performed better than the Nearest Neighbour Heuristic.

Damghanijazi and Mazidi (2017) carried out a comparative performance analysis of

five meta-heuristics including Hill Climbing, Simulated Annealing, PSO, Ant Colony,

and Genetic Algorithm in solving the classic Travelling Salesman Problem. The

execution time and space complexities were also compared. Computational results

showed that the Simulated Annealing and Hill Climbing solutions stopped at the local

minimum and thus had poorer tour quality than the other methods. The other algorithms

gave better solutions while GA achieves the optimal solution in the shortest time. The

hill-climbing method has the lowest memory consumption.

c. TABU Search:

The TABU Search is an iterative refinement technique based on local search, also

known to be a neighbourhood-search algorithm that begins with an initial solution to

the problem and searches for the best solution in the neighbourhood of the existing

solution using a 2-opt exchange mechanism. It then designates the best solution in the

neighbourhood as the current solution and iteratively refines the process until the

termination criteria is met which may either be due to execution time, maximum

iteration count conditions, or solution quality objectives, or all (Basu, 2012). The

challenge with using a simple neighbourhood search approach (either 2-opt or 3-opt

exchange heuristic), is that the procedure can easily get stuck in a local optimum. To

avoid this, the TABU search keeps a TABU list containing bad solution with a bad

exchange (Matai et al., 2010).

66

Misevičius et al., (2005) used a variant of the TABU search scheme, the fast iterated

TABU search (ITS) meta-heuristic, to solve the TSP. ITS obtains near-optimal

solutions by combining intensification (standard TABU search) and diversification

properly. The fast-iterated TABU search technique obtained promising results for the

TSP instances considered from the TSPLIB. It was observed that the FITS

outperformed the random multi-start (RMS) algorithm based on 2-opt moves, the

Simulated Annealing algorithm, the straightforward TABU search algorithm, and the

iterated TABU search (ITS) algorithm, especially, on the smaller TSP instances.

Erdogan et al., (2012) developed three metaheuristics to solve the Travelling Salesman

Problems with Pickups, Deliveries, and Handling Costs. The metaheuristics solutions

used were based on the TABU search, Iterated Local Search, and the Iterated TABU

search. The three heuristics experimented on some test instances and their performances

were documented and compared. The computational results indicated that the hybrid of

TABU search with exact Dynamic Programming performed best, but using the

approximate linear time algorithm considerably decreases the CPU time at the cost of

slightly worse solutions.

2.3.3. The Held-Karp Lower Bound

The Held-Karp (HK) lower bound is used in testing the performance of any new TSP

heuristic. It is the solution to the linear programming (LP) relaxation of the standard

integer programming formulation of the Travelling salesman problem (Matai et al.,

2010). Surprisingly, there is no readily available LP code for evaluating HK lower

bound for problems larger than a few hundred cities. Also, Linear Programming

implementations (even efficient ones) do not scale well and rapidly become impractical

67

for problems with many thousands of cities (Valenzuela and Jones, 2001); HK lower

bound is averagely 0.8% below the optimal tour length.

The HK lower bound can be evaluated as a 1-tree relaxation, where a 1-tree on an 𝑛 𝑐𝑖𝑡𝑦

problem is defined as follows (Valenzuela and Jones, 1997):

A 1 − 𝑡𝑟𝑒𝑒 is a connected graph with vertices 1, 2, . . . , 𝑛 consisting of a tree on the

vertices 2, 3, . . . , 𝑛 together with two edges incident with 𝑐𝑖𝑡𝑦 1.

Evaluation of a Held-Karp lower bound requires the computation of a sequence of

Minimum 1 − 𝑡𝑟𝑒𝑒𝑠, where:

A Minimum 1 − 𝑡𝑟𝑒𝑒 is a Minimum Spanning Tree (MST) on the vertices 2, 3, . . . , 𝑛

together with the two lowest-cost edges incident with 𝑐𝑖𝑡𝑦 1.

A tour is simply a 1 − 𝑡𝑟𝑒𝑒 in which each vertex has degree 2. If a minimum 1 − 𝑡𝑟𝑒𝑒

is a tour, then it is a tour of minimum cost.

2.4. Related State-of-the-Art Tour Construction Solutions

Research works done on state-of-the-art tour construction methods such as the Nearest

Neighbour Heuristic, Nearest Insertion Heuristic, Cheapest Insertion Heuristic,

Random Insertion Heuristic and Farthest Insertion Heuristic were reviewed in this

section.

Generally, the Nearest Neighbour Heuristic can solve the TSP in good time, with less-

than-optimal solution quality. Experimentally,

𝑇𝑁𝑁𝐻
𝑇𝑂𝑃𝑇

⁄ ≈ 1.26 (2.26)

Where 𝑇𝑁𝑁𝐻 = tour cost of the Nearest Neighbour Heuristic and 𝑇𝑂𝑃𝑇 = cost of the

optimal tour.

68

Thus, recent literature focus on using the Nearest Neighbour Heuristic either as part of

a hybrid method as in (Rao and Jin,2010; Huang and Yu, 2017; Lity et al., 2017) or as

a seed technique in a metaheuristic for building initial solutions (Lingling and Ruhan,

2012; Bernardino and Paias, 2018; Kitjacharoenchaia et al., 2019). The works reviewed

in this section fall in the latter category. The literature considered span the period 2011-

2020.

Rego et al., (2011) used the Nearest Neighbour Heuristic to build an initial tour in their

experimental survey of some leading techniques. They identified important

implementation success factors and experimented a total of nine high performing

heuristics on different instances of both symmetric and asymmetric TSPs. These

methods included four derivatives of the Lin-Kernighan heuristic and two variants of

the stem and cycle (S&C) technique for the implementation of the Symmetric TSP;

while three generalized LK and S&C methods were used for implementation on the

Asymmetric TSPs. The LK variants used on the Symmetric TSPs include the Johnson

and McGeoch Lin–Kernighan (LK–JM), the Neto’s Lin–Kernighan (LK–N), the

Applegate, Bixby, Chvatal, and Cook Lin–Kernighan (LK–ABCC) and the Applegate,

Cook and Rohe Lin–Kernighan (LK–ACR). The stem and cycle considered include the

Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG) and S&C-RGG+. The three

generalized techniques used on the Asymmetric TSPs are; Kanellakis–Papadimitriou

heuristic (KP-JM), Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG) and Rego,

Glover, and Gamboa doubly-rooted S&C (DRS&C-RGG). All the generalized

methods’ implementation used the Nearest Neighbour Heuristic to build their initial

tour. Their findings revealed that S&C approaches clearly outperformed the basic LK

implementations in terms of solution quality, while the LK performed better in terms

of time.

69

Lingling and Ruhan (2012) developed a hybrid metaheuristic algorithm for solving

large-scale vehicle routing problem, the algorithm was a combination of Nearest

Neighbour Heuristic and TABU algorithms. The Nearest Neighbour Heuristic was used

to generate the initial routes while the TABU was used for the intra and cross-exchange

routes. The testbed used in the experiments carried out was from a dataset of 6772

customers in the central and suburb of Suizhou city. The performance evaluation

revealed that the proposed algorithm evidently benefited from the introduction of the

Nearest Neighbour Heuristic in generating the initial tour and was able to efficiently

provide minimum cost for delivery.

Fischer et al. (2014) introduced an extension of the Travelling Salesman Problem

(TSP), referred to as Quadratic TSP (QTSP). Three Exact algorithms (an exact

approach based on a polynomial transformation to a TSP, branch-and-bound algorithm

and branch-and-cut) and seven approximate algorithms (Cheapest-Insertion Heuristic,

Nearest-Neighbour Heuristic, Two-Directional Nearest-Neighbour Heuristic (2NN),

Assignment-Patching Heuristic (AP), Nearest-Neighbour-Patching Heuristic (NNP),

Two-Directional Nearest-Neighbour-Patching Heuristic (2NNP) and Greedy Heuristic

(GR)) were used to solve the QTSP. From the computational evaluation, the branch-

and-cut approach was seen to be capable of solving large real-world instances with up

to 100 nodes and provided optimality in a reasonable time of about ten minutes.

Although the running times of exact algorithms were reasonable, they were not as fast

as heuristics which took less than or equal to ten seconds to solve the largest instances.

The variants of the Nearest Neighbour Heuristic presented did well in terms of

computational speed but fell short in comparison to the exact methods in terms of

solution quality.

70

Lity et al., (2017) modelled the product ordering process of the incremental Software

Product Line (SPL) analysis as a Travelling Salesman Problem (TSP). The aim was to

optimize product orders and thereby improve the overall SPL analysis. Products were

modelled as nodes in a graph and the solution-space information defines edge weights

between product nodes. Existing graph route-finding heuristics were used to obtain the

path with minimal costs. The first heuristic deployed was the Nearest Neighbour

Heuristic. The nodes were analyzed in order of their similarity, so the Nearest

Neighbour Heuristic path was built by adding the product (node) that is most similar to

the last node on the path. However, it was observed that the quality of the approximation

was poor because it first greedily added all the similar nodes and later suffered the curse

of dimensionality when not so similar nodes were to be added. To circumvent this, a

lookup was introduced to examine the next node to be added with respect to the already

computed path. Thereafter, two insertion heuristics namely Nearest Insertion Heuristic

and Farthest Insertion Heuristic were deployed to insert the remaining product to the

existing path created by the Nearest Neighbour Heuristic. The proposed method was

simulated on a prototype and evaluated for applicability and performance; a

significantly more optimized SPL process was reported.

Bernardino and Paias (2018) used a modified Nearest Neighbour Heuristic to generate

an initial solution as part of the procedure of the Iterated Local Search implementation.

They worked on the Family Travelling Salesman Problem (FTSP), which is a variant

of the classic Travelling Salesman Problem (TSP). They set out by formulating the

FTSP, the objective being to traverse a stated number of nodes in each cluster at a

minimum cost. The FTSP sub tour was then modelled both as compact and non-

compact models. Three compact models were created namely; Single-Commodity Flow

model (SCF), the Family-Commodity Flow model (FCF), and the Node-Commodity

71

Flow model (NCF). The non-compact models proposed were the Connectivity Cuts

(CC) model, the Rounded Visits (RV) model, and the Rounded Family visits (RFV)

model. These models were then compared analytically and experimented using C++

programming language. Iterative Local Search (ILS) was implemented on C++ to

provide upper bounds for instances that cannot be solved using exact techniques. The

first stage of the Iterative Local Search implementation included the use of a modified

Nearest Neighbour Heuristic to build an initial solution, after which local search was

deployed to arrive at a local optimum. A perturbation was then used to escape the local

optimum before the extra nodes accrued were extracted based on removal criteria. The

performance of the Iterative Local Search validated the known research hypothesis that

construction tour heuristics produce quality initial solutions. The models were

implemented on publicly available benchmark instances and the experimental results

were documented. Results showed that non-compact models did better than their

counterpart compact ones.

In the study by Kitjacharoenchaia et al., (2019), the Nearest Neighbour Heuristic and

two other heuristics were used to build an initial solution for their proposed model.

Motivated by the increasing adoption of drones to achieve fast and flexible delivery,

the authors conducted a study to simulate a drone delivery system formulated as a

Multiple Travelling Salesman Problem (mTSP) to minimize time. They implemented

the Mixed Integer Programming (MIP) to solve the problem and thereafter proposed a

new technique called the Adaptive Insertion Algorithm (ADI). The Adaptive Insertion

Algorithm was implemented in two phases. An initial solution on only truck tours was

built using three heuristics (namely the Nearest Neighbour Heuristic, Genetic

Algorithm, and Random Cluster/tour). The mTSP solution was generated from the

initial tour in the second phase. The method was then experimented on a single truck,

72

multiple trucks, and a single truck and drone system and the solution compared with

the existing MIP solution. The system reported a promising, competitive performance.

It could be deduced that solutions generated from the initial solution by heuristics such

as Nearest Neighbour Heuristic hold promising performances.

Nikolas et al., (2019) presented k-Repetitive-Nearest-Neighbour (k-RNN) algorithm

which is an extension of the well-known Nearest-Neighbour Heuristic. The procedure

for the k-Repetitive-Nearest-Neighbour was to begin a search tour with permutations

of k nodes and then continue the search using the NNH from that point on, after which

the optimal tour is obtained. From the experiments conducted on numerous instances,

it was observed that there was an increase in the quality of the solution obtained when

the value of k increases, meanwhile the running time increased by a factor of n.

Experimental results showed that for 2-RNN the solutions’ quality remains relatively

stable at approximately 10% to 40% above the optimum.

Víctor et al., (2020) solved the Euclidean TSPs of small and large data sizes with an

efficient heuristic that is based on the Girding Polygon which doesn’t take up much

computer memory space and produces approximate results that are near-optimal. The

computational performance of the proposed approximate heuristic was compared to that

of Nearest Neighbour Heuristic which is also an approximate heuristic. The proposed

heuristic outperformed the Nearest Neighbour Heuristic with an average percentage

error of 16.89% while that of the Nearest Neighbour Heuristic an average percentage

error of 26.55%. The technique also had a standard deviation of 0.05%, while the

Nearest Neighbour Heuristic had a standard deviation of 0.04%. Even though the

proposed algorithm didn’t produce optimal solutions for the instances used, it gave an

approximate solution which was significantly better than the Nearest Neighbour

Heuristic.

73

Fontaine et al., (2020) conducted an experimental study to ascertain the effectiveness

of the human strategies in solving the Vehicle Routing Problem (VRP) compared to

that of heuristic techniques. Motivated by the need to understand the strengths and

limitations of the human decision making especially in completing the Travelling

Salesman related tasks such as clustering and route building, the discrete choice model

was developed to evaluate the underlying motivation of participants in their choices of

some attributes during the tour building process of clustering and route finding. Their

work was based on three (3) hypotheses which are: one, the complexity of the problem

has an impact on the solution quality of the participants, two, the participants follow

certain strategies during problem-solving, and three, Feedback requested by the

participants has a significant impact on the performance. A total of 112 respondents,

aged between 18 and 32 years, participated in the experimental study, most of who are

novices in routing. The costs of the attributes by each participant and instance were also

evaluated using multinomial logistic regression to determine how much each attribute

contributes to the individual choices when clusters and routes are built. The analysis

also included the splitting of the clustering and routing performance to be able to

independently compute the optimal TSP solution for each cluster and then compare the

results with the actual routes of the participant. The humans’ performance was then

compared to the performances of the Nearest Neighbour Heuristic, the Sweep Heuristic,

and the Savings Heuristic. Their findings showed that while humans, were more often

than not unable to generate optimal solutions, they typically perform better than the

worst cases of these heuristics and worse than their best cases irrespective of size and

vehicle capacity. Additionally, they reported that poor clustering led to poor solutions

in the Nearest Neighbour Heuristic and others. They concluded by recommending that

74

interface design should avoid too much feedback options, but rather focus more on

obtaining good clusters to foster better solutions.

In summary, the Nearest Neighbour Heuristic is widely used in literature because of its

speed and simplicity. Efforts have been made to modify the Nearest Neighbour

Heuristic for better performance. It has also been used as part of hybridized solutions

or used to build the initial solution of metaheuristics. While the Nearest Neighbour

Heuristic is preferred for its speed and simplicity, its greedy approach of adding the

lowest cost nodes first, however, means that it suffers what is called the “curse of

dimensionality” because as the search space and nodes increase, more and more outliers

are seen. The term “curse of dimensionality” is often used to describe the phenomenon

that as the dimensionality increases, leading to larger search space, the sparsity of data

results in more outliers.

The Insertion heuristics starts from an arbitrary point to form a sub tour or partial circuit.

Nodes not already in the sub tour are then inserted based on predefined criteria such

that the increment to the total distance of the sub tour is minimized (Huang et al., 2016;

Huang and Yu, 2017). Suppose that node 𝑥 is to be added to edge (𝑥𝑖, 𝑥𝑗), and given

the cost function 𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥), then,

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) = 𝑑(𝑥, 𝑥𝑖) + 𝑑(𝑥, 𝑥𝑗) − 𝑑(𝑥𝑖 , 𝑥𝑗) (2.27)

Each insertion technique method aims to add a node to an edge (that is between two

nodes) at a minimal cost. Given the sub tour 𝑇𝑖, and given that 𝑥 is the next node to be

inserted, then the insertion technique inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to:

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥) (2.28)

75

Insertion techniques are desirable because of their speed, ease of implementation,

quality of solutions, and the fact that they can be easily modified to handle complex

constraints (Daamen and Phillipson, 2015). There are 4 generally known insertion

techniques vis Nearest Insertion Heuristic, Cheapest Insertion Heuristic, Random

Insertion Heuristic, and Farthest Insertion Heuristic. Others include Priciest Insertion,

quick insertion, and greatest angle insertion (Goetschalckx, 2011; Anbuudayasankar et

al., 2014).

Insertion techniques can be used to get a good tour construction solution. According to

Rosenkrantz et al., (1977), Insertion techniques find 𝑂(𝑙𝑜𝑔 𝑛) approximate solutions.

Insertion techniques are also used as an initial solution for improvement heuristics as

well as metaheuristics; insertion techniques have been proven to significantly improve

the performance of 2-Opt methods when used as initial solutions (Englert et al., 2014).

Other researchers have presented new insertion techniques, either as a modification of

state-of-the-art methods or as novel efforts. Experimentally, the Farthest Insertion

Heuristic has been known to outperform the Random Insertion, the Cheapest Insertion,

and the Nearest Insertion Heuristic in that order (Rosenkrantz et al., 1977; Lawler et al.

1985; Babel 2020).

Daamen and Phillipson (2015) presented a simulated TSP called an Edge Disjoint

Circuits Problem (EDCP) with an intent to compare the approach of integrating both

clustering and disjoint routing with separate approaches in obtaining better optimal

solutions. The Insertion and the Cluster First-Route Second (CFRS) heuristics were

applied to finding initial solutions for the EDCP as they were well-known techniques,

from literature, for constructing feasible solutions for Vehicle Routing Problem (VRP).

Insertion heuristics are known to be fast in generating good solutions, easy to

implement, and extendable in dealing with complicated constraints. Hence, the initial

76

solution was found using an insertion heuristic and enhanced using local search until

the maximum time was exceeded or a local optimum was found. Three orders of

insertion heuristic were tested, namely: random, non-disjoint insertion cost, and disjoint

cost orders. For all testbeds considered, the random order had the highest average cost

while the disjoint cost order had the lowest average cost with considerably larger

computation time. Using various test instances, the developed insertion heuristic was

compared with the CFRS Heuristic, the insertion heuristic gave an average cost between

27% lower and 3% higher than the average cost of the CFRS heuristic. The insertion

heuristic performed quite well compared to the CFRS heuristic. There were only two

instances where the CFRS heuristic performed better, in terms of average cost, with a

difference of around 2% - 3%.

In a bid to obtain an approximate or optimal solution, Laha and Gupta, (2016) used an

insertion technique to improve a proposed penalty-based construction algorithm. The

algorithm was based on a Hungarian penalty method used for assigning a resource to

an activity on a one-to-one basis that lowers a cost matrix to a penalty cost matrix. The

proposed method used, was subdivided into three processes; the initial process used the

Hungarian penalty method to derive a set of instances, the initial schedule was

constructed in the second process and the third process improved on the proceeding

processes using an insertion technique. To evaluate the efficiency of the proposed

algorithm in terms of quality and computational speed, a comparative performance was

carried out using seven well-known heuristics; Nearest Neighbour Heuristic, Farthest

Insertion Heuristic, Cheapest Insertion Heuristic, Gangadharan and Rajendran (1993),

Framinan and Nagano (1194), and Laha et al., (2014). Average relative percentage

deviation (ARPD), and percent of optimal solutions (for small problem sizes) or percent

of best heuristic solutions (for large problem sizes) were the measurement metrics used.

77

The proposed method produced the best ARPD followed by the Cheapest Insertion

Heuristic, it also had the best percentages for optimal and approximate solutions

followed by the cheapest insertion heuristic.

Balseiro et al. (2011) used insertion heuristics to enhance the performance of an Ant

Colony System algorithm which solves the Time-Dependent Vehicle Routing Problem

with Time Windows (TDVRPTW), this led to a hybrid algorithm called a Multiple Ant

Colony System algorithm hybridized with Insertion Heuristics (MACS-IH). The Ant

Colony System algorithm produces results that were less than optimal at the final stages

because there was a significant number of unrouted nodes, hence the reason for

introducing the Insertion heuristics which helped to reduce the number of unvisited

routes. The Insertion heuristics used in this study were the Sequential Nearest

Neighbour Heuristic and the Parallel Nearest Neighbour Heuristic. The 56 Time-

Dependent Solomon instances were used as testbeds for the proposed hybridized

algorithm for four different solutions were constructed using a sequential NN heuristic,

a sequential NN heuristic plus local search, a parallel NN heuristic and a parallel NN

heuristic plus local search. The best metrics seen from results are the sequential NN

heuristic plus local search and the parallel NN heuristic plus local search which

improved the quality of the solutions produced by the constructive heuristics and the

local search. The parallel NN heuristic measured the urgency of delivery but had the

least impact. Three new insertion heuristic were formed: Local Search + Insertion

(LSI), Local Search + MDL (LSMDL), and Local Search + MFT (LSMFT). The LSI

explores all possible solutions and tried inserting the unrouted nodes into them,

however, it fails to include tougher clients that require multiple successive changes in

the solution before they can be served. Hence, the minimum delay metric (MDL) was

introduced to measure the difficulty of inserting a new node. The maximal free time

78

(MFT) of a solution was used as a measure to find the maximum contiguous waiting

time within a route which creates an allowance for possible insertions and in turn

enhances the performance of the LSMDL.

Fan (2011) worked on The Vehicle Routing Problem with Simultaneous Pickup and

Delivery with emphasis on Customer Satisfaction (VRPSPDCS); this is a VRPTWSPD.

The work was motivated by the need to improve the decision-making abilities to

optimize the efficiency of their supply chain. These included decisions that bothered on

strategies for designing optimal routing network to potentially minimize cost as well as

decisions capable of improving customer evaluation by taking into consideration

customers’ time windows. These requirements were modelled as a VRPDPDCS and an

improvement heuristic was proposed. The first stage of the proposed method was to

generate an initial solution through the Cheapest Insertion heuristic. The second stage

which was the improvement solution was done via the TABU search procedure. The

model was tested on six testbeds; the result showed promising performance. The

improvement techniques discussed relied on the performance of the Cheapest Insertion

Heuristic used to build the initial solution.

Wang and Chen (2012) proposed a Co-Evolution Genetic Algorithm (CEA) to help get

a better solution method for a Simultaneous Delivery and Pickup Problem with Time

Windows (SDPPTW). The proposed algorithm was developed using variants of the

Cheapest Insertion method (CIM). It was noted that the typical generic algorithm was

challenged with quick convergence that does not produce optimal results or low

computational speed in obtaining convergence at optimal results, to overcome this

issues, the CEA consecutively employed two separate evolutions that helped to keep

the algorithm’s ability to perform wide searches via Reproduction, Recombination and

Selection, while increasing the computational speed in obtaining optimal results via

79

Reproduction, Local Improvement, Crossover, and Selection. The two variants of CIM

used were the Multi-Parameter Cheapest Insertion Method (MPCIM) and the Random

Seeds Cheapest Insertion Method (RSCIM). The MPCIM was used to speed up the

global search process, it used a modified Insertion Criterion of Mester et al., (2007),

where the cost-saving threshold of values in range 0.2– 1.4 were tried in increments of

0.2 units for 100 customers. The RSCIM randomly generated the order of nodes for

route expansion to widen the initial population search of the genetic algorithm for

globally acceptable solutions. In evaluating performance, fifty-six 100-customer

SDPPTW were used as testbeds and the experimental results showed that the CEA

produced quality results in a better computational speed in comparison to the typical

genetic algorithm.

Cruz et al., (2012) proposed an improvement of the GENIL heuristic proposed by Souza

et al., (2011) in solving the Vehicle Routing Problem with Simultaneous Pickup and

Delivery (VRPSPD). The algorithm was a hybrid of eight (8) heuristic techniques

namely Cheapest Insertion, Cheapest Insertion with multiple routes, GENIUS, Variable

Neighbourhood Search (VNS), Variable Neighbourhood Descent (VND), TABU

Search (TS) and Path Relinking (PR). The Cheapest Insertion, Cheapest Insertion with

multiple routes and the GENIUS, procedures were used to build the initial solution; this

was in contrast with the design of GENIL which deployed the two other variations of

cheapest insertion namely Route-by-Route Cheapest Insertion, Cheapest Insertion with

Multiple Routes and a modified GENIUS heuristic to generate the initial solution. The

Variable Neighbourhood Descent (VND) and the TABU Search (TS) were deployed as

the local search procedure; the VND was iterated until there was no improvement in

the search then the TS was called. The PR technique linked a high performing solution

generated during the search to a local optimum after every iteration of the VND.

80

Thereafter, the Candidate List strategy was deployed as the removal procedure. The

proposed method was experimented on available benchmark instances. The

experimental result of the new technique outperformed the GENIL method. Its result

was also compared with heuristic methods in literature by (Souza et al., 2011;

Subramanian et al., 2011; Zachariadis et al., 2010) and outperformed all except

Subramanian et al., (2011). The performance of the variated Cheapest Insertion

heuristic in generating the initial solution was an important factor in the performance

of the method.

Wang and Chen (2013) solved a flexible delivery and pickup problem with time

windows (FDPPTW) using a co-evolution genetic algorithm (CEA) with a modified

Cheapest Insertion Method (CIM) to improve the solution method. In a bid to solve the

challenges of inflexible mix and reduced access time of vehicle routing problems with

backhaul and time windows, to reduce the total distance covered and quantity of

vehicles, the FDPPTW was modelled as a mixed binary integer programming problem.

The model was implemented using CEA to generate approximate solutions in better

time and fifty-six 100-customer FDPPTW testbeds gotten from the SDPPTWs in Wang

and Chen (2012) were used in the experimental evaluation. A modified CIM called

Random Seeds Cheapest Insertion Method (RSCIM) was employed in generating the

random nodes used as the initial routes in contrast to providing separate routes

individually. Also, the CEA results for the FDPPTWs was compared to that of the

Wang and Chen (2012), it was observed that the CEA developed in FDPPTW scheme

had a high computational speed and better results hence more flexible and economical.

The FDPPTW achieved its goal of overcoming the shortcomings of the existing

schemes for the delivery and pickup problems.

81

Morais et al., (2014) proposed the use of a greedy tour construction heuristic based on

the Nearest Insertion Heuristic to build an initial tour as part of the implementation of

the Iterated local search (ILS) named X-ILS in solving the Vehicle Routing Problem

with Cross-Docking (VRPCD). The technique added the node with the least increasing

cost to the tour in what was referred to as the 2S-NI heuristic to builds the pickup and

delivery path for the of the vehicle simultaneously. Six local search procedures were

deployed to arrive at a local optimum. Thereafter, the process of perturbation was

applied to the local optimum. Finally, a removal strategy was done to extract extra

nodes. This process, which is the standard ILS was implemented with a slight

modification of keeping a set of elite solutions, instead of a single current solution and

tabu-search was not used. Results showed that the novel technique outperformed the

existing ILS technique.

Weiler et al., (2015) proposed a modification of otherwise deterministic approaches to

solving the Probabilistic Travelling Salesman Problem (PTSP). The PTSP is a variant

of the Travelling Salesman Problem (TSP), in which a probability function is assigned

to a node, based on its possibility of visit. This was used to model an a-priori tour of

cities most likely to be visited to minimize cost with respect to tour length. Thus, a real

tour can be built based on this model where nodes that do not have to be traversed were

skipped. In solving this problem, five deterministic construction tour techniques were

considered and analyzed, namely Nearest Insertion Heuristic, Farthest Insertion

Heuristic, Nearest Neighbour Heuristic, Radial Sorting Heuristic, and Space-Filling

Curve. The Nearest Insertion and the Farthest Insertion Heuristics were then modified

as Probabilistic Nearest Insertion (PNI) and Probabilistic Farthest Insertion (PFI)

respectively. The PNI and PFI methods mirrored their deterministic counterparts by

inserting nodes nearest or farthest to the last inserted node from the points modelled by

82

the a-priori tour and with an evaluation of objective function on each possible position.

This approach gave a better-quality result, but with a complexity of 𝑂(𝑛4). To

circumvent this problem, ‘delta 1-shift’ local search procedure embedded in a

neighbourhood structure, proposed by Bianchi et al., (2005) was introduced. This

reduced the complexity to 𝑂(𝑛3). The proposed method was experimented on

benchmark instances from TSPLIB using the Xeon E5649, 2.53 GHz Quad-Core,

running on Ubuntu 12.04.5 LTS (Precise Pangolin). The PFI outperformed the PNI;

this was consistent with assertions in literature of the superiority of the Farthest

Insertion technique over the Nearest Insertion Technique. Both the PFI and PNI

outperformed their deterministic counterparts, albeit at a longer time.

Huang et al., (2016) proposed a Sketch First approach to solving the Travelling

Salesman Problem (TSP) in Location-Based Services (LBS). The idea was to find the

optimal tour by mimicking the human cognitive approach of undertaking a global

sketch for some chosen subset of the node 𝑇 and then insert other nodes not in the initial

tour based on a global-to-local refinement approach. The study started by exploring 7

existing tour construction heuristics namely the Farthest Insertion Heuristic, Nearest

Insertion Heuristic, Cheapest Insertion Heuristic, Random Insertion Heuristic, the

Nearest Neighbour Heuristic, the Nearest Addition Heuristic, and the Farthest Addition

Heuristic. The insertion was done through local refinement. While the Farthest Insertion

Heuristic was identified as the best performing techniques of the construction

techniques considered, it was deemed unsuitable for this technique because the farther

a node was from the current circuit, the higher the risk of error. The system was

experimented on some benchmark instances and compared with existing methods. The

performance of the techniques was encouraging.

83

In a proposed two-part search technique for solving TSPs by Jamal et al. (2017), a

heuristic approach was used to find optimal results by first identifying an infeasible

solution, then searching through a two-part space and narrowing the search space into

a primal where a feasible solution can be obtained. Some insertion heuristics were used

to find initial solutions for the proposed dual local search (DLS) framework, namely:

Random, Farthest, and Nearest Insertions Heuristics. From Computational evaluation

of the proposed DLS framework against the classical primal local search framework,

the DLS performed significantly better than the insertion heuristics and also

outperformed them with about 35% of optimal solutions and a range of 23% to 79% of

approximate solutions.

Oliver et al. (2017) developed a hybridized heuristic of standard insertion and local

search techniques with integer programming for solving the vehicle routing problem

modelled by the Windy Rural Postman Problem with Zigzag Time Windows

(WRPPZTW). A push forward technique with a constructed graph of ordered edges

having priority costs was used in the proposed hybridization, a cheapest insertion

method incorporating the priority costs was used to generate the order of insertion on

the solution route while an integer program was used to complete the solution route for

the Windy Rural Postman Problem. From the experiment performed on testbeds of over

a hundred edges, the computational performance of the hybrid heuristic was compared

to an exact method called BNC (Nossack et al.,2017). The hybrid produced 0.67%

better solutions than BNC for a smaller number of edges, even though the hybrid is

scalable to large instances, its performance requires an improvement

Lity et al., (2017) made use of the Nearest Insertion (NEARIN) and the Farthest

Insertion (FARIN) heuristics to generate near-optimal results for the optimal product

order. These heuristics were picked on the basis that they perform well when generating

84

approximate solutions for TSPs. From the computational evaluation performed with an

optimal TSP Solver, both heuristics were seen to have produced good near-optimal

solutions for products between 100 and 500 but as the number of products increased,

their computational speed reduced. However, the TSP solver had way-less

computational speed in generating results in contrast with the approximated algorithms.

Mário Mestria (2018) developed a hybrid method to solve the Clustered Travelling

Salesman Problem (CTSP) based on Iterated Local Search (ILS) and Greedy

Randomized Adaptive Search Procedure (GRASP) with integrated construction

heuristic. This study was motivated by assertions in literature such as (Caserta & Voß,

2010) that a combination of two or more heuristics holds the promise of getting more

robust and better results. Thus, the author proposed a new hybrid heuristic

(VNRDGILS) that ran iterations of metaheuristics and included local search and

specified perturbation strategies. The search procedure was greedy and randomized

and could adapt to varying neighbourhood insertions. The neighbourhoods were added

randomly to provide a basis for comparison with methods with deterministic

neighbourhood additions. The constructive heuristic was based on modified Nearest

Insertion Heuristic. The technique was experimented on different instances based on

data with different levels of granularity. The result was compared with four other

approximate methods and an exact method. Results obtained showed that the new

heuristic outperformed a similar hybrid method with deterministic neighbourhood

addition. It also outperformed four other heuristic methods considered in the study.

Performances of these heuristic methods were also predicated on the performance of

the modified Nearest Insertion method.

Babel, (2020) studied adaptations of some existing techniques such as Farthest Insertion

Heuristic, Nearest Insertion Heuristic, Nearest Neighbour Heuristic, and so on, to solve

85

the Dubins Travelling Salesman Problem (DTSP). The DTSP is a variant of the TSP

concerned with determining the shortest “curvature-constrained closed path” through a

set of destinations in a plane. The objective was to devise a suitable technique to

optimize the headings of the targets of an open or closed sub tour, given a predefined

sequence by discretely labelling the headings and building a make-shift network from

which the shortest path could be created. Thus, a 3-tier algorithm with a differing

number of heading was proposed. The first tier uses the sequence of targets generated

from the initial solution of the Euclidean TSP. New targets were then iteratively

inserted into the open sub tour in the second tier until all the targets in the tier had been

added, then the circuit was closed. In the third tier, there were fewer targets to be added,

this was done iteratively as well until all the targets had been added. The Farthest

Insertion Method was deployed as one of the insertion procedures for adding targets in

the K-insert algorithm. Other Insertion Algorithms included the Random Insertion,

Nearest Insertion, and the Cheapest Insertion Heuristics. The methods were

implemented in a simulated environment and compared with state-of-the-art methods.

The performances of the methods were greatly influenced by the turning radius of the

vehicle, as well as the abilities of the insertion technique. For a smaller radius, the

Farthest-2-Insert had the best performance. This was closely followed by the Random-

2-Insert technique, the Cheapest-2-Insert techniques, and finally the Nearest-2-Insert.

This result was consistent with the experimental report on the Farthest Insertion

Heuristic as the best performing insertion technique. The results of the method were

competitive with respect to solution quality and running time.

86

CHAPTER THREE

3.0. METHODOLOGY

3.1. Research Approach – Introduction

Combinatorial Optimisation Problems (COP) are mostly NP-Hard, therefore, recurse is

made to the use of heuristics for solving them. The goal of this study is to investigate

some approximate methods, with a view to understanding their implementation details

and how they are applied to the solution process of the Travelling Salesman Problem.

And to consequently evolve a new and improved technique, with the potentials of

outperforming existing state-of-the-art techniques. Tour construction heuristics were

considered in this study, because of their importance both as solution techniques and as

seed for the performance of other classes of heuristics. In this regard, two classic Tour

Construction Techniques were considered, namely the Nearest Neighbour Heuristic and

the Farthest Insertion Heuristic.

In achieving the objectives of this study, a review of existing approaches in solving the

Travelling Salesman Problem was conducted. A hypothetical postal route problem was

then formulated as a classic TSP problem. The postal towns are representative of the

vertices. The vertices are connected by the edges, while the distances between the postal

vertices measured in kilometre are the path costs. These parameters (vertices and the

path cost) were used to generate the distance matrix which is the input to the program.

The aim of the algorithms is to generate a Hamiltonian tour of the postal towns with

minimal cost.

The heuristics were implemented on ten benchmark test sets as follows:

▪ 2 test sets with no_of_nodes<100

87

▪ 5 test sets with 100<no_of_node<1000

▪ 3 test sets with no_of_nodes≥1000

All the algorithms were implemented using Java programming language.

The performances of the new and existing methods were evaluated using two

approaches:

i. Solution quality: this is determined by computing the algorithm’s tour cost

relative to the optimal tour cost. The closer the tour cost is to the optimal cost,

the better the quality of the technique.

ii. Computational speed approach: The computational speed is determined by

computing the time taken to process the solution.

3.2. Building the Dataset

The heuristics were implemented on ten publicly available benchmark instances from

TSPLIB, made available by Heidelberg University on http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/. The TSPLIB repository was chosen because of

the wide-range of test cases available (for example, the datasets contain instances of

pathfinding problems, drilling problems, programmed logic array and so on) and

because the optimal cost of each of the instances have been computed and made

available, thereby creating a basis for comparison of solution qualities against the

optimal cost. There were 3 groups of instances tested; Group 1: instances whose nodes

are less than 100. Group 2: instances whose nodes are more than 100 but less than 1000.

Group 3: instances whose nodes are more than or equal to 1000.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

88

The instances in group 1 are as follow:

att48 is a dataset of 48 US capital cities, it was generated by Padberg and Rinaldi, the

optimal tour length of 33523. eil51 is a dataset for 51 arbitrary cities problem by

Christofides and Eilon, the optimal tour length is 426.

The instances in group 2 are as follow:

eil101 is a tour of 101 arbitraty cities generated by Christofides and Eilon with an

optimal tour of 629. ch130 and ch150 are tours of 130 and 150 arbitrary cities

respectively, compiled by Churritz. The computed optimal tour lengths are 6110 and

6528 respectively. pr439 is a tour of 439 arbitrary cities by Padberg/Rinaldi, the optimal

tour is 107217. rat 783 is a Rattled grid problem of 783 nodes generated by Pulleybank

with optimal tour length of 8806.

The instances in group 3 are as follow:

dsj 1000 has 1000 nodes with an optimal tour length of 18659688. u2319 is a Drilling

problem generated by Reinelt with 2319 nodes and optimal tour length of 234256.

pcb3038 is a Drilling problem of 3038 nodes generated by Juenger and Reinelt with an

optimal tour length of 137694.

All the datasets used, were generated in the EUC 2D format and thereafter converted to

FULLMATRIX format.

3.3. System Design

3.3.1. Framework for Tour Construction Heuristics

This study focused on tour construction heuristics. Tour Construction heuristics follow

predefined process in building tours. These processes are carried out in three steps

namely initialization, selection, and insertion. These processes differ from one method

89

to the other, and they play a part in the performances of these different techniques. The

initialization phase may start with a single node as in the Nearest Neighbour Heuristic,

or may involve a subtour as in insertion techniques. Figure 3.1 depicts the generic

framework for tour construction techniques.

Figure 3.1. Generic framework for tour construction heuristics.

The step-wise activities continue iteratively until all the nodes have been added and the

Hamiltonian cycle completed.

90

3.3.2. The Program Flow and Building Blocks

The program flow consists of three building blocks/phases. They include the input

module, implementation module and the output module. Figure 3.2 shows the

conceptual framework for this study.

Figure 3.2. Research Conceptual Framework

The first phase was the input phase, where the input module reads the problem instance

and prepares it for the implementation phase. At the input phase, the dataset was

91

collected in the EUC_2D format and converted to distance matrix if the format is

incompatible. Other formats for the dataset include the ATT, GEO, LOWER DIAG

ROW, UPPER DIAG ROW, UPPER ROW, and FULL MATRIX. The EUC_2D

format has 𝑛 𝑟𝑜𝑤𝑠 of {𝑖, 𝑥𝑖 , 𝑦𝑖} where 𝑛 the number of nodes and 𝑖 ∈ {1,2,3, … , 𝑛} is

computer using the formula:

𝑑𝑖𝑗 = ⌊√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2⌋ (3.1)

The dataset was thereafter converted to the FULL MATRIX input format which is

compatible to the program using the following algorithm;

Algorithm 3.1: Algorithm for converting TSP dataset from EUC_2D to
FULL MATRIX format

Input: E: EUC_2D
Output: FULL MATRIX data format
1
2
3
4
5
6
7
8
9
10
11

Start
Int 𝒇_𝒎𝒂𝒕𝒓𝒊𝒙 [𝒙][𝒚];

for (𝒊𝒏𝒕 𝒊 = 𝟎; 𝒊 < 𝒙; 𝒊 + +)
for (𝒊𝒏𝒕 𝒋 = 𝟎; 𝒋 < 𝒚; 𝒋 + +)

read data from file
dist_matrix = 𝒓𝒐𝒖𝒏𝒅(𝒔𝒒𝒓𝒕((𝒙𝟏 − 𝒙𝟐)^𝟐 + (𝒚𝟏 − 𝒚𝟐)^𝟐))
Matrix [i][j] = dist_matrix
Return dist_matrix

Next Loop
Next Loop

End

Figure 3.3 shows the flowchart of the input phase. This phase include reading of the

input dataset, conversion of the dataset to the FULL_MATRIX format which is the

format acceptable to the program and computation and generation of the distance

matrix.

92

Figure 3.3. Flowchart of the input phase

The second phase was the implementation phase where the data is supplied to the

implementing modules for implementation. The heuristics were implemented on the

formatted instances using the Java Programming Language.

The output phase was the third phase. The program outputs the computational speed,

the tour cost, and the tour path. The tour path was then further transformed graphically.

93

3.4. Research Materials and Methods.

3.4.1. Research Methods

Three methods were experimented on in this study. The first two were existing state-

of-the-art construction techniques, namely, the Nearest Neighbour Heuristic and the

Farthest Insertion Heuristic, while the third was the proposed insertion technique.

The NNH readily comes to mind when solving the TSP and FIH gives the best solution

quality of all construction heuristics.

The objective of this study is to minimize the tour length, that is, to obtain solutions

which are as close to their corresponding optimal solutions as possible.

Thus, given a tour distance 𝑑𝑎𝑏 and associated binary variable, earlier presented in

Equations (1.10) and (1.11).

𝑥𝑎𝑏 = {
1, 𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.2)

An optimal solution is a solution in which:

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏(𝑎,𝑏)∈ 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (3.3)

In obtaining the solution, the following assumptions were made:

i. Distances are nonnegative and symmetric

ii. Distances satisfy the triangle inequality, such that for every 𝑎, 𝑏, 𝑐 ∈ 𝑉;

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑎𝑐 ≤ 𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑎𝑏 + 𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑏𝑐 (3.4)

This means that, the cost of moving directly from vertex 𝑎 to vertex 𝑐 is not more than

the cost of going via some intermediate vertex 𝑏. Without these assumptions, the bound

given for the objective function value may not be valid.

94

Both the NNH and the FIH as well as the proposed technique are node-based which

follow the following procedure (Huang and Yu, 2017):

Algorithm 3.2: Node-based Heuristic
Input: Q: Set of node
Output: T: the TSP for Q
1
2
3
4
5
6
7

Start
𝑻 ← 𝒊𝒏𝒊𝒕 (𝑸);
While 𝑻 does not contain all nodes in 𝑸 do

𝑽 ← 𝒔𝒆𝒍𝒆𝒄𝒕 (𝑸, 𝑻);
Insert (𝒗, 𝑻);

Return 𝑻;
Stop

3.4.1.1.The Nearest Neighbour Heuristic

The Nearest Neighbour Heuristic is a classic tour construction heuristic for solving the

Travelling Salesman Problem. It is equally one of the oldest and most widely used

heuristics. It is simple, flexible, and fast. The NNH tries to solve the Travelling

Salesman Problem using a greedy approach. The NNH starts with a city/node and builds

the remaining tour by joining the node closest to the starting node to the tour. This

process is iterated for all the nodes that are not yet part of the tour until the tour is fully

build and a Hamiltonian circuit is formed. This process is greedy in nature; thus, the

performance is relatively poor.

The pseudocode for the Nearest Neighbour Heuristic is as follow:

Algorithm 3.3: A Pseudocode for the Nearest Neighbour Heuristic
Input: set of nodes 𝑽𝒏=𝟏,𝟐,…,𝒏

Output: Path 𝑻
1
2
3
4
5
6
7
8
9
10

Start
Select an arbitrary node 𝒌 ∈ 𝑽
Set 𝑷𝒂𝒕𝒉 ← 𝒌

While {𝑷𝒂𝒕𝒉} ≠ {𝑽} do
Find node 𝒌 + 𝟏 ∉ 𝑷𝒂𝒕𝒉 such that 𝒅𝒊𝒔𝒕(𝑷𝒂𝒕𝒉, 𝒌 + 𝟏) is minimal
set 𝑷𝒂𝒕𝒉 ← 𝒌 + 𝟏

End while
𝑻 ← 𝒑𝒂𝒕𝒉
return 𝑻
End

95

Figure 3.4 depicts the Nearest Neighbour Heuristic procedure in a flowchart as

follow:

Figure 3.4. Flowchart of the Nearest Neighbour Heuristic.

Analytically, Rosenkrantz, et al., (1977) had shown that for a TSP instance of nodes 𝑛,

the approximation ratio/solution quality of the NNH is at most:

𝑓𝑠
𝑓𝑂𝑃𝑇

⁄ =
1

2
[log(𝑛)] +

1

2
 (3.5)

of the optimal length, where 𝑓𝑠 is the length of a tour by the solution and 𝑓𝑂𝑃𝑇 is the

optimal tour length.

96

The worst-case complexity of the NNH is 𝑇(𝑛) = 𝑂(𝑛2). However, in practice, the

NNH can solve the TSP in good time, with much better solution quality.

Experimentally, the NNH typically yield much better solutions than the worst case

suggests. NNH often yield tour quality that is within 25% − 30% of the Held-Karp

lower bound (Víctor et al., 2020). The performance of the NNH greatly suffers from a

phenomenon called the “curse of dimensionally” resulting from its greedy approach to

solving the TSP. The NNH adds the lowest cost nodes as priority, and consequently, as

the search space and nodes increase, more and more outliers are seen. Recent literature

focus on using the NNH either as a part of a hybrid method as in (Huang and Yu, 2017;

Lity et al., 2017) or as a seed technique in a metaheuristic for building initial solutions

(Rego et al., 2011; Bernardino and Paias, 2018).

3.4.1.2.The Farthest Insertion Heuristic

The Farthest (also called Furthest) Insertion Heuristic belong to the family of insertion

heuristics. Other known insertion heuristics include the Nearest Insertion Heuristic,

Random Insertion Heuristic, Cheapest Insertion Heuristic, Priciest Insertion Heuristic,

Quick insertion Heuristic, and Greatest angle Insertion Heuristic (Goetschalckx, 2011;

Anbuudayasankar et al., 2014).

Insertion heuristics starts from an arbitrary point to form a sub tour or partial circuit.

Nodes not already in the sub tour are then inserted based on predefined criteria such

that the increment to the total distance of the sub tour is minimized. (Huang et al., 2016;

Huang and Yu, 2017).

Suppose that node 𝑥 is to be added to edge (𝑥𝑖, 𝑥𝑗), and given the cost

function 𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥), then,

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) = 𝑑(𝑥, 𝑥𝑖) + 𝑑(𝑥, 𝑥𝑗) − 𝑑(𝑥𝑖, 𝑥𝑗) (3.6)

97

Each insertion technique method aims to add a node to an edge (that is between two

nodes) at a minimal cost. Given the sub tour 𝑇𝑖, and given that 𝑥 is the next node to be

inserted, then the insertion technique inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to:

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) (3.7)

Insertion techniques are desirable because of their speed, ease of implementation,

quality of solutions, and the fact that they can be easily modified to handle complex

constraints. Insertion techniques can be used to get a good tour construction solution.

According to Rosenkrantz et al., (1977), Insertion techniques find an

𝑂(𝑙𝑜𝑔 𝑛) approximate solutions.

The Farthest Insertion Heuristic (FIH) chooses the next node

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖 (3.8)

The following pseudocode depicts the workings of the Farthest Insertion Techniques.

Algorithm 3.4: The Farthest Insertion Heuristic Pseudocode

Input: set of nodes 𝑽𝒊=𝟏,𝟐,…,𝒏
Output: Path 𝑻
1. Start the tour from an arbitrary node 𝒊
2. Add a node 𝒋 nearest to 𝒊 to form a partial circuit

𝑻 = 𝒊 − 𝒋 − 𝒊
3. Find a node 𝒌 not in the partial circuit for which the distance

to any of the nodes in the subtour is longest,
𝒅(𝒌, 𝑻) = 𝐦𝐚𝐱

𝒊∉𝑻
𝒅(𝒊, 𝑻)

4. Find an edge [𝒊, 𝒋] of the partial circuit to insert k, such that
∆𝒇 = 𝒄𝒊𝒌 + 𝒄𝒌𝒋 − 𝒄𝒊𝒋 is minimal and insert 𝒌.

5. Iterate step 3 until a Hamiltonian cycle is formed.

Figure 3.5 depicts the FIH procedure in a flowchart as follows:

98

Figure 3.5. Flowchart of the Farthest Insertion Heuristic.

The FIH technique intuitively create an outline of sort, then fills in the details by adding

nodes to the subtour. This expertly deals with the problem of outliers bedevilling the

NNH method. Analytically, (Rosenkrantz, et al., 1977; Johnson and McGeoch, 2002)

had proven that the tours quality of insertion methods is at most twice of an optimal

tour, while the approximation ratio/solution quality of a class of high performing

Insertion Heuristics (Farthest Insertion Heuristic included) for a TSP instance of nodes

𝑛, is at most
𝑓𝑠

𝑓𝑂𝑃𝑇
⁄ = ⌈log(𝑛)⌉ + 1 of the optimal length.

99

The worst-case complexity if the Farthest Insertion Heuristic is 𝑇(𝑛) = 𝑂(𝑛2). In

practice, however, the Farthest Insertion Heuristic is the best performing Insertion

technique and often produce quality that are between 13% and 15 % worse than optimal

tour (Reinelt, 1994; Johnson and McGeoch, 2002; Babel 2020). Generally, also,

insertion techniques require more computational time than the NNH to complete tours.

Huang et al., (2016) argued that although, FIH performs relatively very well, the

distance between its circuit and new nodes to be inserted impede its performance in

terms of accuracy. Suppose that a new node 𝑥 is to be inserted into a partial tour 𝑝_𝑡𝑜𝑢𝑟,

the closer 𝑥 is to the edge (𝑥𝑖, 𝑥𝑗), the lesser the likelihood of it introducing error.

Suppose that nodes 𝑥1 𝑎𝑛𝑑 𝑥2 are to be inserted into the same edge (𝑥𝑖, 𝑥𝑗) of the partial

tour 𝑝_𝑡𝑜𝑢𝑟 to produce partial tours 𝑝_𝑡𝑜𝑢𝑟1 𝑎𝑛𝑑 𝑝_𝑡𝑜𝑢𝑟2 respectively.

Suppose that cost function

𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥1) < 𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥2) (3.9)

and 𝑑(𝑝𝑡𝑜𝑢𝑟1
) ≤ 𝑑(𝑝𝑡𝑜𝑢𝑟2

) (3.10)

then the upper bounds of error rate for the two tours are

𝑑(𝑝𝑡𝑜𝑢𝑟1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
=

𝑑(𝑝𝑡𝑜𝑢𝑟)+𝑐(𝑥𝑖,𝑥𝑗,𝑥1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
 (3.11)

and
𝑑(𝑝𝑡𝑜𝑢𝑟2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
=

𝑑(𝑝𝑡𝑜𝑢𝑟)+𝑐(𝑥𝑖,𝑥𝑗,𝑥2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
 (3.12)

such that
𝑑(𝑝𝑡𝑜𝑢𝑟1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
<

𝑑(𝑝𝑡𝑜𝑢𝑟2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
 (3.13).

Thus, the performance of FIH still leaves much to be desired in terms of solution

quality. If inserting nearest nodes to the circuit leads to outliers and the performance if

100

FIH is impeded by longer distance, perhaps a half max insertion may yield better

solution.

3.4.1.3.The Proposed Half Max Insertion Heuristic (HMIH)

The proposed technique is an insertion method referred to in this study as the Half Max

Insertion Heuristic (HMIH). The motivation was to explore some techniques with the

possibilities of improving the accuracy of the Farthest Insertion Heuristic. The design

of the HMIH was motivated by two observations in literature: One, the superior solution

quality of Convex-hull based insertion techniques based on the use of polygons as initial

tour (Huang et al., 2016; Huang and Yu, 2017; Víctor et al., 2020) and secondly, the

limitation of the FIH’s accuracy due to the distance between its initial circuits and the

next node to be inserted (Huang et al., 2016).

The insertion heuristics randomly pick one node from 𝑄 by 𝑖𝑛𝑖𝑡(𝑄) and creates a partial

circuit which is expanded with every iteration. The partial circuit is made up of the

points 𝑢, 𝑣, 𝑤 to form a minimum polygon.

Let 𝑇𝑖 be the partial circuit over nodes of size 𝑖 such that

𝑇𝑖 = (𝜋1, 𝜋2, … 𝜋𝑖 , 𝜋1) (3.14)

In the (𝑖 + 1)𝑡ℎ iteration, the insertion heuristics attempt to add one node into the

current circuit by minimizing the increment of the total distance of the circuit. The

objective is to: determine how to select a node, 𝑥, from 𝑄\𝑇𝑖 and determine how to

insert 𝑥 into 𝑇𝑖 to obtain 𝑇𝑖+1.

Consider an insertion of a node 𝑥(∉ 𝑇𝑖) between 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 𝑖𝑛 𝑇𝑖:

The method first determines the longest distance 𝑑𝑚𝑎𝑥 of any node from either of 𝑢 𝑜𝑟 𝑣

and compute 1
2⁄ 𝑑𝑚𝑎𝑥. Then find a node 𝑤 not in the subtour whose distance from

101

either 𝑢 𝑜𝑟 𝑣 ≈ 1
2⁄ 𝑑𝑚𝑎𝑥. Determine an edge (𝑢, 𝑣) of the subtour to which the

insertion of 𝑤 gives the smallest increase of length, that is for which

∆𝑓 = 𝑐𝑢𝑥 + 𝑐𝑥𝑣 + 𝑐𝑤𝑥 − 𝑐𝑢𝑣𝑤 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 (3.15)

Insert 𝑥 between 𝑢, 𝑣 𝑎𝑛𝑑 𝑤. This process is iterated until a Hamiltonian cycle is

formed.

The procedure is as follow:

Algorithm 3.5: The Novel Half Max Insertion Heuristic Algorithm
Input: set of nodes 𝑽𝒊=𝟏,𝟐,…,𝒏

Output: Path 𝑻
1. Start with a sub-graph consisting of node 𝒖 only.
2. Find nodes 𝒗 and 𝒘 randomly to form sub-tour 𝒖 − 𝒗 − 𝒘 − 𝒖.

3. Compute the length of the farthest node 𝒅𝒎𝒂𝒙 from the subtour

and compute 𝟏 𝟐⁄ 𝒅𝒎𝒂𝒙

4. Find a node 𝒘 not in the subtour whose distance from any

node in the subtour ≈ 𝟏
𝟐⁄ 𝒅𝒎𝒂𝒙

5. Find the 𝒂𝒓𝒄 (𝒖, 𝒗, 𝒘) in the sub-tour which minimizes 𝒄𝒖𝒙 + 𝒄𝒙𝒗 +
𝒄𝒘𝒙 − 𝒄𝒖𝒗𝒘. Insert 𝒙 between 𝒖 𝒗, 𝒂𝒏𝒅 𝒘.

6. Iterate step 3 until a Hamiltonian cycle is formed

The HMIH searches require 𝑂(𝑛) time, therefore, the time complexity of the algorithm

is 𝑂(𝑛2). The procedure is further depicted in the following flowchart in Figure 3.6.

102

Figure 3.6. Flowchart of the Half Max Insertion Heuristic

In implementing the three heuristics, the development tools used were as follows:

a. JAVA programming language running on version 13.0.1.

b. GNUplot 5.2, patchlevel 8 was used to represent the tour graphically.

The heuristics were implemented using Java Programming Language running on Intel

Pentium Core i7 3GHz, Windows 10 (64bit).

103

CHAPTER FOUR

4.0. RESULTS AND DISCUSSSION OF FINDINGS

4.1. Results

The heuristics were implemented on ten publicly available benchmark instances from

TSPLIB made available by Heidelberg University on http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/.

“TSPLIB is a library of sample instances for the TSP (and related problems)

from various sources and of various types”.

The TSPLIB repository was chosen because of the wide range of test cases available

on it (for example, the datasets contain instances of pathfinding problem, drilling

problems, programmed logic array and so on) and because the optimal costs of each of

the instances have been computed and made available, thereby creating a basis for

comparison of solution quality against the optimal cost. A list of benchmark instances

and their optimal tour costs can be viewed at the following url:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

TSPLIB contains instances of problems such as Symmetric Travelling Salesman

Problem (TSP), Hamiltonian Cycle Problem (HCP), Asymmetric Travelling Salesman

Problem (ATSP), Sequential Ordering Problem (SOP), Capacitated Vehicle Routing

Problem (CVRP).

Three (3) groups of instances were tested; Group one: instances whose nodes are less

than 100. Group two: instances whose nodes are more than 100 but less than 1000.

Group three: instances whose nodes are equal to, or more than 1000. The instances

considered, their number of nodes and optimal tour length are presented in Table 4.1.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

104

Table 4.1. Ten benchmark instances and their optimal tour length (Km).

S/N Instances No of Nodes OPT

1 att48 48 33523

2 eil51 51 426

3 eil101 101 629

4 ch130 130 6110

5 ch150 150 6528

5 pr439 439 107217

6 rat 783 783 8806

7 dsj1000 1000 18659688

8 u2319 2319 234256

9 pcb3038 3038 565530

The datasets which were generated in the EUC_2D format was reformatted to

FULLMATRIX form using a conversion module. Figure 4.1(𝑎 𝑎𝑛𝑑 𝑏) shows the

ulysses16 sample set as EUC_2D and as FULLMATRIX after conversion.

Figure 4.1a: Ulysses 16 in EUD_2D format.

105

Figure 4.1b: Ulysses 16 in FULLMATRIX format

The implementation module generates three outputs. The first is the computation time

in nano seconds (𝜇𝑠). Nano second is one billionth of a second. Evidently, the accuracy

of time is improved at that level of granularity. The second output is the tour cost, that

is the distance taken to generate the tour. This is necessary for the performance

evaluation of the heuristic. The third output is the tour path, that is the order in which

the nodes join the tour. The tour path is an input to GNUplot which is used to generate

the tour. Table 4.2 highlights the three heuristics and their computational speed in

solving the TSP instances considered while table 4.3 shows the tour cost of each of the

three heuristics on the TSP instances.

Table 4.2. Computational speed of NNH, FIH and HMIH on ten benchmark instances

S/N Instances No of

Nodes

Computational Speed (𝝁𝑺)

NNH FIH HMIH

1 att48 48 14943601 19455700 24837700

106

2 eil51 51 24014300 26145600 28442300

3 eil101 101 5127500 83707200 99243300

4 ch130 130 28423900 130305001 85040424

5 ch150 150 8424700 163042000 217278100

6 pr439 439 74732299 4583954300 7078104000

7 rat 783 783 284603200 34059530600 72396010300

8 dsj1000 1655 487645399 1.3343E+11 2.05499E+11

9 u2319 2319 3344218900 2.3164E+12 4.07294E+12

10 pcb3038 3038 6527888600 6.57109E+12 1.01185E+13

Table 4.3. Tour cost of NNH, FIH and HMIH on ten benchmark instances

S/N Instances No of

Nodes

OPT Tour Cost

NNH FIH HMIH

1 att48 48 33523 40524 35775 35657

2 eil51 51 426 510 471 471

3 eil101 101 629 811 690 690

4 ch130 130 6110 7198 6951 6650

5 ch150 150 6528 8191 7542 7211

6 pr439 439 107217 139149 122957 124322

7 rat 783 783 8806 10779 10828 10434

8 dsj1000 1655 18659688 24631468 23563031 20610943

9 u2319 2319 234256 281978 272959 256601

10 pcb3038 3038 137694 175788 173038 166196

107

It is evident from table 4.3 that the proposed HMIH has a smaller tour cost and is closer

to the optimal tour cost in terms of solution quality than both FIH and NNH. FIH

however, compares more favourably with HMIH than NNH.

The tour path which is the order in which the nodes join the tour is fed as an input to

GNUplot to generate the path graph. GNUplot is an open-source command-line

graphing utility available under the General Public Licence. The path graph on

GNUplot is implemented using the following command:

plot “att48.tsp” with linespoint

“att48.tsp” is the filename consisting the tour path output by the program, while

“linespoint” connects all the point in the right order.

The tour graph of the HMIH, FIH and NNH for some benchmark instances are

presented in Figures 4.2, 4.3, 4.4 and 4.5. Figures 4.2 a, b and c show the path graph of

NNH, FIH and HMIH respectively for the att48. Figures 4.3 a, b and c show the path

graph of NNH, FIH and HMIH respectively for the eil51. Figures 4.4 a, b and c show

the path graph of NNH, FIH and HMIH respectively for the eil101 and Figures 4.5 a, b

and c show the path graph of NNH, FIH and HMIH respectively for the ch150.

108

Figure 4.2a: Path graph of NNH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟎𝟓𝟐𝟒)

Figure 4.2b: Path graph of FIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟕𝟕𝟒)

109

Figure 4.2c: Path graph of HMIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟔𝟓𝟕)

Figure 4.3a: Path graph of NNH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟓𝟏𝟎)

110

Figure 4.3b: Path graph of FIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏)

Figure 4.3c: Path graph of HMIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏)

111

Figure 4.4a: Path graph of NNH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟏)

Figure 4.4b: Path graph of FIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎)

112

Figure 4.4c: Path graph of HMIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎)

Figure 4.5a: Path graph of NNH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟗𝟏)

113

Figure 4.5b: Path graph of FIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟓𝟒𝟐)

Figure 4.5c: Path graph of HMIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟐𝟏𝟏)

114

4.2. Performance Evaluation and Discussion

4.2.1. Comparative Evaluation of the Heuristics’ Computational Speed

Table 4.2 reveals that the NNH had the fastest computational speed, followed by the

FIH and then the proposed HMIH technique in all the instances. It should be noted that

the proposed HMIH compared favourably with the FIH in this regard. This is consistent

with literature findings that insertion techniques require more computational time than

the NNH to complete tours (Reinelt, 1994; Johnson and McGeoch, 2002; Laha et al.,

2016; Babel 2020). Additionally, the increased computational time of the proposed

HMIH can be attributed to the additional computation of the half max insertion criteria.

This is consistent with works by Reinert, (1994), Laha et al., (2016), Lity et al., (2017)

and Babel (2020) which suggest that computational speed is affected by the insertion

criteria computations.

4.2.2. Comparative Evaluation of the Heuristics’ Solution Quality

In evaluating the solution quality of the heuristics, the following parameters were

deployed:

Percentage Error (𝜹): the percentage error of the heuristics’ solution quality is the

percentage deviation of the solution from the optimal tour solution. This is computed

as:

𝛿 =
𝑠𝑜𝑙𝜂 − 𝑜𝑝𝑡

𝑜𝑝𝑡
× 100% (4.1)

where 𝑠𝑜𝑙𝜂 is the solution cost obtained by each heuristic, and 𝑜𝑝𝑡 is the optimal

solution cost. This is the same thing as the performance ratio for non-optimal heuristics.

115

Quality impr. (𝚺): this the improvement of the HMIH method’s solution quality with

respect to NNH and FIH. This is computed by:

Σ = Ε𝑁𝑁𝐻/𝐹𝐼𝐻 − Ε𝐻𝑀𝐼𝐻 (4.2)

where Ε𝑁𝑁𝐻/𝐹𝐼𝐻 is the error in percentage of the NNH or FIH and Ε𝐻𝑀𝐼𝐻 is the error in

percentage of the HMIH.

Goodness Value (𝓰): this is also referred to as the accuracy. This is the inverse of error

and is computed as

ℊ = (1 −
𝑠𝑜𝑙𝜂−𝑜𝑝𝑡

𝑜𝑝𝑡
) 100% (4.3)

Table 4.4 displays the 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 for

all the heuristics on the ten benchmark instances.

Table 4.4. percentage error, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟 and goodness value for all the

heuristics on the ten benchmark instances

S/N Instances No of

Nodes

HMIH (%) FIH(%) NNH(%)

𝜹 𝚺𝑵𝑵𝑯 𝚺𝑭𝑰𝑯 𝓰 𝜹 𝓰 𝜹 𝓰

1 att48 48 6.3 14.6 0.4 93.7 6.7 93.3 20.9 79.1

2 eil51 51 10.6 9.1 0 89.4 10.6 89.4 19.7 80.3

3 eil101 101 9.7 19.2 0 90.3 9.7 90.3 28.9 71.1

4 ch130 130 8.8 9.0 5.0 91.2 13.8 86.2 17.8 82.2

5 ch150 150 10.5 15 5 89.5 15.5 84.5 25.5 74.5

6 pr439 439 15.9 13.9 -1.2 84.1 14.7 85.3 29.8 70.2

7 rat 783 783 18.5 4.9 4.4 81.5 22.9 77.1 22.4 77.6

8 dsj1000 1655 10.5 21.5 15.8 89.5 26.3 73.7 32 68

9 u2319 2319 9.5 10.9 7 90.5 16.5 83.5 20.4 79.6

10 pcb3038 3038 20.7 7 5 79.3 25.7 74.3 27.7 72.3

116

The lower the value of the percentage error (𝛿) of the technique, the closer it is to

optimal cost and thus the better the technique. Conversely, techniques with higher

goodness value (ℊ) are adjudged to be better the technique than those whose goodness

value are lower. From Table 4.4, it can be deduced that the HMIH performed better

than both the NNH in all instances and in all, but three instances (pr439, eil51 and

eil101) for FIH. This is because, the HMIH has smaller percentage error (𝛿) and higher

accuracy (ℊ) compared to the NNH in all instances. In the case of FIH, the HMIH did

better in terms of percentage error and accuracy except in the case of instances pr439,

eil51 and eil101. FIH outperformed HMIH for pr439, while FIH and HMIH had equal

percentage error and accuracy for eil51 and eil101. This is depicted graphically in

Figure 4.6 and 4.9 respectively.

Figure 4.6. Percentage error value for FIH, NNH and HMIH

The lower the value of the percentage error (𝛿) of the technique, the closer it is to

optimal cost and thus the better the technique

0

5

10

15

20

25

30

35

att48 eil51 eil101 ch130 ch150 pr439 rat 783 dsj1000 u2319 pcb3038

P
ER

C
EN

TA
G

E
ER

R
O

R

BENCHMARK INSTANCES

FIH|NNH|NNH
FIH NNH HMIH

117

On the average, the NNH tour quality was 24.51% worse than the optimal tour.

Additionally, the FIH average performance for the instances considered was 16.24% of

the Held-Karp lower bound. The NNH reached a peak of 32% and a base value of

17.8%. The FIH reached a peak of 26.3% and a base value of 6.7%. These performances

are consistent with documented findings about NNH and FIH in literature (Reinelt,

1994; Johnson and McGeoch, 2002; Babel 2020). On the other hand, the performance

of HMIH was 12.1% worse than the optimal tour length. On the average, the proposed

HMIH has a 4.14%-point quality improvement over FIH. Figure 4.6 shows a chart of

the percentage deviation/error of NNH, FIH and HMIH from the optimal tour length.

Figure 4.7. Percentage error of NNH, FIH and HMIH on the ten benchmark instances

depicting the quality improvement of the HMIH over NNH and FIH

0

5

10

15

20

25

30

35

att48 eil51 eil101 ch130 ch150 pr439 rat 783 dsj1000 u2319 pcb3038

HMIH |FIH | NNH

HMIH FIH NNH

118

The shaded area of the chart denotes the quality improvement of the HMIH over the

FIH.

4.3. Findings

The proposed HMIH consistently outperformed the FIH across a wide spectrum of

benchmark instances with statistical significance of as much as 16% at some point as

highlighted by the shaded area of quality improvement in Figure 4.6. The average

goodness value of the proposed HMIH was 86.9% compared to 81.7% for the FIH and

74.5% for the NNH. This means that the proposed HMIH has a higher accuracy than

FIH and NNH (see Figure 4.7). It is worthy of note that the FIH is considered the best

performing Insertion techniques and other lower-order complexity heuristics (Reinelt,

1994; Johnson and McGeoch, 2002; Laha et al., 2016; Ursani et al., 2016; Babel 2020).

Figure 4.8. Measure of goodness value of HMIH, FIH and NNH

0

10

20

30

40

50

60

70

80

90

100

att48 eil51 eil101 ch130 ch150 pr439 rat 783 dsj1000 u2319 pcb3038

NNH | FIH | HMIH
NNH FIH HMIH

119

Additionally, while the FIH is faster, the computation speed of the proposed HMIH is

within the same range, and since the HMIH searches were conducted 𝑂(𝑛) times,

HMIH has the same complexity of 𝑂(𝑛2) as the FIH and NNH. The computational

speed performance of HMIH appears to follow a trend among lower order complexity

heuristics where high performing method tends to take longer computation time,

perhaps owing to more intricate process involved in getting better performance. With

the exception of Random Insertion which requires no computation effort to add new

nodes, the better the performance, the longer the time of computation tend to be

(Reinelt, 1994; Johnson and McGeoch, 2002; Laha et al., 2016; Ursani and Corne,

2016; Babel, 2020).

120

CHAPTER FIVE

5.0. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1. Summary

In this work, the Travelling Salesman Problem was studied as a classic Combinatorial

Optimization Problem. Combinatorial Optimization Problems deal with finding the best

solutions that help optimise cost functions within the constraint of limited resources

which may be time, space, energy and so forth. While there are numerous formulated

Combinatorial Optimization Problems, such as Satisfiability Problems (SAT), Graph

Colouring Problems (GCP), Cutting Stock Problem (CSP), Minimum Spanning Tree

(MST), Constraint Satisfaction Problem (CSP), Bin Parking Problem (BPP) and so on,

spanning the fields of Bioinformatics, Artificial Intelligence, Mathematics, Operations

Research, Computer Science, the TSP is perhaps the most central to the field of

combinatorics. Work on the TSP has been a driving force for the emergence and

advancement of many important research areas, such as stochastic local search or

integer programming, as well as for the development of complexity theory.

Additionally, the TSP has also become a standard testbed for new algorithmic ideas;

many of the most important techniques for solving combinatorial optimisation

problems such as cutting plane techniques, branch and cut, simulated annealing, Ant

colony, Branch-and-bound, and so on were developed using the TSP as an example

application.

In solving the Travelling Salesman Problem, two popular tour construction heuristics

were examined, namely the Nearest Neighbour Heuristic and the Farthest Insertion

Heuristic. Obtaining high performing tour construction heuristics is a pressing research

121

concern because they do not only generate good results, but they equally serve as seed

for the development of other classes of heuristics and can be used to build initial

solutions for high performing techniques. The NNH is fast, flexible, and simple to

implement. It however solves the Travelling Salesman Problem using a greedy

approach and suffers immensely from “curse of dimensionality”. The FIH on the other

hand is considered as the best performing insertion heuristic and best among lower

order complexity heuristics. However, its performance is impeded by the distance

between the partial circuit and the new node to be inserted. Thus, if inserting nearest

nodes to the circuit leads to outliers and the performance of FIH is impeded by longer

distance, perhaps a half max insertion may yield better solution. Thus, the NNH and

the FIH were studied and a new insertion technique referred to as HMIH was

formulated and experimented in order to generate better quality output, in reasonable

time.

The three techniques (NNH, FIH and the derived HMIH) were implemented using Java

Programming Language on ten TSPLIB benchmark instances. The experimental result

generated showed that the speed of computation of the new method was poorer than

that of NNH and FIH. However, this was compensated for with the solution quality.

5.2 . Conclusion

In this study, a new Insertion heuristic was formulated and experimented on ten publicly

available benchmark instances, alongside the NNH and FIH. The benchmark instances

sizes were varied into three groups. Group one consisted two instances with less than a

hundred (100) nodes, the second group had five instances whose nodes varied between

one hundred and one (101) and nine hundred and ninety-nine (999), while the third

group had three instances with one thousand (1000) nodes and above. The experimental

122

results were displayed using tables and graph, and compared on the basis of parameters

such as computational speed, percentage deviation from the optimal result, quality

improvement and measure of goodness value. The results presented were able to

address the research questions posed in the introductory section of the work. It was

experimentally ascertained that the new improved heuristic obtained better solution

qualities yet within the bracket of computational time as the FIH. Thus, it is safe to

argue that it retained the same complexity of 𝑂(𝑛2) as the FIH, and yet produces better

solution quality.

The objectives of the study were achieved as the instances were simulated as a TSP

problem first by converting the datasets to distance matrix and then implementing on

varying sizes of benchmark instances.

5.3. Limitations

Based on the scope of this work, the implementation environment was limited to only

the Object-Oriented Programming paradigm, as JAVA programming language was

used to implement the heuristics. Additionally, no complexity curtailing technique was

applied to the new formulated heuristic. Finally, the datasets were limited to ten

instances.

5.4 Recommendations for Future Research

The following propositions are recommended to further this research:

i. The heuristics may be implemented using more than one programming

paradigm. It will be interesting to simulate the behavior of the different

programming paradigms on given instances using these techniques.

123

ii. Complexities curtailing techniques may be studied and applied to the proposed

HMI technique to further improve its performance in terms of computational

time.

Improving the computational time of the Half Max Insertion Heuristic is also a

candidate for future research. Also, a future researcher may like to integrate this new

heuristic with one or more of the existing state-of-the-art techniques with a view to

examining the behavior of the resulting heuristic vis-à-vis each of the existing ones.

5.5 Contributions to Knowledge

Arising from the critical investigation of the NNH and FIH, the main contribution of

this study to knowledge is the invention, implementation, and simulation of a new

heuristic referred to in this study as Half Max Insertion Heuristic (HMIH). The HMIH

overcomes the limitations of both the FIH and NNH; it performs better than both in

terms of optimality. The study has therefore provided us with a new and superior

computational method for solving NP-Hard problems.

124

REFERENCES

Abdel-Basset M., Abdel-Fatah L. & Sangaiah, A.K., (2018). Metaheuristic Algorithms:

A Comprehensive Review. In A.K. Sangaiah, M. Sheng & Z. Zhang (Eds.),

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering

Applications 185–231. Academic Press. https://doi.org/10.1016/B978-0-12-

813314-9.00010-4.

Abdi S., Pourkarimi L., Ahmadi M. & Zargari F., (2017). Cost minimization for

deadline-constrained bag-of-tasks applications in federated hybrid clouds. Future

Generation Computer Systems, 71, 113-128.

Abdulkarim H.A. & Alshammari I.F., (2015). Comparison of Algorithms for Solving

the Travelling Salesman Problem. International Journal of Engineering and

Advanced Technology 4(6), 76-78.

Abdul-Rahman S., Benjamin A.M., Omar M.F., Ramli R., Ku-Mahamud K.-R., &

Abduljabbar W.K., (2017). Designing and implementation a web-based architecture

for an examination timetabling system. Journal of Engineering and Applied

Sciences 12(23), 7299–7305.

Abeledo H., Fukasawa R., Pessoa A. & Uchoa E. (2010). The Time Dependent

Travelling Salesman Problem: Polyhedra and Branch-Cut-and-Price Algorithm. In:

Festa P. (Eds.), Experimental Algorithms. SEA 2010. Lecture Notes in Computer

Science, 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

13193-6_18

https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://doi.org/10.1007/978-3-642-13193-6_18
https://doi.org/10.1007/978-3-642-13193-6_18

125

Abid M.M. & Muhammad I., (2015). Heuristic Approaches to Solve the Travelling

Salesman Problem. TELKOMNIKA Indonesian Journal of Electrical Engineering

5(2), 390-396.

Aguayo M.M., Sarin S.C. & Sherali H.D., (2016). Solving the single and multiple

asymmetric Travelling Salesmen Problems by generating subtour elimination

constraints from integer solutions. IISE Transactions 5(1), 45-53.

https://doi.org/10.1080/24725854.2017.1374580.

Ahmed Z.H., (2011). A Data-Guided Lexisearch Algorithm for the Asymmetric

Travelling Salesman Problem. Mathematical Problems in Engineering 2011, 1-18.

https://doi.org/10.1155/2011/750968.

Ahmed Z.H., (2011). A Data-Guided Lexisearch Algorithm for the Bottleneck

Travelling Salesman Problem. International. Journal of Operational Research

12(1), pp 20-33.

Ahmed Z.H., (2013). A hybrid genetic algorithm for the bottleneck travelling salesman

problem. ACM Trannsaction on Embedded Computing Systems 12(1), 1-10.

Ahmed Z.H., (2014). The Ordered Clustered Travelling Salesman Problem: A Hybrid

Genetic Algorithm. The Scientific World Journal 2014, 1-14.

https://doi.org/10.1155/2014/258207.

Ajaz A.K. & Himani A (2016). Determining the Shortest Path for Travelling Salesman

Problem using Nearest Neighbor Algorithm. International Journal for Scientific

Research & Development 3(12), 856-859.

Alamdari S., Fata E. & Smith S.L., (2013). Min-Max Latency Walks: Approximation

Algorithms for Monitoring Vertex-Weighted Graphs. In: E. Frazzoli, T. Lozano-

https://doi.org/10.1080/24725854.2017.1374580
https://doi.org/10.1155/2011/750968
https://doi.org/10.1155/2014/258207

126

Perez, N. Roy & D. Rus (Eds.), Algorithmic Foundations of Robotics X. Springer

Tracts in Advanced Robotics, 86. 139-155. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-36279-8_9.

Ali Z.A. (2016). Concentric Tabu Search Algorithm for Solving Travelling Salesman

Problem (Eastern Mediterranean University January-North Cyprus). Master of

Science in Computer Engineering Thesis. Retrieved February 13, 2020, from

http://i-rep.emu.edu.tr:8080/xmlui/handle/11129/2933.

Allaoua H., (2017). Combination of Genetic Algorithm with Dynamic Programming

for Solving TSP. International Journal of Advances in Soft Computing and its

Application 9(2), 31-44.

AlSalibi B.A., Jelodar M.B. & Venkat I., (2013). A Comparative Study between the

Nearest Neighbor and Genetic Algorithms: A revisit to the Travelling Salesman

Problem. International Journal of Computer Science and Electronics Engineering

1(1), 34-38.

An H.-C., Kleinberg R. & Shmoys D.B., (2012). Improving Christofides' algorithm for

the s-t path TSP. Proceeding of the 44th Annual ACM Symposium on Theory of

Computing (STOC'12), 875--886.

Anbuudayasankar S.P., Ganesh K. & Mohapatra S. (2014). Survey of Methodologies

for TSP and VRP. In: Models for Practical Routing Problems in Logistics, 11-42.

Springer, Cham. https://doi.org/10.1007/978-3-319-05035-5_2.

Applegate D., Bixby R., Chvátal V. & Cook W., (2001). TSP Cuts Which Do Not

Conform to the Template Paradigm. In: M. Jünger & D. Naddef (Eds.),

Computational Combinatorial Optimization. Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-36279-8_9
http://i-rep.emu.edu.tr:8080/xmlui/handle/11129/2933
https://doi.org/10.1007/978-3-319-05035-5_2

127

2241, 261-303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45586-

8_7.

Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, &

Amin Saberi., (2010). An O(log n/ log log n)-approximation Algorithm for the

Asymmetric Travelling Salesman Problem. Proceedings of the Twenty-First

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, 379–389.

Arigliano A., Ghiani G., Grieco A., Guerriero E. & Plana I (2018) Time-dependent

asymmetric Travelling salesman problem with time windows: properties and an

exact algorithm. Discrete Applied Mathematics 261, 28-39.

https://doi.org/10.1016/j.dam.2018.09.017.

Arthanari T. & Qian K. (2018) Symmetric Travelling Salesman Problem. In: S. Neogy,

R. Bapat & Dubey D. (Eds.), Mathematical Programming and Game Theory. Indian

Statistical Institute Series. Springer, Singapore

Arthanari, T.S., (1983). On the Travelling salesman problem. Mathematical

Programming - The State of the Art. Springer, Berlin

Arthanari, T.S. & Usha, M., (2000). An alternate formulation of the symmetric

Travelling salesman problem and its properties. Discrete Applied Mathematics

98(3), 173–190.

Ascheuer N., Junger M. & Reinelt G., (1999). A Branch & Cut Algorithm For The

Asymmetric Travelling Salesman Problem With Precedence Constraints.

Computational Optimization and Applications 17, 61–84.

https://doi.org/10.1023/A:1008779125567

https://doi.org/10.1007/3-540-45586-8_7
https://doi.org/10.1007/3-540-45586-8_7
https://doi.org/10.1016/j.dam.2018.09.017
https://doi.org/10.1023/A:1008779125567

128

Assaf M. and Ndiaye M., (2017). A transformation for multiple depot multiple

Travelling salesman problem. Proceedings of International Conference on

Engineering & MIS (ICEMIS), Monastir, 2017, 1-5.

https://doi.org/10.1109/ICEMIS.2017.8273004.

Assaf M. and Ndiaye M., (2017). Multi travelling salesman problem formulation.

Proceedings of the 4th International Conference on Industrial Engineering and

Applications (ICIEA), Nagoya, 2017, 292-295.

https://doi.org/10.1109/IEA.2017.7939224.

Ayorkor, M.G., Stentz, A., & Bernardine, D.M. (2007). The Dynamic Hungarian

Algorithm for the Assignment Problem with Changing Costs. Robotics Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania, CMU-RI-TR-07-27.

Retrieved April 4, 2019 from

http://www.cs.cmu.edu/~gertrude/dyn_assign_techreport.pdf.

Babel L., (2020). New heuristic algorithms for the Dubins Travelling salesman

problem. Journal of Heuristics 26, 503-530. https://doi.org/10.1007/s10732-020-

09440-2.

Baidoo E. & Oppong S.O., (2016). Solving the TSP using Traditional Computing

Approach. International Journal of Computer Applications 152(8), pp 13-19.

Balbal S., Laalaoui Y. & Benyettou M., (2015). Local search heuristic for Multiple

Knapsack Problem. International Journal of Intelligent Information Systems 4(3),

pp 5–9.

Balseiro S.R., Loiseau I. & Ramonet J. (2011). An Ant Colony algorithm hybridized

with insertion heuristics for the Time Dependent Vehicle Routing Problem with

https://doi.org/10.1109/ICEMIS.2017.8273004
https://doi.org/10.1109/IEA.2017.7939224
http://www.cs.cmu.edu/~gertrude/dyn_assign_techreport.pdf
https://doi.org/10.1007/s10732-020-09440-2
https://doi.org/10.1007/s10732-020-09440-2

129

Time Windows. Computers & Operations Research 38, 954–966.

https://doi.org/10.1016/j.cor.2010.10.011.

Bansal J.C. & Deep K., (2012). A Modified Binary Particle Swarm Optimization for

Knapsack Problems. Applied Mathematics and Computation 218(22) 11042-11061.

https://doi.org/10.1016/j.amc.2012.05.001

Baranwal M., Parekh P., Marla L., Salapaka S.M. & Beck C., (2016). Vehicle routing

problem with time windows: A deterministic annealing approach. Proceedings of

the American Control Conference (ACC), 790-795.

Baranwal M., Roehl B. & Salapaka S.M., (2017). Multiple Travelling salesmen and

related problems: A maximum-entropy principle based approach. Proceedings of

American Control Conference (ACC), Seattle, WA, 2017, 3944-3949, doi:

10.23919/ACC.2017.7963559.

Barketau M. & Pesch E., (2016). An approximation algorithm for a special case of the

asymmetric travelling salesman problem. International Journal of Production

Research 54(14), 4205-4212. http://doi.org/10.1080/00207543.2015.1113327.

Barnhart C, Johnson E, Nemhauser G, Savelsbergh M & Vance P (1998) Branch-and-

price: Column generation for solving huge integer programs. Operations Research

46, 316–329.

Barto L., (2015). The Constraint Satisfaction Problem and Universal Algebra. The

Bulletin of Symbolic Logic 21(3), 319-337.

Barvinok A., Gimadi E.K. & Serdyukov A.I., (2007). The maximum TSP. In: G. Gutin

& A.P. Punnen (Eds.), The Travelling Salesman Problem and Its Variations.

https://doi.org/10.1016/j.cor.2010.10.011
https://doi.org/10.1016/j.amc.2012.05.001
http://doi.org/10.1080/00207543.2015.1113327

130

Combinatorial Optimization 12, 585-607. Springer, Boston, MA.

https://doi.org/10.1007/0-306-48213-4_12.

Basu S, Sharma M. & Sarathi P.G. (2017) Efficient preprocessing methods for tabu

search: an application on asymmetric travelling salesman problem, Information

Systems and Operational Research 55(2), 134-158. DOI:

10.1080/03155986.2017.1279897

Basu S., (2012). Tabu Search Implementation on Travelling Salesman Problem and Its

Variations: A Literature Survey. American Journal of Operations Research 2, 163-

173. DOI:10.4236/ajor.2012.22019.

Battarra M., Pessoa A.A, Subramanian A. & Uchoa E., (2014). Exact algorithms for

the Travelling Salesman Problem with Draft Limits. European Journal of

Operational Research 235 (1), 115-128. https://doi.org/10.1016/j.ejor.2013.10.042

Bazylevych R., Kutelmakh R., Dupas R. & Bazylevych L., (2007). Decomposition

Algorithms for Large-scale Clustered TSP (2007). Proceedings of the third Indian

International Conference on Artificial Intelligence (IICAI-07), 256 – 267.

Becker H. & Buriol L.S., (2019). An empirical analysis of exact algorithms for the

unbounded knapsack problem. European journal of operational research Vol.

277(16), pp. 84-99 https://doi.org/10.1016/j.ejor.2019.02.011

Bednarczuk, E.M., Miroforidis, J. & Pyzel, P., (2018). A multi-criteria approach to

approximate solution of multiple-choice knapsack problem. Computational

Optimization and Applications 70, 889–910. https://doi.org/10.1007/s10589-018-

9988-z

https://doi.org/10.1007/0-306-48213-4_12
https://doi.org/10.1016/j.ejor.2013.10.042
https://doi.org/10.1016/j.ejor.2019.02.011
https://doi.org/10.1007/s10589-018-9988-z
https://doi.org/10.1007/s10589-018-9988-z

131

Bellman, R.E., (1962). Dynamic programming treatment of the Travelling salesman

problem. Journal of the ACM 9(1), 61–63.

Bentley J.L. (1992). Fast Algorithms for Geometric Travelling Salesman Problems.

ORSA Journal of Computing 4(4), 387-411.

Bernardino R. & Paias A., (2018). Solving the family Travelling salesman problem.

European Journal of Operational Research 267, 453–466.

https://doi.org/10.1016/j.ejor.2017.11.063.

Bouazzi K., Hammami M. & Bouamama S., (2019). Hybrid Genetic Algorithm for

CSOP to Find the Lowest Hamiltonian Circuit in a Superimposed Graph. In: L.

Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz & J. Zurada

(Eds.), Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in

Computer Science 11509, 512-525. Springer, Cham. https://doi.org/10.1007/978-3-

030-20915-5_46

Bouman P., Agatz N. & Schmidt M., (2018) Dynamic programming approaches for the

Travelling salesman problem with a drone. Networks 72, 528–542.

https://doi.org/10.1002/net.21864

BUI Q.-T., (2015). Modelling and solving complex combinatorial optimization

problems: quorumcast routing, elementary shortest path, elementary longest path

and agricultural land allocation. Ph.D Thesis in Information Technology, Université

catholique de Louvain. Retrieved February 12, 2020 from

https://www.info.ucl.ac.be/~yde/Papers/thesis_Trung2015.pdf.

Burke E.K., Kendall G., Misir M. & Ozcan E., (2012). Monte Carlo hyper-heuristics

for examination timetabling. Annals of Operations Research 196, 73–90, 2012.

https://doi.org/10.1016/j.ejor.2017.11.063
https://doi.org/10.1007/978-3-030-20915-5_46
https://doi.org/10.1007/978-3-030-20915-5_46
https://doi.org/10.1002/net.21864
https://www.info.ucl.ac.be/~yde/Papers/thesis_Trung2015.pdf

132

Campuzano G., Obreque C. & Aguayo M.M., (2020). Accelerating the Miller–Tucker–

Zemlin model for the asymmetric Travelling salesman problem. Expert Systems

with Applications 148, 113-229.

Chatting M., (2018). A Comparison of Exact and Heuristic Algorithms to Solve the

Travelling Salesman Problem. The Plymouth Student Scientist, vol. 11(2), pp. 53-

91.

Chauhan C., Gupta R. & Pathak K., (2012). Survey of Methods of Solving TSP along

with its Implementation using Dynamic Programming Approach. International

Journal of Combinatorial Optimization: Computer Applications 52(4), 12-19.

Chen G.H. & Shah D., (2018). Explaining the Success of Nearest Neighbor Methods in

Prediction. Foundations and Trends R in Machine Learning 10(5), 337–588. DOI:

10.1561/2200000064.

Christian, B., & Cremaschi, S. (2018). Planning pharmaceutical clinical trials under

outcome uncertainty. Computer-Aided Chemical Engineering 41, 517–550.

doi:10.1016/b978-0-444-63963-9.00021-x

Christiansen M., Fagerholt K., Nygreen B. & Ronen D., (2013). Ship routing and

scheduling in the new millennium. European Journal of Operational Research

228(3), 467-483.

Cruz R. C., Silva T. C. B., Souza M. J. F., Coelho V. N., Mine M. T. & Martins A. X.

(2012). GENVNS-TS-CL-PR: A heuristic approach for solving the vehicle routing

problem with simultaneous pickup and delivery. Electronic Notes in Discrete

Mathematics 39, 217–224. https://doi.org/10.1016/j.endm.2012.10.029.

133

Cuevas A.M.C., Martínez J.A.S. & Saucedo J.A.M., (2020) A Two Stage Method for

the Multiple Travelling Salesman Problem. International Journal of Applied

Metaheuristic Computing 11(3), 79-91.

Daamen R. & Phillipson F., (2015). Comparison of heuristic methods for the design of

edge disjoint circuits. Computer Communications 61, 90–102

Damghanijazi E. & Mazidi A., (2017). Meta-Heuristic Approaches for Solving the

Travelling Salesman Problem. International Journal of Advanced Research in

Computer Science 8(5), 18-23.

Dantzig, G.B., Fulkerson, D.R. & Johnson, S.M., (1954). Solution of a large-scale

Travelling-saesman problem. Operations Research 2(4), 393–410

Date K. & Nagi R., (2016). GPU-accelerated Hungarian algorithms for the Linear

Assignment Problem. Parallel Computing 57, 52-72.

https://doi.org/10.1016/j.parco.2016.05.012

Demez H., (2013). Solution Methods of Travelling Salesman Problem. Masters of

Science Thesis, Eastern Mediterranean University. Retrieved July 4, 2020 from

http://i-

rep.emu.edu.tr:8080/xmlui/bitstream/handle/11129/654/Demez.pdf?sequence=1.

Desrochers M. & Laporte G. (1990) Improvements and extensions to the Miller–

Tucker–Zemlin subtour elimination constraints. Operations Research Letters 10(1),

27–36

Deudon M., Cournut P., Lacoste A., Adulyasak Y. & Rousseau LM. (2018) Learning

Heuristics for the TSP by Policy Gradient. In: W.J. Van Hoeve (Eds.), Integration

https://doi.org/10.1016/j.parco.2016.05.012
http://i-rep.emu.edu.tr:8080/xmlui/bitstream/handle/11129/654/Demez.pdf?sequence=1
http://i-rep.emu.edu.tr:8080/xmlui/bitstream/handle/11129/654/Demez.pdf?sequence=1

134

of Constraint Programming, Artificial Intelligence, and Operations Research.

CPAIOR 2018. Lecture Notes in Computer Science 10848. Springer, Cham

Dijck E.V., 2018. A Branch-and-Cut Algorithm for the Travelling Salesman Problem

with Drone. Master Thesis Operations Research & Quantitative Logistics. Erasmus

University Rotterdam. Retrieves July 4, 2020 from

https://thesis.eur.nl/pub/44107/Dijck-van.pdf.

Dong W., Dong X. & Wang Y., (2017). The Improved Genetic Algorithm for Multiple

Maximum Scatter Tevelling Salesperson Problems. In: Li J. et al. (Eds.), Wireless

Sensor Networks. CWSN 2017. Communications in Computer and Information

Science 812, 155-164. Springer, Singapore. https://doi.org/10.1007/978-981-10-

8123-1_14

Dorigo M., Di Caro G. & Gambardella L.M., (1999). Ant algorithms for discrete

optimization. Artificial Life 5(2), 137–172.

Dowlatshahi M.B., Nezamabadi-Pour H. & Mashinchi M., (2014). A discrete

gravitational search algorithm for solving combinatorial optimization problems.

Information Sciences 258, 94-107

Droste I., (2017). Algorithms for the Travelling salesman problem. Bachelor Thesis in

Mathematics, Faculteit B_etawetenschappen, University of Utrecht. Retrieved

April 15, 2020 from

https://dspace.library.uu.nl/bitstream/handle/1874/366424/BachelorthesisIsabelDr

oste.pdf?sequence=2.

Dudycz S., Marcinkowski J., Paluch K. & Rybicki B. (2017) A 4/5 - Approximation

Algorithm for the Maximum Travelling Salesman Problem. In: F. Eisenbrand. & J.

Koenemann (Eds.), Integer Programming and Combinatorial Optimization. IPCO

https://thesis.eur.nl/pub/44107/Dijck-van.pdf
https://doi.org/10.1007/978-981-10-8123-1_14
https://doi.org/10.1007/978-981-10-8123-1_14
https://dspace.library.uu.nl/bitstream/handle/1874/366424/BachelorthesisIsabelDroste.pdf?sequence=2
https://dspace.library.uu.nl/bitstream/handle/1874/366424/BachelorthesisIsabelDroste.pdf?sequence=2

135

2017. Lecture Notes in Computer Science, 10328. Springer, Cham.

https://doi.org/10.1007/978-3-319-59250-3_15

Dumitrescu I., Ropke S., Cordeau J. & Laporte G., (2010). The Travelling Salesman

Problem with Pickup and Delivery: Polyhedral Results and a Branch-and-Cut

Algorithm. Mathematical Programming 121(2), 269-305.

https://doi.org/10.1007/s10107-008-0234-9

Ejim S., (2016). Implementation of Greedy Algorithm in Travel Salesman Problem.

Final Year Mini - Project for the Course: Design and Analysis of Algorithm, pp 1-

8. Retrieved May 12, 2020 from

https://www.researchgate.net/publication/307856959_Implementation_of_Greedy

_Algorithm_in_Travel_Salesman_Problem?channel=doi&linkId=57cf068508ae58

2e06938947&showFulltext=true. 10.13140/RG.2.2.23921.48485.

Englert, M., Röglin, H. & Vöcking, B. Worst Case and Probabilistic Analysis of the 2-

Opt Algorithm for the TSP. Algorithmica 68, 190–264.

https://doi.org/10.1007/s00453-013-9801-4

Erdogan G., Battarra M., Laporte G. & Vigo D., (2012). Metaheuristics for the

Travelling salesman problem with pickups, deliveries, and handling costs.

Computer and Operations Research 39, 1074 -1086.

Fachini R.F. & Armentano V.A., (2018). Exact and heuristic dynamic programming

algorithms for the Travelling salesman problem with flexible time windows.

Optimization Letters 14, 579–609. https://doi.org/10.1007/s11590-018-1342-y

Fan J., (2011). The Vehicle Routing Problem with Simultaneous Pickup and Delivery

Based on Customer Satisfaction. Procedia Engineering 15, 5284 – 5289.

https://doi.org/10.1016/j.proeng.2011.08.979.

https://doi.org/10.1007/978-3-319-59250-3_15
https://doi.org/10.1007/s10107-008-0234-9
https://www.researchgate.net/publication/307856959_Implementation_of_Greedy_Algorithm_in_Travel_Salesman_Problem?channel=doi&linkId=57cf068508ae582e06938947&showFulltext=true
https://www.researchgate.net/publication/307856959_Implementation_of_Greedy_Algorithm_in_Travel_Salesman_Problem?channel=doi&linkId=57cf068508ae582e06938947&showFulltext=true
https://www.researchgate.net/publication/307856959_Implementation_of_Greedy_Algorithm_in_Travel_Salesman_Problem?channel=doi&linkId=57cf068508ae582e06938947&showFulltext=true
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1007/s11590-018-1342-y

136

Faudzi S., Abdul-Rahman S. & Abd Rahman R., (2018). An Assignment Problem and

Its Application in Education Domain: A Review and Potential Path. Advances in

Operations Research 2018 1-19. https://doi.org/10.1155/2018/8958393

Feillet D., Gendreau M., Medaglia A.L. & Walteros J.L., (2010). A note on branch-

and-cut-and-price. Operations Research Letters 38(5), 346-353.

https://doi.org/10.1016/j.orl.2010.06.002.

Fischer A., Fischer F., Jäger G., Keilwagend J., Molitor P. & Grosse I., (2014). Exact

algorithms and heuristics for the Quadratic Travelling Salesman Problem with an

application in bioinformatics. Discrete Applied Mathematics 166, 97-114.

http://dx.doi.org/10.1016/j.dam.2013.09.011.

Fomeni F.D., Kaparis K. & Letchford A.N. (2020). A cut-and-branch algorithm for the

Quadratic Knapsack Problem. Discrete Optimization. In Press.

https://doi.org/10.1016/j.disopt.2020.100579

Fontaine P., Taube F. & Minner S., (2020). Human solution strategies for the vehicle

routing problem: Experimental findings and a choice-based theory. Computers and

Operations Research 120 2020, 1-16. https://doi.org/10.1016/j.cor.2020.104962.

Fosin J., Davidović D. & Carić T., (2013). A GPU Implementation of Local Search

Operators for Symmetric Travelling Salesman Problem. PROMET 25(3), 225-234.

https://doi.org/10.7307/ptt.v25i3.300

Frenkel E., Nikolaev A. & Ushakov A. (2016). Knapsack problems in products of

groups. Journal of Symbolic Computation, 74, 96-108.

https://doi.org/10.1016/j.jsc.2015.05.006

https://doi.org/10.1155/2018/8958393
https://doi.org/10.1016/j.orl.2010.06.002
http://dx.doi.org/10.1016/j.dam.2013.09.011
https://doi.org/10.1016/j.disopt.2020.100579
https://doi.org/10.1016/j.cor.2020.104962
https://doi.org/10.7307/ptt.v25i3.300
https://doi.org/10.1016/j.jsc.2015.05.006

137

Fukunaga A., (2011). A branch-and-bound algorithm for hard multiple knapsack

problems. Annals of Operations Research 184, 97–119.

Gabrel V., Manouvrier M. & Murat C. (2014) Optimal and Automatic Transactional

Web Service Composition with Dependency Graph and 0-1 Linear Programming.

In: X. Franch, A.K. Ghose, G.A. Lewis & S. Bhiri (Eds.), Service-Oriented

Computing. ICSOC 2014. Lecture Notes in Computer Science, Vol. 8831. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45391-9_8

Gahir D., (2014). A fully Polynomial Time Approximation Scheme for Weight

Constrained BTSP with Two Linear Constraints on Halin Graph. International

Journal of Science and Research 3(6), 315-317.

Gavish B. & Graves S (1978) The travelling salesman problem and related problems.

Working Paper GR078-78. Operations Research Center, Massachusetts Institute of

Technology, Cambridge. Retrieved April 25, 2020.

http://hdl.handle.net/1721.1/5363

Gendreau M., Jabali O. & Rei W., (2014). Stochastic Vehicle Routing Problems. In: P.

Toth & D. Vigo, (Eds.), Vehicle routing: problems, methods, and applications,

SIAM, New York, USA (2014). 213-240.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.fm

Genova K. & Williamson D.P., (2017). An Experimental Evaluation of the Best-of-

Many Christofides’ Algorithm for the Travelling Salesman Problem. Algorithmica

78, 1109–1130. https://doi.org/10.1007/s00453-017-0293-5

Ginting H.N., Osmond A.B. & Aditsania A., (2019). Item Delivery Simulation Using

Dijkstra Algorithm for Solving the Travelling Salesman Problem. International

https://doi.org/10.1007/978-3-662-45391-9_8
http://hdl.handle.net/1721.1/5363
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.fm
https://doi.org/10.1007/s00453-017-0293-5

138

Conference on Electronics Representation and Algorithm (ICERA 2019), J. Phys.:

Conf. Ser. 1201 012068, 1-9. https://doi.org/10.1088/1742-6596/1201/1/012068

Giovanni L. De (2017). Methods and Models for Combinatorial Optimization:

Heuristics for Combinatorial Optimization. Retrieved April 25, 2019 from

https://www.math.unipd.it/~luigi/courses/metmodoc1718/m02.meta.en.partial01.p

df

Godinho M.T., Gouveia L. & Pesneau P., (2014). Natural and Extended formulations

for the Time-Dependent Travelling Salesman Problem. Discrete Applied

Mathematics, 164, 138-153. https://doi.org/ff10.1016/j.dam.2011.11.019ff. ffhal-

00648451f.

Goetschalckx M. (2011) Single Vehicle Round-trip Routing. In: Supply Chain

Engineering. International Series in Operations Research & Management Science,

161. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6512-7_8

Gorenstein S., (1970). Printing press scheduling for multi-edition periodicals.

Management Science 16 (6), 373-383.

Gouveia L. & Pires J. (1999) The asymmetric travelling salesman problem and a

reformulation of the Miller–Tucker–Zemlin constraints. European Journal of

Operations Research 112, 134–146

Gupta D., (2013). Solving tsp using various meta-heuristic algorithms. International

Journal of Recent Contributions from Engineering, Science & IT 1(2), 19–26.

Gupta S. & Kakkar M., (2012). Techniques For Solving the Travelling Sales Man

Problem. International Journal Of Engineering Science & Advanced Technology

2(5), 1357 – 1360.

https://doi.org/10.1088/1742-6596/1201/1/012068
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m02.meta.en.partial01.pdf
https://www.math.unipd.it/~luigi/courses/metmodoc1718/m02.meta.en.partial01.pdf
https://doi.org/10.1007/978-1-4419-6512-7_8

139

Gupta S., Batra D. & Verma P., (2014). Greedy Estimation of Distributed Algorithm to

Solve Bounded knapsack Problem. International Journal of Computer Science and

Information Technologies 5(3), 4313-4316.

Hassin, R., & Rubinstein, S. (2000). Better approximations for max TSP. Information

Processing Letters 75(4), 181-186.

Hassin, R., Levin, A. & Rubinstein, S., (2009). Approximation algorithms for

maximum latency and partial cycle cover. Discrete Optimization 6(2), 197–205.

Hazra T.K. & Hore A., (2016). A comparative study of Travelling Salesman Problem

and solution using different algorithm design techniques. Proceedings of the IEEE

7th Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON), Vancouver, BC, 2016, 1-7, doi:

10.1109/IEMCON.2016.7746316.

Held, M. & Karp, R.M., (1970). The travelling salesman problem and minimum

spanning trees. Operations Research 18(6), 1138–1162

Helsgaun K., (2009). General k-opt sub moves for the Lin–Kernighan TSP heuristic.

Mathematical Programming Computation 1, 119–163.

https://doi.org/10.1007/s12532-009-0004-6

Helsgaun K., (2014). Solving The Bottleneck Travelling Salesman Problem Using The

Lin-Kernighan-Helsgaun Algorithm. Technical Report, Roskilde University,

Roskilde, Denmark, 1-45. Retrieved May 2, 2019 from

https://www.researchgate.net/publication/266382000_Solving_the_Bottleneck_Tr

avelling_Salesman_Problem_Using_the_Lin-Kernighan-Helsgaun_Algorithm

https://doi.org/10.1007/s12532-009-0004-6
https://www.researchgate.net/publication/266382000_Solving_the_Bottleneck_Traveling_Salesman_Problem_Using_the_Lin-Kernighan-Helsgaun_Algorithm
https://www.researchgate.net/publication/266382000_Solving_the_Bottleneck_Traveling_Salesman_Problem_Using_the_Lin-Kernighan-Helsgaun_Algorithm

140

Hifi M., (2014). An iterative rounding search-based algorithm for the disjunctively

constrained knapsack problem. Engineering Optimization 46(8), 1109-1122, DOI:

10.1080/0305215X.2013.819096

Hoffman I., (2016). The Maximum Scatter TSP on a Regular Grid – How to Avoid

Heat Peaks in Additive Manufacturing. Doctoral Thesis, University of Beyreuth.

Retrieved September 30, 2019 from https://epub.uni-

bayreuth.de/3182/1/Stock_Isabella_The_Maximum_Scatter_TSP.pdf.

Hoffmann I., Kurz S. & Rambau J. (2017). The Maximum Scatter TSP on a Regular

Grid. In: K. Dörner, I. Ljubic, G. Pflug & G. Tragler (Eds,), Operations Research

Proceedings 2015. Operations Research Proceedings (GOR (Gesellschaft für

Operations Research e.V.)). Springer, Cham. https://doi.org/10.1007/978-3-319-

42902-1_9

Huang W. & Yu J.X. (2017). Investigating TSP Heuristics for Location-Based Services.

Data Science and Engineering 2, 71–93. DOI 10.1007/s41019-016-0030-0.

Huang W., Yu J.X. & Shang Z. (2016) A Sketch-First Approach for Finding TSP. In:

M. Cheema, W. Zhang & L. Chang (Eds.), Databases Theory and Applications.

ADC 2016. Lecture Notes in Computer Science 9877. Springer, Cham.

https://doi.org/10.1007/978-3-319-46922-5_10

Hussain A., Muhammad Y.S., Sajid M.N., Hussain I., Shoukry A.M. & Gani S., (2017).

Genetic Algorithm for Travelling Salesman Problem with Modified Cycle

Crossover Operator. Computational Intelligence and Neuroscience 2017, 1-7.

https://doi.org/10.1155/2017/7430125

Hyung-Chan An, Robert D. Kleinberg, & David B. Shmoys, (2010). Approximation

Algorithms for the Bottleneck Asymmetric Travelling Salesman Problem. In: M.

https://epub.uni-bayreuth.de/3182/1/Stock_Isabella_The_Maximum_Scatter_TSP.pdf
https://epub.uni-bayreuth.de/3182/1/Stock_Isabella_The_Maximum_Scatter_TSP.pdf
https://doi.org/10.1007/978-3-319-42902-1_9
https://doi.org/10.1007/978-3-319-42902-1_9
https://doi.org/10.1007/978-3-319-46922-5_10
https://doi.org/10.1155/2017/7430125

141

Serna, R. Shaltiel, K. Jansen, & J. Rolim (Eds.), Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques. RANDOM 2010,

APPROX 2010. Lecture Notes in Computer Science, 6302. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_1

Jain E., Jain A. & Mankad S.H., (2014). A new approach to address Subset Sum

problem. Proceedings of the fifth International Conference - Confluence The Next

Generation Information Technology Summit (Confluence), Noida, 2014, 953-956,

doi: 10.1109/CONFLUENCE.2014.6949229.

Jain V. & Prasad J.S., (2017). Solving Travelling Salesman Problem Using Greedy

Genetic Algorithm GGA. International Journal of Engineering and Technology

9(2) 1148-1154. DOI: 10.21817/ijet/2017/v9i2/170902188

Jamal Ouenniche, Prasanna K. Ramaswamy & Michel Gendreau (2017). A dual local

search framework for combinatorial optimization problems with TSP application.

Journal of the Operational Research Society 68, 1377–1398 (2017).

https://doi.org/10.1057/s41274-016-0173-4.

Jawaid S.T. & Smith S.L., (2013). The maximum Travelling salesman problem with

submodular rewards. In proceedings of the 2013 American Control Conference.

3997-4002, doi: 10.1109/ACC.2013.6580451.

Jawaid S.T. & Smith S.L., (2015). Informative path planning as a maximum Travelling

salesman problem with submodular rewards. Discrete Applied Mathematics 186,

112-127. https://doi.org/10.1016/j.dam.2015.01.004

Jepsen, M. K. (2011). Branch-and-cut and Branch-and-Cut-and-Price Algorithms for

Solving Vehicle Routing Problems. Phd Thesis, The Technical University of

https://doi.org/10.1016/j.dam.2015.01.004

142

Denmark. Retrieved March 13 2020 from url:

https://backend.orbit.dtu.dk/ws/portalfiles/portal/6317942/jepsen08072011.pdf

Jeřábek K., Majercak P., Kliestik T. & Valaskova K., (2016). Application of Clark and

Wright´s Savings Algorithm Model to Solve Routing Problem. Supply Logistics.

Preliminary communication, 63(3), 115-119. DOI 10.17818/NM/2016/SI7

Johnson, D.S. and McGeoch, L.A., (2002). Experimental analysis of heuristics for the

STSP. In: G. Gutin & A.P. Punnen (Eds.), The Travelling Salesman Problem and

Its Variants, 369–443, Kluwer, Dordrecht (2002).

Kabadi S.N. & Punnen A.P., (2007). The Bottleneck TSP. In: G. Gutin, A.P. Punnen

(Eds.), The Travelling Salesman Problem and Its Variations. Combinatorial

Optimization, 12, 697-735. Springer, Boston, MA, https://doi.org/10.1007/0-306-

48213-4_15

Kadri R.L. & Boctor F.F., (2018). An efficient genetic algorithm to solve the resource-

constrained project scheduling with transfer times. European Journal of

Operational Research 265(2), 454-462. https://doi.org/10.1016/j.ejor.2017.07.027.

Kahar M.N.M. & Kendall G., (2010). The examination timetabling problem at

Universiti Malaysia Pahang: comparison of a constructive heuristic with an existing

sofware solution. European Journal of Operational Research 207(2), 557–565.

Kampf R., Stopka O., Bartuska L. & Zeman K., (2015). Circulation of vehicles as an

important parameter of public transport efficiency. Proceedings of the 19th

International Scientific Conference on Transport Means. Kaunas (Lithuania):

Kaunas University of Technology, 2015, 143-146.

https://backend.orbit.dtu.dk/ws/portalfiles/portal/6317942/jepsen08072011.pdf
https://doi.org/10.1007/0-306-48213-4_15
https://doi.org/10.1007/0-306-48213-4_15
https://doi.org/10.1016/j.ejor.2017.07.027

143

Kao M.-Y. & Sanghi M., (2009). An approximation algorithm for a bottleneck

Travelling salesman problem. Journal of Discrete Algorithms 7(3), 315-326.

https://doi.org/10.1016/j.jda.2008.11.007

Kellerer H., Pferschy U. & Pisinger D. (2004). Introduction. In: H. Kellerer, U.

Pferschy & D. Pisinger (Eds.), Knapsack Problems. Springer, Berlin, Heidelberg,

1-14. https://doi.org/10.1007/978-3-540-24777-7_1

Keskin M., Laporte G. & Çataya B., (2019). Electric Vehicle Routing Problem with

Time-Dependent Waiting Times at Recharging Stations. Computers & Operations

Research 107, 77-94. https://doi.org/10.1016/j.cor.2019.02.014

Kitjacharoenchaia P., Mario Ventrescaa, Mohammad Moshref-Javadib, Seokcheon

Leea, Jose M.A. Tanchocoa, & Patrick A. Brunesea (2019). Multiple Travelling

salesman problem with drones: Mathematical model and heuristic approach.

Computers & Industrial Engineering 129, 14–30.

https://doi.org/10.1016/j.cie.2019.01.020

Kızılateş G., Nuriyeva F. & Kutucu H., (2015). A tour extending hyper-heuristic

algorithm for the Travelling salesman problem. Proceedings of the IAM 4(1), 8-15.

Kovács L., Iantovics L.B. & Iakovidis D.K. (2018). IntraClusTSP—An Incremental

Intra-Cluster Refinement Heuristic Algorithm for Symmetric Travelling Salesman

Problem. Symmetry. 10(12), 1-31 https://doi.org/10.3390/sym10120663

Kowalik, L. & Mucha, M., (2007). 35/44-approximation for asymmetric maximum TSP

with triangle inequality. In: F. Dehne, J.-R. Sack & N. Zeh, (Eds.), WADS 2007.

LNCS, 4619, 589–600. Springer, Heidelberg (2007). doi:10.1007/978-3-540-

73951-7 51

https://doi.org/10.1016/j.jda.2008.11.007
https://doi.org/10.1007/978-3-540-24777-7_1
https://doi.org/10.1016/j.cor.2019.02.014
https://doi.org/10.1016/j.cie.2019.01.020
https://doi.org/10.3390/sym10120663

144

Kowalik, L. & Mucha, M., (2008). Deterministic 7/8-approximation for the metric

maximum TSP. In: A. Goel, K. Jansen, J.D.P. Rolim & R. Rubinfeld, (Eds.),

APPROX/RANDOM -2008. LNCS, 5171, 132–145. Springer, Heidelberg (2008).

doi:10.1007/978-3-540-85363-3 11

Kozanidis G., (2018) Branch and price for covering shipments in a logistic distribution

network with a fleet of aircraft. Optimization Methods and Software 33(2), 221-

248. DOI: 10.1080/10556788.2017.1281923

Kozma L. & Momke T., (2016). A PTAS for Euclidean Maximum Scatter TSP.

Proceedings of the thirty second European Workshop on Computational Geometry,

2016.

Kozma L. & Mömke T., (2017). Maximum scatter TSP in doubling metrics.

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms January 2017, 143–153.

Kyritsis M., Gulliver S. R., Feredoes E. & Ud Din S. (2018). Human behaviour in the

Euclidean Travelling Salesperson Problem: Computational modelling of heuristics

and figural effects. Cognitive Systems Research 52, 387-399.

Laabadi, S., Naimi, M., El Amri, H. & Achchab, B. (2019). An improved sexual genetic

algorithm for solving 0/1 multidimensional knapsack problem. Engineering

Computations 36(7), 2260-2292. https://doi.org/10.1108/EC-01-2019-0021

Labadie, N., Melechovsky, J., & Prins, C. (2014). An evolutionary algorithm with path

relinking for a bi-objective multiple Travelling salesman problem with profits. In

Applications of Multi-Criteria and Game Theory Approaches, pp. 195–223.

London: Springer.

https://doi.org/10.1108/EC-01-2019-0021

145

Laha D. & Gupta J.N.D., (2016). A Hungarian penalty-based construction algorithm to

minimize makespan and total flow time in no-wait flow shops. Computers &

Industrial Engineering 98, 373–383

LaRusic J., (2010). The bottleneck Travelling salesman problem and some variations

M.Sc. Thesis, Department of Mathematics, Simon Fraser University. Rtrieved

March 13, 2020 from https://summit.sfu.ca/item/9936.

Lau S.K. (2002). Solving Travelling salesman problem with a heuristic learning

approach, Doctor of Philosophy thesis, Department of Information Systems,

University of Wollongong. Retrieved January 22, 2020 from

http://ro.uow.edu.au/theses/1455.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. & Shmoys, D.B. (1985). The

Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization.

Wiley, New York.

Leão A.A.S., Cherri L.H. & Arenales M.N., (2014). Determining the K-best solutions

of knapsack problems. Computers & Operations Research 49, 71-82.

https://doi.org/10.1016/j.cor.2014.03.008

Lesca, J., Minoux, M. & Perny, P., (2019). The Fair OWA One-to-One Assignment

Problem: NP-Hardness and Polynomial Time Special Cases. Algorithmica 81, 98–

123. https://doi.org/10.1007/s00453-018-0434-5

Lim Y.-F., Hong P.-Y., Ramli R., Khalid R. & Baten Md. A., (2016). Performance

Evaluation of Heuristic Methods in Solving Symmetric Travelling Salesman

Problems. Journal of Artificial Intelligence 9, 12-22.

https://summit.sfu.ca/item/9936
http://ro.uow.edu.au/theses/1455
https://doi.org/10.1016/j.cor.2014.03.008
https://doi.org/10.1007/s00453-018-0434-5

146

Lingling Du & Ruhan Heb (2012). Combining Nearest Neighbor Search with Tabu

Search for Large-Scale Vehicle Routing Problem. Physics Procedia 25, 1536 –

1546. doi: 10.1016/j.phpro.2012.03.273

Lity S., Al-Hajjaji M., Thüm T. & Schaefer I, (2017). Optimizing product orders using

graph algorithms for improving incremental product-line analysis. VAMOS '17:

Proceedings of the Eleventh International Workshop on Variability Modelling of

Software-intensive Systems, (2017), pp 60–67.

https://doi.org/10.1145/3023956.3023961.

Liu, M., & Zhang, P (2014). New hybrid genetic algorithm for solving the multiple

Travelling salesman problem: An example of distribution of emergence materials.

Journal of Systems & Management 23(2), 247–254.

Lorterapong P. & Ussavadilokrit M., (2013). Construction Scheduling Using the

Constraint Satisfaction Problem Method. Journal of Construction Engineering and

Management 139(4), 414-422.

Mackworth A.K. (1977). Consistency in Network of Relations. Artificial Intelligence

8, 99-118,

Malawski M., Figiela K. & Nabrzyski J., (2013). Cost minimization for computational

applications on hybrid cloud infrastructures. Future Generation Computer Systems

29(7), 1786-1794.

Mário Mestria (2018). New hybrid heuristic algorithm for the clustered Travelling

salesman problem. Computers & Industrial Engineering 116 1–12.

https://doi.org/10.1016/j.cie.2017.12.018.

https://doi.org/10.1145/3023956.3023961
https://doi.org/10.1016/j.cie.2017.12.018

147

Martello S. & Monaci M. (2020). Algorithmic approaches to the multiple knapsack

assignment problem. Omega 90, 1-11 https://doi.org/10.1016/j.omega.2018.11.013

Martello S. & Toth P. (1990). KNAPSACK PROBLEMS Algorithms and Computer

Implementations. John Wiley & Sons Ltd. West Sussex, England. ISBN: 0471

924202.

Marti R & Reinelt G. (2011). Heuristic Methods. The linear Ordering Problem Exact

and Heuristic Methods in Combinatorial Optimisation. Springer, -Verlag Berlin

Heidelberg. ISBN: 978-3-64-16728-7. 17-40. DOI: 10.1007/978-3-642-16729-4 2

Matai R., Singh S.P. & Mittal M.L., (2010). Travelling Salesman Problem: An

Overview of Applications, Formulations, and Solution Approaches. In: D.

Davendra (Eds.), Travelling Salesman Problem, Theory and Applications, 1-19.

DOI: 10.5772/12909

Mennell W.K., (2009). Heuristics for solving three routing problems: Close-enough

Travelling salesman problem close-enough vehicle routing problem sequence-

dependent team orienteering problem. PhD Thesis, University of Maryland.

Retrieved October 15, 2019 from https://drum.lib.umd.edu/handle/1903/9822

Misevičius A., Smolinskas J. & Tomkevičius A., (2015). Iterated Tabu Search For The

Travelling Salesman Problem: New Results. Information Technology And Control

34(4), 327-336.

Mitchell J.E., (2008). Integer Programming: Cutting Plane Algorithms. In: Floudas C.,

Pardalos P. (eds) Encyclopedia of Optimization. Springer, Boston, MA, 1650-1657.

https://doi.org/10.1016/j.omega.2018.11.013
https://drum.lib.umd.edu/handle/1903/9822

148

Monnot, J., (2005). Approximation algorithms for the maximum hamiltonian path

problem with specified endpoint(s). European Journal of Operations Research

161(3), 721–735

Morais V.W.C., Mateus G.R. & Noronha T.F., (2014). Iterated local search heuristics

for the Vehicle Routing Problem with Cross-Docking. Expert Systems with

Applications 41, 7495–7506. http://dx.doi.org/10.1016/j.eswa.2014.06.010.

Mostafa, H., Müller, L. & Indiveri, G., (2015). An event-based architecture for solving

constraint satisfaction problems. Nature Communications 6, 8941 (2015).

https://doi.org/10.1038/ncomms9941

Muklason A., Parkes A.J., Ozcan E., McCollum B. & McMullan P., (2017). Fairness

in examination timetabling: Student preferences and extended formulations.

Applied Soft Computing 55, 302–318, 2017.

Myasnikov A.G., Nikolaev A., Ushakov A. (2015). Knapsack problems in groups.

Mathematical Computing 84(292), 987-1016

Nath R., (2016). Approximation solution of Travelling Salesman Problem using

Dijkstra and Bitonic algorithms. International Journal of Innovations &

Advancement in Computer Science 5(2), 102-108.

Necula, R., Breaban, M., & Raschip, M. (2015). Tackling the bi-criteria facet of

multiple Travelling salesman problem with ant colony systems. Procedings of the

2015 IEEE 27th International Conference on Tools with Artificial Intelligence

(ICTAI), 873–880. Vietri sul Mare, Italy: IEEE.

http://dx.doi.org/10.1016/j.eswa.2014.06.010
https://doi.org/10.1038/ncomms9941

149

Neelima S., Satyanarayana N. & Murthy P.K. (2016). A Comprehensive Survey on

Variants in Artificial Bee Colony. International Journal of Computer Science and

Information Technologies 7(4), 1684–89

Neissi N.A. & Mazloom M., (2009). GLS Optimization Algorithm for Solving the

Travelling Salesman Problem. Proceeding of the Second International Conference

on Computer and Electrical Engineering, 291-294. doi:10.1109/iccee.2009.102

Neos (2018). Combinatorial Optimization. Retrieved February 13, 2019 from

https://neos-guide.org/content/combinatorial-optimization.

Nikolas Klug, Alok Chauhan, Vijayakumar & Ramesh Ragala, (2019). k -RNN:

Extending NN-heuristics for the TSP. Mobile Networks and Applications 24, 1210–

1213.

Nima Anari & Shayan Oveis Gharan, (2015). Effective-Resistance-Reducing Flows,

Spectrally Thin Trees, and Asymmetric TSP. Proceedings of the IEEE 56th Annual

Symposium on Foundations of Computer Science (FOCS), 20–39.

Oberlin P., Rathinam S. & Darbha S., (2009). A Transformation for a Multiple Depot,

Multiple Travelling Salesman Problem. Proceedings of the American Control

Conference, St. Louis, MO, 2009, 2636-2641, doi: 10.1109/ACC.2009.5160665.

Oberlin, P., RathinamS. & Darbha S.. (2009). A transformation for a heterogeneous,

multi-depot, multiple Travelling salesman problem. Proceedings of the American

Control Conference, 1292-1297, St. Louis, June 10 - 12, 2009.

Oliveira J.F. & Carravilla M.A., (2009). Heuristics and Local Search. Retrieved

Fevruary 13, 2019 from

https://neos-guide.org/content/combinatorial-optimization.%20Accessed%2013%20Feb.%202019

150

https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristi

csLocalSearch.pdf.

Oliver Lum, Rui Zhang, Bruce Golden & Edward Wasil (2017). A hybrid heuristic

procedure for the Windy Rural Postman Problem with Zigzag Time Windows.

Computers and Operations Research 88, 247–257.

http://dx.doi.org/10.1016/j.cor.2017.07.007.

Padberg M. & Rinaldi G., (1991). A Branch-And-Cut Algorithm For The Resolution

Of Large-Scale Symmetric Travelling Salesman Problems. SIAM Review 33(1), 60–

100. https://doi.org/10.1137/1033004

Papadimitriou C.H., (1992). The Complexity of the Lin–Kernighan Heuristic for the

Travelling Salesman Problem. SIAM Journal on Computing 21(3), 450–465.

doi:10.1137/0221030

Patel V. & Baggar C., (2014). A survey paper of the Bellman-ford algorithm and

Dijkstra algorithm for finding the shortest path in a GIS application. International

Journal of P2P Network Trends and Technology (IJPTT) 4(1), 21-23.

Pelaez V., Campos A., Garcia DF. & Entrialgo J., (2016). Autonomic scheduling of

deadline-constrained bag of tasks in hybrid clouds. In: International Symposium on

Performance Evaluation of Computer and Telecommunication Systems, Montreal,

QC, Canada; 2016, 1-8.

Peng Y., Lu D. & Chen Y. (2014). A Constraint Programming Method for Advanced

Planning and Scheduling System with Multilevel Structured Products. Discrete

Dynamics in Nature and Society 2014, 1-8. https://doi.org/10.1155/2014/917685

https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristicsLocalSearch.pdf
https://paginas.fe.up.pt/~mac/ensino/docs/OR/CombinatorialOptimizationHeuristicsLocalSearch.pdf
http://dx.doi.org/10.1016/j.cor.2017.07.007
https://doi.org/10.1137/1033004
https://doi.org/10.1155/2014/917685

151

Pichpibul T. & Kawtummachai R., (2012). New Enhancement for Clarke-Wright

Savings Algorithm to Optimize the Capacitated Vehicle Routing Problem.

European Journal of Scientific Research 78(1), 119-134.

Potvin J.Y. & Guertin F., (1996). The Clustered Travelling Salesman Problem: A

Genetic Approach. In: I.H. Osman, J.P. Kelly (Eds.), Meta-Heuristics. Springer,

Boston, MA

Puchinger J., Raidl G. & Pferschy U., (2010). The Multidimensional Knapsack

Problem: Structure and Algorithms. INFORMS Journal on Computing, Institute for

Operations Research and the Management Sciences (INFORMS) 22(2), 250 - 265.

ff10.1287/ijoc.1090.0344ff. ffhal01224914f

Punnen A.P. (2007) The Travelling Salesman Problem: Applications, Formulations and

Variations. In: G. Gutin G. A.P. Punnen (Eds.), The Travelling Salesman Problem

and Its Variations. Combinatorial Optimization, 12. Springer, Boston, MA. 1-28.

Qing, N., Kang, F., & Marine, S. O. (2015). Application of a new acceleration particle

swarm optimization for solving multiple Travelling salesman problems. Journal of

Shaanxi Normal University, 43(6), 7.

Qu R., He F. & Burke E.K., (2009). Hybridizing Integer Programming Models with an

Adaptive Decomposition Approach for Exam Timetabling Problems. In

Proceedings of the 4th Multidisciplinary International Scheduling: Theory and

Applications, pp. 435–446.

Ramshaw L. & Tarjan R.E., (2012). On Minimum-Cost Assignments in Unbalanced

Bipartite Graphs. HP Laboratories. HPL-2012-40R1. Retrieved July 3, 2020 from

https://www.hpl.hp.com/techreports/2012/HPL-2012-40R1.pdf.

https://www.hpl.hp.com/techreports/2012/HPL-2012-40R1.pdf

152

RAO W. & JIN C, (2010). A New Hybrid Algorithm for Solving TSP. Proceedings of

ICLEM 2010: Logistics for Sustained Economic Development, (2010), 3327-3334.

Ratnasari A., Ardiani F. & Nurvita F., (2013). Penentuan Jarak Terpendek dan Jarak

Terpendek Alternatif menggunakan Algoritma Dijkstra serta Estimasi Waktu

Tempuh. Universitas Islam Indonesia. ISBN: 979-26-0266-6. Yogyakarta.

Rego C., Gamboa D., Glover F. & Osterman C., (2011). Travelling salesman problem

heuristics: leading methods, implementations, and latest advances. European

Journal of Operational Research, 211(3), 427-441

Reinelt, G., (1994). The Travelling Salesman: Computational Solutions for TSP

Applications. Springer-Verlag Berlin Heidelberg. DOI 10.1007/3-540-48661-5

Roberti, R. & Toth, P., (2012). Models and algorithms for the Asymmetric Travelling

Salesman Problem: an experimental comparison. European Journal of

Transportation and Logistics 1, 113–133. https://doi.org/10.1007/s13676-012-

0010-0

Roldán, E., Negny, S., Marc Le Lann, J., & Cortés, G. (2011). Modified Case Based

Reasoning cycle for Expert Knowledge Acquisition during Process design. 21st

European Symposium on Computer Aided Process Engineering, 296–300.

doi:10.1016/b978-0-444-53711-9.50060-2

Rosenkrantz D.J., Stearns R.E. & Lewis II, P.M., (1977). An analysis of several

heuristics for the Travelling salesman problem. SIAM Journal of Computing 6(3),

563–581.

https://doi.org/10.1007/s13676-012-0010-0
https://doi.org/10.1007/s13676-012-0010-0

153

Rutishauser U., Slotine J.-J. & Douglas R.J. (2018). Solving constraint-satisfaction

problems with distributed neocortical-like neuronal networks. Neural Computation

30(5), 1359–1393. doi: 10.1162/NECO_a_01074

Sabar N.R., Ayob M., Qu R. & Kendall G., (2012). A graph coloring constructive

hyper-heuristic for examination timetabling problems. Applied Intelligence, 37(1),

1–11.

Sahu M., Singh A.V. & Khatri S.K., (2019). A Classical Constraint Satisfaction

Problem and its Solution using Artificial Intelligence. Proceedings of the 2019

Amity International Conference on Artificial Intelligence (AICAI), Dubai, United

Arab Emirates, 429-433, doi: 10.1109/AICAI.2019.8701325.

Saiyed A.R., (2012). The Travelling Salesman problem. Indiana State University Terre

Haute, IN 47809, USA. Retrieved April 13, 2020 from

http://cs.indstate.edu/~zeeshan/aman.pdf.

Salehi, K. (2014). An approach for solving multi-objective assignment problem with

interval parameters. Management Science Letters 4(9), 2155-2160.

Savelsbergh M.W.P. (2001). Branch and Price: Integer Programming with Column

Generation. In: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization.

Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7.

Schulze B., Stiglmayr M. & Paquete, L., (2020). On the rectangular knapsack problem:

approximation of a specific quadratic knapsack problem. Mathematical Methods of

Operations Researh 92, 107-132. https://doi.org/10.1007/s00186-020-00702-0

Sengupta A., (2017). Assignment Problem: Meaning, Methods and Variations.

Retrieved July 3, 2020 from https://www.engineeringenotes.com/project-

http://cs.indstate.edu/~zeeshan/aman.pdf
https://doi.org/10.1007/0-306-48332-7
https://doi.org/10.1007/s00186-020-00702-0
https://www.engineeringenotes.com/project-management-2/operationsresearch/assignment-problem-meaning-methods-and-variations-operations-research/15652

154

management-2/operationsresearch/assignment-problem-meaning-methods-and-

variations-operations-research/15652.

Sergeev S.I., (2014). Maximum travelling salesman problem. Automation and Remote

Control 75(12), 2170–2189. https://doi.org/10.1134/S0005117914120078

Shah K., Reddy P. & Vairamuthu S. (2015) Improvement in Hungarian Algorithm for

Assignment Problem. In: L. Suresh, S. Dash & B. Panigrahi (Eds.), Artificial

Intelligence and Evolutionary Algorithms in Engineering Systems. Advances in

Intelligent Systems and Computing, 324. Springer, New Delhi.

https://doi.org/10.1007/978-81-322-2126-5_1.

Sherali H, Driscoll P (2002) On tightening the relaxations of Miller–Tucker–Zemlin

formulations for asymmetric Travelling salesman problems. Operations Research

50(6), pp 656–669

Shim, V. A., Tan, K. C., & Tan, K. K. (2012). A hybrid estimation of distribution

algorithm for solving the multi-objective multiple Travelling salesman problem.

IEEE congress on evolutionary computation, 1–8. Brisbane, QLD, Australia: IEEE

Shuai Y., Yunfeng S. & Kai Z., (2019). An effective method for solving multiple

travelling salesman problem based on NSGA-II, Systems Science & Control

Engineering 7(2), 108-116, DOI: 10.1080/21642583.2019.1674220

Singh S., (2012). A Comparative Analysis of Assignment Problem. IOSR Journal of

Engineering 2(8), 1–15.

Sitek P. & Wikarek J., (2016). A Hybrid Programming Framework for Modeling and

Solving Constraint Satisfaction and Optimization Problems. Scientific

Programming 2016, 1-14. https://doi.org/10.1155/2016/5102616

https://www.engineeringenotes.com/project-management-2/operationsresearch/assignment-problem-meaning-methods-and-variations-operations-research/15652
https://www.engineeringenotes.com/project-management-2/operationsresearch/assignment-problem-meaning-methods-and-variations-operations-research/15652
https://doi.org/10.1134/S0005117914120078
https://doi.org/10.1007/978-81-322-2126-5_1
https://doi.org/10.1155/2016/5102616

155

Štencek J., (2013). Travelling salesman problem. Bachelor’s Thesis, Degree

Programme in Software engineering, JAMK University of Applied Sciences, May

2013. Retrieved Februry 12, 2020 from

https://www.theseus.fi/bitstream/handle/10024/59942/Jakub_Stencek_TSP_Bache

lor_Thesis.pdf?sequence=1&isAllowed=y.

Stratopoulos C., (2017). Primal Cutting Plane Methods for the Travelling Salesman

Problem. Masters Thesis Mathematics in Combinatorics and Optimization,

University of Waterloo, Ontario, Canada, 2017. Retrieved February 15, from

https://uwspace.uwaterloo.ca/bitstream/handle/10012/11755/Stratopoulos_Christo

s.pdf?sequence=1&isAllowed=y.

Sundar K. & Rathinam S., (2017). Algorithms for Heterogeneous, Multiple Depot,

Multiple Unmanned Vehicle Path Planning Problems. Journal of Intelligent Robotic

Systems 88, 513–526. https://doi.org/10.1007/s10846-016-0458-5

Svensson O. Tarnawski J. & Végh L.A. (2018). A constant-factor approximation

algorithm for the asymmetric Travelling salesman problem. STOC 2018:

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, 204–213. https://doi.org/10.1145/3188745.3188824

Syahputra M.F.A., Devita R.N., Siregar S.A. & Kirana K.C., (2016). Implementation

of Travelling Salesman Problem (TSP) based on Dijkstra's Algorithm in Logistics

System. JAVA, International Journal of Electrical and Electronics Engineering

4(1), 39-44.

Tang L., Liu J., Rong A. & Yang Z., (2000). A multiple Travelling salesman problem

model for hot rolling scheduling in shanghai baoshan iron & steel complex.

European Journal of Operational Research 124(2), 267-282.

https://www.theseus.fi/bitstream/handle/10024/59942/Jakub_Stencek_TSP_Bachelor_Thesis.pdf?sequence=1&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/59942/Jakub_Stencek_TSP_Bachelor_Thesis.pdf?sequence=1&isAllowed=y
https://uwspace.uwaterloo.ca/bitstream/handle/10012/11755/Stratopoulos_Christos.pdf?sequence=1&isAllowed=y
https://uwspace.uwaterloo.ca/bitstream/handle/10012/11755/Stratopoulos_Christos.pdf?sequence=1&isAllowed=y
https://doi.org/10.1007/s10846-016-0458-5

156

Thenepalle J.K. & Singamsetty P., (2019). An open close multiple travelling salesman

problem with single depot. Decision Science Letters 8(2), 121-136. DOI:

10.5267/j.dsl.2018.8.002.

Tutte W.T., (2012). Graph Theory as I Have Known It (Oxford Lecture Series in

Mathematics and Its Applications). Clarenford Press, Oxford. ISBN 978-0-19-

966055-1.

Universität Heidelberg, (2007). Optimal solutions for symmetric TSPs. Retrieved

December 17, 2019 from http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/STSP.html.

Ursani Z. & Corne D.W., (2016). Introducing Complexity Curtailing Techniques for

the Tour Construction Heuristics for the Travelling Salesperson Problem. Journal

of Optimization 2016, 1-16. https://doi.org/10.1155/2016/4786268

Vaishnav P., Choudhary N. & Jain K., (2017). Travelling Salesman Problem Using

Genetic Algorithm : A Survey. International Journal of Scientific Research in

Computer Science, Engineering and Information Technology 2(3), 105–108.

Valenzuela C.L. & Jones A.J., (1997). Estimating the Held-Karp lower bound for the

geometric TSP. European Journal of Operational Research 102(1), 157-175.

Van den Bossche R., Vanmechelen K. & Broeckhove J., (2013). Online cost-efficient

scheduling of deadline-constrained workloads on hybrid clouds. Future Generation

Computing Systems 29(4), 973-985.

Venkatesh P., Singh A. & Mallipeddi R., (2019). A Multi-Start Iterated Local Search

Algorithm for the Maximum Scatter Travelling Salesman Problem. In Proceedings

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
https://doi.org/10.1155/2016/4786268

157

of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New

Zealand, 2019, 1390-1397, doi: 10.1109/CEC.2019.8790018.

Víctor Pacheco-Valencia, José Alberto Hernández, José María Sigarreta & Nodari

Vakhania, (2020). Simple Constructive, Insertion, and Improvement Heuristics

Based on the Girding Polygon for the Euclidean Travelling Salesman Problem.

Algorithms 13 (5), 1-30. doi:10.3390/a13010005.

Walrand J. & Varaiya P., (2000). The Internet and TCP/IP Networks. In: Jean Walrand,

Pravin Varaiya, (eds) High-Performance Communication Networks (Second

Edition), Morgan Kaufmann, 2000, 155-203. https://doi.org/10.1016/B978-0-08-

050803-0.50013-7

Waltz D.L., (1972). Generating semantic descriptions from drawings of scenes with

shadows". Technical Report. AI-TR-271, MIT, Cambridge, M A, 1972. Retrieved

December 10, 2019 from https://dspace.mit.edu/handle/1721.1/41205.

Wang B., Song Y., Sun Y. & Liu J., (2016). Managing deadline-constrained bag-of-

tasks jobs on hybrid clouds. In: High Performance Computing Symposium,

Pasadena,CA,USA; 2016:22.

Wang C., Lin M. & Zhong Y. (2016). Swarm simulated annealing algorithm with

knowledge-based sampling for travelling salesman problem. International Journal

of Intelligent Systems Technologies and Applications 15(1), 74–94.

Wang H.-F. & Chen Y.-Y., (2012). A genetic algorithm for the simultaneous delivery

and pickup problems with time window. Computers & Industrial Engineering 62,

84–95. https://doi.org/10.1016/j.cie.2011.08.018

https://doi.org/10.1016/B978-0-08-050803-0.50013-7
https://doi.org/10.1016/B978-0-08-050803-0.50013-7
https://dspace.mit.edu/handle/1721.1/41205
https://doi.org/10.1016/j.cie.2011.08.018

158

Wang H.-F. & Chen Y.-Y., (2013). A coevolutionary algorithm for the flexible delivery

and pick up problem with time windows. International Journal of Production

Economics 141, 4–13. http://dx.doi.org/10.1016/j.ijpe.2012.04.011.

Weiler C., Biesinger B., Hu B. & Raid G.R. (2015). Heuristic Approaches for the

Probabilistic Travelling Salesman Problem. R. Moreno-D´ıaz et al. (Eds.):

EUROCAST 2015, LNCS 9520, 342–349, 2015. DOI: 10.1007/978-3-319-27340-

2 43

Woeginger G.J., (2003). Exact algorithms for NP-hard problems: a survey.

Combinatorial optimization - Eureka, you shrink! Springer-Verlag New York, Inc.

New York, NY, USA. ISBN: 3-540-00580-3, 185 – 207.

Woumans G., De Boeck L., Belien J. & Creemers S., (2016). A column generation

approach for solving the examination-timetabling problem. European Journal of

Operational Research 253(1), 178–194.

Xu X.-Y., Huang X.-L., Li Z.-M, Gao J., Jiao Z.-Q., Wang Y., Ren R.-J., Zhang H.P.

& Jin X.-M., (2020). A scalable photonic computer solving the subset sum problem.

Science Advances 6(5), 1-7. DOI: 10.1126/sciadv.aay5853

Xu Z. & Rodrigues B.C., (2017). An extension of the Christofides heuristic for the

generalized multiple depot multiple Travelling salesmen problem. European

Journal of Operational Research 257(3), 735-745. DOI:

10.1016/j.ejor.2016.08.054

Xu Z., Xu L. & Rodrigues B.C., (2011). An Analysis of the Extended Christofides

Heuristic for the k-depot Travelling Salesman Problem. Operations Research

Letters 39(3), 218-223. https://doi.org/10.1016/j.orl.2011.03.002

http://dx.doi.org/10.1016/j.ijpe.2012.04.011
https://doi.org/10.1016/j.orl.2011.03.002

159

Yang J., Shi X., Marchese M. & Liang Y., (2008). An ant colony optimization method

for generalized TSP problem. Progress in Natural Science 18 1417-1422.

Yu T & LinK.-J., (2004). Service selection algorithms for Web services with end-to-

end QoS constraints. Proceedings of the IEEE International Conference on e-

Commerce Technology, 2004. CEC 2004., San Diego, CA, USA, 2004, 129-136,

doi: 10.1109/ICECT.2004.1319726.

Yuan X., (1999). On the extended Bellman-Ford algorithm to solve two-constrained

quality of service routing problems. Proceedings of the Eighth International

Conference on Computer Communications and Networks (Cat. No.99EX370),

Boston, MA, USA, 1999, 304-310.

Zamani R., (2013). A competitive magnet-based genetic algorithm for solving the

resource-constrained project scheduling problem. European Journal of Operational

Research 229(2), 552-559. https://doi.org/10.1016/j.ejor.2013.03.005

Zhang Y. & Sun J., (2017). Novel efficient particle swarm optimization algorithms for

solving QoS-demanded bag-of-tasks scheduling problems with profit maximization

on hybrid clouds. Concurrency and Computation Practice and Experience 29(21),

42-49. https://doi.org/10.1002/cpe.4249

Zhong T. & Young R. (2010). Multiple Choice Knapsack Problem: Example of

planning choice in transportation. Evaluation and Program Planning 33(2), 128-

137. https://doi.org/10.1016/j.evalprogplan.2009.06.007

https://doi.org/10.1016/j.ejor.2013.03.005
https://doi.org/10.1002/cpe.4249
https://doi.org/10.1016/j.evalprogplan.2009.06.007

160

APPENDICES

APPENDIX I: DATASET CONVERSION MODULE

import tsplib95

import networkx

import numpy as np

arr = ['ulysses16.tsp']

def iterate(arr):

 for i in range(len(arr)):

 name = arr[i].split(".")

 problem = tsplib95.load_problem(arr[i])

 graph = problem.get_graph()

 distance_matrix = networkx.to_numpy_matrix(graph)

 distance_matrix = np.array(distance_matrix)

 fo = open("./output/" + name[0] + ".txt", 'w')

 for i in range(len(distance_matrix)):

 for j in range(len(distance_matrix[i])):

 fo.write(str(distance_matrix[i][j]))

 if(j != len(distance_matrix) - 1):

 fo.write(" ")

161

 if(i != len(distance_matrix) - 1):

 fo.write("\n")

 fo.close()

if '__main__' == __name__:

 iterate(arr)

162

APPENDIX II: CONSTRUCTOR – STRATEGY MODULE

package tsp;

/**

 * The {@code Strategy} class represent a specific strategy to

solve a given TSP

 * problem

 *

 * @author Nathaniel

 */

public abstract class Strategy {

 /**

 * A {@code RoadMap} object that this strategy works on

 */

 protected RoadMap rm;

 /**

 * The only constructor.

 *

163

 * @param rm A {@code Strategy} object to be directly

assigned to the RoadMap rm

 * attribute

 */

 public Strategy(RoadMap rm) {

 this.rm = rm;

 }

 /**

 * Every child class must provide an implementation to

solve this TSP problem

 *

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

 public abstract Tour solve();

 /**

 * Get a built-in strategy to solve this TSP using brute

force

164

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

 public static Strategy bruteForce(RoadMap rm) {

 return new BruteForceStrategy(rm);

 }

 /**

 * Get a built-in strategy to solve this TSP using Nearest

Neighbor Heuristic

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @param start The city this strategy starts with

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

165

 public static Strategy nearestNeighbor(RoadMap rm, String

start) {

 return new NearestNeighborStrategy(rm, start);

 }

 /**

 * Get a built-in strategy to solve this TSP using Farthest

Insertion Heuristic

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @param a One of the three cities to form a triangle

that this strategy

 * starts with

 * @param b One of the three cities to form a triangle

that this strategy

 * starts with

 * @param c One of the three cities to form a triangle

that this strategy

 * starts with

 * @return A {@code Tour} object that represents the

solution of this strategy

166

 */

 public static Strategy farthestInsertion(RoadMap rm,

String a, String b, String c) {

 return new FarthestInsertionStrategy(rm, a, b, c);

 }

 /**

 * Get a built-in strategy to solve this TSP using Nearest

Insertion Heuristic

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @param a One of the three cities to form a triangle

that this strategy

 * starts with

 * @param b One of the three cities to form a triangle

that this strategy

 * starts with

 * @param c One of the three cities to form a triangle

that this strategy

 * starts with

167

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

 public static Strategy nearestInsertion(RoadMap rm, String

a, String b, String c) {

 return new NearestInsertionStrategy(rm, a, b, c);

 }

 /**

 * Get a built-in strategy to solve this TSP using Min Max

Insertion Heuristic

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @param a One of the three cities to form a triangle

that this strategy

 * starts with

 * @param b One of the three cities to form a triangle

that this strategy

 * starts with

 * @param c One of the three cities to form a triangle

that this strategy

168

 * starts with

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

 public static Strategy MinMaxInsertion(RoadMap rm, String

a, String b, String c) {

 return new MinMaxStrategy(rm, a, b, c);

 }

 /**

 * Get a built-in strategy to solve this TSP using Farthest

Insertion Heuristic

 *

 * @param rm A {@code RoadMap} object that this strategy

works on

 * @param a One of the three cities to form a triangle

that this strategy

 * starts with

 * @param b One of the three cities to form a triangle

that this strategy

 * starts with

169

 * @param c One of the three cities to form a triangle

that this strategy

 * starts with

 * @return A {@code Tour} object that represents the

solution of this strategy

 */

 public static Strategy MidpointinsertionStrategy(RoadMap

rm, String a, String b, String c) {

 return new MidpointinsertionStrategy(rm, a, b, c);

 }

 // public static double

CheapestInsertionStrategy(double[][] rm, int start) {

 // return new CheapestInsertionStrategy(rm, start);

 // }

170

APPENDIX III: NEAREST NEIGHBOUR HEURISTIC JAVA

CODE

package tsp;

import java.util.LinkedList;

class NearestNeighborStrategy extends Strategy {

 private String start;

 protected NearestNeighborStrategy(RoadMap rm, String

start) {

 super(rm);

 this.rm.checkCity(start);

 this.start = start;

 }

 private String findNearestNeighbor(String city,

LinkedList<String> unvisited) {

 double shortest = Double.MAX_VALUE;

 String nearest = null;

 for (String s : unvisited) {

 double current = this.rm.getDistance(city, s);

 if (Double.compare(current, shortest) < 0) {

 nearest = s;

171

 shortest = current;

 }

 }

 return nearest;

 }

 @Override

 public Tour solve() {

 long start_time = System.nanoTime();

 Tour.Builder tb = new Tour.Builder(this.rm);

 String current = this.start;

 LinkedList<String> unvisited = new

LinkedList<String>(this.rm.getCitySet());

 unvisited.remove(current);

 while (!unvisited.isEmpty()) {

 String nearest =

this.findNearestNeighbor(current, unvisited);

 tb.addPair(current, nearest);

 current = nearest;

 unvisited.remove(current);

172

 }

 tb.addPair(current, start);

 long end_time = System.nanoTime();

 System.out.printf("Time Taken : %d\n", end_time -

start_time);

 return tb.build();

 }

}

173

APPENDIX IV: FARTHEST INSERTION HEURISTIC JAVA

CODE

package tsp;

class FarthestInsertionStrategy extends Strategy {

 private String a;

 private String b;

 private String c;

 protected FarthestInsertionStrategy(RoadMap rm, String a,

String b, String c) {

 super(rm);

 rm.checkCity(a);

 rm.checkCity(b);

 rm.checkCity(c);

 if(a.equals(b) || a.equals(c) || b.equals(c)){

 throw new RuntimeException(a + ", " + b + ", "

+ c + " cannot form a triangle");

 }

 this.a = a;

 this.b = b;

 this.c = c;

174

 }

 private double distanceFrom(String city, Tour.Builder

tb){

 double max = 0;

 for(String s : tb.getCities()){

 double current = this.rm.getDistance(city, s);

 if(current > max){

 max = current;

 }

 }

 return max;

 }

 private String findFarthestCity(Tour.Builder tb){

 String farthest = "";

 double maxDist = 0;

 for(String city : this.rm.getCitySet()){

 if(!tb.covers(city)){

 double currentDist =

this.distanceFrom(city, tb);

175

 if(currentDist > maxDist){

 maxDist = currentDist;

 farthest = city;

 }

 }

 }

 return farthest;

 }

 private void insertCity(String city, Tour.Builder tb){

 Pair target = null;

 double minIncr = Double.MAX_VALUE;

 for(Pair p : tb.getPairs()){

 String a = p.getSmaller();

 String b = p.getLarger();

 double incr = this.rm.getDistance(city, a) +

this.rm.getDistance(city, b) - this.rm.getDistance(p);

 if(Double.compare(incr, minIncr) < 0){

 target = p;

 minIncr = incr;

176

 }

 }

 tb.removePair(target);

 tb.addPair(target.getSmaller(), city);

 tb.addPair(target.getLarger(), city);

 }

 @Override

 public Tour solve() {

 Tour.Builder tb = new Tour.Builder(this.rm);

 tb.addPair(this.a, this.b);

 tb.addPair(this.a, this.c);

 tb.addPair(this.b, this.c);

 while(tb.size() < this.rm.size()){

 String farthest = this.findFarthestCity(tb);

 this.insertCity(farthest, tb);

 }

 return tb.build();

 }

 }

177

APPENDIX V: HALF MAX INSERTION HEURISTIC JAVA CODE

package tsp;

import java.util.Arrays;

import java.util.ArrayList;

import java.util.List;

import java.util.Collections;

class MidpointinsertionStrategy extends Strategy {

 private String a;

 private String b;

 private String c;

 protected MidpointinsertionStrategy(RoadMap rm, String a,

String b, String c) {

 super(rm);

 rm.checkCity(a);

 rm.checkCity(b);

 rm.checkCity(c);

 if(a.equals(b) || a.equals(c) || b.equals(c)){

 throw new RuntimeException(a + ", " + b + ", "

+ c + " cannot form a triangle");

 }

178

 this.a = a;

 this.b = b;

 this.c = c;

 }

 public static double findMax(double[] a, int total){

 double temp;

 for (int i = 0; i < total; i++){

 for (int j = i + 1; j < total; j++)

 {

 if (a[i] > a[j])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 return a[total-1];

 }

179

 // public double findClosest(double myNumber, double[]

numbers){

 // double distance = Math.abs(numbers[0] - myNumber);

 // int idx = 0;

 // for(int c = 1; c < numbers.length; c++){

 // double cdistance = Math.abs(numbers[c] -

myNumber);

 // int closestSoFar = abs(numbers[i] - myNumber);

 // if (abs(numbers[i] - myNumber) < abs(closestSoFar

- myNumber)) {

 // // if(cdistance < distance){

 // idx = c;

 // distance = cdistance;

 // }

 // }

 // double theNumber = numbers[idx];

 // return theNumber;

 // }

180

 private static void removeDuplicates(String[] array) {

 int[] occurence = new int[array.length];

 for (int i = 0; i < array.length; i++) {

 for(int j=i+1;j<array.length;j++){

 if(array[i]==array[j]){

 occurence[j]=j;

 }

 }

 }

 int resultLength=0;

 for(int i=0;i<occurence.length;i++){

 if(occurence[i]==0){

 resultLength++;

 }

 }

 String[] result=new String[resultLength];

 int index=0;int j=0;

 for(int i=0;i<occurence.length;i++){

 index = occurence[i];

181

 if(index==0){

 result[j]= array[i];

 j++;

 }

 }

 for(String eachString : result){

 // System.out.println(eachString);

 }

 }

 public double findClosest(String city, double

targetNumber, Tour.Builder tb){

 double closestDifference = targetNumber;

 double closestNumber= 0;

 // for (int i = 0; i < numbers.length; i++){

 int i = 0;

 for(String s : tb.getCities()){

 System.out.println(s);

 if(closestDifference >

java.lang.Math.abs(this.rm.getDistance(city, s)-targetNumber)){

182

 closestDifference =

java.lang.Math.abs(this.rm.getDistance(city, s)-targetNumber);

 closestNumber= this.rm.getDistance(city,

s);

 }

 i++;

 }

 return closestNumber;

 }

 public double calcDistanceFrom(String city, Tour.Builder

tb){

 double max = 0;

 double mid = 0;

 double min = 0;

 for(String s : tb.getCities()){

 max = this.rm.getDistance(city, s);

 mid = this.rm.getDistance(city, s);

 double current = this.rm.getDistance(city, s);

 if(current < max && current > min){

 max = max;

183

 min = min;

 mid = current;

 }else if(current > max){

 mid = max;

 max = current;

 min = min;

 }else if(min > max){

 max = min;

 mid = mid;

 max = max;

 }else{

 max = max;

 min = min;

 mid = mid;

 }

 }

 return mid;

 }

184

 private double distanceFrom(String city, Tour.Builder tb){

 double max = 0;

 for(String s : tb.getCities()){

 double current = this.rm.getDistance(city, s);

 if(current > max){

 max = current;

 }

 }

 return max;

 }

 private String findMiddleCity(Tour.Builder tb, int

rmsize){

 String middle = "";

 double maxDist = 0;

 int i = 0;

 for(String city : this.rm.getCitySet()){

 if(!tb.covers(city)){

 // double currentDist =

findClosest(findMax(allcitties, rmsize), allcitties);

185

 // double currentDist =

this.distanceFrom(city, tb);

 double currentDist =

calcDistanceFrom(city, tb);

 middle = city;

 // if(currentDist > maxDist){

 // maxDist = currentDist;

 // middle = city;

 // }else{

 // middle = city;

 // }

 }

 i++;

 }

 return middle;

 }

 private void insertCity(String city, Tour.Builder tb){

 Pair target = null;

 double minIncr = Double.MAX_VALUE;

 for(Pair p : tb.getPairs()){

186

 String a = p.getSmaller();

 String b = p.getLarger();

 double incr = this.rm.getDistance(city, a) +

this.rm.getDistance(city, b) - this.rm.getDistance(p);

 if(Double.compare(incr, minIncr) < 0){

 target = p;

 minIncr = incr;

 }

 }

 tb.removePair(target);

 tb.addPair(target.getSmaller(), city);

 tb.addPair(target.getLarger(), city);

 }

 @Override

 public Tour solve() {

 Tour.Builder tb = new Tour.Builder(this.rm);

 tb.addPair(this.a, this.b);

 tb.addPair(this.a, this.c);

 tb.addPair(this.b, this.c);

 while(tb.size() < this.rm.size()){

187

 String middle = this.findMiddleCity(tb,

this.rm.size());

 this.insertCity(middle, tb);

 }

 return tb.build();

 }

 }

188

APPENDIX VI: IMPLEMENTATION MODULE – MAIN CLASS

import tsp.FileProcessor;

import tsp.RoadMap;

import tsp.Strategy;

import util.Printer;

// import tsp.CheapestInsertion;

// import tsp.ConstructionHeuristic;

public class TSPDemo {

 public static final String bruteforce =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/bruteforce.txt";

 public static final String german =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/german.txt";

 public static final String q1 =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q1.txt";

 public static final String q1seq =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q1seq.txt";

189

 public static final String seq =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/seq.txt";

 public static final String matric =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/matric.txt";

 public static final String tut8q1 =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q1.txt";

 public static final String tut8q2 =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q2.txt";

 public static final String tut8q2seq =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q2seq.txt";

 public static final String q6 =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q6.txt";

 public static final String q9 =

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q9.txt";

 // our own import

190

 public static final String burma14 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/burma14.txt";

 public static final String att48 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/att48.txt";

 public static final String ulysses22 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ulysses22.txt";

 public static final String ulysses16 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ulysses16.txt";

 public static final String bays29 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/bays29.txt";

 public static final String berlin52 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

191

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/berlin52.txt";

 public static final String brazil58 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/brazil58.txt";

 public static final String eil51 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil51.txt";

 public static final String eil76 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil76.txt";

 public static final String rat99 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat99.txt";

 public static final String bier127 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/bier127.txt";

192

 public static final String d657 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d657.txt";

 public static final String eil101 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil101.txt";

 public static final String gr229 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/gr229.txt";

 public static final String lin318 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/lin318.txt";

 public static final String pr439 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pr439.txt";

 public static final String rat195 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

193

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat195.txt";

 public static final String rat575 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat575.txt";

 public static final String u724 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u724.txt";

 public static final String ch130 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ch130.txt";

 public static final String ch150 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ch150.txt";

 public static final String rat783 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat783.txt";

194

 public static final String ali535 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ali535.txt";

 public static final String dsj1000 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/dsj1000.txt";

 public static final String u2319 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u2319.txt";

 public static final String pcb3038 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pcb3038.txt";

 public static final String rl5915 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rl5915.txt";

 public static final String fl3795 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

195

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/fl3795.txt";

 public static final String d1655 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d1655.txt";

 public static final String d2103 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d2103.txt";

 public static final String pr2392 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pr2392.txt";

 public static final String rl1889 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rl1889.txt";

 public static final String u1817 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u1817.txt";

196

 public static final String u2152 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u2152.txt";

 public static final String vm1748 =

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/vm1748.txt";

 public static void main(String[] args) {

 FileProcessor fpdt = FileProcessor.DISTANCE_MATRIX;

 // RoadMap rm = fpdt.read(matric);

 RoadMap rm = fpdt.read(eil51);

 // RoadMap rm = fpdt.read(dsj1000);

 //

System.out.println(Strategy.bruteForce(rm).solve());

 System.out.println(Strategy.nearestNeighbor(rm,

"C1").solve());

 //long startTime1 = System.nanoTime();

 //System.out.println(Strategy.farthestInsertion(rm,

"C3", "C4", "C5").solve());

197

 //long endTime1 = System.nanoTime();

 //long totalTime1 = endTime1 - startTime1;

 //System.out.println(totalTime1);

 //System.out.println("//////////////////////////");

 //long startTime = System.nanoTime();

 //System.out.println(Strategy.nearestInsertion(rm,

"C3", "C4", "C5").solve());

 //long endTime = System.nanoTime();

 //long totalTime = endTime - startTime;

 //System.out.println(totalTime);

 //long startTime = System.nanoTime();

 //System.out.println(Strategy.MidpointinsertionStrategy(r

m,"C3", "C4", "C5").solve());

 //long endTime = System.nanoTime();

 //long totalTime = endTime - startTime;

 //System.out.println(totalTime);

198

 // double[][] distances = new double[][] {{0, 8, 4,

9, 9},

 //

{8, 0, 6, 7, 10},

 //

{4, 6, 0, 5, 6},

 //

{9, 7, 5, 0, 4},

 //

{9, 10, 6, 4, 0}};

 // System.out.println("/////////////////");

 // heuristic = new CheapestInsertion(distances, 0);

 // Printer.printArray(heuristic.getTour());

 // long startTime1 = System.nanoTime();

 // System.out.println(Strategy.MinMaxInsertion(rm,

"C3", "C4", "C5").solve());

 // long endTime1 = System.nanoTime();

 // long totalTime1 = endTime1 - startTime1;

 // System.out.println(totalTime1);

 }

}

