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ABSTRACT 

The Optimization Problem of solving complex, mostly impracticable problems with 

limited resources remains a research conundrum which has necessitated enormous 

amount of intervention over the years. In addressing Combinatorial Optimization 

Problems, many problems have been formulated, prominent among which is the 

Travelling Salesman Problem (TSP). While the exact approach to solving the TSP 

guarantees optimal solutions, more attention has been paid to approximate methods 

over the years because they address the limitations of exact techniques by generating 

solutions to complex problems within polynomial time 𝑝, especially with increasing 

solution space. Thus, a considerable amount of research efforts has gone into obtaining 

good lower bounds on the optimal tour quality of approximate methods of different 

classes such as the Tour Construction, Improvement, Compound heuristics and 

Metaheuristics.  

The goal of this study is to investigate some Tour Construction heuristics with a view 

to understanding their implementation details and how they are applied to the solution 

process of the Travelling Salesman Problem, and to formulate a better solution in 

solving the Travelling Salesman Problem. Two classic Tour Construction heuristics 

were examined, namely the Nearest Neighbour Heuristic (NNH) and the Farthest 

Insertion Heuristic (FIH). The NNH solves the Travelling Salesman Problem using a 

greedy approach and suffers immensely from the “curse of dimensionality” phenomena. 

The FIH on the other hand is considered as the best performing Insertion heuristic and 

best among lower order complexity heuristics. However, its performance is impeded 

by the distance between its partial circuit and the new node to be inserted.  
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In order to circumvent the limitation of the NNH and FIH, a new insertion technique 

referred to as the Half Max Insertion Technique (HMIH) was evolved. The HMIH 

randomly pick one node from 𝑄 by 𝑖𝑛𝑖𝑡(𝑄) and creates a partial circuit which is 

expanded with every iteration. The partial circuit is made up of the points 𝑢, 𝑣, 𝑤 to 

form a minimum polygon. In the (𝑖 + 1)𝑡ℎ iteration, the insertion heuristics attempt to 

add one node into the current circuit by minimizing the increment of the total distance 

of the circuit. The method first determines the longest distance 𝑑𝑚𝑎𝑥 of any node from 

either of 𝑢 𝑜𝑟 𝑣 and computes 1
2⁄ 𝑑𝑚𝑎𝑥. The routine then finds a node 𝑤 not in the 

subtour whose distance from either 𝑢 𝑜𝑟 𝑣 ≈ 1
2⁄ 𝑑𝑚𝑎𝑥. An edge (𝑢, 𝑣) of the subtour 

to which the insertion of 𝑤 gives the smallest increase of length, that is for which ∆𝑓 =

𝑐𝑢𝑥 + 𝑐𝑥𝑣 + 𝑐𝑤𝑥 − 𝑐𝑢𝑣𝑤 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 is determined and 𝑥 is inserted between 

𝑢, 𝑣 𝑎𝑛𝑑 𝑤. This process is iterated until a Hamiltonian cycle is formed. 

The NNH, FIH and the newly devised HMIH were experimented on ten publicly 

available benchmark instances from the Travelling Salesman Problem Library 

(TSPLIB). The experimental results revealed that the Half Max Insertion Heuristic 

consistently outperformed both the FIH and NNH across a wide spectrum of benchmark 

instances with statistical significance of as much as 16% at some point. The average 

goodness value of the proposed HMIH was 86.9% as against 81.7% for the FIH and 

74.5% for the NNH. Hence, the HMIH has a higher accuracy than both the FIH and 

NNH, and therefore yields a superior heuristic in tackling NP-Hard problems.  
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CHAPTER ONE 

1.0. INTRODUCTION 

1.1. Background to the Study 

The task of solving complex, often impracticable computational problems with limited 

resources remains a research conundrum that continues to generate interests in the field 

of Theoretical Computer Science. This scientific technique of finding the best solutions 

of cost functions is referred to as Combinatorial Optimization. In other words, 

Combinatorial Optimization is concerned with the task of obtaining the optimal or close 

to the optimal set of solutions of a finite set, subject to predefined conditions or 

constraints (Dowlatshashi et al, 2014). These sets of possible solutions can be depicted 

with formal mathematical notations or structures, such as graphs, trees, and matroids, 

among others.  

Combinatorial Optimization spans the fields of Engineering, Bioinformatics, Artificial 

Intelligence, Mathematics, Operations Research, Computer Science to complete tasks 

such as memory register allocation, planning and scheduling, project management, 

internet data packet routing, protein structure prediction and so on. Models are built to 

formulate and solve real-life problems. Examples include the Travelling Salesman 

Problem (TSP), Satisfiability Problems (SAT), Graph Colouring Problems (GCP), 

Cutting Stock Problem, Minimum Spanning Tree (MST), Constraint Satisfaction 

Problem (CSP), Bin Parking Problem (BPP) and so on. (Neos, 2018; Becker and Buriol, 

2019). Combinatorial Optimisation Problems (COP) are categorized as either P-

problems or NP-hard problems. COPs whose solutions can be obtained in polynomial 

time are referred to as P-problems. They are mostly decision problems and their 
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solution spaces can be built in polynomial time p. The COPs whose solutions are 

obtainable in non-deterministic polynomial time are referred to as NP-hard Problems 

(Woeginger, 2003). Some of these problems can be solved using either exact algorithms 

or approximate methods. However, because most of these problems are NP-hard 

problems and since the search space of the factorial number of solutions becomes so 

large that they are impractical to solve using exhaustive processing, the use of heuristics 

is often resorted to. 

Combinatorial Optimization aims to provide solutions by deploying efficient 

algorithmic techniques whose runtime is bounded by a polynomial in the input size. 

Thus, in solving Combinatorial Optimisation Problems, the concerns are: 

i. How quickly can one (or all) optimal solution(s) be obtained?  

ii. And in cases where, due to complexities, the optimal solution is impracticable, 

what is the most appropriate solution that can be found using efficient 

algorithmic techniques? 

In this study, the Travelling Salesman Problem is considered as a classic Combinatorial 

Optimization Problem. The Problem was first formulated in the nineteenth century and 

enhanced in the 1930s by M.M. Flood, and it has become the benchmark for several 

other techniques of optimization (Ajaz and Himani, 2016). The TSP is a shortest tour 

(or path) problem to find the optimal route while traversing a set of cities (or nodes), 

ensuring each city (or node) is visited exactly once before returning to the start node 

(or city), the tour thus made is referred to as Hamiltonian Cycle. It is assumed that the 

cost of the distance between any pair of cities is predefined. In this regard, the cost often 

refers to distance but may represent other notions such as time or money. A Hamiltonian 

cycle as depicted in Figure 1.1. refers to a graph cycle that traverses all the graph’s 
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vertices exactly once before returning to its starting vertex. The Travelling Salesman 

must traverse cities 1 𝑡𝑜 𝑛 in a Hamiltonian cycle that is; Start from city 1, traverse the 

remaining 𝑛 − 1 cities in a specified order and then connect back to the starting city, 

having touched each of the cities only once at a minimal cost.  

 

Figure 1.1. A Hamiltonian weighted graph around a network of five nodes 

Where 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = 5 

𝐼, 𝐽, 𝐾, 𝐿, 𝑀 = 𝑛𝑜𝑑𝑒𝑠/𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

𝑐𝐼,𝐽 = 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑡𝑜𝑢𝑟 𝑐𝑜𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝐼 𝑎𝑛𝑑 𝐽 = 30 

𝐼 − 𝐽 − 𝐾 − 𝐿 − 𝑀 − 𝐼 = 𝑡𝑜𝑢𝑟/ℎ𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑐𝑦𝑐𝑙𝑒 

 

The distance 𝑑(𝑎, 𝑏) depicts the distance from the city 𝑎 𝑡𝑜 𝑏. Thus TSP is formally 

defined as presented in Equations (1.1) 𝑡𝑜 (1.3);   

𝐹 =  𝑚𝑖𝑛 ∑ ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

𝑛

𝑏=1

𝑛

𝑎=1

                                                 (1.1) 

𝑤ℎ𝑒𝑟𝑒 ∑ 𝑥𝑎𝑏

𝑛

𝑏=1

= 1; 𝑎 = 1,  … ,  𝑛                                    (1.2) 

𝑎𝑛𝑑 ∑ 𝑑𝑎𝑏

𝑛

𝑎=1

= 1; 𝑏 = 1,  … ,  𝑛                                         (1.3) 
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The objective function is marked with F.  With a limitation, 

𝑥𝑎1𝑎2
+ 𝑥𝑎2𝑎3

+  … +  𝑥𝑎𝑟𝑎1
≤ 𝑟 − 1                              (1.4) 

𝑥𝑎𝑏  are the binary variables 

 𝑥𝑎𝑏 = {
1            𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏                    
0           𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏  

 

 𝑑𝑎𝑏  is the cost of moving from city a to city b. 

The TSP has applications in several areas, most especially in varying areas of 

transportation. Being an NP-hard problem, the TSP has several solution algorithms 

broadly categorized into Exact Algorithms and Approximate Algorithms (heuristics). 

Solving TSP using Exact techniques involve the Explicit enumeration of the solution 

space; this is also known as brute force. Brute force obtains an optimal tour by exploring 

the entire search space and building all the possible solutions. There are instances where 

it is possible to solve the TSP efficiently, especially those with a small degree of search 

space, using exact algorithms. An example is the problem of obtaining the shortest route 

on a graph, based on some practically achievable assumptions. This can be tackled 

optimally in polynomial time by the “Dijkstra or Bellman-Ford algorithms” (Giovanni, 

2017). More complex problems, with no “efficient” algorithms, may be approached by 

first modelling the problem as a Mixed Linear Programming (MILP) paradigm, then 

solving them using any suitable MILP solver such as Cplex, Gurobi, Xpress, AMPL, 

OPL and so on. This utilizes the general-purpose exact algorithms which guarantee 

optimal solutions at least hypothetically. The computational complexities of these 

techniques are exponential in nature, thus, the time required to provide their solutions 

grows exponentially with its solution space (Giovanni, 2017).  
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Although exact methods can potentially generate optimal tour, especially in theory, they 

are often impracticable and especially unsuitable for NP-hard problems with large 

solution space. For instance, the solution renown as the best performing exact technique 

is based on dynamic programming with a complexity of  𝑂(2𝑛𝑛2), thus making it 

impracticable to solve TSP as the search space expands (Deudon et al., 2018). This is 

a result of two practically related phenomena which are: 1. the complexity of COPs, 

which are generally NP-Hard in nature, and 2. the constraint of time. This explains the 

drive for the design, development, and deployment of heuristics. In contrast to exact 

techniques, heuristics provide solutions within polynomial 𝑝 time.  

Heuristics are approximate techniques that apply ‘rules of thumb’ for solving 

Combinatorial Optimization Problems without necessarily guaranteeing optimal 

solutions. Heuristics provide approximate solutions within the constraint of polynomial 

time. Heuristic solutions are referred to as approximate because they make use of 

probabilities and some certain set of rules to finding solutions to problems. For an 

iterative procedure, heuristics can be used when an optimal solution is guaranteed to 

either obtain the solution with ease or make a decision within an exact procedure.  In 

other words, the use of heuristics to solve the TSP and problems related to the TSP 

provides acceptable results that are not too far from the optimal and yet, are 

computationally affordable. Heuristics may be classified based on the atomicity of their 

solution procedures as Tour Construction, Improvement / Local Search Heuristics, and 

Compound Heuristics (Oliveira and Carravilla, 2009; Marti and Reinelt, 2011; Kyritsis 

et al., 2018). The Tour Construction heuristics are stand-alone techniques that generate 

solutions by sequentially applying a set of predefined procedures to the problem space. 

These procedures describe the processes involved in stages of Initialization; Selection 

and; Insertion.  
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This study is focused on solving the TSP using Tour Construction heuristics. Tour 

construction heuristics are not only suitable for solving TSPs, they are equally central 

to the performance of the other classes of heuristics such as improvement techniques, 

compound heuristics, and metaheuristics. Construction heuristics serve as a seed for the 

development of some heuristics and can be used to build initial solutions for high 

performing techniques (Rao and Jin,2010; Huang and Yu, 2017; Lity et al., 2017). 

1.2. Statement of the Problem 

Notwithstanding, the avalanche of computational techniques, many real-life problems 

of great importance remain largely unsolvable within the constraint of polynomial time, 

due to the intractability of Combinatorial Optimisation Problems and the limitations of 

exact algorithms in solving them in polynomial time. It has, therefore, become pertinent 

to study heuristics with a view to identifying the potentials for improving the 

possibilities of attaining the best trade-off between quality of the solution and 

computational time (Rego et al., 2011; Abid and Mohammed, 2015). Heuristics 

algorithms play a prominent role in improving the search capability of exact algorithms. 

A considerable amount of research efforts has gone into obtaining good lower bounds 

on the optimal tour quality for benchmark instances especially using Construction 

techniques (Bernardino and Paias, 2018; Kitjacharoenchaia et al., 2019; Victor et al., 

2020; Babel 2020). The development of a high performing Tour Construction heuristics 

remains a research concern because they not only generate good approximate solutions 

for TSPs, they are equally central to the performance of the other classes of heuristics 

such as improvement techniques, compound heuristics, and metaheuristics. 

Construction heuristics serve as a seed for the development of some heuristics and can 

be used to build initial solutions for high performing techniques (Rao and Jin,2010; 
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Huang and Yu, 2017; Lity et al., 2017). Construction heuristics generally generate 

better initial solutions in high performing improvement methods/metaheuristics than 

random initial solutions, thereby enhancing the quality of solutions (Ali, 2016; Neelima 

et al., 2016; Wang et al., 2016; Vaishnav et al., 2017).  

Existing tour construction methods typically fall short by between 10-30% in terms of 

solution quality with a worst-case complexity of 𝑇(𝑛) = 𝑂(𝑛2). The NNH for instance 

is fast, flexible, and simple to implement; it however solves the Travelling Salesman 

Problem using a greedy approach and suffers immensely from the “curse of 

dimensionality” phenomenon (Chen and Shar, 2018). The FIH on the other hand is 

renowned as the best performing lower-order complexity heuristic, yet suffers from a 

high upper bound of error with farther distance (Huang et al., 2016). According to 

Huang et al., (2016), if the distance can be reduced, the probability of attaining an 

optimal tour is higher. Rao and Jin (2010); Pichpibul and Kawtummachai, (2012) and 

Huang et al., (2016) have identified the need for the development of a better performing 

tour construction technique. Thus, this study examines two classic construction 

heuristics, namely the Nearest Neighbour Heuristic and the Farthest Insertion Heuristic 

in order to evolve and experiment with a new and improved Tour Construction method 

which addresses the inherent limitations of the NNH and FIH. Additionally, an 

extensive performance evaluation of NNH, FIH and the newly developed heuristic is 

of great interest in this study. 

1.2.1. Problem Formulation 

Consider a postal route problem; suppose that a utility vehicle has to deliver agricultural 

products in 𝑚 cities. The vehicle must complete a Hamiltonian cycle by touring cities 

1 𝑡𝑜 𝑚 exactly once and return to the starting city. The objective is to build the tour 

order which will guarantee minimal cost as the vehicle visits the cities/nodes from start 
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till a Hamiltonian cycle is complete. The cost, in this case, refers to the distance or the 

tour length required to complete the cycle. Let 𝑑𝑎,𝑏 be the distance from city 𝑎 𝑡𝑜 𝑏, 

given that the tour from 𝑎 𝑡𝑜 𝑏 traverses all the nodes with an edge, this is a complete 

graph. For each edge, therefore, a binary variable is associated. 

𝑥𝑎𝑏 = {
1,  𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0,  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

             (1.5) 

The total distance covered by the salesman can then be depicted as:  

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏                       (1.6)

(𝑎,𝑏)∈𝛦

 

The objective of the TSP is to minimize Equation (1.6), subject to two preconditions, 

which are: 

i. For every node 𝑎, exactly two of the 𝑥𝑎𝑏 binary variables should be equal to 1. 

ii. All the nodes must be connected to make the tour a complete graph. 

Thus, the TSP can be mathematically described as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑𝑎𝑏𝑥𝑎𝑏                                      (1.7)

(𝑎,𝑏)∈𝛦

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑎𝑏 = 2 ∀𝑖 ∈ 𝑉                           (1.8)

𝑏∈𝑉

 

∑ 𝑥𝑎𝑏 ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑉, 𝑆 ≠ ∅             (1.9)

𝑎,𝑏∈𝑆, 𝑎≠𝑏

 

𝑥𝑎𝑏 ∈ {0,1} 

 

1.3. Justification for the Study 

While there are numerous instances of the Combinatorial Optimization Problems, the 

TSP is perhaps the most important of them all. Works on the TSP have catalyzed the 
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emergence of several revolutionary concepts in the field of combinatorics and have led 

to notable advances in cutting edge researches in complexity theories and practices. 

Furthermore, the TSP has also become a standard testbed for the design and 

development of new, innovative techniques; numerous important methods devised to 

provide generic solutions to Combinatorial Optimization Problems were first tested on 

the TSP. These include cutting planes in integer programming, a precursor to high 

performing techniques such as the branch & cut methods, polyhedral approaches, 

branch & bound algorithms, as well as early local search algorithms. Other techniques 

such as Simulated Annealing, Ant Colony Optimization, and so on were first tested on 

the TSP. Thus, the outcome of this study is expected to further the frontiers of 

knowledge in the field of combinatorics and result in the development of an improved 

solution to the Travelling Salesman Problem and by extension, Combinatorial 

Optimization Problems.  

1.4. Aim and Objectives 

Given the intractability of some computational problems as well as the need to solve 

such problems using the available resources, the study of heuristics, both the existing 

and newly derived ones, has become prominent in theoretical Computer Science. In this 

study, the complexity of some heuristics is examined and evaluated and invoked to 

formulate a better solution in solving the Travelling Salesman Problem. The study 

therefore aims at improving on the performance of the NNH and FIH for solving 

Combinatorial Optimization Problems 

The specific objectives of the study are to: 

1. Implement some classical tour construction heuristics on the Travelling 

Salesman Problem; 
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2. Propose and implement a new heuristic model for solving the Travelling 

Salesman Problem; 

3. Evaluate the performance of the three heuristics in (1) and (2) vis-à-vis solution 

quality and computational time; 

4. Undertake a comparative study on the classical heuristics and the proposed 

heuristics. 

1.5. Research Questions 

The experiment is expected to answer the following questions;  

1. What is the performance of the Nearest Neighbour Heuristic and Farthest 

Insertion Heuristic in terms of solution quality and time complexity for given 

instances and parameter set? 

2. Can the quality of the result of a tour construction heuristic be improved upon 

to outperform the Farthest Insertion Heuristic which is the best performing 

lower-order complexity heuristic, while still retaining the same complexity of 

0(𝑛2)? 

3. How does the improvement affect the computational time? 

 

1.6. Overview of Research 

The goal of this study is to investigate some approximate methods with a view to 

understanding their implementation details and how they are applied to the solution 

process of the Travelling Salesman Problems, to identify their limitations and 

ultimately device a new technique to circumvent these limitations and produce better 

solutions.  
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Given a tour distance 𝑑𝑎𝑏 and associated binary variable: 

𝑥𝑎𝑏 = {
1,  𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0,  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

                      (1.10) 

An optimal solution is a solution in which: 

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

(𝑎,𝑏)∈

𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙                        (1.11) 

The objective is to minimize the tour length, that is, obtain a solution that is as close to 

the optimal solution as possible.  

Thus, in achieving this goal, two tour construction heuristics were studied, namely, 

Nearest Neighbour Heuristic and Farthest Insertion Heuristic. The NNH readily comes 

to mind when solving the TSP and the FIH gives the best solution quality of all lower-

order complexity heuristics. Tour construction heuristics were considered in this study, 

because of their importance both as viable solution techniques and as seed for the 

performance of other classes of heuristics. Relevant literature on these techniques were 

reviewed, then the methods were experimented on some benchmark instances and used 

to solve a hypothetical Travelling Salesman Problem. A new insertion technique, 

referred to in this study as the Half Max Insertion Heuristic (HMIH) was then derived 

with the potentials of outperforming existing state-of-the-art techniques. 

All algorithms were implemented using the Java programming language. 

The performances of the new and existing methods were evaluated using two measures: 

i. Solution quality: the solution quality of a heuristic technique is determined by 

its tour cost relative to the optimal tour cost. The closer the tour cost is to the 

optimal cost, the better the quality of the technique. 
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ii. Computational speed approach: The computational speed is determined by 

computing the time taken to process the solution.  

Table 1.1 maps the objective of this study to the materials and methods for achieving 

them. 

 

Table 1.1. Mapping Objectives to Activities/Methods 

OBJECTIVES METHODOLOGY 

Objective 1: 

To implement some classical heuristics 

on the Travelling Salesman Problem. 

 

- Model the postal route problem as a 

Travelling Salesman Problem. 

- Obtain dataset (TSPLIB) 

- Generate a distance matrix as input to 

the program. 

- Implement the NNH and FIH in the 

Java Programming Environment. 

Objective 2: 

To propose and implement a new 

heuristic in solving the Travelling 

Salesman Problem. 

- Model the proposed insertion 

technique (Pseudocode, Flowchart) 

- Implement the technique on ten 

testbeds in the Java Programming 

Environment 

Objective 3: 

To evaluate the performance of the 

existing heuristics considered and the 

proposed one. 

- Computational speed approach 

- Generate cost and determine Solution 

quality (percentage deviation from 

optimal solution) 

- Percentage Error (𝛿) 
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- Quality improvement (Σ): 

- Goodness Value (ℊ): 

Objective 4: 

To carry out a comparative study on the 

classical heuristics and the proposed 

heuristics. 

- Tables, Charts 

  

 

1.7. Scope of the Study 

This study aims to investigate the performance of some heuristics, including, Nearest 

Neighbour Heuristic and Farthest Insertion Heuristic on a Combinatorial Optimization 

Problem vis-a-vis their solution quality and complexity. The Combinatorial 

Optimization Problem considered is the Travelling Salesman Problem (TSP) due to its 

wide acceptability as the model testbed for new algorithmic ideas in solving COPs. The 

study is restricted to Tour Construction Heuristics. Other classes of heuristics are not 

covered in this study. A novel Tour Construction heuristic was designed and 

implemented and the result compared with that of existing methods. 

Ten benchmark cases were considered from publicly available TSPLIB dataset because 

of the availability of optimal results for comparison. The data are categorized into three 

as follow: 

▪ 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒𝑠 < 100 

▪ 100 < 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒 < 1000,  

▪ 𝑛𝑜_𝑜𝑓_𝑛𝑜𝑑𝑒𝑠 ≥ 1000 
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Java Programming Language was used for implementation on a Windows Operating 

System platform. 

1.8. Significance of the Study 

This work is expected to extend the frontiers of knowledge in solving Combinatorial 

Optimization Problems, especially the Travelling Salesman Problem. By designing and 

implementing a new and improved construction tour technique, the solution quality of 

construction method would be enhanced, and this might impact positively on the 

performances of other classes of heuristics that depend on tour construction methods.  

Results obtained in this study are good indices that can aid some crucial decisions of 

experts in to relevant domains such as route-finding, transportation, circuitry, VLSI 

design, logistics, pick-up and delivery of agricultural products, protein structure 

prediction, Printed-circuit-boards manufacturing, data transmission in computer 

networks, and so on. 

1.9. Arrangement of the Thesis 

This thesis is organised into five chapters. Chapter one includes an introduction to the 

study carried out, statement of the problem, justification for the study, aim and 

objectives, research questions, overview, significance, and scope of the study. The 

second chapter covers a review of fundamental concepts and existing related studies on 

Combinatorial Optimization Problems. Also contained in chapter two are detailed 

discussion on TSPs, variations of TSPs and methods that have been used to solve them. 

The concluding part of chapter two contains a detailed review of related literature that 

tackle the Travelling Salesman Problem using Tour Construction methods. Chapter 

three covers the description of the conceptual design, materials and method, as well as 

dataset, performance model and metrics. Chapter four focuses on testing, discussion of 
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the results obtained, and evaluation of the techniques. The thesis is finally concluded in 

chapter five with summarized discussion of results, contributions to knowledge, 

recommendations, and suggestions for further work. 
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CHAPTER TWO 

2.0. REVIEW OF LITERATURE 

In this section, well-known Combinatorial Optimization Problems in literature such as 

the Travelling Salesman Problem (with the objective of minimizing the cost of 

completing a Hamiltonian cycle), the Knapsack problem (with the objective of 

maximizing gain using limited resources are reviewed). Other COPs in literature 

include, the Satisfiability Problem (SAT), the Graph Colouring Problem (GCP), the 

Cutting Stock Problem, the Minimum Spanning Tree (MST), Constraint Satisfaction 

Problems (CSP), Bin Parking Problems (BPP) and so on, (Neos, 2018; Becker and 

Buroil, 2019). Relevant literature on exact and approximate methods of solving COPs 

were also reviewed. 

2.1. Combinatorial Optimization Problems 

Combinatorial Optimization Problems often require the application of computational 

techniques to find optimal solutions within a finite set of possible solutions using 

limited resources, mostly defined in terms of space and time. Due to these constraints 

and their extremely large search space, exhaustive search methods are often not a 

realistic option in solving Combinatorial Optimisation Problems.  

In formulating COPs, a finite set of variables with discrete domains is first defined; the 

aim is for the solution to satisfy a predefined set of constraints while optimizing an 

objective function. The optimality, based on some objective function that aims to either 

minimize or maximize is also stated. For instance, the objective may be to minimize 

distance, cost, time, weight, or maximize yield, efficiency, production, and so on. 
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A Combinatorial Optimization Problem is a four tuple (𝑋, Σ, 𝐶, 𝑓) defined as follow 

(BUI, 2015): 

▪ 𝑋 = {𝑥1, … , 𝑥𝑛} is the finite set of variables; 

▪  𝐷 = { 𝐷(𝑥1), … , 𝐷(𝑥𝑛)} is the set of domains of variables; consequently, 

𝐷(𝑋𝑛) defines the domain of variable 𝑋𝑛; 

▪ 𝐶 =  {𝐶1, … , 𝐶𝑘} is the set of constraints over variables; 

▪ 𝑓 is the objective function to be optimized. 

Thus, given the objective function 𝑓: 𝐷 → ℝ  and 𝑆 ⊆ 𝐷 as a set of feasible solutions 

𝑥, defined according to some constraints 𝐶 =  {𝐶1, … , 𝐶𝑘}, the generic optimization 

problem may be formulated as follow: 

(𝑂𝑃𝑇)              𝑚𝑖𝑛𝑖𝑚𝑎|𝑚𝑎𝑥𝑖𝑚𝑎 𝑓(𝑥)                               (2.1) 

                       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆 

Combinatorial Optimization Problems may be solved using either exact methods or 

heuristics. The objective of the non-heuristic (Exact) methods are to obtain optimal 

solutions through exhaustive searches while minimizing to a large extent, the 

computation time of the algorithm. For instance, Yu and Lin, (2004) designed and 

developed a service selection technique to optimize the user-centric QoS constraints of 

composite web services. They modelled the problem as a classic “Multiple-Choice 

Knapsack Problem (MCKP)” and applied their optimal solution to minimize service’s 

end-to-end delay constraint. In the same vein, Grabrel et al, (2014) obtained an optimal 

solution to the Composite Web Services (CWS) problem using the 0-1 Linear 

Programming approach. The objective was to obtain an optimal solution in shorter 

computation time. They modelled the problem on a dependency graph and implemented 
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their novel method on the CPLEX solver. The result obtained was optimal over wide-

ranging benchmark instances and reduced response time for the transactional CWS. 

Exact methods however tend to become grossly inadequate and incapable of dealing 

with NP-Hard COPs, especially as the solution space grows exponentially. NP-Hard 

problems, especially those with large solution space are impracticable for exact 

techniques and often result in combinatorial explosion (Deudon et al., 2018). Heuristics 

are deployed to circumvent these short-falls. Heuristics do not guarantee optimal 

solutions but are able to obtain good enough results within the constraint of polynomial 

time.  

Some Combinatorial Optimization Problems are reviewed in the following sub-

sections. 

2.1.1. The Knapsack Problem 

The Knapsack Problem is a famous Combinatorial Optimization Problem applicable to 

real-life scenarios such as in capital budgeting, bin packing problems, and so on. The 

knapsack problem is illustrated as follows: 

Suppose for instance, that a thief breaks into a shop with a container or a backpack, the 

problem he needs to solve is to fill his container with an optimal subset of goods or 

objects or items in the shop. This problem can be modelled mathematically (Martello 

and Toth, 1990; Kellerer et al., 2004; Peasah et al, 2011; Christian and Cremaschi, 

2018), if the items in the shop  are numbered 1 𝑡𝑜 𝑛 with a vector 𝑋𝑖(𝑖 = 1, … , 𝑛) such 

that; 

𝑥𝑖 = {
1      𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑔𝑒𝑡𝑠 𝑝𝑖𝑐𝑘𝑒𝑑
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

       (2.2) 
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Thus, given that 𝑝𝑖 is the price on item 𝑖, and 𝑤𝑖 is the weight of 𝑖, and 𝑘 is the size of 

the knapsack, the problem is to select the vector 𝑥 that satisfies the constraint; 

∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘                                 (2.3) 

that optimizes the objective function 

∑ 𝑝𝑖𝑥𝑖                                          (2.4)

𝑛

𝑖=1

 

The Knapsack Problem is a decision problem and can be modelled to suit wide-ranging 

application area of optimization such as Logistic, Investment, cutting problem and so 

on. Consequently, there are more than one variant of the Knapsack Problem. The 

Knapsack problem has equally been adapted as basis for or as subproblems to other 

Combinatorial Optimization Problems (Kellerer et al. 2010; Christian and Cremaschi, 

2018). The Knapsack Problem (KP) may either be bounded or unbounded.  

KP is said to be bounded, if there exists an upper limit 𝑙𝑖𝑚𝑖, (represented as an integer 

variable) on each possible instance of item 𝑖 that can be selected in the knapsack 

(Myasnikov et al., 2015; Frenkel et al., 2016). Thus: 

max ∑ 𝑝𝑖𝑥𝑖                                  (2.5)

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘            (2.6) 

𝑙𝑖𝑚𝑖 ≥ 𝑥𝑖 ≥ 0, 𝑥𝑖  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

In contrast, there are no bounds on the selection of variable instance in unbounded 

Knapsack Problems. Thus:  
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max ∑ 𝑝𝑖𝑥𝑖

𝑛

𝑖=1

                                (2.7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤

𝑛

𝑖=1

𝑘            (2.8) 

𝑥𝑖 ≥ 0, 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

The Multiple Knapsack Problem (MKP) is another variant of the Knapsack Problem. 

A Knapsack Problem is referred to as MKP if there exists a set of items 𝑛 and a set of 

knapsacks 𝑚 where each knapsack has an associated capacity 𝑘𝑖 (Fukunaga, 2011; 

Balbal et al., 2015; Martello and Monaci, 2020). Thus: 

max ∑ ∑ 𝑝𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

                        (2.9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖𝑗 ≤

𝑛

𝑖=1

𝑘𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑚                           

             ∑ 𝑥𝑖𝑗 ≤

𝑚

𝑗=1

1, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑛                              

                                        𝑥𝑖𝑗𝜖{0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑚 𝑎𝑛𝑑1 ≤ 𝑖 ≤ 𝑛                                

Notable variants of the MKP are the Multiple Knapsack Problem with Identical 

capacities - MKP-I, Multiple Subset Sum Problem with random capacities given by 

constraint, the Multiple Subset Sum Problem (MSSP-I) with Identical capacities and 

constraints (Kellerer et al., 2004). 

Other formulated variants of the Knapsack Problem include the Multiple-Choice 

Knapsack Problem – MCKP (Zhong and Young 2010; Bednarczuk et al., 2018), the 

Quadratic Knapsack Problem (Fomeni et al., 2020; Schulze et al., 2020), the Subset 

(2.10) 
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Sum Problem – SSP (Jain et al., 2014; Xu et al., 2020), the Multidimensional Knapsack 

Problem d-KP (Puchinger et al., 2010; Laabadi et al., 2019), the Set-Union Knapsack 

Problem – SUKP (Kellerer et al., 2004). 

From a computational point of view, the Knapsack Problem is intractable, thus the 

solution approaches include exact techniques (Gupta et al., 2014; Hifi, 2014; Jain et al., 

2014; Leão et al., 2014; Fomeni et al., 2020) and approximation methods (Bansal and 

Deep, 2012; Bednarczuk et al., 2018; Gurski et al., 2019; Laabadi et al., 2019; Martello 

and Monaci, 2020; Schulze et al., 2020).  

2.1.2. The Assignment Problem 

The Assignment Problem, also referred to in Graph Theory as the Bipartite Perfect 

Matching Problem is described as follows: 

Given 𝑛 number of agents assigned to 𝑚 number of tasks with associated cost. Also 

given that at most, one agent can be assigned to a task and vice-versa, the problem is to 

obtain the optimal way of assigning tasks to agents such that they perform as many 

tasks as possible with minimal associated cost (Singh, 2012; Faudzi et al., 2018). In 

graph theory, the Assignment Problem is modelled as a weighted bipartite graph with 

the objective of obtaining the maximum matching, for which the sum of weights of the 

edges is minimal.  

Formally, the Assignment Problem is defined by Silvano (2011) as follows: 

Given a (𝑛 × 𝑛) cost matric of the 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄  assignment (𝒞𝑎𝑏) as in table 2.1.: 
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Table 2.1: A cost matrix of the 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄  assignment 

𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄  1 2 . . . 𝑗 . . . 𝑛 

1 𝒞11 𝒞12 . . . 𝑗 . . . 𝑗 

2 𝒞21 𝒞22 . . . 𝑗 . . . 𝑗 

. 

. 

. 

𝑖 

. 

. 

. 

𝒞𝑖1 

. 

. 

. 

𝒞𝑖2 

… … …. 

… … …. 

… … . … 

… 𝒞𝑖𝑗 

… … …. 

… … …. 

… … . … 

… 𝒞𝑖𝑛 

. 

. 

. 

𝑛 

. 

. 

. 

𝒞𝑛1 

. 

. 

. 

𝒞𝑛2 

… … …. 

… … …. 

… … . … 

… 𝒞𝑛𝑗 

… … …. 

… … …. 

… … . … 

… 𝒞𝑛𝑛 

 

𝒞𝑖𝑗 = {
1   if row i is alloted to column j

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     
 (𝑖, 𝑗 =  1, . . . , 𝑛)      (2.11) 

The problem is to determine which 𝑡𝑎𝑠𝑘
𝑎𝑔𝑒𝑛𝑡⁄  assignment will guarantee the 

minimum cost of completion of the task. This can be expressed mathematically as:  

min ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗                                                (2.12)

𝑛

𝑗=1

𝑛

𝑖=1

 

∑ 𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

𝑛

𝑖=1

                             (2.13) 

∑ 𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑗 = 1, … , 𝑛

𝑛

𝑗=1

                             (2.14) 

𝑥𝑖𝑗 ∈ {0,1} 𝑓𝑜𝑟 𝑖, 𝑗 = 1, … , 𝑛 



23 
 

The assignment is referred to as balance if the number of agents is the same as the 

number of tasks to be assigned, but referred as unbalanced if otherwise. On the other 

hand, the Assignment Problem is said to be a Linear Assignment if the cost of the 

assignment for all tasks is the same as the total costs for each agent (Ramshaw and 

Tarjan, 2012).  

The assignment component of the Assignment Problem underlies its combinatorial 

structure. Thus, the solution approaches include exact techniques such as Integer 

Programming, Column generation, Hungarian method and so on (Ayorkor et al., 2007; 

Qu et al., 2009; Salehi, 2014; Shah et al., 2015; Date and Nagi, 2016; Woumans et al., 

2016; Lesca et al., 2019).  

The Hungarian Algorithm for the 𝑛 × 𝑛 cost matrix to determine the optimal 

assignment is as follows (Ayorkor, et al, 2007; Shah et al., 2015; Date and Nagi, 2016): 

i. A bipartite graph {𝑉, 𝑈, 𝐸} (𝑤ℎ𝑒𝑟𝑒 |𝑉| =  |𝑈| =  𝑛) and an 𝑛 ∗ 𝑛 matrix of 

edge costs 𝐶 

ii. initialization: 

(a) Start with an empty matching, 𝑀0  =  ɸ. 

(b) Assign feasible values to the variables 𝛼𝑖  and 𝛽𝑗 as follows: 

1. ∀𝑣𝑖  ∈   𝑉,                 𝛼𝑖  =  0 (1)                            (2.15) 

2. ∀𝑢𝑖  ∈   𝑈,                 𝛽𝑗  =  𝑚𝑖𝑛𝑖(𝑐𝑖𝑗)                   (2.16) 

iii. Do this for n stages of the algorithm,  

iv. After the 𝑛𝑡ℎ stage, output the matching: 𝑀 = 𝑀𝑛. 
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Algorithmic Presentation of the Hungarian Process: 

The flowchart for the Hungarian Method algorithmic stages is depicted in Figure 2.1. 

 

Figure 2.1. Flowchart of the Hungarian Method for solving Assignment Problems 

(Sengupta, 2017). 

 

1. Every unmatched node in 𝑉 is designated as the root node of a Hungarian tree. 

2. In the equality sub-graph, Hungarian trees are grown at the exposed nodes. The 

indices 𝑖 of nodes 𝑣𝑖 found in the tree by the set 𝐼∗, and the indices 𝑗 of nodes 
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𝑢𝑗  found by the set 𝐽∗ are designated. If an augmenting path is constructed, go 

to (4), else the Hungarian trees cannot be grown any further, hence go to step 

(3). 

3. New edges are included in the equality sub-graph by modifying 𝛼 and 𝛽 

variables as; 

𝜃 =     
1

2
𝑚𝑖𝑛

𝑖∈𝐼∗ 𝑗∉𝐽∗ 
(𝑐𝑖𝑗 −  𝛼𝑖 − 𝛽𝑗) 

𝛼𝑖 ← {
𝛼𝑖 + 𝜃     𝑖 ∈ I∗

𝛼𝑖 − 𝜃     𝑖 ∉ 𝐼∗ 

𝛽𝑗 ← {
𝛽𝑗 − 𝜃     𝑗 ∈ J∗

𝛽𝑗 + 𝜃     𝑗 ∉ 𝐽∗ 

Go to step (2) to find an augmenting path. 

4. The new matching, 𝑀𝑘 (at stage 𝑘), is augmented by flipping unmatched and 

matched edges along the augmenting path selected. That is, (𝑀𝑘−1  − 𝑃) ∪

(𝑃 – 𝑀𝑘−1), where  𝑀𝑘−1 is the matching from the previous stage and 𝑃 is the 

set of edges on the augmenting path selected. 

Heuristics techniques such as TABU search, Graph Colouring heuristics, hyper-

heuristics and so on are equally used in solving the Assignment Problem (Kaha and 

Kendall, 2010; Burke et al., 2012; Sabar et al., 2012; Abdul-Rahman et al., 2017; 

Muklason et al., 2017). 

2.1.3. The Constraint Satisfaction Problem 

Constraint Satisfaction Problems (CSP) have their root in artificial intelligence dating 

back to the 1970s, motivated by pioneering works in computer vision (Waltz, 1972; 

Mackworth 1977). The research scope has since been greatly widened to cover relevant 

application area in the domain of Artificial Intelligence and Operations Research such 

as temporal reasoning, scheduling and so on. The objective of the Constraint 

(2.17) 
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Satisfaction Problem is to be able to map a value within a specified finite domain to a 

variable in such way that it satisfies all the constraint relating to the variable within its 

domain (Zamani, 2013; Kadri and Boctor, 2018; Sahu et al., 2019). In essence, the 

solution is valid only when the derived value satisfies all constraints which is within 

the solution space. Roldán et al., (2011) defined the Constraint Satisfaction Problem as 

a triple 𝑃 =  (𝑋, 𝐷, 𝐶), where 

▪ 𝑋 =  {𝑥1, … , 𝑥𝑛} is the set of variables within the domain 𝐷; 

▪ 𝐷 =  {𝐷1, … , 𝐷𝑛} is the set of finite domains containing the solution 

space for the possible values being searched. 

▪ 𝐶 =  {𝐶1, … , 𝐶𝑐} is the set of constraints. A constraint 𝑐1is the condition 

defining the values which the set of variables {𝑥1, … , 𝑥𝑛} can take 

simultaneously. In essence 𝑐1 ⊆ {𝐷𝑖1, … , 𝐷𝑖𝑘}. Thus, {𝑥𝑖1, … , 𝑥𝑖𝑘} 

determines the scope of 𝑐1. 

Several combinatorial problems in operations research can be modelled as a Constraint 

Satisfaction Problem. These include, but not limited to the Graph Colouring Problems, 

Time-tabling Problem and other resource allocation problems, eight-queens puzzle, the 

Boolean Satisfiability Problem, Scheduling Problems, Bounded-error Estimation 

Problems and so on. 

Solutions to Constraint Satisfaction Problems on finite domains are characteristically 

obtained using a search procedure. The most common procedures are some form of 

backtracking, constraint propagation, and local search.  

Most Constraint Satisfaction Problems are combinatorial and are thus NP-Hard. 

Finding a search solution that satisfies all the constraints will involve enumerating all 

the search space in exponential time at the worst case (Barto, 2015). Thus, solving them 
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using exact techniques is intractable. Some exact techniques used to solve Constraint 

Satisfaction Problems include Integer Programming methods, Branch-and-Bound, 

Branch-and-Cut techniques and so on (Lorterapong and Ussavadilokrit, 2013; Peng et 

al., 2014; Barto, 2015; Mostafa et al, 2015; Sitek and Wikarek, 2016). Heuristic and 

Metaheuristic methods have been equally deployed in solving the Constraint 

Satisfaction Problems (Roldán et al., 2011; Zamani, 2013; Kadri and Boctor, 2018; 

Rutishauser et al., 2018; Sahu et al., 2019). 

2.1.4. The Travelling Salesman Problem  

The Travelling Salesman Problem is a vastly researched Combinatorial Optimization 

Problem. Its origin can be traced to the pioneering work in the 1800s of mathematicians 

W.R. Hamilton and Thomas Kirkman. Hamilton formulated a puzzle problem with the 

objective of completing a Hamiltonian cycle (Tutte, 2012). Works on the TSP was 

further enhanced in the 1930s by Karl Menger and M.M. Flood. Karl Menger defined 

the TSP and did some pioneering works on Brute-Force techniques as well as the 

Nearest Neighbour Heuristic. M.M. Flood formulated the TSP mathematically to solve 

the School Bus path finding problem. 

The TSP is a shortest tour (or path) optimization problem with the objective to find the 

shortest route while visiting a set of cities (or nodes), ensuring each city (or node) is 

visited exactly once and regarding the Hamiltonian circuit, return to the start node or 

city. It is assumed that the cost of the distance between any pair of cities is predefined. 

In this regard, the cost often refers to distance but may represent other notions such as 

time or money. Given a complete weighted undirected graph 𝐺 (𝑉, 𝐸), A Hamiltonian 

cycle refers to a graph cycle that traverses all the graph’s vertices exactly once before 

returning to its starting vertex. The Travelling Salesman must traverse cities 1 𝑡𝑜 𝑛 in 
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a Hamiltonian cycle that is; Start from city 1, traverse the remaining 𝑛 − 1 cities in a 

specified order and then connect back to the starting city, having touched each of the 

cities only once at a minimal cost.  

The distance 𝑑(𝑎, 𝑏) depicts the distance from the city 𝑎 𝑡𝑜 𝑏. Thus TSP is formally 

defined as below;   

𝐹 =  𝑚𝑖𝑛 ∑ ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

𝑛

𝑏=1

                  (2.18)

𝑛

𝑎=1

 

∑ 𝑥𝑎𝑏

𝑛

𝑏=1

= 1; 𝑎 = 1,  … ,  𝑛                   (2.19) 

∑ 𝑥𝑎𝑏

𝑛

𝑎=1

= 1; 𝑏 = 1,  … ,  𝑛                   (2.20) 

The objective function is marked with F.  With a limitation, 

 𝑥𝑎1𝑎2
+ 𝑥𝑎2𝑎3

+  … +  𝑥𝑎𝑟𝑎1
≤ 𝑟 − 1. 

𝑥𝑎𝑏 𝑥𝑎𝑏 are the binary variables 

 𝑥𝑎𝑏 = {
1            𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏                    
0           𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑎 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑏  

     (2.21) 

 𝑑𝑖𝑗  is the cost of moving from city a to city b. 

The TSP has applications in several areas, most especially in varying areas of 

transportation. Being an NP-hard problem, which is easily understood but 

computationally difficult to solve, the TSP has several solution algorithms broadly 

categorized into Exact Algorithms and Approximate Algorithms (heuristics).  

The Travelling Salesman Problem is classified as either symmetric (STSP) or 

asymmetric (ATSP) problems, depending on whether the distance or cost to travel 
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between any two cities is symmetric or asymmetric, respectively. In many cases, the 

STSP is seen as a subproblem of the ATSP but there are cases where the STSP and the 

ATSP are defined on separate graphs, that is, complete directed and undirected graphs. 

However, the ATSP can be converted to STSP by doubling the number of nodes in the 

given graph. There is an extension of the ATSP called multiple asymmetric travelling 

salesmen problem (mATSP), which requires the collective performance of multiple 

salesmen in touring each city exactly once at a minimal total cost. These categories of 

the TSP have been discussed below. 

2.1.4.1.Symmetric Travelling Salesman Problems 

The Travelling Salesman Problem is said to be Symmetric if the travel cost is the same 

between two nodes in both directions, that is, 𝑑𝑎𝑏 = 𝑑𝑏𝑎, thereby reducing the number 

of possible solutions to half the initial (Hussain et al., 2017; Arthanari and Qian, 2018). 

The STSP has half the solution space of the ATSP, thus it is considered as the more 

basic form of the TSP and often solved as benchmark cases for the TSP.  

Exacts techniques such as Branch-and-Bound, Branch-and-Cut, Mixed Integer Linear 

Program, Dynamic Programming, Held Karp Algorithms and so on have been used to 

obtain optimal solutions for the STSP (Chauhan, 2012; Demez, 2013; Fischer et al., 

2014; Sundar and Rathinam, 2017; Dijck, 2018). Approximate methods have also been 

deployed in solving the STSP. They include heuristics such as NNH, Lin-Kernighan, 

Savings, k-opt techniques and so on. Metaheuristics methods include Simulated 

Annealing, local search, genetic techniques and so on (Demez, 2013; Fosin et al., 2013; 

Kızılateş, 2015; Lim et al., 2016; Hussain et al., 2017; Kovácset al., 2018). 

Formulations for the STSP include the Dantzig, Fulkerson and Johnson formulation 

(Dantzig et al., 1954), the Bellman formulation (Bellman, 1962), the Held-Karp 
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formulation (Held and Karp, 1970), the Multistage Insertion formulation (Arthanari, 

1983; 2000) and so on. 

2.1.4.2.Asymmetric Travelling Salesman Problems 

The Asymmetric Travelling Salesman Problem (ATSP) belongs to the class of NP-Hard 

Problems concerned with finding the distance from one point to another in a given space 

which differs from the inverse distance. There are various instances where the ATSP 

can be applied; for instance, in a vehicle routing problem, a delivery man uses a vehicle 

to travel through one-way streets in a city or minimizing the cost of petrol while driving 

through mountain roads. According to (Roberti and Toth, 2012), the ATSP can be 

defined formally as follows:  

Given a directed graph 𝐺 = (𝑉 , 𝐴), where 𝑉 = {1, . . . , 𝑛} is the set of vertices, and 𝐴 =

{(𝑖, 𝑗 ) ∶  𝑖, 𝑗 ∈  𝑉 } is the set of arcs, The ATSP is a non-symmetric cost matrix (𝐶𝑖𝑗 ) 

which is defined on 𝐴.  

Many ATSP formulations consist of an assignment problem with integrality and 

subtour elimination constraints. Such formulations include, the Dantzig, Fulkerson and 

Johnson (DFJ) formulation (Dantzig et al., 1954), the Fox, Gavish and Graves (FGG) 

formulations (Gavish and Graves, 1958), the Desrochers and Laporte (DL) formulation 

(Desrochers and Laporte, 1991), the Gouveia and Pires (GP) formulations (Gouveia 

and Pires, 1999) and the Sherali and Driscoll (SD) formulation (Sherali and Driscoll, 

2002).  

The ATSP has been solved using both the exact solution approaches (Ahmed, 2011; 

Roberti and Toth, 2012; Aguayo et al., 2016; Campuzano et al., 2020) and the 

approximate solution approaches (Arash et al., 2010; Hyung-Chan et al., 2010; Nima 

and Shayan, 2015; Barketau and Pesch, 2016; Basu et al., 2017; Svensson et al., 2018). 
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2.1.4.3.Multiple Travelling Salesman Problems 

The Multiple Travelling Salesman Problem (mTSP) more adequately models real-life 

scenarios, as it can handle one or more salesmen. The mTSP contains a set of nodes, m 

salesmen at a base node, and the remaining nodes to be visited which are intermediate 

nodes. The mTSP finds tours for all m salesmen such that every intermediate node is 

visited exactly once and the total cost of visiting all nodes is minimized. A more 

detailed definition of the mTSP is: Given a graph with vertices V in which city, i, 

denotes the base city, an asymmetric distance matrix [𝑐𝑖𝑗 ], 𝑖;  𝑗 ∈ 𝑉, and m salesmen 

located at the base city, determine m tours that start and end at the base city after 

collectively having visited city i exactly once, ∀𝑖 ∈ 𝑉, while minimizing the total 

distance travelled (Cuevas et al., 2020).  

The Multiple Travelling Salesman Problem can be modelled as a relaxation of the 

Vehicle Routing Problems (VRPs) when side constraints are incorporated. Because of 

its amenability to real-life scenarios, a number of variations of the mTSP have been 

formulated in literature (Baranwal et ai., 2017; Neos, 2018).  They include the Non-

Returning Multi-Travelling Salesmen Problem (Tang et al., 2000), Returning Multi-

Travelling Salesmen Problem (Gorenstein, 1970), Single-Depot Returning Multi-

Travelling Salesmen Problem (Baranwal et al., 2016), Multiple-Depot Returning Multi-

Travelling Salesmen Problem (Oberlin et al., 2009), Close Enough Travelling 

Salesmen Problem (CETSP) (Mennell, 2009; Assaf and Ndiaye, 2017). 

The mTSP has been solved using both the exact solution approaches (Baranwal et al., 

2016; Assaf and Ndiaye, 2017; Baranwal et al., 2017; Thenepalle and Singamsetty, 

2019) and the approximate solution approaches (Shim et al., 2012; Labadie et al., 2014; 

Liu and Zhang, 2014; Necula et al., 2015; Qing et al., 2015; Shuai et al., 2019). 
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2.2. Variants of the Travelling Salesman Problem 

Several variants of the Travelling Salesman Problems have been studied by researchers, 

some of which have been considered as follows. 

2.2.1. The Maximum Travelling Salesman Problem (MAX TSP) 

The Maximum Travelling Salesman Problem (MAX TSP) sometimes referred to as the 

"taxicab ripoff problem" (Dudycz et al., 2017), finds a Hamiltonian circuit with 

maximum total edge weight and uses its additive inverse to replace each cost edge 

(Jawaid and Smith, 2013). The MAX TSP is NP-hard, hence there exist some constants 

𝛽 <  1 such that obtaining a solution that guarantees better performance than 𝛽 is NP-

hard (Hassin and Rubinstein, 2000). If non-negative edge costs are required in the tour, 

it is possible to assign a constant to each of the edge costs with no effect to the optimal 

solutions of the problem edge (Punnen, 2007). Barvinok et al., (2007) defined the MAX 

TSP as follows: 

Given a weight matrix 𝑤 = 𝑤𝑖𝑗 

The objective of the MAX TSP is to find a Hamiltonian cycle 𝑖0 → 𝑖2 →, … , →  𝑖𝑛 →

𝑖1, for which the maximum value of 𝑤𝑖1𝑖2
+𝑤𝑖3𝑖4

+, … , + + 𝑤𝑖𝑛−1𝑖𝑛
+ 𝑤𝑖𝑛𝑖1

 is obtained, 

where ( 𝑖1, . . . , 𝑖𝑛 ) is the set of all possible combination of {1, . . . , 𝑛}.  

The MAX TSP is unique because it contains some weights that the sign reversal does 

not preserve which are interesting and natural special cases. Also, some combinatorial 

and geometric problems can use MAX TSP methods. 

The MAX TSP has been solved as a variety of related problems such as the Maximum 

Travelling Salesman Path Problem - Max TSPP (Monnot, 2005; Jawaid and Smith, 

2015), the Maximum Scatter TSP (Hoffmann et al., 2017; Kozma and Mömke, 2017; 
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Venkatesh et al., 2019), the Maximum Metric Symmetric TSP (Kowalik and Mucha, 

2007; 2008) the Maximum Latency TSP (Hassin et al., 2009; Alamdari et al., 2013) 

and so on. 

Researches have deployed both the exact and approximate solution approach to the 

MAX TSP. Barvinok et al. (2003) derived polynomial-time algorithms in which the 

cities represent nodes of ℝd for given distances d, computed based on either the 

polyhedral norm or quasi-norm; the computational time for the k-facet polyhedral was 

O(nk-2 log n). The solution was equally extended to solve the quasi model with a 

computational time of O(n2k-2 log n). The solution was then extended to solve the 

Tunnelling TSP as a derivative of the MAX TSP. Given a set 𝑇 =

 {𝑡1, 𝑡2, . . . , 𝑡𝑘} 𝑜𝑓 𝑘 ≥  2 auxiliary objects the distances are computed using a special 

“tunnel system” distance function where all tunnels are bidirectional.  

The approximate methods were able to obtain close approximations of the optimal 

solutions in polynomial time (Sergeev, 2014; Hoffman, 2016; Kozma and Momke, 

2016; Dong et al., 2017; Venkatesh et al., 2019). 

2.2.2. The Bottleneck TSP (BTSP) 

The Bottleneck TSP is a special case of the Travelling Salesman Problem that obtains 

a tour that traverses each city exactly once with the objective of minimizing the farthest 

distance between any two adjacent cities on the tour. Given a weighted graph 𝐺, the 

objective of the BTSP is to keep the weight 𝑤 of the weightiest edge 𝑤𝑎𝑏 as minimal 

as possible (Kao and Sanghi, 2009). Thus, the integer programming formulation of the 

BTSP is defined (Kabadi and Punnen, 2007; LaRusic, 2010) as follows: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑚𝑎𝑥{𝑤𝑎𝑏𝑥𝑎𝑏 , 1 ≤ 𝑎, 𝑏 ≤ 𝑛, 𝑎 ≠ 𝑏} 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑥𝑎𝑏 = 1, 𝑏 ∈ 𝑁                          (2.22)

𝑛

𝑎=1

 

∑ 𝑥𝑎𝑏 = 1, 𝑎 ∈ 𝑁                         (2.23)

𝑛

𝑏=1

 

𝑥𝑎𝑏 = 0 𝑜𝑟 1 

∑ ∑ 𝑥𝑎𝑏 ≥ 1∀𝑆 ⊂ 𝑁,

𝑏∈�̅�

                (2.24)

𝑎∈𝑆

 

𝑤ℎ𝑒𝑟𝑒 𝑆̅ = 𝑁\𝑆. 

The BTSP can be classified as either Symmetric or Asymmetric BTSP, depending on 

the nature of the cost matrix. The BTSP is Euclidean (EBTSP) if the tour costs from 

node to node is Euclidean. Other variants of the BTSP include the Constrained BTSP 

and the Maximum Scatter Travelling Salesman Problem (MSTSP). The Constrained 

BTSP places an additional restriction on the total weight of the tour (Malawski et al., 

2013; Van den Bossche at al., 2013; Gahir, 2014; Wang et al., 2016). The MSTSP 

obtains a tour 𝑇 that traverses each nodes of the weighted graph 𝐺 with the objective of 

maximizing the shortest edge in 𝐺 (Hoffmann et al., 2017; Kozma and Mömke, 2017; 

Venkatesh et al., 2019).  

Some application areas of the BTSP include the Assembly line sequencing, sequencing 

a One-State Variable Machine, Reconstructing Sequential Orderings from Inaccurate 

Adjacency Information and Sequencing Rivet Operations (LaRusic, 2010).  
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Researches have deployed both the exact and approximate approach in solving the 

BTSP. The approximate methods aim to obtain close approximations of the optimal 

solutions in polynomial time. For instance, LaRusic (2010) developed an approximate 

solution for the Symmetric Bottleneck Travelling Salesman Problem on a given graph 

𝐺 with cost matrix 𝐶. This was based on the assumption that a lower bound 𝐿 had been 

computed on the optimal BTSP objective value using the “Bottleneck Biconnected 

Spanning Subgraph Problem” (BBSSP) lower bound. Extensive computational results 

were presented for problems of up to 31,623 vertices and the heuristic algorithm was 

able to obtain optimal solutions for almost all problems considered within a very 

reasonable computational time; this was achieved using randomization in a controlled 

way to guide the heuristic search. Helsgaun (2014) solved the BTSP with a Lin-

Kernighan-Helsgaun (LKH) Algorithm. The author used the “1-tree approximation” 

technique to determine a possible edge set, then he deployed an extended search 

technique, and finally, outliers were pruned. The performance of the LKH was 

evaluated on a large BTSP test set, it found optimal results on instances with as much 

as 115,475 nodes in a reasonable time. With some modifications made, the LKH was 

able to solve BTSP instances of as much as one million nodes. Others such as (Kao and 

Sanghi, 2009; Ahmed, 2013; Pelaez et al., 2016; Abdi et al., 2017; Zhang and Sun 

2017) reported encouraging performance of approximate techniques in solving the 

BTSP.  

2.2.3. The Travelling Salesman Problem with Multiple Visits (TSPM) 

As the name implies, the Travelling Salesman Problem with Multiple Visits (TSPM) 

finds a Hamiltonian tour that visits each nodes of the graph 𝐺 more than once and 

complete the cycle at minimal cost. This in contrast to the classic Travelling Salesman 

Problem which must visit each node exactly once. Punnen (2007) showed that the 
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TSPM can be transformed to a classic TSP for a weighted graph 𝐺 if the edge costs are 

substituted with the shortest path distances in 𝐺. Thus, given that the cycle is non-

negative, it is possible to determine the shortest path distances between all pairs of 

vertices in 𝐺 through high performing algorithmic techniques. In the event where 𝐺 

produces a non-negative cycle, the TSPM is said to be unbounded. Also, Oberlin et al., 

(2009) and (Assaf and Ndiaye, 2017) converted a Multiple Depot TSPM (MDMTSP) 

into a Single, Asymmetric TSP. Oberlin et al., (2009)’s work was premised on the 

condition that the cost of the edges satisfies the triangle inequality which was an 

improvement on the 2-Depot TSPM conversion earlier designed. A modified LKH 

heuristic was applied to test some computational results to determine the effectiveness 

of the conversion made for instances involving Dubins vehicles. The LKH heuristic 

was used because it is one of the best available solvers for the single Asymmetric TSP 

on the transformed graph. The computational results on instances test showed that the 

transformation was highly effective and produced quality, feasible solutions for large 

instances involving 50 Unmanned Aerial Vehicles and 500 targets in less than 20 

seconds. Also, the cost of generating the feasible solution was on an average of about 

3% away from its optimum. 

An Open-Close Multiple Travelling Salesmen Problem with Single Depot (OCMTSP)  

was also proposed by (Thenepalle and Singamsetty, 2019) whereby all the salesmen 

are positioned at the base city to generate an optimal route such that all salesmen start 

from the base city and then visit a given set of cities exactly once but only the internal 

salesmen have to return to the depot city whereas the external ones need not return. An 

exact pattern recognition-based Lexi-Search Algorithm (LSA) was deployed to find 

optimal solutions for the simulated problem. Computational experiments were carried 

out, using arbitrarily generated test sets for OCMTSP. The performance of the LSA was 
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evaluated and results indicated that the proposed technique was an efficient method in 

generating optimal and feasible solutions within reasonable times. 

2.2.4. The Clustered TSP (CTSP) 

In the Clustered TSP, the nodes (vertices) in a graph G are distributed into clusters 

(𝑉𝑖, 𝑉2, . . . , 𝑉𝑛), the objective is to find a Hamiltonian tour in each cluster with 

optimum cost, ensuring all nodes within the same cluster are traversed contiguously. 

According to Punnen, (2007), the CTSP can be transformed to a classic Travelling 

Salesman Problem by adding a maximum cost 𝑀 to the cost of each inter-cluster edge. 

Like the study carried out by (Ahmed, 2011), Potvin and Guertin (1996) proposed a 

genetic technique to solve the CTSP. The genetic algorithm used a sequence of integers, 

each integer representing a node, and new orderings from old ones were produced using 

specialized crossover and mutation operators. Problems with 500 vertices were used in 

the computational experiment performed on the genetic algorithm and it was able to 

solve them with an optimality of 5.5%. A computational comparison was also carried 

out on the proposed algorithm and the GENIUS heuristic. The results obtained showed 

that the proposed algorithm outperformed the GENIUS heuristic. Bazylevych et al., 

(2007) suggested decomposition algorithms for solving CTSP which allow a 

considerable amount of decrease in the computation time. The CTSP model studied in 

this work was categorized into macro-modelling, micro-modelling, finding initial route 

and route optimization. Optimization of the route 𝑆0
∗ was realized by means of the 

iterative improvement with minimization of its total distance:  𝐷0
∗ → 𝐷1

∗ → 𝐷2
∗ →, … , →

𝐷𝑐
∗. Local and global optimization were the optimizations considered. The local 

optimization was obtained by using Scanning algorithm, which is an algorithm that 

scans (or finds) optimal or very good solution to some sub-problems of the whole 

problem. On the other hand, the global optimization was arrived at by the iterative 
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revision of the whole route. Ahmed (2014) proposed a heuristic technique to solve the 

ordered CTSP. The technique was a hybrid genetic algorithm, with integrated modules 

such as sequential constructive crossover, 2-opt search, and local search. The initial 

sample space was generated using sequential sampling technique. The technique was 

experimented on some benchmark instances from TSPLIB. The efficiency of the 

technique was evaluated and compared with the exact partitioning algorithms. It was 

observed that the developed algorithm outperformed the other techniques based on 

quality of solutions and computational speed. Furthermore, the developed algorithm 

obtained optimal solutions for the instances with as much as 51 nodes.  

Other variants of the Travelling Salesman Problem that have been formulated and 

solved in literature include, the Time-dependent TSP, the Black and White TSP, the 

Period TSP, the Resource constrained TSP, the Selective TSP, and the Angle TSP 

(Abeledo et al., 2010; Godinho et al., 2014; Arigliano et al., 2018; Keskin et al., 2019). 

2.3. TSP Solutions 

The Travelling Salesman Problem is relevant to several domain of knowledge and 

practices. Apart from the popular transportation and vehicle routing problems, the TSP 

is applied in the drilling and mask plotting of Printed Circuit Boards (PCB), overhauling 

gas turbine engines, X-Ray crystallography, Computer wiring, order-picking problem 

in warehouses and so on (Matai et al., 2010). Being an NP-hard problem, which is 

easily understood but computationally difficult to solve, the TSP has several solution 

algorithms broadly categorized into Exact Algorithms and Approximate Algorithms. 

Solving TSP using Exact techniques involve the explicit enumeration of the solution 

space. Exact techniques guarantee optimal solutions at least hypothetically. However, 

as the solution space increases, the computational complexities of these techniques 
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become exponential in nature and are thus impracticable and unsuitable for NP-hard 

problems with large solution space. Approximate techniques on the other hand 

guarantees good enough solutions within the constraint of polynomial time 𝑝. Some 

exact and approximate techniques are reviewed in the following subsections. 

2.3.1. Exact Methods 

Exact techniques, when used in finding solutions to TSPs try out all possible 

permutations of the solution, thus they have a complexity of 𝑂(𝑛!). Exact techniques 

such as Dijkstra or Bellman-Ford algorithms may be deployed to efficiently solve TSPs 

with small degree of search space (Giovanni, 2017). More complex problems, however, 

may require that the problem be first modelled as a Mixed Linear Programming (MILP) 

paradigm, before solving them using any suitable MILP solver such as Cplex, Gurobi, 

Xpress, AMPL, OPL and so on. While, exact methods can potentially generate optimal 

tour, especially in theory, they are often impracticable and especially unsuitable for NP-

hard problems with large solution space. For instance, for a TSP of as little as 10 𝑛𝑜𝑑𝑒𝑠, 

the execution time is about 3628800 which is impractical (Abdulkarim and 

Alshammari, 2015). The solution renown as the best performing exact technique is 

based on dynamic programming with a complexity of  𝑂(2𝑛𝑛2), thus making it 

impracticable to solve TSP as the search space expands (Deudon et al., 2018). This is 

a result the complexity of TSPs, and the constraint of time.  

Some exact and approximate techniques are reviewed in the following subsections. 

2.3.1.1.The Brute Force Algorithm 

The Brute Force technique involves the explicit enumeration of the solution space. 

Brute force obtains an optimal tour by exploring the entire search space and building 

all the possible solutions. Although the Brute Force technique is simple to implement 
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and guarantees optimal solution, it is however a naive approach, because it chooses the 

optimum solution from a wide search space of all possible solutions, thus in the worst 

case, the complexity expands exponentially until it becomes impracticable in 

polynomial time 𝑃, (Baidoo and Oppong, 2016). 

The following are the stages involved in obtaining optimal solution by the brute-force 

technique (Saiyed, 2012): 

1. Explore all the solution space. 

2. Enumerate and plot all the feasible tours. 

3. Compute the tour cost of each of the solutions. 

4. Select the shortest tour. 

The following pseudocode depicts the brute-force function: 

Algorithm 2.1: Brute Force function 
Input: Q: a TSP query of a set of points 
Output: T: the TSP for Q 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Generate first tour solution, 𝑻𝑺 
𝑶𝒑𝒕𝑻𝒐𝒖𝒓 ← 𝑻𝑺 
𝑶𝒑𝒕𝑪𝒐𝒔𝒕 ← 𝑪𝒐𝒔𝒕(𝑻𝑺) 
while there exists more permutations of 𝑻𝑺 do 

generate a new permutation of 𝑻𝑺 
if 𝑪𝒐𝒔𝒕(𝑻𝑺) < 𝑶𝒑𝒕𝑪𝒐𝒔𝒕 then 

𝑶𝒑𝒕𝑻𝒐𝒖𝒓 ← 𝑻𝑺 
𝑶𝒑𝒕𝑪𝒐𝒔𝒕 ← 𝑪𝒐𝒔𝒕(𝑻𝑺) 

 end if 
end while 
print 𝑶𝒑𝒕𝑻𝒐𝒖𝒓 and 𝑶𝒑𝒕𝑪𝒐𝒔𝒕 

𝑂𝑝𝑡𝑇𝑜𝑢𝑟 is optimal tour, 𝑂𝑝𝑡𝐶𝑜𝑠𝑡 is the cost of the optimal tour. 

Kolog (2012) compared the optimality of the brute force algorithm with the Tabu search 

algorithm for TSP. Results obtained from computational experiments indicated that the 

brute force algorithm outperformed the Tabu search as it produced a significantly high 

optimal solution but it could only work effectively in solving TSPs with less than 10 
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nodes compared to the TABU search which could find a solution without stern 

complexities. 

Baidoo and Oppong (2016) performed a comparative evaluation of the Brute Force 

algorithm, the Greedy algorithm, the Branch-and-Bound technique, the Dynamic 

programming technique and the Nearest Neighbor Heuristic for solving TSP, with a 

focus on the distance traveled, execution time and effectiveness of these algorithms.  

Four test instances were used in the evaluation process, the Brute force approach gave 

the best results in all four instances but had a relatively low computational speed while 

the Nearest Neighbor Heuristic had the fastest computational speed but produced 

approximate values in all test instances. Conversely, the Dynamic programming 

algorithm produced optimal solutions within a considerable execution time. Regarding 

the given criteria, the researchers considered Dynamic programming as the best among 

the five algorithms. 

2.3.1.2.The Branch-and-Bound (BB) Algorithm 

The Branch-and-Bound algorithm is a decision technique for solving Combinatorial 

Optimization Problems. Given a list of vertices and a distance matrix, the Branch-and-

Bound solution process breaks the problem into smaller sub-groups represented in a 

Branch-and-Bound tree. Dead nodes of the tree which cannot be further expanded are 

jettisoned based on the criteria set for the upper and lower bound approximation 

constraint. The upper bound is determined by first generating an initial solution and 

designating the solution cost as the upper bound. This is maintained recursively until a 

lower solution cost is generated (Baidoo and Oppong, 2016). The Branch-and-Bound 

(BB) solution process may be viewed as a mathematical model with a modular approach 

of initial constraint relaxation and incremental enumeration of solution. The quality of 
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the bound determines the quality of the Branch-and-Bound technique (Matai et al., 

2010).  

The Branch-and-Bound algorithm is called an “exact” algorithm because it guarantees 

an optimum solution, although it takes a lot of time (Chatting 2018). The Branch-and-

Bound technique generally go through three procedures vis-à-vis Splitting, Bounding 

and Pruning. The steps performed by the Branch-and-Bound algorithm were 

enumerated by Chatting (2018) as follows: 

Algorithm 2.2: Branch-and-Bound Algorithm 
Input: Q: a TSP query of a set of points 
Output: T: the TSP for Q 
1. Assign a bounding criterion and calculate an overall lower 

bound; 
2. Set an initial city, e.g., 𝒄𝒊𝒕𝒚 𝟏; 
3. Evaluate valid neighbours adjacent to the current city; 
4. Prune any branches which now exceed the bounding criterion; 
5. Repeat steps 3 and 4 until all branches reach a ‘leaf’; 
6. Identify the optimum solution from those remaining. 

 

Hazra and Hore (2016) performed a comparative performance study on the algorithms 

for solving the TSP, namely Branch-and-Bound, Backtracking, and Dynamic 

Programming. The major factor for the comparison was the average running time of all 

three algorithms for solving TSPs of varying sizes. From the analysis, the Branch-and-

Bound had a lesser running time than the Backtracking algorithm as it ignores sub-

problems that are unproductive while the backtracking takes into consideration every 

possible path in solving the TSP problem. Although both the Backtracking and the 

Dynamic Programming algorithms are recursive, the Dynamic Programming had the 

least running time cost and gave the most optimal paths. 

Droste (2017) studied the Branch-and-Bound and Ant Colony Optimisation algorithmic 

solutions for the Travelling Salesman Problem. The Branch-and-Bound algorithm was 
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implemented using four different approaches. It was established that the addition of the 

constraints in order of increasing length instead of in lexicographic order is better for 

branching. While for bounding, the lower bound that adds up the two smallest allowed 

edges of each city performed better than a lower bound based on a 1 − 𝑡𝑟𝑒𝑒. The 

biggest instance for which an exact solution was found consisted of 23 cities. Also, the 

Ant Colony Optimisation algorithm was implemented, and results showed that for 

smaller instances (lesser than 100 cities), the algorithm performed well. 

2.3.1.3.The Branch-and-Cut (BC) Algorithm 

In the Branch-and-Bound algorithm, both cutting-plane and enumerative phases are 

separated, hence update about the existing partial linear definition of inequalities cannot 

be manipulated at the enumeration phase. Additionally, if the BB method terminates 

with a sub-tour solution, the whole enumerative procedures must be restarted from the 

beginning. Therefore, the branch-and-cut algorithm was developed to help overcome 

these loopholes of the BB algorithm due to its inflexibility (Padberg and Rinaldi, 1991). 

The BC algorithm is a combination of the BB algorithm and the cutting plane method. 

The BC algorithm is said to simultaneously compute for a series of increasing lower 

and decreasing upper bounds. In a situation where both coincide, the optimality of the 

feasible solution is proven and even if this does not occur, the bounds help to proffer 

quality guarantee on the best solution (Ascheuer et al., 1999).  

The first procedure of the Branch-and-Cut technique is the initialization stage where 

the linear programming relaxation for the problem is defined. In this phase, a cutting 

plane method is iteratively deployed until the termination criteria is reached, that is no 

more inequalities. The best solution of this phase is stored as the initial solution. The 

next phase is the Branching phase. Here, a binary branching (0 or 1) of the fractional 
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variable is carried out to generate two new nodes. In the third phase, a new linear 

programming relaxation is introduced and deployed iteratively until the enumeration 

process is complete. During the iteration, the optimal solution module is updated with 

solutions with better cost, but left unchanged if otherwise (Dijck, 2018). 

Dumitrescu et al. (2010) solved a simulated integer linear programming TSP with 

Pickup and Delivery (TSPPD) using a separation procedure involving a Branch-and-

Cut technique. The computational results obtained indicated that the BC algorithm 

could find optimal solutions for instances with up to 35 pickup and delivery requests. 

Battarra et al., (2014) carried out a performance study on three variations of the Branch-

and-Cut technique. They are the Branch-and-Cut algorithm with a compact formulation 

that considers two sets of two-index binary variables and a polynomial number of 

constraints, the Branch-and-Cut algorithm with a formulation that considers three index 

variables, and the Branch-Cut-and-Price with a path interpretation of the preceding 

formulation. When enhanced with sub-tour elimination and trivial constraints, the first 

formulation is not empirically dominated, the second formulation was proven to have 

theoretically and empirically dominated the previous, while the third dynamically 

introducing ng-paths to the formulations to generate columns. It was observed that the 

third algorithm could find optimality for all the benchmark instances used. 

2.3.1.4. The Branch-and-Price (BaP) Algorithm 

The Branch-and-Price is a high performing exact method based on integer 

programming for solving the Travelling Salesman Problem (Christiansen et al., 2013; 

Gendreau et al., 2014). The technique employs a similar approach of integer relaxation 

as the Branch-and-Cut technique. However, in the BaP technique, the rows are 

excluded, and column generation is emphasized. A large portion of feasible solutions, 
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represented by the columns, most of which have insignificant associated variables for 

obtaining optimal solutions are excluded. This limits the number of columns that 

require efficient handling to manageable sizes. Thus, column generation can be applied 

throughout the Branch-and-Bound tree (Barnhart, 1998). The BaP typically consist of 

two subproblems, namely the master and the pricing. The pricing subproblem is solved 

to evaluate profitable columns whose cost is minimal, after which the integer 

programming is then reoptimized. This procedure is done iteratively until the condition 

for branching is reached, such that no more profitable columns are obtained 

(Savelsbergh, 2001; Feillet et al., 2010).  

Jepsen (2011) solved the Vehicle Routing Problem using a hybrid technique called the 

Branch-and-Cut-and-Price. The problem was formulated as a Mixed-integer 

Programming model. The edges of the VRPTW were assigned a fixed cost for the pilot 

test and was experimented on an instance of 50 nodes. The technique outperformed 

CPLEX and obtained solution within a reasonable time. 

Kozanidis, (2018) modelled an aircraft routing problem as a TSP and solved it using 

the Branch-and-Price algorithm. Only optimal air-routes were considered and fed into 

the master process iteratively. The experimental results showed a promising 

performance by the model. 

2.3.1.5. The Cutting Plane Algorithm 

Just like the branching techniques, the Cutting Plane technique belong to a class of 

integer programming solution protocols in which a LP relaxation of the problem is 

tightened and improved through the introduction of Cutting Planes (Stratopoulos, 

2017).  Any problem that can be reduced to integer programming can be solved by the 
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cutting-plane method. The technique solves some Integer Programming relaxation by 

minimizing the cost of the solution space through a process of iterative refinement: 

𝑀𝑖𝑛 𝑐𝑇𝑥, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆;                         (2.25) 

The Cutting Plane technique can obtain approximate solutions for complex problems 

where optimal solutions cannot be obtained (Applegate et al., 2001; Mitchell, 2008). 

2.3.1.6. The Dynamic Programming (DP) technique 

The Dynamic Programming (DP) method is an Optimization technique that finds 

optimal or feasible solutions to Optimization Problems including the Travelling 

Salesman Problem. The DP solution process involves recursively breaking problem 

into simpler manageable modules or “sub-problems” and recursively solving them 

optimally. This DP technique is able to efficiently deals with iterative computations or 

processes by the process called “memoization”. This involves storing sub-solutions into 

a table. Dynamic programming requires a very smart formulation of the problem and 

simple thinking (Baidoo and Oppong, 2016). An essential feature of the dynamic 

programming technique, as described by Fachini and Armentano (2018), is to model 

the Optimization Problem in phases adaptable to an “optimal sub-structure” and 

recursively generate optimal sub-solutions which is then mapped and updated per 

iteration using a “resource extension function”.  

Allaoua (2017) integrated Genetic Algorithm (GA) with Dynamic Programming (DP) 

to solve the TSP. From the experimental results performed on some test instances, it 

was observed that the combined GA-DP algorithm significantly minimized the 

computational effort, produced an improved solution quality of the GA, and avoids 

early premature convergence of GA. 
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A DP algorithm for TSP is given below (Bouman et al., 2018):  

Algorithm 2.3: A Dynamic Programming Algorithm for TSP 
Input: Set of cities 𝑽, an arbitrary city 𝒗𝝐𝑽, and cost function 𝑪. 
Output: T: the TSP for V 
1. Initialize 𝑫𝑻𝑺𝑷 with values ∞; 
2. Initialize a table 𝑷 to retain predecessor cites; 
3. Initialize 𝒗 as an arbitrary city in 𝑽; 
4. Foreach 𝒘𝝐𝑽 do 
5.  𝑫𝑻𝑺𝑷({𝒘}, 𝒘) ← 𝒗; 
6.  𝑷({𝒘}, 𝒘)  ← 𝒗; 
7.  For 𝒊 = 𝟐, … , |𝑽| do 
8.   For 𝑺 ⊆ 𝑽 𝒘𝒉𝒆𝒓𝒆 |𝑺| = 𝒊 do 
9.    For 𝒘𝝐𝑺 do 
10.     𝒛 ← 𝑫𝑻𝑺𝑷(𝑺\{𝒘}, 𝒖) + 𝒄(𝒗, 𝒘); 
11.     if 𝒛 < 𝑫𝑻𝑺𝑷(𝑺, 𝒘) then 
12.      𝑫𝑻𝑺𝑷(𝑺, 𝒘)  ← 𝒛; 
13.      𝑷(𝑺, 𝒘) ← 𝒖; 
14.     end if; 
15.    end loop; 
16.  end loop; 
17. end loop. 
18. return path obtained by backtracking over cities in 𝑷 starting 

at 𝑷(𝑽, 𝒗); 

2.3.1.7.The Dijkstra’s Algorithm 

The Dijkstra’s algorithm helps to solve Optimization Problems by considering node 

weight when computing the shortest path. It has an algorithmic complexity of 𝑂(𝑛2). 

The Dijkstra’s algorithm has several advantages which include obtaining the shortest 

path every pair of vertices, between two vertices through several nodes specific, and 

from a given vertex to all other vertices (Ratnasari, 2013).  

Nath (2016) developed Dijkstra’s and bitonic algorithms to help solve the TSP. For test 

instances of small and medium sizes, optimal solutions were obtained. However, for 

test instances of larger sizes, the proposed bitonic approach generated the best feasible 

solutions. Therefore, the proposed bitonic approach outperformed the Dijkstra’s 

algorithms and was concluded to be an efficient methodology for the TSP. however, it 
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was also observed that the bitonic algorithm had lesser computational speed in 

comparison to the Dijkstra’s algorithm as the test instance size increased.  

Syahputra (2016) simulated a logistic system using the Travelling Salesman Problem 

and solved the problem using the Dijkstra algorithm. The technique was experimented 

on an instance of 60 nodes. From the computational results, the Dijkstra’s algorithm 

gave 100% accuracy in solving the TSP. 

Ginting et al., (2019) modelled the efficient delivery of items by logistic companies as 

a classic Travelling Salesman Problem. They obtained an optimal solution using a 

modified Dijkstra technique. The Dijkstra algorithm was modified to recognize the 

priority of some clusters of routes based on their distance and weight. The experimental 

outcome of the method on some instances yielded a comparative efficiency of 47.8% 

and with the computation time of 48.1%. This showed that the modified method with 

priority outperformed the state-of-the-art Dijkstra technique.  

2.3.1.8.The Bellman-Ford Algorithm 

The Bellman-Ford Algorithm also known as the Ford-Fulkerson Algorithm is a 

dynamic programming technique that extends the Dijkstra technique by including 

negative node in its computations. Just like the Dijkstra's algorithm, it finds the shortest 

path in a bottom-up approach (Patel and Baggar, 2014). Figure 2.2 shows a model of 

the Bellman-Ford technique depicted by a “single source” route finding solution for 

clustered nodes. 
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Figure 2.2: A distributed route-finding technique for clustered nodes modelling the 

Bellman-Ford Method (Walrand and Varaiya, 2000) 

 

Yuan (1999) solved the Constrained Quality of Service Path Routing Problem using a 

modified Bellman-Ford technique. The modification was in the introduction of 

constraints to the path and granularity of the computations. Additionally, the technique 

was mapped uniformly. This technique was experimented on two test cases and yielded 

promising result in improving the worst-case of the Constrained QoS routing problem. 

Patel and Baggar (2014) carried out a performance comparative study on both Dijkstra 

Algorithm and the Bellman-Ford Algorithm, in solving the shortest path problem in 

GIS application for the government sector, emergency system, Business sector, etc. 

From the study performed on both algorithms, the Dijkstra algorithm outperformed the 

bellman ford algorithm in a very lager network and has wider use in the real-time 

application of GIS technology.  
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2.3.2. Approximate Techniques 

Approximate techniques generally refer to heuristics and metaheuristics. 

Heuristics are approximate techniques that apply ‘rules of thumb’ for solving 

Combinatorial Optimization Problems without necessarily guaranteeing optimal 

solutions. Heuristics provide approximate solutions within the constraint of polynomial 

time. Heuristic solutions are referred to as approximate because they make use of 

probabilities and some set of rules to finding solutions to problems. For an iterative 

procedure, heuristics can be used when an optimal solution is guaranteed to either 

obtain the solution with ease or make a decision within an exact procedure.  In other 

words, the use of heuristics to solve the TSP and problems related to the TSP provides 

acceptable results that are not too far from the optimal and yet, are computationally 

affordable. A good heuristic must be effective, that is, must always lead to a solution, 

must be able to obtain ‘good enough’ approximate solutions, easy to implement, and 

flexible. Aside from the need to solve hard problems in polynomial time 𝑝, other 

motivations for using heuristic methods in literature (Oliviera and Carravilla, 2009; 

Marti and Reinelt, 2011; Giovanni, 2017; Kyritsis et al, 2018) include: 

i. Unavailability of optimal methods for solving the problems 

ii. The heuristic is part of a broader optimal solution procedure 

iii. Incompatibility of existing exact solutions to available hardware 

iv. The heuristic is more amenable to complexities than the available exact 

technique and can integrate complex constraints that are difficult to 

model. 

Heuristics may be classified based on the atomicity of their solution procedures. In this 

regard, heuristics are classified as Tour Construction, Improvement / Local Search 
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Heuristics, and Compound Heuristics (Oliveira and Carravilla, 2009; Marti and Reinelt, 

2011; Kyritsis et al., 2018).  

Heuristics may also be classified based on their solution paradigm, into space-

partitioning-based heuristics, edge-based heuristics, or node-based heuristics, (Huang 

et al., 2016; Huang and Yu, 2017). The space-partitioning-based heuristics, build 

solutions by first splitting the nodes into subsets (𝑠1, 𝑠2, … , 𝑠𝑛) based on their paired 

distances, the nodes within the same subset are then connected into the tour path, and 

then the Hamilton tour for 𝑆 is obtained by coupling the Hamiltonian paths of subsets 

(𝑠1, 𝑠2, … , 𝑠𝑛). A common example under this category is the Strip and Hilbert 

technique. Edge-based heuristics build solutions by first determining the edge with the 

smallest distance and then placing it into the circuit. Most heuristics under the edge-

based category are built on the Minimum Spanning Tree (MST), they include multiple 

fragment heuristic, double-MST (DMST), the Christofides algorithm (Chris), and so 

on. In the third category, the node-based heuristics build the tour by expanding the 

nodes one at a time till all the nodes have been inserted. Node-based heuristics must 

first decide which node to be used as the initial node, then determine the succeeding 

node to explore in each iteration, and where it will be inserted. Some known node-based 

heuristics include the Addition techniques, the Nearest Neighbour techniques, the 

insertion heuristics, the convex hull-based insertion heuristics, and so on. Apparently, 

node-based heuristics are chiefly tour construction techniques as well (Huang et al., 

2016; Huang and Yu, 2017). 

Approximate techniques may also refer to Metaheuristics. Unlike heuristic techniques 

which are designed to solve specific optimization problems, metaheuristics are general 

purpose approximate computational techniques for solving optimization problems and 

may require few modifications to solve a given problem (Abdel-Basset et al., 2018). 
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The most popular and widely researched metaheuristics are the nature inspired 

metaheuristic.   

Some approximate techniques are reviewed in the following subsections. 

2.3.2.1.Tour Construction Heuristics 

Tour Construction heuristics are stand-alone techniques that generate solutions by 

sequentially applying a set of predefined procedures to the problem space. These 

procedures describe the processes involved in stages of Initialization; Selection and; 

insertion. The construction heuristic techniques have been used extensively in solving 

classic combinatorial optimization problems. Common techniques include the Nearest 

Neighbour Heuristic, the Nearest Insertion, Cheapest Insertion, Random Insertion, 

Addition heuristics, Savings Heuristics, and so on. Some well-known constructive 

heuristic methods are described briefly in Table 2.2. 

 

Table 2.2. Description of some well-known tour construction heuristics  

HEURISTICS DESCRIPTION 

Nearest 

Neighbour 

Heuristic 

The NNH starts its tour with a single subtour of node/city 𝑖, chosen 

randomly or purposively and then iteratively add the next node 

𝑘 + 𝑖 not yet chosen but closest to subtour until all the nodes have 

been added to the tour. This technique is naïve and result in the 

occurrence of outliers as the search space and nodes increase. The 

NNH has a complexity of 𝑂(𝑛2) and yields tours whose qualities 

are within 25%-30% of the Held-Karp lower bound. (Rosenkrantz, 
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et al., 1977; Rao and Jin,2010; Huang and Yu, 2017; Lity et al., 

2017). 

Nearest 

Insertion 

Heuristic 

The NIH belong to the class of Insertion Heuristics. The Insertion 

heuristics starts from an arbitrary point to form a sub tour or partial 

circuit. Nodes not already in the sub tour are then inserted based 

on predefined criteria such that the increment to the total distance 

of the sub tour is minimized. Given the sub tour 𝑇𝑖, and given that 

𝑥 is the next node to be inserted, then the insertion technique 

inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to: 

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) 

The NIH obtains a tour solution by first building its subtour; initial 

node 𝑖 and a node 𝑗 nearest to 𝑖 to form a partial circuit 𝑇 =  𝑖 −

𝑗 − 𝑖. The next node 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖 is then 

added iteratively till a Hamiltonian tour is formed (Huang et al., 

2016; Huang and Yu, 2017).  

Farthest 

Insertion 

Heuristic 

The FIH obtains a tour solution by first building its subtour; initial 

node 𝑖 and a node 𝑗 nearest to 𝑖 to form a partial circuit 𝑇 =  𝑖 −

𝑗 − 𝑖. The next node 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖 is then 

added iteratively till a Hamiltonian tour is formed. The FIH 

solution when evaluated: 
𝑆𝐹𝐼𝐻

𝑆𝑂𝑃𝑇
⁄ ≤ [log 𝑛] + 1 

The FIH is executed in 𝑂(𝑛2) computational effort and since the 

algorithm runs 𝑛 times starting it has a complexity of 𝑂(𝑛2) . 

(Rosenkrantz, et al., 1977; Huang et al., 2016; Huang and Yu, 

2017; Lity et al., 2017) 
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Cheapest 

Insertion 

Heuristic 

This is similar to the Nearest Insertion heuristic. Start at node 𝑖 

(arbitrary or fixed), find cities 𝑘, 𝑖 𝑎𝑛𝑑 𝑗 (𝑖 and 𝑗 being the 

extremes of an edge belonging to the partial tour and k not 

belonging to that tour) for which 𝐶𝑖𝑘 + 𝐶𝑘𝑗 − 𝐶𝑖𝑗 is minimized. If 

all nodes have been selected STOP, else repeat the process. 

Analysis by Rosenkrantz et al., (1977) shows that the complexity 

of cheapest Insertion is 𝑇(𝑛) = 𝑂(𝑛2 log 𝑛). An experimental 

evaluation of the solution is 
𝑆𝐶𝐼𝐻

𝑆𝑂𝑃𝑇
⁄ ≤ 2. (Fan, 2011; Cruz et 

al., 2012). 

Random 

Insertion 

Heuristic 

The Random Insertion Heuristic starts by choosing two arbitrary 

nodes 𝑖, 𝑗 ∈ 𝑇, and form a sub tour 𝑖 − 𝑗 − 𝑖. Then, iteratively and 

arbitrarily chooses a node 𝑘 of 𝑇 that is yet to be added to the cycle 

such that the increase in the total cost of the tour is minimal. The 

loop terminates when all nodes have been included in the tour 

(Goetschalckx, 2011; Anbuudayasankar et al., 2014).  

 

Others tour construction methods are described below: 

The Greedy Heuristic:  

The Greedy heuristic is a technique with a ‘simplest improvement’ approach. The 

Greedy method’s solution paradigm is to obtain a global optimum by first obtaining 

local optimal solution at each stage of the problem. This technique is naïve and usually 

fall short of obtaining global optimum, although locally optimal solutions are often 

reached. It is thus a good approximate technique. In solving the TSP, the Greedy 

method iteratively adding a sorted node set starting with the minimum weight until the 
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tour is completed (Matai et al., 2010). Techniques such as Prim’s MST, Kruskal’s MST, 

Dijkstra Shortest Route Algorithm, Huffman Coding and so on employ the greedy 

solution paradigm. The complexity of the greedy heuristic is 𝑂(𝑛2 log2(𝑛)) (Ejim, 

2016; Jain and Prasad, 2017). Figure 2.3. provides an illustration of the greedy 

technique on six nodes instance. 

 

 

Figure 2.3. An illustration of the greedy technique on six nodes instance (Oliveira and 

Carravilla, 2009) 

 

Abdulkarim and Alshammari (2015) used the Genetic Algorithm and the Greedy 

Heuristic to solve a TSP. The computational experiment consists of three test instances 

with 20, 100, and 1000 cities within the US border. The results obtained showed that 

the Greedy Heuristic’s complexity was higher than that of the Genetic technique, due 

to the higher number of iterations it took before the solution was reached.  However, 

the Greedy technique outperformed the Genetic Algorithm in terms of solution quality.  
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The Christofides Heuristic:  

The Christofides algorithm was named after Nicos Christofides. This technique 

specializes in solving symmetric TSPs, which of course, satisfy the triangle inequality 

criteria. The Christofide techniques guarantees solutions which are 3 2⁄  of the Held 

Karp lower bound (Štencek, 2013). The complexity of the Christofide techniques is 

𝑂(𝑛3) (Chauhan et al., 2012). 

The steps involved in the Christofides algorithm are given below (Matai et al., 2010): 

Algorithm 2.4: The Christofides Algorithm 
Input: Set of nodes 𝑺, an arbitrary city s𝝐𝑺, and cost function 𝑪. 
Output: T: the TSP for S 
Step 1: For a set of nodes 𝐒𝟏,𝟐,…,𝐧, generate a Minimal Spanning 

Tree (MST). 

Step 2:  For a set 𝑂 ∈ 𝑆 of nodes having odd degree, generate 
a Minimum-Weight Matching (MWM) and merge the MST with 
the MWM to create a “multigraph” 𝑀. 

Step 3: Generate an “Euler cycle” from M, while avoiding 
visited nodes. 

 

Research efforts extending the base Christofide technique have further improved the 

performance of the method (Xu et al., 2011; An et al., 2012; Genova and Williamson, 

2017; Xu and Rodrigues, 2017).  

The Clarke-Wright Savings Heuristic:  

The Clarke-Wright Savings Heuristic is reputed for solving the Vehicle Routing variant 

of the Travelling Salesman Problem (Chauhan et al., 2012). The Clarke-Wright Savings 

Heuristic excels in handling the Vehicle Routing Problem because of its flexibility and 

abilities to handle divers constraints. Its experimental performance of approximately 

2.5% over the optimal solution is equally high compared with some methods such as 

the Nearest Neighbour Heuristic; its time and space complexities are O(n2 log(n)) and 

O(n2 ) respectively (Chauhan et al., 2012; Jeřábek et al., 2016). The Clarke-Wright 
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Savings Heuristic’s approach to the Vehicle Routing Problem can be thought of as an 

iterative refinement process. The process starts by finding an initial solution which is 

then refined through a series of stepwise activities, thus giving room for the gradual 

introduction, monitoring and control of constraints. 

Chauhan et al., (2012) and Kampf et al., (2015) detailed the procedure used by the 

Clarke-Wright Savings heuristic as in Algorithm 2.5: 

Given a network 𝑆 of nodes 𝑛 and connecting edges 𝑒, where is the starting node 𝑛0 

and 𝑛𝑖=1,2,…,𝑥 are the delivery nodes. Each of the nodes have attaches constraints, and 

the vehicle has limited capacity, the objective is to generate sets of paths subject to 

some constraints, that traverses each node and return to the starting node with a single 

ride, without exceeding the capacity of the carrier at minimal cost. 

Algorithm 2.5: Clarke-Wright Savings Algorithm 
Input: Set of cities 𝒏 
Output: T: the TSP 
1. Form preliminary solution: select two feasible routes, 

(𝒏𝟎−𝒏𝒊−𝒏𝟎) 𝒂𝒏𝒅 (𝒏𝟎 − 𝒏𝒋−𝒏𝟎) not yet in the hub and connect 

them to the hub  
2. Determine the savings coefficient for each pair of non-hub 

nodes by computing the cost difference if the vehicle 
bypassed the hub, rather than going through it.  

3. The non-hub pairs of nodes are then passed through 
iteratively in decreasing order of savings, performing the 
bypass so long as it does not create a cycle of non-hub 
nodes or cause a non-hub node to become adjacent to more 
than two other non-hub nodes.  

4. Terminate if when only two non-hub cities remain connected 
to the hub, in which case we have a true tour. 

Pichpibul and Kawtummachai (2012), proposed a Clarke-Wright (CW) Savings 

technique in solving the Capacitated Vehicle Routing Problem that traverses all nodes, 

but does not necessarily complete the Hamiltonian Cycle. The proposed technique 

followed four procedures: firstly, the Clarke-Wright model was modified, then an open-

path was constructed, thirdly, the selection process was implemented in two phases, 
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and finally, route post-refinement. Experimental results showed that the proposed 

technique did better than the classical CW method. 

Addition Heuristics:  

Addition Heuristics and Insertion Heuristics both solve the TSP by adding nodes to 

partial tours based on some expansion rules. However, unlike the Insertion technique 

which considers all the insertion points of the subtour, the Addition heuristic consider 

only edges connecting the node 𝑢 nearest to the node 𝑣 that is to be inserted. Expectedly, 

addition heuristics bettered the insertion techniques in terms of complexity but fall short 

of insertion techniques in terms of solution quality (Bentley 1992; Huang and Yu, 

2016). Like insertion techniques, there are four types of addition heuristics, namely 

Nearest Addition Heuristic, Cheapest Addition Heuristic, Farthest Addition Heuristic 

and Random Addition Heuristic. The complexity of these techniques is 𝑂(𝑛3). 

2.3.2.2.Improvement/Local Search Methods 

Improvement techniques build an initial solution, which is then iteratively refined until 

the termination criterion is achieved at which stage, there is no way to further improve 

it. This is derived from the concept that by iteratively refining solutions, the quality of 

the solution can be enhanced to be as close to the optimal solution as possible. Some 

common improvement heuristics include the Lin Kernighan, the 2-Opt, 3-Opt, and k-

Opt algorithms, and so on. Some Improvement techniques are discussed as follow: 

a. Simulated Annealing (SA):  

Simulated Annealing (SA) is primarily an arbitrary local search algorithm, which is 

similar to the TABU Search approach, but differs in that it does not allow path exchange 

that deteriorates the solution (Matai et al., 2010). The Simulated Annealing technique 
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has a complexity 𝑂(𝑛2) with a large constant of proportionality because it uses the 2-

Opt neighbourhood search. The primary difference of the SA from the 2-Opt is that the 

local optimization algorithm is often restricted to their search for the optimal solution 

in a downhill direction which means that the initial solution is changed only if it results 

in a decrease in the objective function value. However, the 2-opt algorithm works well 

when the problem size is less than 50 cities. The Simulated Annealing (SA) algorithm 

obtains good tour quality because of its modular approach of going from one solution 

to the next (Abid and Muhammad, 2015). 

b. The 2-Opt and 3-Opt algorithms:  

The 2-Opt procedure was first formulated by Croes in 1958 based an earlier work by 

Flood in1956 (Saiyed, 2012). The 2-Opt procedure improves an initial tour through a 

process of comparison of all admissible pair of valid edges and substitution based on 

some criteria. This swapping procedure iteratively refines the tour until the route 

converges to a locally optimal solution, in which case it is no longer possible to reduce 

the tour length. At this point of local optimum, this procedure would have transformed 

all crossing edges into non-crossing ones (see Figure 2.4.) (Matai et al., 2010). 

 

 

Figure 2.4. A Schematic Illustration of the 2-OPT Procedure (Yang et al., 2008) 
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A naive implementation of 2-Opt runs in 𝑂(𝑛2). This involves selecting an edge (𝑐1, 𝑐2) 

and searching for another edge (𝑐3, 𝑐4), completing a move only if 𝑑𝑖𝑠𝑡(𝑐1, 𝑐2) +

𝑑𝑖𝑠𝑡(𝑐3, 𝑐4) > 𝑑𝑖𝑠𝑡(𝑐2, 𝑐3) + 𝑑𝑖𝑠𝑡(𝑐1, 𝑐4), (Saiyed, 2012). 

The 3-Opt algorithm’s structure is similar to that of the 2-Opt, except that it removes 

three edges. The search is exhausted when no more 3-opt moves can improve tour 

quality. A 3-Optimal tour is also a 2-Optimal tour.  

Neissi and Mazloom (2009) made use of both local search heuristics and genetic local 

search algorithms; a 2-Opt algorithm and a 3-Opt algorithm, to solve the TSP. From the 

evaluation and comparison of the run time behaviour and fitness of their approach, 2-

Opt had better fitness for solving the TSP while it was observed that with the 3-Opt 

algorithm the solution converges to the global optimum in more time. Hence, they 

recommended that the 2-Opt algorithm be used in getting the optimum arrival time and 

the 3-Opt algorithm be used to get global optimum where it is important.  

c. k-Opt Algorithms:  

The k-Opt move is applied to improve the generated tour from obtained tour 

construction heuristic.  The exchange heuristic for 𝑘 >  3 will take more computational 

time as compared to that of 2-Opt and 3-Opt exchange heuristic. For instance, a 4-Opt 

move, which is referred to as “the crossing bridges”, cannot be sequentially constructed 

using 2-Opt moves and for this to be possible two of these moves would have to be 

illegal (Matai et al., 2010). 

Helsgaun (2009) implemented a general k-Opt sub-move for a variant of the Lin– 

Kernighan heuristic, LKH-2. The computational experiments performed showed that 

the implementation was both effective and scalable for Euclidean test instances from 

10,000 to 10,000,000 cities. It was noted that the use of general k-Opt sub-moves 
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depends on the candidate graph, except the candidate graph is sparse hence the instance 

should not be heavily clustered else this will lead to time consumption. Thus, the 

runtime of the method increases almost linearly with the problem size. 

d. Lin-Kernighan:  

The Lin-Kernighan (LK) Algorithm is renown as a high performing technique for 

obtaining optimal or approximate solutions for the TSP, although its implementation is 

complex. The creation of the LK was based on the static 𝐾 in the K-Opt method. The 

LK is a variable k-way exchange heuristic that introduces a powerful variable-Opt 

algorithm to its implementation and dynamically changes the value of K during its 

execution (Chauhan et al., 2012). The time complexity of LK is approximately 𝑂(𝑛2.2), 

making it slower than a simple 2-Opt (Papadimitriou, 1992; Matai et al., 2010). 

Lau (2002) developed a Search and Learning Algorithm (SLA*-TSP) for solving TSPs 

which applies the heuristic estimation approach and made a comparison of the proposed 

algorithm’s computation time and solutions with the Nearest Neighbour Heuristic and 

Lin-Kernighan Heuristics. SLA*-TSP proffered more suitable results than Nearest 

Neighbour heuristics and almost the same solutions as Lin-Kernighan Heuristics. It 

however performed woefully in computational time as compared to the other algorithms 

while Nearest Neighbour heuristics had the best computation time record. The poor 

computational time performance of SLA*-TSP was attributed to its dynamic tour 

construction and the inefficient data retrieval in its program. 

2.3.2.3.Compound Heuristics 

The constructive and local search methods form the foundations of the Compound 

heuristic procedures. In this approach, two or more constructive and improvement 

heuristics are applied separately and the best solution is chosen (Frederickson et al, 
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1978; Yao, 1980; Landston, 1987). Examples include CCAO (Convex Hull, Cheap 

Insertion, Largest Angle and OR-Opt) (Golden and Stewart, 1985), GENIUS 

(Gendreau et al, 1992) among others.  

2.3.2.4.Metaheuristics 

Metaheuristic algorithms are special form of heuristics used for solving specific but 

complex optimization problems. They are classified either as metaphor based or non-

metaphor based (Damghanijazi and Mazidi, 2017). They differ mainly in the techniques 

used in simulating the selected phenomenon behaviour in the search area. Examples of 

metaphor-based metaheuristics include: Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Water Waves Optimization (WWO), Clonal Selection Algorithm 

(CLONALG), Chemical Reaction Optimization (CRO), Harmony Search (HS), Sine 

Cosine Algorithm (SCA), Simulated Annealing (SA), Teaching–Learning-Based 

Optimization (TLBO), League Championship Algorithm (LCA), and so on (Matai et 

al., 2010; Chauhan et al., 2012; Abdulkarim and Alshammari, 2015. Some non-

metaphor-based metaheuristics include TABU Search (TS), Variable Neighbourhood 

Search (VNS) (Matai et al., 2010; Basu, 2012; Damghanijazi and Mazidi, 2017).  

a. Ant Colony:  

Ant Colony Optimization is a meta-heuristic technique whose principle was inspired 

by the behaviour of real ants that find food resources by laying a trail of a chemical 

substance called ‘pheromone’ along the path from the nest to the food source (Chauhan 

et al., 2012). The amount of available pheromone determined if new ants are 

encouraged to trail on the same path. Shorter routes to food sources have higher 

amounts of pheromone. As time goes by, most of the ants are directed to use the shortest 

path. The medium of indirect communication is referred to as ‘stigmergy’ (Dorigo et 
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al., 1999), in which the concept of positive feedback is exploited to find the best 

possible path, based on the experience of previous ants (Chauhan et al., 2012). 

Gupta (2013) carried a comparative performance analysis of some meta-heuristics in 

solving the classic and Random Travelling Salesman Problem. Two classical meta-

heuristics (TABU search and Simulated Annealing), two evolutionary techniques 

(Genetic and Memetic), and four nature-inspired algorithms (Ant Colony Optimization, 

Bee Colony Optimization, Firefly, and Cuckoo-Search) were considered. The 

performances of these meta-heuristic algorithms were compared based on quality of the 

tour solution. It was observed that the Nature-inspired algorithms outperformed both 

Traditional and Evolutionary algorithms and obtained optimal solutions for some 

instances. Particularly, the Cuckoo Search algorithm produced the best solutions in 

terms of solution quality. 

Droste (2017) studied the Branch-and-Bound algorithm and the Ant Colony 

Optimisation algorithm for solving the TSP. The computational results indicated that 

the Branch-and-Bound algorithm could not solve for test instances with more than 23 

cities. While the Ant Colony Optimisation algorithm provided solutions for instances 

with nodes of almost 100 cities. Result showed that the accuracy of the Ant Colony 

technique decreases with increasing number of nodes.  

b. Genetic Algorithm:  

Genetic Algorithm (GA) is a heuristic algorithm that simulates the evolution principles 

in finding solutions to complex problems that cannot be solved with any other exact 

algorithms. These evolution principles include inheritance, mutation, natural selection, 

hybridization – for “selective breeding” of a solution of a basic problem. A basic GA 

starts with a randomly generated population of candidate solutions for different 
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problems. The candidates are saved and are then mated to produce offspring, while 

some go through a mutating process, and as the population develops, the solutions are 

improved (Matai et al., 2010). The algorithm calculates the fitness function for each 

member of the population expressing the quality of solution for all members. By 

selecting the fittest candidates for mating and mutation the overall fitness of the 

population improves (Abdulkarim and Alshammari, 2015). The algorithm terminates 

after a considerable improvement to the quality has been achieved or after a time-out. 

Applying GA to the TSP involves implementing a crossover routine, a measure of 

fitness, and a mutation routine. A good measure of fitness is the actual length of the 

solution (Štencek, 2013). 

Using GA for TSP has disadvantages of premature convergence and poor local search 

capability. These problems can be circumvented by integrating other high performing 

techniques such artificial immune systems into it (Abid and Muhammad, 2015). 

Gupta and Kakkar (2012) solved the Travelling Salesman Problem using a modified 

Genetic Algorithm. The Parallel search-and-learn technique, Hybrid Method, Neural 

Network Techniques, TABU search were used as a curtail the complexity of the Genetic 

Algorithm and generate and optimized solution. 

AlSalib et al., (2013) investigated the performance of the Genetic algorithm and 

Nearest Neighbour Heuristic in terms of cost and running time, using four datasets of 

varying cities. It was observed that the Nearest Neighbour Heuristic proffered very 

suitable results for datasets with less than 50 cities, its results were either close to or 

better than the optimal solutions. It produced solutions farther away from the optimal 

for large datasets but recorded an overall better execution time which was lesser than a 

second for all four instances used. Genetic Algorithm, on the other hand, was more 
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stable as near-optimal tour costs producing solutions that were much closer to each 

other and proved to have an overall lesser amount of errors, as computed by the MED 

formula, hence indicating that it performed better than the Nearest Neighbour Heuristic. 

Damghanijazi and Mazidi (2017) carried out a comparative performance analysis of 

five meta-heuristics including Hill Climbing, Simulated Annealing, PSO, Ant Colony, 

and Genetic Algorithm in solving the classic Travelling Salesman Problem. The 

execution time and space complexities were also compared. Computational results 

showed that the Simulated Annealing and Hill Climbing solutions stopped at the local 

minimum and thus had poorer tour quality than the other methods. The other algorithms 

gave better solutions while GA achieves the optimal solution in the shortest time. The 

hill-climbing method has the lowest memory consumption. 

c. TABU Search:  

The TABU Search is an iterative refinement technique based on local search, also 

known to be a neighbourhood-search algorithm that begins with an initial solution to 

the problem and searches for the best solution in the neighbourhood of the existing 

solution using a 2-opt exchange mechanism. It then designates the best solution in the 

neighbourhood as the current solution and iteratively refines the process until the 

termination criteria is met which may either be due to execution time, maximum 

iteration count conditions, or solution quality objectives, or all (Basu, 2012). The 

challenge with using a simple neighbourhood search approach (either 2-opt or 3-opt 

exchange heuristic), is that the procedure can easily get stuck in a local optimum. To 

avoid this, the TABU search keeps a TABU list containing bad solution with a bad 

exchange (Matai et al., 2010).  
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Misevičius et al., (2005) used a variant of the TABU search scheme, the fast iterated 

TABU search (ITS) meta-heuristic, to solve the TSP. ITS obtains near-optimal 

solutions by combining intensification (standard TABU search) and diversification 

properly. The fast-iterated TABU search technique obtained promising results for the 

TSP instances considered from the TSPLIB. It was observed that the FITS 

outperformed the random multi-start (RMS) algorithm based on 2-opt moves, the 

Simulated Annealing algorithm, the straightforward TABU search algorithm, and the 

iterated TABU search (ITS) algorithm, especially, on the smaller TSP instances. 

Erdogan et al., (2012) developed three metaheuristics to solve the Travelling Salesman 

Problems with Pickups, Deliveries, and Handling Costs. The metaheuristics solutions 

used were based on the TABU search, Iterated Local Search, and the Iterated TABU 

search. The three heuristics experimented on some test instances and their performances 

were documented and compared. The computational results indicated that the hybrid of 

TABU search with exact Dynamic Programming performed best, but using the 

approximate linear time algorithm considerably decreases the CPU time at the cost of 

slightly worse solutions. 

2.3.3. The Held-Karp Lower Bound 

The Held-Karp (HK) lower bound is used in testing the performance of any new TSP 

heuristic. It is the solution to the linear programming (LP) relaxation of the standard 

integer programming formulation of the Travelling salesman problem (Matai et al., 

2010). Surprisingly, there is no readily available LP code for evaluating HK lower 

bound for problems larger than a few hundred cities. Also, Linear Programming 

implementations (even efficient ones) do not scale well and rapidly become impractical 
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for problems with many thousands of cities (Valenzuela and Jones, 2001); HK lower 

bound is averagely 0.8% below the optimal tour length. 

The HK lower bound can be evaluated as a 1-tree relaxation, where a 1-tree on an 𝑛 𝑐𝑖𝑡𝑦 

problem is defined as follows (Valenzuela and Jones, 1997): 

A 1 − 𝑡𝑟𝑒𝑒 is a connected graph with vertices 1, 2, . . . , 𝑛 consisting of a tree on the 

vertices 2, 3, . . . , 𝑛 together with two edges incident with 𝑐𝑖𝑡𝑦 1.  

Evaluation of a Held-Karp lower bound requires the computation of a sequence of 

Minimum 1 − 𝑡𝑟𝑒𝑒𝑠, where:  

A Minimum 1 − 𝑡𝑟𝑒𝑒 is a Minimum Spanning Tree (MST) on the vertices 2, 3, . . . , 𝑛 

together with the two lowest-cost edges incident with 𝑐𝑖𝑡𝑦 1. 

A tour is simply a 1 − 𝑡𝑟𝑒𝑒 in which each vertex has degree 2. If a minimum 1 − 𝑡𝑟𝑒𝑒 

is a tour, then it is a tour of minimum cost.  

2.4. Related State-of-the-Art Tour Construction Solutions 

Research works done on state-of-the-art tour construction methods such as the Nearest 

Neighbour Heuristic, Nearest Insertion Heuristic, Cheapest Insertion Heuristic, 

Random Insertion Heuristic and Farthest Insertion Heuristic were reviewed in this 

section. 

Generally, the Nearest Neighbour Heuristic can solve the TSP in good time, with less-

than-optimal solution quality. Experimentally,  

𝑇𝑁𝑁𝐻
𝑇𝑂𝑃𝑇

⁄ ≈ 1.26                       (2.26) 

Where 𝑇𝑁𝑁𝐻 = tour cost of the Nearest Neighbour Heuristic and 𝑇𝑂𝑃𝑇 = cost of the 

optimal tour. 
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Thus, recent literature focus on using the Nearest Neighbour Heuristic either as part of 

a hybrid method as in (Rao and Jin,2010; Huang and Yu, 2017; Lity et al., 2017) or as 

a seed technique in a metaheuristic for building initial solutions (Lingling and Ruhan, 

2012; Bernardino and Paias, 2018; Kitjacharoenchaia et al., 2019). The works reviewed 

in this section fall in the latter category. The literature considered span the period 2011-

2020.  

Rego et al., (2011) used the Nearest Neighbour Heuristic to build an initial tour in their 

experimental survey of some leading techniques. They identified important 

implementation success factors and experimented a total of nine high performing 

heuristics on different instances of both symmetric and asymmetric TSPs. These 

methods included four derivatives of the Lin-Kernighan heuristic and two variants of 

the stem and cycle (S&C) technique for the implementation of the Symmetric TSP; 

while three generalized LK and S&C methods were used for implementation on the 

Asymmetric TSPs. The LK variants used on the Symmetric TSPs include the Johnson 

and McGeoch Lin–Kernighan (LK–JM), the Neto’s Lin–Kernighan (LK–N), the 

Applegate, Bixby, Chvatal, and Cook Lin–Kernighan (LK–ABCC) and the Applegate, 

Cook and Rohe Lin–Kernighan (LK–ACR). The stem and cycle considered include the 

Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG) and S&C-RGG+. The three 

generalized techniques used on the Asymmetric TSPs are; Kanellakis–Papadimitriou 

heuristic (KP-JM), Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG) and Rego, 

Glover, and Gamboa doubly-rooted S&C (DRS&C-RGG). All the generalized 

methods’ implementation used the Nearest Neighbour Heuristic to build their initial 

tour. Their findings revealed that S&C approaches clearly outperformed the basic LK 

implementations in terms of solution quality, while the LK performed better in terms 

of time.  
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Lingling and Ruhan (2012) developed a hybrid metaheuristic algorithm for solving 

large-scale vehicle routing problem, the algorithm was a combination of Nearest 

Neighbour Heuristic and TABU algorithms. The Nearest Neighbour Heuristic was used 

to generate the initial routes while the TABU was used for the intra and cross-exchange 

routes. The testbed used in the experiments carried out was from a dataset of 6772 

customers in the central and suburb of Suizhou city. The performance evaluation 

revealed that the proposed algorithm evidently benefited from the introduction of the 

Nearest Neighbour Heuristic in generating the initial tour and was able to efficiently 

provide minimum cost for delivery. 

Fischer et al. (2014) introduced an extension of the Travelling Salesman Problem 

(TSP), referred to as Quadratic TSP (QTSP). Three Exact algorithms (an exact 

approach based on a polynomial transformation to a TSP, branch-and-bound algorithm 

and branch-and-cut) and seven approximate algorithms (Cheapest-Insertion Heuristic, 

Nearest-Neighbour Heuristic, Two-Directional Nearest-Neighbour Heuristic (2NN), 

Assignment-Patching Heuristic (AP), Nearest-Neighbour-Patching Heuristic (NNP), 

Two-Directional Nearest-Neighbour-Patching Heuristic (2NNP) and Greedy Heuristic 

(GR)) were used to solve the QTSP. From the computational evaluation, the branch-

and-cut approach was seen to be capable of solving large real-world instances with up 

to 100 nodes and provided optimality in a reasonable time of about ten minutes. 

Although the running times of exact algorithms were reasonable, they were not as fast 

as heuristics which took less than or equal to ten seconds to solve the largest instances. 

The variants of the Nearest Neighbour Heuristic presented did well in terms of 

computational speed but fell short in comparison to the exact methods in terms of 

solution quality. 
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Lity et al., (2017) modelled the product ordering process of the incremental Software 

Product Line (SPL) analysis as a Travelling Salesman Problem (TSP). The aim was to 

optimize product orders and thereby improve the overall SPL analysis. Products were 

modelled as nodes in a graph and the solution-space information defines edge weights 

between product nodes. Existing graph route-finding heuristics were used to obtain the 

path with minimal costs. The first heuristic deployed was the Nearest Neighbour 

Heuristic. The nodes were analyzed in order of their similarity, so the Nearest 

Neighbour Heuristic path was built by adding the product (node) that is most similar to 

the last node on the path. However, it was observed that the quality of the approximation 

was poor because it first greedily added all the similar nodes and later suffered the curse 

of dimensionality when not so similar nodes were to be added. To circumvent this, a 

lookup was introduced to examine the next node to be added with respect to the already 

computed path. Thereafter, two insertion heuristics namely Nearest Insertion Heuristic 

and Farthest Insertion Heuristic were deployed to insert the remaining product to the 

existing path created by the Nearest Neighbour Heuristic. The proposed method was 

simulated on a prototype and evaluated for applicability and performance; a 

significantly more optimized SPL process was reported. 

Bernardino and Paias (2018) used a modified Nearest Neighbour Heuristic to generate 

an initial solution as part of the procedure of the Iterated Local Search implementation. 

They worked on the Family Travelling Salesman Problem (FTSP), which is a variant 

of the classic Travelling Salesman Problem (TSP). They set out by formulating the 

FTSP, the objective being to traverse a stated number of nodes in each cluster at a 

minimum cost. The FTSP sub tour was then modelled both as compact and non-

compact models. Three compact models were created namely; Single-Commodity Flow 

model (SCF), the Family-Commodity Flow model (FCF), and the Node-Commodity 
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Flow model (NCF). The non-compact models proposed were the Connectivity Cuts 

(CC) model, the Rounded Visits (RV) model, and the Rounded Family visits (RFV) 

model. These models were then compared analytically and experimented using C++ 

programming language. Iterative Local Search (ILS) was implemented on C++ to 

provide upper bounds for instances that cannot be solved using exact techniques. The 

first stage of the Iterative Local Search implementation included the use of a modified 

Nearest Neighbour Heuristic to build an initial solution, after which local search was 

deployed to arrive at a local optimum. A perturbation was then used to escape the local 

optimum before the extra nodes accrued were extracted based on removal criteria. The 

performance of the Iterative Local Search validated the known research hypothesis that 

construction tour heuristics produce quality initial solutions. The models were 

implemented on publicly available benchmark instances and the experimental results 

were documented. Results showed that non-compact models did better than their 

counterpart compact ones.  

In the study by Kitjacharoenchaia et al., (2019), the Nearest Neighbour Heuristic and 

two other heuristics were used to build an initial solution for their proposed model. 

Motivated by the increasing adoption of drones to achieve fast and flexible delivery, 

the authors conducted a study to simulate a drone delivery system formulated as a 

Multiple Travelling Salesman Problem (mTSP) to minimize time. They implemented 

the Mixed Integer Programming (MIP) to solve the problem and thereafter proposed a 

new technique called the Adaptive Insertion Algorithm (ADI). The Adaptive Insertion 

Algorithm was implemented in two phases. An initial solution on only truck tours was 

built using three heuristics (namely the Nearest Neighbour Heuristic, Genetic 

Algorithm, and Random Cluster/tour). The mTSP solution was generated from the 

initial tour in the second phase. The method was then experimented on a single truck, 
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multiple trucks, and a single truck and drone system and the solution compared with 

the existing MIP solution. The system reported a promising, competitive performance. 

It could be deduced that solutions generated from the initial solution by heuristics such 

as Nearest Neighbour Heuristic hold promising performances. 

Nikolas et al., (2019) presented k-Repetitive-Nearest-Neighbour (k-RNN) algorithm 

which is an extension of the well-known Nearest-Neighbour Heuristic. The procedure 

for the k-Repetitive-Nearest-Neighbour was to begin a search tour with permutations 

of k nodes and then continue the search using the NNH from that point on, after which 

the optimal tour is obtained. From the experiments conducted on numerous instances, 

it was observed that there was an increase in the quality of the solution obtained when 

the value of k increases, meanwhile the running time increased by a factor of n. 

Experimental results showed that for 2-RNN the solutions’ quality remains relatively 

stable at approximately 10% to 40% above the optimum. 

Víctor et al., (2020) solved the Euclidean TSPs of small and large data sizes with an 

efficient heuristic that is based on the Girding Polygon which doesn’t take up much 

computer memory space and produces approximate results that are near-optimal. The 

computational performance of the proposed approximate heuristic was compared to that 

of Nearest Neighbour Heuristic which is also an approximate heuristic. The proposed 

heuristic outperformed the Nearest Neighbour Heuristic with an average percentage 

error of 16.89% while that of the Nearest Neighbour Heuristic an average percentage 

error of 26.55%. The technique also had a standard deviation of 0.05%, while the 

Nearest Neighbour Heuristic had a standard deviation of 0.04%. Even though the 

proposed algorithm didn’t produce optimal solutions for the instances used, it gave an 

approximate solution which was significantly better than the Nearest Neighbour 

Heuristic. 
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Fontaine et al., (2020) conducted an experimental study to ascertain the effectiveness 

of the human strategies in solving the Vehicle Routing Problem (VRP) compared to 

that of heuristic techniques. Motivated by the need to understand the strengths and 

limitations of the human decision making especially in completing the Travelling 

Salesman related tasks such as clustering and route building, the discrete choice model 

was developed to evaluate the underlying motivation of participants in their choices of 

some attributes during the tour building process of clustering and route finding. Their 

work was based on three (3) hypotheses which are: one, the complexity of the problem 

has an impact on the solution quality of the participants, two, the participants follow 

certain strategies during problem-solving, and three, Feedback requested by the 

participants has a significant impact on the performance. A total of 112 respondents, 

aged between 18 and 32 years, participated in the experimental study, most of who are 

novices in routing. The costs of the attributes by each participant and instance were also 

evaluated using multinomial logistic regression to determine how much each attribute 

contributes to the individual choices when clusters and routes are built. The analysis 

also included the splitting of the clustering and routing performance to be able to 

independently compute the optimal TSP solution for each cluster and then compare the 

results with the actual routes of the participant. The humans’ performance was then 

compared to the performances of the Nearest Neighbour Heuristic, the Sweep Heuristic, 

and the Savings Heuristic. Their findings showed that while humans, were more often 

than not unable to generate optimal solutions, they typically perform better than the 

worst cases of these heuristics and worse than their best cases irrespective of size and 

vehicle capacity. Additionally, they reported that poor clustering led to poor solutions 

in the Nearest Neighbour Heuristic and others. They concluded by recommending that 
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interface design should avoid too much feedback options, but rather focus more on 

obtaining good clusters to foster better solutions. 

In summary, the Nearest Neighbour Heuristic is widely used in literature because of its 

speed and simplicity. Efforts have been made to modify the Nearest Neighbour 

Heuristic for better performance. It has also been used as part of hybridized solutions 

or used to build the initial solution of metaheuristics. While the Nearest Neighbour 

Heuristic is preferred for its speed and simplicity, its greedy approach of adding the 

lowest cost nodes first, however, means that it suffers what is called the “curse of 

dimensionality” because as the search space and nodes increase, more and more outliers 

are seen. The term “curse of dimensionality” is often used to describe the phenomenon 

that as the dimensionality increases, leading to larger search space, the sparsity of data 

results in more outliers.  

The Insertion heuristics starts from an arbitrary point to form a sub tour or partial circuit. 

Nodes not already in the sub tour are then inserted based on predefined criteria such 

that the increment to the total distance of the sub tour is minimized (Huang et al., 2016; 

Huang and Yu, 2017). Suppose that node 𝑥 is to be added to edge (𝑥𝑖, 𝑥𝑗), and given 

the cost function 𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥), then,  

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) =  𝑑(𝑥, 𝑥𝑖) +  𝑑(𝑥, 𝑥𝑗) −  𝑑(𝑥𝑖 , 𝑥𝑗)              (2.27) 

Each insertion technique method aims to add a node to an edge (that is between two 

nodes) at a minimal cost. Given the sub tour 𝑇𝑖, and given that 𝑥 is the next node to be 

inserted, then the insertion technique inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to: 

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥)                                             (2.28) 
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Insertion techniques are desirable because of their speed, ease of implementation, 

quality of solutions, and the fact that they can be easily modified to handle complex 

constraints (Daamen and Phillipson, 2015). There are 4 generally known insertion 

techniques vis Nearest Insertion Heuristic, Cheapest Insertion Heuristic, Random 

Insertion Heuristic, and Farthest Insertion Heuristic. Others include Priciest Insertion, 

quick insertion, and greatest angle insertion (Goetschalckx, 2011; Anbuudayasankar et 

al., 2014).  

Insertion techniques can be used to get a good tour construction solution. According to 

Rosenkrantz et al., (1977), Insertion techniques find 𝑂(𝑙𝑜𝑔 𝑛) approximate solutions. 

Insertion techniques are also used as an initial solution for improvement heuristics as 

well as metaheuristics; insertion techniques have been proven to significantly improve 

the performance of 2-Opt methods when used as initial solutions (Englert et al., 2014). 

Other researchers have presented new insertion techniques, either as a modification of 

state-of-the-art methods or as novel efforts. Experimentally, the Farthest Insertion 

Heuristic has been known to outperform the Random Insertion, the Cheapest Insertion, 

and the Nearest Insertion Heuristic in that order (Rosenkrantz et al., 1977; Lawler et al. 

1985; Babel 2020).  

Daamen and Phillipson (2015) presented a simulated TSP called an Edge Disjoint 

Circuits Problem (EDCP) with an intent to compare the approach of integrating both 

clustering and disjoint routing with separate approaches in obtaining better optimal 

solutions. The Insertion and the Cluster First-Route Second (CFRS) heuristics were 

applied to finding initial solutions for the EDCP as they were well-known techniques, 

from literature, for constructing feasible solutions for Vehicle Routing Problem (VRP).  

Insertion heuristics are known to be fast in generating good solutions, easy to 

implement, and extendable in dealing with complicated constraints. Hence, the initial 
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solution was found using an insertion heuristic and enhanced using local search until 

the maximum time was exceeded or a local optimum was found. Three orders of 

insertion heuristic were tested, namely: random, non-disjoint insertion cost, and disjoint 

cost orders. For all testbeds considered, the random order had the highest average cost 

while the disjoint cost order had the lowest average cost with considerably larger 

computation time. Using various test instances, the developed insertion heuristic was 

compared with the CFRS Heuristic, the insertion heuristic gave an average cost between 

27% lower and 3% higher than the average cost of the CFRS heuristic. The insertion 

heuristic performed quite well compared to the CFRS heuristic. There were only two 

instances where the CFRS heuristic performed better, in terms of average cost, with a 

difference of around 2% - 3%. 

In a bid to obtain an approximate or optimal solution, Laha and Gupta, (2016) used an 

insertion technique to improve a proposed penalty-based construction algorithm. The 

algorithm was based on a Hungarian penalty method used for assigning a resource to 

an activity on a one-to-one basis that lowers a cost matrix to a penalty cost matrix. The 

proposed method used, was subdivided into three processes; the initial process used the 

Hungarian penalty method to derive a set of instances, the initial schedule was 

constructed in the second process and the third process improved on the proceeding 

processes using an insertion technique. To evaluate the efficiency of the proposed 

algorithm in terms of quality and computational speed, a comparative performance was 

carried out using seven well-known heuristics; Nearest Neighbour Heuristic, Farthest 

Insertion Heuristic, Cheapest Insertion Heuristic, Gangadharan and Rajendran (1993), 

Framinan and Nagano (1194), and Laha et al., (2014). Average relative percentage 

deviation (ARPD), and percent of optimal solutions (for small problem sizes) or percent 

of best heuristic solutions (for large problem sizes) were the measurement metrics used. 
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The proposed method produced the best ARPD followed by the Cheapest Insertion 

Heuristic, it also had the best percentages for optimal and approximate solutions 

followed by the cheapest insertion heuristic. 

Balseiro et al. (2011) used insertion heuristics to enhance the performance of an Ant 

Colony System algorithm which solves the Time-Dependent Vehicle Routing Problem 

with Time Windows (TDVRPTW), this led to a hybrid algorithm called a Multiple Ant 

Colony System algorithm hybridized with Insertion Heuristics (MACS-IH). The Ant 

Colony System algorithm produces results that were less than optimal at the final stages 

because there was a significant number of unrouted nodes, hence the reason for 

introducing the Insertion heuristics which helped to reduce the number of unvisited 

routes. The Insertion heuristics used in this study were the Sequential Nearest 

Neighbour Heuristic and the Parallel Nearest Neighbour Heuristic. The 56 Time-

Dependent Solomon instances were used as testbeds for the proposed hybridized 

algorithm for four different solutions were constructed using a sequential NN heuristic, 

a sequential NN heuristic plus local search, a parallel NN heuristic and a parallel NN 

heuristic plus local search. The best metrics seen from results are the sequential NN 

heuristic plus local search and the parallel NN heuristic plus local search which 

improved the quality of the solutions produced by the constructive heuristics and the 

local search. The parallel NN heuristic measured the urgency of delivery but had the 

least impact. Three new insertion heuristic were formed: Local Search + Insertion 

(LSI), Local Search + MDL (LSMDL), and Local Search + MFT (LSMFT). The LSI 

explores all possible solutions and tried inserting the unrouted nodes into them, 

however, it fails to include tougher clients that require multiple successive changes in 

the solution before they can be served. Hence, the minimum delay metric (MDL) was 

introduced to measure the difficulty of inserting a new node. The maximal free time 



78 
 

(MFT) of a solution was used as a measure to find the maximum contiguous waiting 

time within a route which creates an allowance for possible insertions and in turn 

enhances the performance of the LSMDL. 

Fan (2011) worked on The Vehicle Routing Problem with Simultaneous Pickup and 

Delivery with emphasis on Customer Satisfaction (VRPSPDCS); this is a VRPTWSPD. 

The work was motivated by the need to improve the decision-making abilities to 

optimize the efficiency of their supply chain. These included decisions that bothered on 

strategies for designing optimal routing network to potentially minimize cost as well as 

decisions capable of improving customer evaluation by taking into consideration 

customers’ time windows. These requirements were modelled as a VRPDPDCS and an 

improvement heuristic was proposed. The first stage of the proposed method was to 

generate an initial solution through the Cheapest Insertion heuristic. The second stage 

which was the improvement solution was done via the TABU search procedure. The 

model was tested on six testbeds; the result showed promising performance. The 

improvement techniques discussed relied on the performance of the Cheapest Insertion 

Heuristic used to build the initial solution. 

Wang and Chen (2012) proposed a Co-Evolution Genetic Algorithm (CEA) to help get 

a better solution method for a Simultaneous Delivery and Pickup Problem with Time 

Windows (SDPPTW). The proposed algorithm was developed using variants of the 

Cheapest Insertion method (CIM). It was noted that the typical generic algorithm was 

challenged with quick convergence that does not produce optimal results or low 

computational speed in obtaining convergence at optimal results, to overcome this 

issues, the CEA consecutively employed two separate evolutions that helped to keep 

the algorithm’s ability to perform wide searches via Reproduction, Recombination and 

Selection, while increasing the computational speed in obtaining optimal results via 



79 
 

Reproduction, Local Improvement, Crossover, and Selection. The two variants of CIM 

used were the Multi-Parameter Cheapest Insertion Method (MPCIM) and the Random 

Seeds Cheapest Insertion Method (RSCIM). The MPCIM was used to speed up the 

global search process, it used a modified Insertion Criterion of Mester et al., (2007), 

where the cost-saving threshold of values in range 0.2– 1.4 were tried in increments of 

0.2 units for 100 customers. The RSCIM randomly generated the order of nodes for 

route expansion to widen the initial population search of the genetic algorithm for 

globally acceptable solutions. In evaluating performance, fifty-six 100-customer 

SDPPTW were used as testbeds and the experimental results showed that the CEA 

produced quality results in a better computational speed in comparison to the typical 

genetic algorithm. 

Cruz et al., (2012) proposed an improvement of the GENIL heuristic proposed by Souza 

et al., (2011) in solving the Vehicle Routing Problem with Simultaneous Pickup and 

Delivery (VRPSPD). The algorithm was a hybrid of eight (8) heuristic techniques 

namely Cheapest Insertion, Cheapest Insertion with multiple routes, GENIUS, Variable 

Neighbourhood Search (VNS), Variable Neighbourhood Descent (VND), TABU 

Search (TS) and Path Relinking (PR). The Cheapest Insertion, Cheapest Insertion with 

multiple routes and the GENIUS, procedures were used to build the initial solution; this 

was in contrast with the design of GENIL which deployed the two other variations of 

cheapest insertion namely Route-by-Route Cheapest Insertion, Cheapest Insertion with 

Multiple Routes and a modified GENIUS heuristic to generate the initial solution. The 

Variable Neighbourhood Descent (VND) and the TABU Search (TS) were deployed as 

the local search procedure; the VND was iterated until there was no improvement in 

the search then the TS was called. The PR technique linked a high performing solution 

generated during the search to a local optimum after every iteration of the VND. 
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Thereafter, the Candidate List strategy was deployed as the removal procedure. The 

proposed method was experimented on available benchmark instances. The 

experimental result of the new technique outperformed the GENIL method. Its result 

was also compared with heuristic methods in literature by (Souza et al., 2011; 

Subramanian et al., 2011; Zachariadis et al., 2010) and outperformed all except 

Subramanian et al., (2011). The performance of the variated Cheapest Insertion 

heuristic in generating the initial solution was an important factor in the performance 

of the method. 

Wang and Chen (2013) solved a flexible delivery and pickup problem with time 

windows (FDPPTW) using a co-evolution genetic algorithm (CEA) with a modified 

Cheapest Insertion Method (CIM) to improve the solution method. In a bid to solve the 

challenges of inflexible mix and reduced access time of vehicle routing problems with 

backhaul and time windows, to reduce the total distance covered and quantity of 

vehicles, the FDPPTW was modelled as a mixed binary integer programming problem. 

The model was implemented using CEA to generate approximate solutions in better 

time and fifty-six 100-customer FDPPTW testbeds gotten from the SDPPTWs in Wang 

and Chen (2012) were used in the experimental evaluation. A modified CIM called 

Random Seeds Cheapest Insertion Method (RSCIM) was employed in generating the 

random nodes used as the initial routes in contrast to providing separate routes 

individually. Also, the CEA results for the FDPPTWs was compared to that of the 

Wang and Chen (2012), it was observed that the CEA developed in FDPPTW scheme 

had a high computational speed and better results hence more flexible and economical. 

The FDPPTW achieved its goal of overcoming the shortcomings of the existing 

schemes for the delivery and pickup problems.  
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Morais et al., (2014) proposed the use of a greedy tour construction heuristic based on 

the Nearest Insertion Heuristic to build an initial tour as part of the implementation of 

the Iterated local search (ILS) named X-ILS in solving the Vehicle Routing Problem 

with Cross-Docking (VRPCD). The technique added the node with the least increasing 

cost to the tour in what was referred to as the 2S-NI heuristic to builds the pickup and 

delivery path for the of the vehicle simultaneously. Six local search procedures were 

deployed to arrive at a local optimum. Thereafter, the process of perturbation was 

applied to the local optimum. Finally, a removal strategy was done to extract extra 

nodes. This process, which is the standard ILS was implemented with a slight 

modification of keeping a set of elite solutions, instead of a single current solution and 

tabu-search was not used. Results showed that the novel technique outperformed the 

existing ILS technique.  

Weiler et al., (2015) proposed a modification of otherwise deterministic approaches to 

solving the Probabilistic Travelling Salesman Problem (PTSP). The PTSP is a variant 

of the Travelling Salesman Problem (TSP), in which a probability function is assigned 

to a node, based on its possibility of visit. This was used to model an a-priori tour of 

cities most likely to be visited to minimize cost with respect to tour length. Thus, a real 

tour can be built based on this model where nodes that do not have to be traversed were 

skipped. In solving this problem, five deterministic construction tour techniques were 

considered and analyzed, namely Nearest Insertion Heuristic, Farthest Insertion 

Heuristic, Nearest Neighbour Heuristic, Radial Sorting Heuristic, and Space-Filling 

Curve. The Nearest Insertion and the Farthest Insertion Heuristics were then modified 

as Probabilistic Nearest Insertion (PNI) and Probabilistic Farthest Insertion (PFI) 

respectively. The PNI and PFI methods mirrored their deterministic counterparts by 

inserting nodes nearest or farthest to the last inserted node from the points modelled by 
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the a-priori tour and with an evaluation of objective function on each possible position. 

This approach gave a better-quality result, but with a complexity of 𝑂(𝑛4). To 

circumvent this problem, ‘delta 1-shift’ local search procedure embedded in a 

neighbourhood structure, proposed by Bianchi et al., (2005) was introduced. This 

reduced the complexity to 𝑂(𝑛3). The proposed method was experimented on 

benchmark instances from TSPLIB using the Xeon E5649, 2.53 GHz Quad-Core, 

running on Ubuntu 12.04.5 LTS (Precise Pangolin). The PFI outperformed the PNI; 

this was consistent with assertions in literature of the superiority of the Farthest 

Insertion technique over the Nearest Insertion Technique. Both the PFI and PNI 

outperformed their deterministic counterparts, albeit at a longer time. 

Huang et al., (2016) proposed a Sketch First approach to solving the Travelling 

Salesman Problem (TSP) in Location-Based Services (LBS). The idea was to find the 

optimal tour by mimicking the human cognitive approach of undertaking a global 

sketch for some chosen subset of the node 𝑇 and then insert other nodes not in the initial 

tour based on a global-to-local refinement approach. The study started by exploring 7 

existing tour construction heuristics namely the Farthest Insertion Heuristic, Nearest 

Insertion Heuristic, Cheapest Insertion Heuristic, Random Insertion Heuristic, the 

Nearest Neighbour Heuristic, the Nearest Addition Heuristic, and the Farthest Addition 

Heuristic. The insertion was done through local refinement. While the Farthest Insertion 

Heuristic was identified as the best performing techniques of the construction 

techniques considered, it was deemed unsuitable for this technique because the farther 

a node was from the current circuit, the higher the risk of error. The system was 

experimented on some benchmark instances and compared with existing methods. The 

performance of the techniques was encouraging. 
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In a proposed two-part search technique for solving TSPs by Jamal et al. (2017), a 

heuristic approach was used to find optimal results by first identifying an infeasible 

solution, then searching through a two-part space and narrowing the search space into 

a primal where a feasible solution can be obtained. Some insertion heuristics were used 

to find initial solutions for the proposed dual local search (DLS) framework, namely: 

Random, Farthest, and Nearest Insertions Heuristics. From Computational evaluation 

of the proposed DLS framework against the classical primal local search framework, 

the DLS performed significantly better than the insertion heuristics and also 

outperformed them with about 35% of optimal solutions and a range of 23% to 79% of 

approximate solutions.  

Oliver et al. (2017) developed a hybridized heuristic of standard insertion and local 

search techniques with integer programming for solving the vehicle routing problem 

modelled by the Windy Rural Postman Problem with Zigzag Time Windows 

(WRPPZTW). A push forward technique with a constructed graph of ordered edges 

having priority costs was used in the proposed hybridization, a cheapest insertion 

method incorporating the priority costs was used to generate the order of insertion on 

the solution route while an integer program was used to complete the solution route for 

the Windy Rural Postman Problem. From the experiment performed on testbeds of over 

a hundred edges, the computational performance of the hybrid heuristic was compared 

to an exact method called BNC (Nossack et al.,2017). The hybrid produced 0.67% 

better solutions than BNC for a smaller number of edges, even though the hybrid is 

scalable to large instances, its performance requires an improvement 

Lity et al., (2017) made use of the Nearest Insertion (NEARIN) and the Farthest 

Insertion (FARIN) heuristics to generate near-optimal results for the optimal product 

order. These heuristics were picked on the basis that they perform well when generating 
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approximate solutions for TSPs. From the computational evaluation performed with an 

optimal TSP Solver, both heuristics were seen to have produced good near-optimal 

solutions for products between 100 and 500 but as the number of products increased, 

their computational speed reduced. However, the TSP solver had way-less 

computational speed in generating results in contrast with the approximated algorithms. 

Mário Mestria (2018) developed a hybrid method to solve the Clustered Travelling 

Salesman Problem (CTSP) based on Iterated Local Search (ILS) and Greedy 

Randomized Adaptive Search Procedure (GRASP) with integrated construction 

heuristic. This study was motivated by assertions in literature such as (Caserta & Voß, 

2010) that a combination of two or more heuristics holds the promise of getting more 

robust and better results. Thus, the author proposed a new hybrid heuristic 

(VNRDGILS) that ran iterations of metaheuristics and included local search and 

specified perturbation strategies.  The search procedure was greedy and randomized 

and could adapt to varying neighbourhood insertions. The neighbourhoods were added 

randomly to provide a basis for comparison with methods with deterministic 

neighbourhood additions. The constructive heuristic was based on modified Nearest 

Insertion Heuristic. The technique was experimented on different instances based on 

data with different levels of granularity. The result was compared with four other 

approximate methods and an exact method. Results obtained showed that the new 

heuristic outperformed a similar hybrid method with deterministic neighbourhood 

addition. It also outperformed four other heuristic methods considered in the study. 

Performances of these heuristic methods were also predicated on the performance of 

the modified Nearest Insertion method. 

Babel, (2020) studied adaptations of some existing techniques such as Farthest Insertion 

Heuristic, Nearest Insertion Heuristic, Nearest Neighbour Heuristic, and so on, to solve 
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the Dubins Travelling Salesman Problem (DTSP). The DTSP is a variant of the TSP 

concerned with determining the shortest “curvature-constrained closed path” through a 

set of destinations in a plane. The objective was to devise a suitable technique to 

optimize the headings of the targets of an open or closed sub tour, given a predefined 

sequence by discretely labelling the headings and building a make-shift network from 

which the shortest path could be created. Thus, a 3-tier algorithm with a differing 

number of heading was proposed. The first tier uses the sequence of targets generated 

from the initial solution of the Euclidean TSP. New targets were then iteratively 

inserted into the open sub tour in the second tier until all the targets in the tier had been 

added, then the circuit was closed. In the third tier, there were fewer targets to be added, 

this was done iteratively as well until all the targets had been added. The Farthest 

Insertion Method was deployed as one of the insertion procedures for adding targets in 

the K-insert algorithm. Other Insertion Algorithms included the Random Insertion, 

Nearest Insertion, and the Cheapest Insertion Heuristics. The methods were 

implemented in a simulated environment and compared with state-of-the-art methods. 

The performances of the methods were greatly influenced by the turning radius of the 

vehicle, as well as the abilities of the insertion technique. For a smaller radius, the 

Farthest-2-Insert had the best performance. This was closely followed by the Random-

2-Insert technique, the Cheapest-2-Insert techniques, and finally the Nearest-2-Insert. 

This result was consistent with the experimental report on the Farthest Insertion 

Heuristic as the best performing insertion technique. The results of the method were 

competitive with respect to solution quality and running time. 
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CHAPTER THREE 

3.0. METHODOLOGY 

3.1. Research Approach – Introduction 

Combinatorial Optimisation Problems (COP) are mostly NP-Hard, therefore, recurse is 

made to the use of heuristics for solving them. The goal of this study is to investigate 

some approximate methods, with a view to understanding their implementation details 

and how they are applied to the solution process of the Travelling Salesman Problem. 

And to consequently evolve a new and improved technique, with the potentials of 

outperforming existing state-of-the-art techniques. Tour construction heuristics were 

considered in this study, because of their importance both as solution techniques and as 

seed for the performance of other classes of heuristics. In this regard, two classic Tour 

Construction Techniques were considered, namely the Nearest Neighbour Heuristic and 

the Farthest Insertion Heuristic. 

In achieving the objectives of this study, a review of existing approaches in solving the 

Travelling Salesman Problem was conducted. A hypothetical postal route problem was 

then formulated as a classic TSP problem. The postal towns are representative of the 

vertices. The vertices are connected by the edges, while the distances between the postal 

vertices measured in kilometre are the path costs. These parameters (vertices and the 

path cost) were used to generate the distance matrix which is the input to the program. 

The aim of the algorithms is to generate a Hamiltonian tour of the postal towns with 

minimal cost. 

The heuristics were implemented on ten benchmark test sets as follows: 

▪ 2 test sets with no_of_nodes<100 
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▪ 5 test sets with 100<no_of_node<1000  

▪ 3 test sets with no_of_nodes≥1000 

All the algorithms were implemented using Java programming language. 

The performances of the new and existing methods were evaluated using two 

approaches: 

i. Solution quality: this is determined by computing the algorithm’s tour cost 

relative to the optimal tour cost. The closer the tour cost is to the optimal cost, 

the better the quality of the technique. 

ii. Computational speed approach: The computational speed is determined by 

computing the time taken to process the solution. 

3.2. Building the Dataset 

The heuristics were implemented on ten publicly available benchmark instances from 

TSPLIB, made available by Heidelberg University on http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/. The TSPLIB repository was chosen because of 

the wide-range of test cases available (for example, the datasets contain instances of 

pathfinding problems, drilling problems, programmed logic array and so on) and 

because the optimal cost of each of the instances have been computed and made 

available, thereby creating a basis for comparison of solution qualities against the 

optimal cost. There were 3 groups of instances tested; Group 1: instances whose nodes 

are less than 100. Group 2: instances whose nodes are more than 100 but less than 1000. 

Group 3: instances whose nodes are more than or equal to 1000. 

 

 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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The instances in group 1 are as follow: 

att48 is a dataset of 48 US capital cities, it was generated by Padberg and Rinaldi, the 

optimal tour length of 33523. eil51 is a dataset for 51 arbitrary cities problem by 

Christofides and Eilon, the optimal tour length is 426.  

The instances in group 2 are as follow: 

eil101 is a tour of 101 arbitraty cities generated by Christofides and Eilon with an 

optimal tour of 629. ch130 and ch150 are tours of 130 and 150 arbitrary cities 

respectively, compiled by Churritz. The computed optimal tour lengths are 6110 and 

6528 respectively. pr439 is a tour of 439 arbitrary cities by Padberg/Rinaldi, the optimal 

tour is 107217. rat 783 is a Rattled grid problem of 783 nodes generated by Pulleybank 

with optimal tour length of 8806. 

The instances in group 3 are as follow: 

dsj 1000 has 1000 nodes with an optimal tour length of 18659688. u2319 is a Drilling 

problem generated by Reinelt with 2319 nodes and optimal tour length of 234256. 

pcb3038 is a Drilling problem of 3038 nodes generated by Juenger and Reinelt with an 

optimal tour length of 137694.  

All the datasets used, were generated in the EUC 2D format and thereafter converted to 

FULLMATRIX format.  

3.3. System Design 

3.3.1. Framework for Tour Construction Heuristics 

This study focused on tour construction heuristics. Tour Construction heuristics follow 

predefined process in building tours. These processes are carried out in three steps 

namely initialization, selection, and insertion. These processes differ from one method 
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to the other, and they play a part in the performances of these different techniques. The 

initialization phase may start with a single node as in the Nearest Neighbour Heuristic, 

or may involve a subtour as in insertion techniques. Figure 3.1 depicts the generic 

framework for tour construction techniques. 

 

 

Figure 3.1. Generic framework for tour construction heuristics. 

 

The step-wise activities continue iteratively until all the nodes have been added and the 

Hamiltonian cycle completed. 
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3.3.2. The Program Flow and Building Blocks 

The program flow consists of three building blocks/phases. They include the input 

module, implementation module and the output module. Figure 3.2 shows the 

conceptual framework for this study. 

 

 

Figure 3.2. Research Conceptual Framework 

 

The first phase was the input phase, where the input module reads the problem instance 

and prepares it for the implementation phase. At the input phase, the dataset was 
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collected in the EUC_2D format and converted to distance matrix if the format is 

incompatible. Other formats for the dataset include the ATT, GEO, LOWER DIAG 

ROW, UPPER DIAG ROW, UPPER ROW, and FULL MATRIX. The EUC_2D 

format has 𝑛 𝑟𝑜𝑤𝑠 of {𝑖, 𝑥𝑖 , 𝑦𝑖} where 𝑛 the number of nodes and 𝑖 ∈ {1,2,3, … , 𝑛} is 

computer using the formula: 

𝑑𝑖𝑗 = ⌊√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2⌋                     (3.1) 

The dataset was thereafter converted to the FULL MATRIX input format which is 

compatible to the program using the following algorithm; 

Algorithm 3.1: Algorithm for converting TSP dataset from EUC_2D to 
FULL MATRIX format 

Input: E: EUC_2D 
Output: FULL MATRIX data format 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Start 
Int 𝒇_𝒎𝒂𝒕𝒓𝒊𝒙 [𝒙][𝒚]; 

for (𝒊𝒏𝒕 𝒊 =  𝟎;  𝒊 <  𝒙;  𝒊 + +)  
for (𝒊𝒏𝒕 𝒋 =  𝟎;  𝒋 <  𝒚;  𝒋 + +) 

read data from file 
dist_matrix = 𝒓𝒐𝒖𝒏𝒅(𝒔𝒒𝒓𝒕((𝒙𝟏 −  𝒙𝟐)^𝟐 +  (𝒚𝟏 −  𝒚𝟐)^𝟐)) 
Matrix [i][j] = dist_matrix 
Return dist_matrix 

Next Loop 
Next Loop 

End 

Figure 3.3 shows the flowchart of the input phase. This phase include reading of the 

input dataset, conversion of the dataset to the FULL_MATRIX format which is the 

format acceptable to the program and computation and generation of the distance 

matrix. 
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Figure 3.3. Flowchart of the input phase 

 

The second phase was the implementation phase where the data is supplied to the 

implementing modules for implementation. The heuristics were implemented on the 

formatted instances using the Java Programming Language.  

The output phase was the third phase. The program outputs the computational speed, 

the tour cost, and the tour path. The tour path was then further transformed graphically.  
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3.4. Research Materials and Methods.  

3.4.1. Research Methods 

Three methods were experimented on in this study. The first two were existing state-

of-the-art construction techniques, namely, the Nearest Neighbour Heuristic and the 

Farthest Insertion Heuristic, while the third was the proposed insertion technique.  

The NNH readily comes to mind when solving the TSP and FIH gives the best solution 

quality of all construction heuristics. 

The objective of this study is to minimize the tour length, that is, to obtain solutions 

which are as close to their corresponding optimal solutions as possible.  

Thus, given a tour distance 𝑑𝑎𝑏 and associated binary variable, earlier presented in 

Equations (1.10) and (1.11).   

𝑥𝑎𝑏 = {
1,  𝑖𝑓 (𝑎, 𝑏) ∈ 𝛦 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0,  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

                         (3.2) 

An optimal solution is a solution in which: 

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑎𝑏𝑥𝑎𝑏(𝑎,𝑏)∈ 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙                               (3.3) 

In obtaining the solution, the following assumptions were made: 

i. Distances are nonnegative and symmetric 

ii. Distances satisfy the triangle inequality, such that for every 𝑎, 𝑏, 𝑐 ∈ 𝑉;  

𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑎𝑐 ≤ 𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑎𝑏 + 𝑡𝑜𝑢𝑟𝑐𝑜𝑠𝑡𝑏𝑐             (3.4) 

This means that, the cost of moving directly from vertex 𝑎 to vertex 𝑐 is not more than 

the cost of going via some intermediate vertex 𝑏. Without these assumptions, the bound 

given for the objective function value may not be valid.  
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Both the NNH and the FIH as well as the proposed technique are node-based which 

follow the following procedure (Huang and Yu, 2017): 

Algorithm 3.2: Node-based Heuristic 
Input: Q: Set of node 
Output: T: the TSP for Q 
1 
2 
3 
4 
5 
6 
7 

Start 
𝑻 ← 𝒊𝒏𝒊𝒕 (𝑸); 
While 𝑻 does not contain all nodes in 𝑸 do 

𝑽 ← 𝒔𝒆𝒍𝒆𝒄𝒕 (𝑸, 𝑻); 
Insert (𝒗, 𝑻); 

Return 𝑻; 
Stop 

3.4.1.1.The Nearest Neighbour Heuristic 

The Nearest Neighbour Heuristic is a classic tour construction heuristic for solving the 

Travelling Salesman Problem. It is equally one of the oldest and most widely used 

heuristics. It is simple, flexible, and fast. The NNH tries to solve the Travelling 

Salesman Problem using a greedy approach. The NNH starts with a city/node and builds 

the remaining tour by joining the node closest to the starting node to the tour. This 

process is iterated for all the nodes that are not yet part of the tour until the tour is fully 

build and a Hamiltonian circuit is formed. This process is greedy in nature; thus, the 

performance is relatively poor.  

The pseudocode for the Nearest Neighbour Heuristic is as follow: 

Algorithm 3.3: A Pseudocode for the Nearest Neighbour Heuristic 
Input: set of nodes 𝑽𝒏=𝟏,𝟐,…,𝒏 

Output: Path 𝑻 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Start 
Select an arbitrary node 𝒌 ∈ 𝑽 
Set 𝑷𝒂𝒕𝒉 ← 𝒌 

While {𝑷𝒂𝒕𝒉} ≠ {𝑽} do 
Find node 𝒌 + 𝟏 ∉ 𝑷𝒂𝒕𝒉 such that 𝒅𝒊𝒔𝒕(𝑷𝒂𝒕𝒉, 𝒌 + 𝟏) is minimal 
set 𝑷𝒂𝒕𝒉 ← 𝒌 + 𝟏 

End while 
𝑻 ← 𝒑𝒂𝒕𝒉  
return 𝑻 
End  
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Figure 3.4 depicts the Nearest Neighbour Heuristic procedure in a flowchart as 

follow: 

 

Figure 3.4. Flowchart of the Nearest Neighbour Heuristic. 

 

Analytically, Rosenkrantz, et al., (1977) had shown that for a TSP instance of nodes 𝑛, 

the approximation ratio/solution quality of the NNH is at most: 

𝑓𝑠
𝑓𝑂𝑃𝑇

⁄ =
1

2
[log(𝑛)] +

1

2
                      (3.5) 

of the optimal length, where 𝑓𝑠 is the length of a tour by the solution and 𝑓𝑂𝑃𝑇 is the 

optimal tour length. 
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The worst-case complexity of the NNH is 𝑇(𝑛) = 𝑂(𝑛2). However, in practice, the 

NNH can solve the TSP in good time, with much better solution quality. 

Experimentally, the NNH typically yield much better solutions than the worst case 

suggests. NNH often yield tour quality that is within 25% − 30% of the Held-Karp 

lower bound (Víctor et al., 2020). The performance of the NNH greatly suffers from a 

phenomenon called the “curse of dimensionally” resulting from its greedy approach to 

solving the TSP. The NNH adds the lowest cost nodes as priority, and consequently, as 

the search space and nodes increase, more and more outliers are seen. Recent literature 

focus on using the NNH either as a part of a hybrid method as in (Huang and Yu, 2017; 

Lity et al., 2017) or as a seed technique in a metaheuristic for building initial solutions 

(Rego et al., 2011; Bernardino and Paias, 2018).  

3.4.1.2.The Farthest Insertion Heuristic 

The Farthest (also called Furthest) Insertion Heuristic belong to the family of insertion 

heuristics. Other known insertion heuristics include the Nearest Insertion Heuristic, 

Random Insertion Heuristic, Cheapest Insertion Heuristic, Priciest Insertion Heuristic, 

Quick insertion Heuristic, and Greatest angle Insertion Heuristic (Goetschalckx, 2011; 

Anbuudayasankar et al., 2014). 

Insertion heuristics starts from an arbitrary point to form a sub tour or partial circuit. 

Nodes not already in the sub tour are then inserted based on predefined criteria such 

that the increment to the total distance of the sub tour is minimized. (Huang et al., 2016; 

Huang and Yu, 2017).  

Suppose that node 𝑥 is to be added to edge (𝑥𝑖, 𝑥𝑗), and given the cost 

function 𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥), then,  

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥) =  𝑑(𝑥, 𝑥𝑖) +  𝑑(𝑥, 𝑥𝑗) −  𝑑(𝑥𝑖, 𝑥𝑗)            (3.6) 
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Each insertion technique method aims to add a node to an edge (that is between two 

nodes) at a minimal cost. Given the sub tour 𝑇𝑖, and given that 𝑥 is the next node to be 

inserted, then the insertion technique inserts 𝑥 between 𝑥𝑖
∗ and 𝑥𝑗

∗ in 𝑇𝑖 according to: 

(𝑥𝑖
∗, 𝑥𝑗

∗) = argmin
(𝑥𝑖𝑥𝑗)∈𝑇𝑖

𝑐(𝑥𝑖, 𝑥𝑗 , 𝑥)                                          (3.7) 

Insertion techniques are desirable because of their speed, ease of implementation, 

quality of solutions, and the fact that they can be easily modified to handle complex 

constraints. Insertion techniques can be used to get a good tour construction solution. 

According to Rosenkrantz et al., (1977), Insertion techniques find an 

𝑂(𝑙𝑜𝑔 𝑛) approximate solutions.  

The Farthest Insertion Heuristic (FIH) chooses the next node  

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∉𝑇𝑖
{𝑑(𝑥, 𝑥𝑖), ∀𝑥𝑖 ∈ 𝑇𝑖                                         (3.8)  

The following pseudocode depicts the workings of the Farthest Insertion Techniques. 

Algorithm 3.4: The Farthest Insertion Heuristic Pseudocode 

Input: set of nodes 𝑽𝒊=𝟏,𝟐,…,𝒏 
Output: Path 𝑻 
1. Start the tour from an arbitrary node 𝒊 
2. Add a node 𝒋 nearest to 𝒊 to form a partial circuit  

𝑻 =  𝒊 − 𝒋 − 𝒊 
3. Find a node 𝒌 not in the partial circuit for which the distance 

to any of the nodes in the subtour is longest, 
𝒅(𝒌, 𝑻) = 𝐦𝐚𝐱

𝒊∉𝑻
𝒅(𝒊, 𝑻) 

4. Find an edge [𝒊, 𝒋] of the partial circuit to insert k, such that 
∆𝒇 = 𝒄𝒊𝒌 + 𝒄𝒌𝒋 − 𝒄𝒊𝒋 is minimal and insert 𝒌. 

5. Iterate step 3 until a Hamiltonian cycle is formed. 

 

Figure 3.5 depicts the FIH procedure in a flowchart as follows: 
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Figure 3.5. Flowchart of the Farthest Insertion Heuristic. 

 

The FIH technique intuitively create an outline of sort, then fills in the details by adding 

nodes to the subtour. This expertly deals with the problem of outliers bedevilling the 

NNH method. Analytically, (Rosenkrantz, et al., 1977; Johnson and McGeoch, 2002) 

had proven that the tours quality of insertion methods is at most twice of an optimal 

tour, while the approximation ratio/solution quality of a class of high performing 

Insertion Heuristics (Farthest Insertion Heuristic included) for a TSP instance of nodes 

𝑛, is at most 
𝑓𝑠

𝑓𝑂𝑃𝑇
⁄ = ⌈log(𝑛)⌉ + 1   of the optimal length. 
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The worst-case complexity if the Farthest Insertion Heuristic is 𝑇(𝑛) = 𝑂(𝑛2). In 

practice, however, the Farthest Insertion Heuristic is the best performing Insertion 

technique and often produce quality that are between 13% and 15 % worse than optimal 

tour (Reinelt, 1994; Johnson and McGeoch, 2002; Babel 2020). Generally, also, 

insertion techniques require more computational time than the NNH to complete tours.  

Huang et al., (2016) argued that although, FIH performs relatively very well, the 

distance between its circuit and new nodes to be inserted impede its performance in 

terms of accuracy. Suppose that a new node 𝑥 is to be inserted into a partial tour 𝑝_𝑡𝑜𝑢𝑟, 

the closer 𝑥 is to the edge (𝑥𝑖, 𝑥𝑗), the lesser the likelihood of it introducing error. 

Suppose that nodes 𝑥1 𝑎𝑛𝑑 𝑥2 are to be inserted into the same edge (𝑥𝑖, 𝑥𝑗) of the partial 

tour 𝑝_𝑡𝑜𝑢𝑟 to produce partial tours 𝑝_𝑡𝑜𝑢𝑟1 𝑎𝑛𝑑 𝑝_𝑡𝑜𝑢𝑟2 respectively.  

Suppose that cost function  

𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥1) < 𝑐(𝑥𝑖 , 𝑥𝑗 , 𝑥2)                   (3.9) 

and 𝑑(𝑝𝑡𝑜𝑢𝑟1
) ≤ 𝑑(𝑝𝑡𝑜𝑢𝑟2

)                     (3.10) 

then the upper bounds of error rate for the two tours are  

𝑑(𝑝𝑡𝑜𝑢𝑟1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
=

𝑑(𝑝𝑡𝑜𝑢𝑟)+𝑐(𝑥𝑖,𝑥𝑗,𝑥1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
                   (3.11)  

and 
𝑑(𝑝𝑡𝑜𝑢𝑟2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
=

𝑑(𝑝𝑡𝑜𝑢𝑟)+𝑐(𝑥𝑖,𝑥𝑗,𝑥2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
            (3.12)  

such that 
𝑑(𝑝𝑡𝑜𝑢𝑟1)

𝑑(𝑝𝑡𝑜𝑢𝑟)
<

𝑑(𝑝𝑡𝑜𝑢𝑟2)

𝑑(𝑝𝑡𝑜𝑢𝑟)
                   (3.13).  

Thus, the performance of FIH still leaves much to be desired in terms of solution 

quality. If inserting nearest nodes to the circuit leads to outliers and the performance if 
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FIH is impeded by longer distance, perhaps a half max insertion may yield better 

solution. 

3.4.1.3.The Proposed Half Max Insertion Heuristic (HMIH) 

The proposed technique is an insertion method referred to in this study as the Half Max 

Insertion Heuristic (HMIH). The motivation was to explore some techniques with the 

possibilities of improving the accuracy of the Farthest Insertion Heuristic. The design 

of the HMIH was motivated by two observations in literature: One, the superior solution 

quality of Convex-hull based insertion techniques based on the use of polygons as initial 

tour (Huang et al., 2016; Huang and Yu, 2017; Víctor et al., 2020) and secondly, the 

limitation of the FIH’s accuracy due to the distance between its initial circuits and the 

next node to be inserted (Huang et al., 2016). 

The insertion heuristics randomly pick one node from 𝑄 by 𝑖𝑛𝑖𝑡(𝑄) and creates a partial 

circuit which is expanded with every iteration. The partial circuit is made up of the 

points 𝑢, 𝑣, 𝑤 to form a minimum polygon.  

Let 𝑇𝑖 be the partial circuit over nodes of size 𝑖 such that  

𝑇𝑖 = (𝜋1, 𝜋2, … 𝜋𝑖 , 𝜋1)                   (3.14) 

In the (𝑖 + 1)𝑡ℎ iteration, the insertion heuristics attempt to add one node into the 

current circuit by minimizing the increment of the total distance of the circuit. The 

objective is to: determine how to select a node, 𝑥, from 𝑄\𝑇𝑖 and determine how to 

insert 𝑥 into 𝑇𝑖 to obtain 𝑇𝑖+1. 

Consider an insertion of a node 𝑥(∉ 𝑇𝑖) between 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 𝑖𝑛 𝑇𝑖: 

The method first determines the longest distance 𝑑𝑚𝑎𝑥 of any node from either of 𝑢 𝑜𝑟 𝑣 

and compute 1
2⁄ 𝑑𝑚𝑎𝑥. Then find a node 𝑤 not in the subtour whose distance from 
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either 𝑢 𝑜𝑟 𝑣 ≈ 1
2⁄ 𝑑𝑚𝑎𝑥. Determine an edge (𝑢, 𝑣) of the subtour to which the 

insertion of 𝑤 gives the smallest increase of length, that is for which  

∆𝑓 = 𝑐𝑢𝑥 + 𝑐𝑥𝑣 + 𝑐𝑤𝑥 − 𝑐𝑢𝑣𝑤 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡                    (3.15) 

Insert 𝑥 between 𝑢, 𝑣 𝑎𝑛𝑑 𝑤. This process is iterated until a Hamiltonian cycle is 

formed. 

The procedure is as follow: 

Algorithm 3.5: The Novel Half Max Insertion Heuristic Algorithm 
Input: set of nodes 𝑽𝒊=𝟏,𝟐,…,𝒏 

Output: Path 𝑻 
1. Start with a sub-graph consisting of node 𝒖 only. 
2. Find nodes 𝒗 and 𝒘 randomly to form sub-tour 𝒖 − 𝒗 − 𝒘 − 𝒖. 

3. Compute the length of the farthest node 𝒅𝒎𝒂𝒙 from the subtour 

and compute 𝟏 𝟐⁄ 𝒅𝒎𝒂𝒙 

4. Find a node 𝒘 not in the subtour whose distance from any 

node in the subtour ≈ 𝟏
𝟐⁄ 𝒅𝒎𝒂𝒙  

5. Find the 𝒂𝒓𝒄 (𝒖,  𝒗, 𝒘) in the sub-tour which minimizes 𝒄𝒖𝒙 + 𝒄𝒙𝒗 +
𝒄𝒘𝒙 − 𝒄𝒖𝒗𝒘. Insert 𝒙 between 𝒖 𝒗, 𝒂𝒏𝒅 𝒘. 

6. Iterate step 3 until a Hamiltonian cycle is formed 

 

The HMIH searches require 𝑂(𝑛) time, therefore, the time complexity of the algorithm 

is 𝑂(𝑛2). The procedure is further depicted in the following flowchart in Figure 3.6. 
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Figure 3.6. Flowchart of the Half Max Insertion Heuristic 

 

In implementing the three heuristics, the development tools used were as follows: 

a. JAVA programming language running on version 13.0.1. 

b. GNUplot 5.2, patchlevel 8 was used to represent the tour graphically. 

The heuristics were implemented using Java Programming Language running on Intel 

Pentium Core i7 3GHz, Windows 10 (64bit). 

 

 



103 
 

CHAPTER FOUR 

4.0. RESULTS AND DISCUSSSION OF FINDINGS 

4.1. Results 

The heuristics were implemented on ten publicly available benchmark instances from 

TSPLIB made available by Heidelberg University on http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/.  

“TSPLIB is a library of sample instances for the TSP (and related problems) 

from various sources and of various types”. 

The TSPLIB repository was chosen because of the wide range of test cases available 

on it (for example, the datasets contain instances of pathfinding problem, drilling 

problems, programmed logic array and so on) and because the optimal costs of each of 

the instances have been computed and made available, thereby creating a basis for 

comparison of solution quality against the optimal cost. A list of benchmark instances 

and their optimal tour costs can be viewed at the following url:  

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html 

TSPLIB contains instances of problems such as Symmetric Travelling Salesman 

Problem (TSP), Hamiltonian Cycle Problem (HCP), Asymmetric Travelling Salesman 

Problem (ATSP), Sequential Ordering Problem (SOP), Capacitated Vehicle Routing 

Problem (CVRP). 

Three (3) groups of instances were tested; Group one: instances whose nodes are less 

than 100. Group two: instances whose nodes are more than 100 but less than 1000. 

Group three: instances whose nodes are equal to, or more than 1000. The instances 

considered, their number of nodes and optimal tour length are presented in Table 4.1. 

 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
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Table 4.1. Ten benchmark instances and their optimal tour length (Km). 

S/N Instances No of Nodes OPT 

1 att48 48 33523 

2 eil51 51 426 

3 eil101 101 629 

4 ch130 130 6110 

5 ch150 150 6528 

5 pr439 439 107217  

6 rat 783 783 8806 

7 dsj1000 1000 18659688 

8 u2319 2319 234256 

9 pcb3038 3038 565530 

 

The datasets which were generated in the EUC_2D format was reformatted to 

FULLMATRIX form using a conversion module. Figure 4.1(𝑎 𝑎𝑛𝑑 𝑏) shows the 

ulysses16 sample set as EUC_2D and as FULLMATRIX after conversion. 

 

Figure 4.1a: Ulysses 16 in EUD_2D format.  
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Figure 4.1b: Ulysses 16 in FULLMATRIX format 

 

The implementation module generates three outputs. The first is the computation time 

in nano seconds (𝜇𝑠). Nano second is one billionth of a second. Evidently, the accuracy 

of time is improved at that level of granularity. The second output is the tour cost, that 

is the distance taken to generate the tour. This is necessary for the performance 

evaluation of the heuristic. The third output is the tour path, that is the order in which 

the nodes join the tour. The tour path is an input to GNUplot which is used to generate 

the tour. Table 4.2 highlights the three heuristics and their computational speed in 

solving the TSP instances considered while table 4.3 shows the tour cost of each of the 

three heuristics on the TSP instances. 

 

Table 4.2. Computational speed of NNH, FIH and HMIH on ten benchmark instances 

S/N Instances No of 

Nodes 

Computational Speed (𝝁𝑺) 

NNH FIH HMIH 

1 att48 48 14943601 19455700 24837700 
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2 eil51 51 24014300 26145600 28442300 

3 eil101 101 5127500 83707200 99243300 

4 ch130 130 28423900 130305001 85040424 

5 ch150 150 8424700 163042000 217278100 

6 pr439 439 74732299 4583954300 7078104000 

7 rat 783 783 284603200 34059530600 72396010300 

8 dsj1000 1655 487645399 1.3343E+11 2.05499E+11 

9 u2319 2319 3344218900 2.3164E+12 4.07294E+12 

10 pcb3038 3038 6527888600 6.57109E+12 1.01185E+13 

 

Table 4.3. Tour cost of NNH, FIH and HMIH on ten benchmark instances 

S/N Instances No of 

Nodes 

OPT Tour Cost 

NNH FIH HMIH 

1 att48 48 33523 40524 35775 35657 

2 eil51 51 426 510 471 471 

3 eil101 101 629 811 690 690 

4 ch130 130 6110 7198 6951 6650 

5 ch150 150 6528 8191 7542 7211 

6 pr439 439 107217 139149 122957 124322 

7 rat 783 783 8806 10779 10828 10434 

8 dsj1000 1655 18659688 24631468 23563031 20610943 

9 u2319 2319 234256 281978 272959 256601 

10 pcb3038 3038 137694 175788 173038 166196 
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It is evident from table 4.3 that the proposed HMIH has a smaller tour cost and is closer 

to the optimal tour cost in terms of solution quality than both FIH and NNH. FIH 

however, compares more favourably with HMIH than NNH.  

The tour path which is the order in which the nodes join the tour is fed as an input to 

GNUplot to generate the path graph. GNUplot is an open-source command-line 

graphing utility available under the General Public Licence. The path graph on 

GNUplot is implemented using the following command: 

plot “att48.tsp” with linespoint 

“att48.tsp” is the filename consisting the tour path output by the program, while 

“linespoint” connects all the point in the right order. 

The tour graph of the HMIH, FIH and NNH for some benchmark instances are 

presented in Figures 4.2, 4.3, 4.4 and 4.5. Figures 4.2 a, b and c show the path graph of 

NNH, FIH and HMIH respectively for the att48. Figures 4.3 a, b and c show the path 

graph of NNH, FIH and HMIH respectively for the eil51. Figures 4.4 a, b and c show 

the path graph of NNH, FIH and HMIH respectively for the eil101 and Figures 4.5 a, b 

and c show the path graph of NNH, FIH and HMIH respectively for the ch150. 
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Figure 4.2a: Path graph of NNH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟎𝟓𝟐𝟒) 

 

 

Figure 4.2b: Path graph of FIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟕𝟕𝟒) 
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Figure 4.2c: Path graph of HMIH for the att48 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟑𝟓𝟔𝟓𝟕) 

 

 

 

Figure 4.3a: Path graph of NNH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟓𝟏𝟎) 
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Figure 4.3b: Path graph of FIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏) 

 

 

 

 

Figure 4.3c: Path graph of HMIH for the eil51 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟒𝟕𝟏) 
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Figure 4.4a: Path graph of NNH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟏) 

 

 

 

 

Figure 4.4b: Path graph of FIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎) 
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Figure 4.4c: Path graph of HMIH for the eil101 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟔𝟗𝟎) 

 

 

 

 

Figure 4.5a: Path graph of NNH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟖𝟏𝟗𝟏) 
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Figure 4.5b: Path graph of FIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟓𝟒𝟐) 

 

 

 

 

Figure 4.5c: Path graph of HMIH for the ch150 instance (𝒄𝒐𝒔𝒕 (𝒌𝒎) = 𝟕𝟐𝟏𝟏) 
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4.2. Performance Evaluation and Discussion 

4.2.1. Comparative Evaluation of the Heuristics’ Computational Speed 

Table 4.2 reveals that the NNH had the fastest computational speed, followed by the 

FIH and then the proposed HMIH technique in all the instances. It should be noted that 

the proposed HMIH compared favourably with the FIH in this regard. This is consistent 

with literature findings that insertion techniques require more computational time than 

the NNH to complete tours (Reinelt, 1994; Johnson and McGeoch, 2002; Laha et al., 

2016; Babel 2020). Additionally, the increased computational time of the proposed 

HMIH can be attributed to the additional computation of the half max insertion criteria. 

This is consistent with works by Reinert, (1994), Laha et al., (2016), Lity et al., (2017) 

and Babel (2020) which suggest that computational speed is affected by the insertion 

criteria computations. 

4.2.2. Comparative Evaluation of the Heuristics’ Solution Quality 

In evaluating the solution quality of the heuristics, the following parameters were 

deployed: 

Percentage Error (𝜹): the percentage error of the heuristics’ solution quality is the 

percentage deviation of the solution from the optimal tour solution. This is computed 

as: 

𝛿 =
𝑠𝑜𝑙𝜂 − 𝑜𝑝𝑡

𝑜𝑝𝑡
× 100%                    (4.1) 

where 𝑠𝑜𝑙𝜂 is the solution cost obtained by each heuristic, and 𝑜𝑝𝑡 is the optimal 

solution cost. This is the same thing as the performance ratio for non-optimal heuristics.  
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Quality impr. (𝚺): this the improvement of the HMIH method’s solution quality with 

respect to NNH and FIH. This is computed by:  

Σ = Ε𝑁𝑁𝐻/𝐹𝐼𝐻 − Ε𝐻𝑀𝐼𝐻                       (4.2) 

where Ε𝑁𝑁𝐻/𝐹𝐼𝐻 is the error in percentage of the NNH or FIH and Ε𝐻𝑀𝐼𝐻 is the error in 

percentage of the HMIH. 

Goodness Value (𝓰): this is also referred to as the accuracy. This is the inverse of error 

and is computed as  

ℊ = (1 −
𝑠𝑜𝑙𝜂−𝑜𝑝𝑡

𝑜𝑝𝑡
) 100%                        (4.3) 

Table 4.4 displays the 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟 𝑎𝑛𝑑 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 for 

all the heuristics on the ten benchmark instances. 

 

Table 4.4. percentage error, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑚𝑝𝑟 and goodness value for all the 

heuristics on the ten benchmark instances 

S/N Instances No of 

Nodes 

HMIH (%) FIH(%) NNH(%) 

𝜹 𝚺𝑵𝑵𝑯 𝚺𝑭𝑰𝑯 𝓰 𝜹 𝓰 𝜹 𝓰 

1 att48 48 6.3 14.6 0.4 93.7 6.7 93.3 20.9 79.1 

2 eil51 51 10.6 9.1 0 89.4 10.6 89.4 19.7 80.3 

3 eil101 101 9.7 19.2 0 90.3 9.7 90.3 28.9 71.1 

4 ch130 130 8.8 9.0 5.0 91.2 13.8 86.2 17.8 82.2 

5 ch150 150 10.5 15 5 89.5 15.5 84.5 25.5 74.5 

6 pr439 439 15.9 13.9 -1.2 84.1 14.7 85.3 29.8 70.2 

7 rat 783 783 18.5 4.9 4.4 81.5 22.9 77.1 22.4 77.6 

8 dsj1000 1655 10.5 21.5 15.8 89.5 26.3 73.7 32 68 

9 u2319 2319 9.5 10.9 7 90.5 16.5 83.5 20.4 79.6 

10 pcb3038 3038 20.7 7 5 79.3 25.7 74.3 27.7 72.3 
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The lower the value of the percentage error (𝛿) of the technique, the closer it is to 

optimal cost and thus the better the technique. Conversely, techniques with higher 

goodness value (ℊ) are adjudged to be better the technique than those whose goodness 

value are lower. From Table 4.4, it can be deduced that the HMIH performed better 

than both the NNH in all instances and in all, but three instances (pr439, eil51 and 

eil101) for FIH. This is because, the HMIH has smaller percentage error (𝛿) and higher 

accuracy (ℊ)  compared to the NNH in all instances. In the case of FIH, the HMIH did 

better in terms of percentage error and accuracy except in the case of instances pr439, 

eil51 and eil101. FIH outperformed HMIH for pr439, while FIH and HMIH had equal 

percentage error and accuracy for eil51 and eil101. This is depicted graphically in 

Figure 4.6 and 4.9 respectively. 

 

 

Figure 4.6. Percentage error value for FIH, NNH and HMIH 
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On the average, the NNH tour quality was 24.51% worse than the optimal tour. 

Additionally, the FIH average performance for the instances considered was 16.24% of 

the Held-Karp lower bound. The NNH reached a peak of 32% and a base value of 

17.8%. The FIH reached a peak of 26.3% and a base value of 6.7%. These performances 

are consistent with documented findings about NNH and FIH in literature (Reinelt, 

1994; Johnson and McGeoch, 2002; Babel 2020). On the other hand, the performance 

of HMIH was 12.1% worse than the optimal tour length. On the average, the proposed 

HMIH has a 4.14%-point quality improvement over FIH. Figure 4.6 shows a chart of 

the percentage deviation/error of NNH, FIH and HMIH from the optimal tour length. 

 

 

Figure 4.7. Percentage error of NNH, FIH and HMIH on the ten benchmark instances 

depicting the quality improvement of the HMIH over NNH and FIH 
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The shaded area of the chart denotes the quality improvement of the HMIH over the 

FIH. 

4.3. Findings 

The proposed HMIH consistently outperformed the FIH across a wide spectrum of 

benchmark instances with statistical significance of as much as 16% at some point as 

highlighted by the shaded area of quality improvement in Figure 4.6. The average 

goodness value of the proposed HMIH was 86.9% compared to 81.7% for the FIH and 

74.5% for the NNH. This means that the proposed HMIH has a higher accuracy than 

FIH and NNH (see Figure 4.7). It is worthy of note that the FIH is considered the best 

performing Insertion techniques and other lower-order complexity heuristics (Reinelt, 

1994; Johnson and McGeoch, 2002; Laha et al., 2016; Ursani et al., 2016; Babel 2020).  

 

Figure 4.8. Measure of goodness value of HMIH, FIH and NNH 
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Additionally, while the FIH is faster, the computation speed of the proposed HMIH is 

within the same range, and since the HMIH searches were conducted  𝑂(𝑛) times, 

HMIH has the same complexity of 𝑂(𝑛2) as the FIH and NNH. The computational 

speed performance of HMIH appears to follow a trend among lower order complexity 

heuristics where high performing method tends to take longer computation time, 

perhaps owing to more intricate process involved in getting better performance. With 

the exception of Random Insertion which requires no computation effort to add new 

nodes, the better the performance, the longer the time of computation tend to be 

(Reinelt, 1994; Johnson and McGeoch, 2002; Laha et al., 2016; Ursani and Corne, 

2016; Babel, 2020). 
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CHAPTER FIVE 

5.0. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1.  Summary 

In this work, the Travelling Salesman Problem was studied as a classic Combinatorial 

Optimization Problem. Combinatorial Optimization Problems deal with finding the best 

solutions that help optimise cost functions within the constraint of limited resources 

which may be time, space, energy and so forth. While there are numerous formulated 

Combinatorial Optimization Problems, such as Satisfiability Problems (SAT), Graph 

Colouring Problems (GCP), Cutting Stock Problem (CSP), Minimum Spanning Tree 

(MST), Constraint Satisfaction Problem (CSP), Bin Parking Problem (BPP) and so on, 

spanning the fields of  Bioinformatics, Artificial Intelligence, Mathematics, Operations 

Research, Computer Science, the TSP is perhaps the most central to the field of 

combinatorics. Work on the TSP has been a driving force for the emergence and 

advancement of many important research areas, such as stochastic local search or 

integer programming, as well as for the development of complexity theory. 

Additionally, the TSP has also become a standard testbed for new algorithmic ideas; 

many of the most important techniques for solving combinatorial optimisation 

problems such as cutting plane techniques, branch and cut, simulated annealing, Ant 

colony, Branch-and-bound, and so on were developed using the TSP as an example 

application.  

In solving the Travelling Salesman Problem, two popular tour construction heuristics 

were examined, namely the Nearest Neighbour Heuristic and the Farthest Insertion 

Heuristic. Obtaining high performing tour construction heuristics is a pressing research 
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concern because they do not only generate good results, but they equally serve as seed 

for the development of other classes of heuristics and can be used to build initial 

solutions for high performing techniques. The NNH is fast, flexible, and simple to 

implement. It however solves the Travelling Salesman Problem using a greedy 

approach and suffers immensely from “curse of dimensionality”. The FIH on the other 

hand is considered as the best performing insertion heuristic and best among lower 

order complexity heuristics. However, its performance is impeded by the distance 

between the partial circuit and the new node to be inserted. Thus, if inserting nearest 

nodes to the circuit leads to outliers and the performance of FIH is impeded by longer 

distance, perhaps a half max insertion may yield better solution. Thus, the NNH and 

the FIH were studied and a new insertion technique referred to as HMIH was 

formulated and experimented in order to generate better quality output, in reasonable 

time. 

The three techniques (NNH, FIH and the derived HMIH) were implemented using Java 

Programming Language on ten TSPLIB benchmark instances. The experimental result 

generated showed that the speed of computation of the new method was poorer than 

that of NNH and FIH. However, this was compensated for with the solution quality. 

5.2 .  Conclusion  

In this study, a new Insertion heuristic was formulated and experimented on ten publicly 

available benchmark instances, alongside the NNH and FIH. The benchmark instances 

sizes were varied into three groups. Group one consisted two instances with less than a 

hundred (100) nodes, the second group had five instances whose nodes varied between 

one hundred and one (101) and nine hundred and ninety-nine (999), while the third 

group had three instances with one thousand (1000) nodes and above. The experimental 
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results were displayed using tables and graph, and compared on the basis of parameters 

such as computational speed, percentage deviation from the optimal result, quality 

improvement and measure of goodness value.  The results presented were able to 

address the research questions posed in the introductory section of the work. It was 

experimentally ascertained that the new improved heuristic obtained better solution 

qualities yet within the bracket of computational time as the FIH. Thus, it is safe to 

argue that it retained the same complexity of 𝑂(𝑛2) as the FIH, and yet produces better 

solution quality. 

The objectives of the study were achieved as the instances were simulated as a TSP 

problem first by converting the datasets to distance matrix and then implementing on 

varying sizes of benchmark instances.  

5.3. Limitations 

Based on the scope of this work, the implementation environment was limited to only 

the Object-Oriented Programming paradigm, as JAVA programming language was 

used to implement the heuristics. Additionally, no complexity curtailing technique was 

applied to the new formulated heuristic. Finally, the datasets were limited to ten 

instances. 

5.4 Recommendations for Future Research 

The following propositions are recommended to further this research: 

i. The heuristics may be implemented using more than one programming 

paradigm. It will be interesting to simulate the behavior of the different 

programming paradigms on given instances using these techniques. 
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ii. Complexities curtailing techniques may be studied and applied to the proposed 

HMI technique to further improve its performance in terms of computational 

time. 

Improving the computational time of the Half Max Insertion Heuristic is also a 

candidate for future research. Also, a future researcher may like to integrate this new 

heuristic with one or more of the existing state-of-the-art techniques with a view to 

examining the behavior of the resulting heuristic vis-à-vis each of the existing ones. 

5.5 Contributions to Knowledge 

Arising from the critical investigation of the NNH and FIH, the main contribution of 

this study to knowledge is the invention, implementation, and simulation of a new 

heuristic referred to in this study as Half Max Insertion Heuristic (HMIH). The HMIH 

overcomes the limitations of both the FIH and NNH; it performs better than both in 

terms of optimality. The study has therefore provided us with a new and superior 

computational method for solving NP-Hard problems. 
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APPENDICES 

APPENDIX I: DATASET CONVERSION MODULE 

import tsplib95 

import networkx 

import numpy as np 

arr = ['ulysses16.tsp'] 

def iterate(arr): 

    for i in range(len(arr)): 

        name = arr[i].split(".") 

        problem = tsplib95.load_problem(arr[i]) 

        graph = problem.get_graph() 

        distance_matrix = networkx.to_numpy_matrix(graph) 

        distance_matrix = np.array(distance_matrix) 

        fo = open("./output/" + name[0] + ".txt", 'w') 

        for i in range(len(distance_matrix)): 

            for j in range(len(distance_matrix[i])): 

                fo.write(str(distance_matrix[i][j])) 

                if(j != len(distance_matrix) - 1): 

                    fo.write(" ") 
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            if(i != len(distance_matrix) - 1): 

                fo.write("\n") 

        fo.close() 

 

if '__main__' == __name__: 

    iterate(arr) 
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APPENDIX II: CONSTRUCTOR – STRATEGY MODULE 

package tsp; 

 

/** 

 * The {@code Strategy} class represent a specific strategy to 

solve a given TSP 

 * problem 

 *  

 * @author Nathaniel 

 */ 

public abstract class Strategy { 

 

 /** 

  * A {@code RoadMap} object that this strategy works on 

  */ 

 protected RoadMap rm; 

 

 /** 

  * The only constructor. 

  *  
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  * @param rm A {@code Strategy} object to be directly 

assigned to the RoadMap rm 

  *           attribute 

  */ 

 public Strategy(RoadMap rm) { 

  this.rm = rm; 

 } 

 

 /** 

  * Every child class must provide an implementation to 

solve this TSP problem 

  *  

  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 

 public abstract Tour solve(); 

 

 /** 

  * Get a built-in strategy to solve this TSP using brute 

force 
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  *  

  * @param rm A {@code RoadMap} object that this strategy 

works on 

  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 

 public static Strategy bruteForce(RoadMap rm) { 

  return new BruteForceStrategy(rm); 

 } 

 

 /** 

  * Get a built-in strategy to solve this TSP using Nearest 

Neighbor Heuristic 

  *  

  * @param rm    A {@code RoadMap} object that this strategy 

works on 

  * @param start The city this strategy starts with 

  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 
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 public static Strategy nearestNeighbor(RoadMap rm, String 

start) { 

  return new NearestNeighborStrategy(rm, start); 

 } 

 /** 

  * Get a built-in strategy to solve this TSP using Farthest 

Insertion Heuristic 

  *  

  * @param rm A {@code RoadMap} object that this strategy 

works on 

  * @param a  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param b  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param c  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @return A {@code Tour} object that represents the 

solution of this strategy 
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  */ 

 public static Strategy farthestInsertion(RoadMap rm, 

String a, String b, String c) { 

  return new FarthestInsertionStrategy(rm, a, b, c); 

 } 

 /** 

  * Get a built-in strategy to solve this TSP using Nearest 

Insertion Heuristic 

  *  

  * @param rm A {@code RoadMap} object that this strategy 

works on 

  * @param a  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param b  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param c  One of the three cities to form a triangle 

that this strategy 

  *           starts with 
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  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 

 public static Strategy nearestInsertion(RoadMap rm, String 

a, String b, String c) { 

  return new NearestInsertionStrategy(rm, a, b, c); 

 } 

 /** 

  * Get a built-in strategy to solve this TSP using Min Max 

Insertion Heuristic 

  *  

  * @param rm A {@code RoadMap} object that this strategy 

works on 

  * @param a  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param b  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param c  One of the three cities to form a triangle 

that this strategy 
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  *           starts with 

  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 

 public static Strategy MinMaxInsertion(RoadMap rm, String 

a, String b, String c) { 

  return new MinMaxStrategy(rm, a, b, c); 

 } 

 /** 

  * Get a built-in strategy to solve this TSP using Farthest 

Insertion Heuristic 

  *  

  * @param rm A {@code RoadMap} object that this strategy 

works on 

  * @param a  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @param b  One of the three cities to form a triangle 

that this strategy 

  *           starts with 



169 
 

  * @param c  One of the three cities to form a triangle 

that this strategy 

  *           starts with 

  * @return A {@code Tour} object that represents the 

solution of this strategy 

  */ 

 public static Strategy MidpointinsertionStrategy(RoadMap 

rm, String a, String b, String c) { 

  return new MidpointinsertionStrategy(rm, a, b, c); 

 } 

 // public static double 

CheapestInsertionStrategy(double[][] rm, int start) { 

 // return new CheapestInsertionStrategy(rm, start); 

 // } 
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APPENDIX III: NEAREST NEIGHBOUR HEURISTIC JAVA 

CODE 

package tsp; 

import java.util.LinkedList; 

class NearestNeighborStrategy extends Strategy { 

 private String start; 

 protected NearestNeighborStrategy(RoadMap rm, String 

start) { 

  super(rm); 

  this.rm.checkCity(start); 

  this.start = start; 

 } 

 private String findNearestNeighbor(String city, 

LinkedList<String> unvisited) { 

  double shortest = Double.MAX_VALUE; 

  String nearest = null; 

  for (String s : unvisited) { 

   double current = this.rm.getDistance(city, s); 

   if (Double.compare(current, shortest) < 0) { 

    nearest = s; 
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    shortest = current; 

   } 

  } 

  return nearest; 

 } 

 

 @Override 

 public Tour solve() { 

  long start_time = System.nanoTime(); 

  Tour.Builder tb = new Tour.Builder(this.rm); 

  String current = this.start; 

  LinkedList<String> unvisited = new 

LinkedList<String>(this.rm.getCitySet()); 

  unvisited.remove(current); 

  while (!unvisited.isEmpty()) { 

   String nearest = 

this.findNearestNeighbor(current, unvisited); 

   tb.addPair(current, nearest); 

   current = nearest; 

   unvisited.remove(current); 
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  } 

  tb.addPair(current, start); 

  long end_time = System.nanoTime(); 

  System.out.printf("Time Taken : %d\n", end_time - 

start_time); 

  return tb.build(); 

 } 

 

} 
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APPENDIX IV: FARTHEST INSERTION HEURISTIC JAVA 

CODE 

package tsp; 

class FarthestInsertionStrategy extends Strategy { 

 private String a; 

 private String b; 

 private String c; 

 protected FarthestInsertionStrategy(RoadMap rm, String a, 

String b, String c) { 

  super(rm); 

  rm.checkCity(a); 

  rm.checkCity(b); 

  rm.checkCity(c); 

  if(a.equals(b) || a.equals(c) || b.equals(c)){ 

   throw new RuntimeException(a + ", " + b + ", " 

+ c + " cannot form a triangle"); 

  } 

  this.a = a; 

  this.b = b; 

  this.c = c; 
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 } 

  private double distanceFrom(String city, Tour.Builder 

tb){ 

  double max = 0; 

  for(String s : tb.getCities()){ 

   double current = this.rm.getDistance(city, s); 

   if(current > max){ 

    max = current; 

   } 

  } 

  return max; 

 } 

  

 private String findFarthestCity(Tour.Builder tb){ 

  String farthest = ""; 

  double maxDist = 0; 

  for(String city : this.rm.getCitySet()){ 

   if(!tb.covers(city)){ 

    double currentDist = 

this.distanceFrom(city, tb); 
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    if(currentDist > maxDist){ 

     maxDist = currentDist; 

     farthest = city; 

    } 

   } 

  } 

  return farthest; 

 } 

  

 private void insertCity(String city, Tour.Builder tb){ 

  Pair target = null; 

  double minIncr = Double.MAX_VALUE; 

  for(Pair p : tb.getPairs()){ 

   String a = p.getSmaller(); 

   String b = p.getLarger(); 

   double incr = this.rm.getDistance(city, a) + 

this.rm.getDistance(city, b) - this.rm.getDistance(p); 

   if(Double.compare(incr, minIncr) < 0){ 

    target = p; 

    minIncr = incr; 
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   } 

  } 

  tb.removePair(target); 

  tb.addPair(target.getSmaller(), city); 

  tb.addPair(target.getLarger(), city); 

 } 

 @Override 

 public Tour solve() { 

  Tour.Builder tb  = new Tour.Builder(this.rm); 

  tb.addPair(this.a, this.b); 

  tb.addPair(this.a, this.c); 

  tb.addPair(this.b, this.c); 

  while(tb.size() < this.rm.size()){ 

   String farthest = this.findFarthestCity(tb); 

   this.insertCity(farthest, tb); 

  } 

  return tb.build(); 

 } 

 } 
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APPENDIX V: HALF MAX INSERTION HEURISTIC JAVA CODE 

package tsp; 

import java.util.Arrays; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Collections; 

class MidpointinsertionStrategy extends Strategy { 

 private String a; 

 private String b; 

 private String c; 

 protected MidpointinsertionStrategy(RoadMap rm, String a, 

String b, String c) { 

  super(rm); 

  rm.checkCity(a); 

  rm.checkCity(b); 

  rm.checkCity(c); 

  if(a.equals(b) || a.equals(c) || b.equals(c)){ 

   throw new RuntimeException(a + ", " + b + ", " 

+ c + " cannot form a triangle"); 

  } 
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  this.a = a; 

  this.b = b; 

  this.c = c; 

 } 

 public static double findMax(double[] a, int total){   

  double temp;   

  for (int i = 0; i < total; i++){   

             for (int j = i + 1; j < total; j++)    

             {   

                 if (a[i] > a[j])    

                 {   

                     temp = a[i];   

                     a[i] = a[j];   

                     a[j] = temp;   

                 }   

             }   

         }   

        return a[total-1];   

 }   
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 // public double findClosest(double myNumber, double[] 

numbers){ 

 //  double distance = Math.abs(numbers[0] - myNumber); 

 //  int idx = 0; 

 //  for(int c = 1; c < numbers.length; c++){ 

 //      double cdistance = Math.abs(numbers[c] - 

myNumber); 

 //      int closestSoFar = abs(numbers[i] - myNumber); 

 //      if (abs(numbers[i] - myNumber) < abs(closestSoFar 

- myNumber)) { 

 //      // if(cdistance < distance){ 

 //          idx = c; 

 //          distance = cdistance; 

 //      } 

 //  } 

 //  double theNumber = numbers[idx]; 

 //  return theNumber; 

 // }  
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 private static void removeDuplicates(String[] array) { 

     int[] occurence = new int[array.length]; 

     for (int i = 0; i < array.length; i++) { 

         for(int j=i+1;j<array.length;j++){ 

             if(array[i]==array[j]){ 

                 occurence[j]=j; 

             } 

         } 

     } 

     int resultLength=0; 

     for(int i=0;i<occurence.length;i++){ 

         if(occurence[i]==0){ 

             resultLength++; 

         } 

     } 

     String[] result=new String[resultLength]; 

     int index=0;int j=0; 

     for(int i=0;i<occurence.length;i++){ 

         index = occurence[i]; 
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         if(index==0){ 

             result[j]= array[i]; 

             j++; 

         } 

     } 

     for(String eachString : result){ 

         // System.out.println(eachString); 

     } 

 } 

 public double findClosest(String city, double 

targetNumber, Tour.Builder tb){ 

  double closestDifference = targetNumber; 

  double closestNumber= 0; 

  // for (int i = 0; i < numbers.length; i++){  

  int i = 0;  

  for(String s : tb.getCities()){ 

   System.out.println(s); 

   if(closestDifference > 

java.lang.Math.abs(this.rm.getDistance(city, s)-targetNumber)){ 
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    closestDifference = 

java.lang.Math.abs(this.rm.getDistance(city, s)-targetNumber); 

    closestNumber= this.rm.getDistance(city, 

s); 

   } 

   i++; 

  }  

  return closestNumber; 

 } 

 public double calcDistanceFrom(String city, Tour.Builder 

tb){ 

  double max = 0; 

  double mid = 0; 

  double min = 0; 

  for(String s : tb.getCities()){ 

   max = this.rm.getDistance(city, s); 

   mid = this.rm.getDistance(city, s); 

   double current = this.rm.getDistance(city, s); 

   if(current < max && current > min){ 

    max = max; 
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    min = min; 

    mid = current; 

   }else if(current > max){ 

    mid = max; 

    max = current; 

    min = min; 

   }else if(min > max){ 

    max = min; 

    mid = mid; 

    max = max; 

   }else{ 

    max = max; 

    min = min; 

    mid = mid; 

   } 

  } 

  return mid; 

 } 
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 private double distanceFrom(String city, Tour.Builder tb){ 

  double max = 0; 

  for(String s : tb.getCities()){ 

   double current = this.rm.getDistance(city, s); 

   if(current > max){ 

    max = current; 

   } 

  } 

  return max; 

 } 

 private String findMiddleCity(Tour.Builder tb, int 

rmsize){ 

  String middle = ""; 

  double maxDist = 0; 

  int i = 0; 

   

  for(String city : this.rm.getCitySet()){ 

   if(!tb.covers(city)){ 

    // double currentDist = 

findClosest(findMax(allcitties, rmsize), allcitties); 
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    // double currentDist = 

this.distanceFrom(city, tb); 

    double currentDist = 

calcDistanceFrom(city, tb); 

    middle = city; 

    // if(currentDist > maxDist){ 

    //  maxDist = currentDist; 

    //  middle = city; 

    // }else{ 

    //  middle = city; 

    // } 

   } 

   i++; 

  } 

  return middle; 

 } 

 private void insertCity(String city, Tour.Builder tb){ 

  Pair target = null; 

  double minIncr = Double.MAX_VALUE; 

  for(Pair p : tb.getPairs()){ 
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   String a = p.getSmaller(); 

   String b = p.getLarger(); 

   double incr = this.rm.getDistance(city, a) + 

this.rm.getDistance(city, b) - this.rm.getDistance(p); 

   if(Double.compare(incr, minIncr) < 0){ 

    target = p; 

    minIncr = incr; 

   } 

  } 

  tb.removePair(target); 

  tb.addPair(target.getSmaller(), city); 

  tb.addPair(target.getLarger(), city); 

 } 

 @Override 

 public Tour solve() { 

  Tour.Builder tb  = new Tour.Builder(this.rm); 

  tb.addPair(this.a, this.b); 

  tb.addPair(this.a, this.c); 

  tb.addPair(this.b, this.c); 

  while(tb.size() < this.rm.size()){ 
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   String middle = this.findMiddleCity(tb, 

this.rm.size()); 

   this.insertCity(middle, tb); 

  } 

  return tb.build(); 

 } 

 } 
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APPENDIX VI: IMPLEMENTATION MODULE – MAIN CLASS 

import tsp.FileProcessor; 

import tsp.RoadMap; 

import tsp.Strategy; 

import util.Printer; 

 

// import tsp.CheapestInsertion; 

// import tsp.ConstructionHeuristic; 

public class TSPDemo { 

 public static final String bruteforce = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/bruteforce.txt"; 

 public static final String german = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/german.txt"; 

 public static final String q1 = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q1.txt"; 

 public static final String q1seq = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q1seq.txt"; 
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 public static final String seq = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/seq.txt"; 

 public static final String matric = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/matric.txt"; 

 public static final String tut8q1 = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q1.txt"; 

 public static final String tut8q2 = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q2.txt"; 

 public static final String tut8q2seq = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/tut8q2seq.txt"; 

 public static final String q6 = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q6.txt"; 

 public static final String q9 = 

"/Users/apple/Documents/java/Travelling-Salesman-Problem-

Solver/src/samples/q9.txt"; 

 // our own import  
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 public static final String burma14 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/burma14.txt"; 

 public static final String att48 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/att48.txt"; 

 public static final String ulysses22 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ulysses22.txt"; 

 public static final String ulysses16 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ulysses16.txt"; 

 public static final String bays29 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/bays29.txt"; 

 public static final String berlin52 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-
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Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/berlin52.txt"; 

 public static final String brazil58 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/brazil58.txt"; 

 public static final String eil51 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil51.txt"; 

 public static final String eil76 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil76.txt"; 

 public static final String rat99 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat99.txt"; 

 public static final String bier127 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/bier127.txt"; 
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 public static final String d657 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d657.txt"; 

 public static final String eil101 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/eil101.txt"; 

 public static final String gr229 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/gr229.txt"; 

 public static final String lin318 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/lin318.txt"; 

 public static final String pr439 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pr439.txt"; 

 public static final String rat195 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-
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Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat195.txt"; 

 public static final String rat575 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat575.txt"; 

 public static final String u724 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u724.txt"; 

 public static final String ch130 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ch130.txt"; 

 public static final String ch150 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ch150.txt"; 

 public static final String rat783 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rat783.txt"; 
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 public static final String ali535 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/ali535.txt"; 

 public static final String dsj1000 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/dsj1000.txt"; 

 public static final String u2319 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u2319.txt"; 

 public static final String pcb3038 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pcb3038.txt"; 

 public static final String rl5915 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rl5915.txt"; 

 public static final String fl3795 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-
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Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/fl3795.txt"; 

 public static final String d1655 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d1655.txt"; 

 public static final String d2103 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/d2103.txt"; 

 public static final String pr2392 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/pr2392.txt"; 

 public static final String rl1889 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/rl1889.txt"; 

 public static final String u1817 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u1817.txt"; 
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 public static final String u2152 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/u2152.txt"; 

 public static final String vm1748 = 

"C:/Users/asani/Documents/Travelling-Salesman-Problem-

Solver/Travelling-Salesman-Problem-

Solver/src/samples/output/vm1748.txt"; 

 public static void main(String[] args) { 

  FileProcessor fpdt = FileProcessor.DISTANCE_MATRIX; 

  // RoadMap rm = fpdt.read(matric); 

  RoadMap rm = fpdt.read(eil51); 

  // RoadMap rm = fpdt.read(dsj1000); 

  // 

System.out.println(Strategy.bruteForce(rm).solve()); 

  System.out.println(Strategy.nearestNeighbor(rm, 

"C1").solve()); 

 

  //long startTime1 = System.nanoTime(); 

  //System.out.println(Strategy.farthestInsertion(rm, 

"C3", "C4", "C5").solve()); 
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  //long endTime1   = System.nanoTime(); 

  //long totalTime1 = endTime1 - startTime1; 

  //System.out.println(totalTime1); 

  //System.out.println("//////////////////////////"); 

 

  //long startTime = System.nanoTime(); 

  //System.out.println(Strategy.nearestInsertion(rm, 

"C3", "C4", "C5").solve()); 

  //long endTime = System.nanoTime(); 

  //long totalTime = endTime - startTime; 

  //System.out.println(totalTime); 

 

  //long startTime = System.nanoTime(); 

 

 //System.out.println(Strategy.MidpointinsertionStrategy(r

m,"C3", "C4", "C5").solve()); 

  //long endTime   = System.nanoTime(); 

  //long totalTime = endTime - startTime; 

  //System.out.println(totalTime); 

 



198 
 

  // double[][] distances = new double[][] {{0, 8, 4, 

9, 9}, 

  //                

{8, 0, 6, 7, 10},  

  //                

{4, 6, 0, 5, 6},  

  //                

{9, 7, 5, 0, 4},  

  //                

{9, 10, 6, 4, 0}};  

  // System.out.println("/////////////////"); 

  // heuristic = new CheapestInsertion(distances, 0); 

  // Printer.printArray(heuristic.getTour()); 

  // long startTime1 = System.nanoTime(); 

  // System.out.println(Strategy.MinMaxInsertion(rm, 

"C3", "C4", "C5").solve()); 

  // long endTime1   = System.nanoTime(); 

  // long totalTime1 = endTime1 - startTime1; 

  // System.out.println(totalTime1); 

 } 

} 


