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ABSTRACT 

Hepatitis B Virus (HBV) is a potentially life-threatening infection of global concern 

that puts people at high risk of liver cancer from fibrosis and cirrhosis. The intervention 

of World Health Organization to minimize the spread of HBV by vaccination failed to 

abate the prevalence of HBV in some regions. In this research, three (3) distinct 

mathematical models of the Hepatitis B Virus (HBV) were developed, investigated, and 

analyzed. The models considered children born of carrier mothers with failed 

vaccination, the proportion of HBV acutely infected individuals who spontaneously 

recovered from the virus, infected individuals under treatment who became prone to re-

infection when they fall out of treatment, and chronic carriers who were unaware of 

their status and, thus, transmit the virus unknowingly to others, which were not 

considered by previous models. 

Positivity and boundedness of the models were proved using established theorems. The 

equilibria were shown by equating the differential equations to zero. Basic reproduction 

numbers were constructed for each of the models using the next generation matrix 

method. Local and global stabilities of the models were validated via linearization and 

Lyapunov function methods respectively. The center manifold theorem was used for 

the bifurcation analyses while the sensitivity analyses were performed on each of the 

models to ascertain the parameters that may positively affect the models. Numerical 

simulations were carried out on the models to show the effect of the parameters on each 

of the models. Optimal control analyses were also done to show the importance of 

control on the activities of the models. 

The behaviour of the various compartments in relation to the basic reproduction number 

showed that only the susceptible and the vaccinated individuals exist when the 
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threshold parameter is less than unity and the other compartments tend to zero. Also, 

the reduced rate of acutely and chronically infected offspring in each compartment 

exhibited an increase in susceptible, hospitalized and vaccinated compartments, 

whereas other compartments displayed a reduction in their respective populations. The 

results showed the possibility of a reduction in the number of acute and chronic 

individuals by increasing the treatment rate. It was shown that at a time range 0 < 𝑡 <

6, the acute population decreases, also at a range 6 < 𝑡 <  40,   the chronic population 

decreases. The effects of control measures on the chronic, recovered, and vaccinated 

compartments were also examined. These results confirm that the effects of control 

measures on the compartments reduce the effects of liver cancer in individuals on 

treatment.  

The models validated the various dynamics where acutely infected individuals 

spontaneously recovered from the virus, treatment of all infectious classes which helps 

in mitigating the risk of HBV, and individuals who fall out of treatment thereby 

aggravate the HBV transmission process. It is recommended that testing at the acute 

and chronic unaware states assist in the better management of the virus. 
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CHAPTER ONE  

1.0 INTRODUCTION 

1.1 Background to the Study 

Hepatitis is an inflammation/scarring of the liver that contributes to various health 

complications, including deaths. It occurs due to an immune system attack by the virus in 

the liver and damages this vital organ of the body in the process (Ciupe et al., 2014). To 

date, the World Health Organization (WHO) identifies six main types of Hepatitis viruses, 

which are referred to for purpose of proper classification as Types A, B, C, D, E and G. 

However, although these viruses are responsible for liver disease, their methods of 

transmission, disease intensity, preventive mechanisms and geographical distribution 

around the world vary in many important ways. Nevertheless, in particular, global health 

focus has been on three of these viruses: Types B, C and D. This is most probably because 

of their high prevalence and high mortality rate associated with them. Types B and C are, 

in fact, the most common causes of liver cirrhosis, cancer, and viral Hepatitis mortality. 

These two types of Hepatitis resulted in chronic diseases in multi-million individuals 

world-wide (WHO, 2019). 

WHO estimates that globally 325 million people have Hepatitis B and C and most of the 

people affected were due to lack of means of testing and treatment. Research has, however, 

shown that vaccination can prevent people from suffering from some of the Hepatitis. Also, 

in particular, studies have shown that eradicating the Hepatitis C virus appears feasible due 
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to recent advances in new drugs. Nonetheless, Hepatitis B and D viruses (HBV and HDV) 

continue to pose a significant global health and economic challenge. According to a recent 

WHO study, 4.5 million premature deaths in low- and middle-income countries could be 

avoided through vaccination, diagnostic tests, medicine applications, enlightenment, and 

education by 2030. Through these measures, member-states envisaged that new infections 

would be reduced by 90%, while death from Hepatitis would come down by 65% by 2030 

(WHO, 2020).   

Hepatitis B Virus (HBV) infection is a highly fatal viral infection. It is a massive world-

wide health issue that can lead to severe disease and expose individuals to the risk of 

developing liver cancer caused fibrosis and cirrhosis. The Hepatitis B virus can thrive 

outside the human body for not less than seven days. Individuals who are not protected by 

the vaccine can still be infected if the virus gets in contact with them. The Hepatitis virus 

incubates in 75days but varies between 30 to 180 days. Within 30 to 60 days of infection, 

the virus may be detected, persist, and grow into chronic Hepatitis B (CDC, 2019). The 

World Health Organization reported that approximately 360 million humans have a chronic 

(lifelong) infection with the Hepatitis B virus (HBV), and 887,000 of these people die from 

liver cirrhosis or primary hepatocellular carcinoma. In 2016, 27 million (10.5%) of those 

estimated to have Hepatitis B were aware of their status and 4.5 million (16.7%) of those 

diagnosed were treated (WHO, 2019). 

Hepatitis B is most common in the Western Pacific region with prevalence rate 6.2% and 

Africa with prevalence rate of 6.1%, with the Americas region (0.7%) having the lowest 
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prevalence (WHO, 2019). Nigeria, a tropical country, has been proven as having a high 

prevalence of HBV infection. An estimated 75% of the population have been in contact 

with the virus at some point in their lives. According to Eustace et al., (2019) ,18 million 

Nigerians are infected. The prevalence rate was 4.3% in Port Harcourt, 5.7% in Ilorin, 

11.6% in Maiduguri, and 8.3% in Zaria. A sero-prevalence rate of 23.3% was found among 

patients presenting at all clinics at the Aminu Kano Teaching Hospital (AKTH) (Eustace 

et al.,2019). 

In areas of high endemicity, Hepatitis B is commonly transmitted at birth from mother to 

child (vertical transmission) or through horizontal route (contact with infected blood). 

Transmission can also be from infected children to uninfected children at the first five years 

of life. Infants infected by their mothers develop chronic infection or before they are five 

years of age. It is often transmitted through transdermal or mucosal contact of infected 

persons through the blood and different body fluids such as spittle, catamenial, vaginal 

fluid and semen and, to a lesser degree, perspiration, breast milk, tears, and urine. In 

particular, Hepatitis B can be transmitted through sexual contact in unvaccinated bi-sexual 

men and individuals with multiple sexual partners. However, about 5% of cases of infection 

from adult contributes to chronic Hepatitis. This transmission may similarly ensue when 

needles and syringes are reused, whether in health care settings or among drug users. 

Infections can also happen during medical, surgical, or dental procedures, such as tattooing 

or the use of razors or other sharp objects infected with infected blood. (Mpeshe and 

Nyerere, 2019).  
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Hepatitis B is a highly infectious virus and is 100 times more infectious than HIV and 

therefore became a major global health issue. Concerned experts have noted that the effects 

of HBV infection include chronic liver disease; it has not been given the utmost attention 

and has therefore become a public health concern in the region. To educate the public about 

the risk, mode of transmission, and risk factors associated with the infection, this research 

was carried out to assess the transmission and acquisition of HBV infection. 

1.1.1 Signs and Symptoms of HBV 

Symptoms of HBV are classified according to the various phase of the infection which 

include the acute phase and the chronic phase. The early or acute phase symptoms include 

flu-like symptoms which are not limited to fatigue, fever, pains and aches; weight and 

appetite loss, continuous stooling and vomiting, naval pain, jaundice, dark urine, pale 

faeces (Λvert, 2021). Moreover, the symptoms at the chronic phase can be similar to that 

of the acute phase and also nausea, anorexia, mild upper pain, swelling in the leg and ankle, 

itchy skin and so on (Mayoclinic, 2021).  



5 

 

 

Figure 1: Picture of a person suffering from chronic HBV. (CDC, 2019) 
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1.1.2 Prevention and Treatment of HBV 

Vaccination: Highly effective recombinant vaccines are available for HBV prevention. 

They are administered from time to time to neonates as a part of universal vaccination in 

many countries. The efficacy of newborn vaccination is also quite high (Lin et al., 2003, 

Demirjian and Levy, 2009). Due to the implementation of newborn vaccination, several 

countries have observed a lower incidence and prevalence of chronic Hepatitis B infections 

(Peto et al., 2014) and liver cancer (Qu et al., 2014). For those who missed HBV 

vaccination at birth, an alternative catch-up vaccination among children and adults is also 

available (Hutton et al., 2010, Hutton and Brandeau, 2013). For more effective prevention, 

vaccines can also be administered to those who are more likely to be infected such as 

workers in the health care sector. In addition to HBV newborn and adult vaccination, 

Hepatitis B Immunoglobulin (HBIG) can also protect persons exposed to Hepatitis B. It is 

particularly productive within 48 hours of the incident and therefore highly recommended 

post-liver transplantation to avoid reinfection (Singer et al., 2015). Neonates who are at 

high risk of infection can also be vaccinated. Vaccines may also be given to neonates at 

increased risk of contracting Hepatitis B, i.e., whose mothers are both Hepatitis B surface 

antibody (HBsAg) and Hepatitis B e antibody (HBeAg)  positive. A combination of HBIG 

and active HBV vaccination within 12 hours of birth has successfully eliminated vertical 

transmission in Germany. 

Treatment: Covalently closed circular DNA (CccDNA) is the template of HBV infection. 

Therefore, the inability of antiviral treatments to clear cccDNA in the liver can lead to a 
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viral rebound, even after achieving complete clearance of virus in the serum (Chong et al., 

2011). Therefore, successful treatment requires eliminating cccDNA in the liver along with 

viremia clearance. Patients with an HBeAg-positive disease have a high HBV-DNA 

threshold of 20,000 IU/mL (or 105 copies/mL) with chronic inflammation, as shown by 

high ALT satisfy the care requirements (Lok and McMahon, 2004, Lok et al., 2016). The 

ALT threshold used to decide whether a patient should be treated quite contentious, with 

some experts believing that care is required for those with persistently elevated ALT and 

others requiring ALT to be higher than twice greater than two times the upper limit of 

normal (ULN). It should be noted that for ALT, changed ULN levels were to 30 IU/L for 

males and 19 IU/L for females. The same theory applies to HBeAg-negative patients, 

whereby those with continuing viral replication and persistently elevated ALT meet the 

treatment criteria. However, the HBV DNA threshold is usually lower in these patients 

than in HBeAg-positive patients, with levels greater than 2000 IU/mL (or 104-105 

copies/mL) (Fung and Lok, 2004, Lok and McMahon, 2007). The treatment regimens for 

chronic Hepatitis B infections consist of conventional interferon (IFN), Peg-IFN, and first- 

and second-generation nucleotide analogues (NAS) (Price, 2014). Oral NAs consist of 

lamivudine (LAM), adefovir (ADV), telbivudine (TBV), entecavir (ETV) and tenofovir 

(TDF). Peg-IFN and second-generation NAs (ETV and TDF) are commonly used as initial 

antiretroviral agents. NAS are effective and less susceptible to the development of 

resistance mutations (Wu et al., 2010). They can also reverse liver fibrosis, cirrhosis and 

liver cancer (Liang et al., 2015). Whereas oral NAs have somewhat indefinite treatment 

courses, Peg-IFN has a fixed-duration course and higher HBeAg and HBsAg loss rates. 
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Different therapies affect different compartments of HBV replication and the immune 

system (Thimme and Dandri, 2013). While NAs only target HBV replication at the reverse 

transcription phase (pgRNA to cDNA) and have no effect on cccDNA at all, IFN is 

expected to have both antiviral as well as immunomodulatory effects on different steps in 

the HBV replication cycle, including cccDNA degradation (Haller et al., 1998). The 

antiviral effects are attributed to MxA, a 76-kDa GTPase protein from the large GTPase 

superfamily that accumulates in the cytoplasm in response to IFN-a/b (Haller et al., 1998). 

MxA genes work at the post-transcriptional phase of HBV replication (i.e., encapsulation 

of RNA). It has also been found that MxA genes have no impact on the HBV nucleocapsid 

and its formation. They only affect the nucleocytoplasmic transportation export of viral 

mRNA’s (Rosmorduc et al., 1999). A decrease in the secretion of viral proteins (HBsAg) 

was also found in MxA expressing clones along with a momentous lessening in the 

synthesis of viral proteins (HBsAg), cytoplasmic RNAs, and DNA replicative 

intermediates (encapsulated viral DNA), showing an antiviral effect of MxA protein 

(Gordien et al., 2001). The underlying mechanisms of interferon-stimulated genes (ISGs) 

are still not fully understood. HBsAg levels are used as an indicator to track the 

performance of these antiviral treatments (Chen et al., 2014). HBV DNA and HBsAg levels 

may serve as a better predictor than HBeAg seroconversion in calculating the future risk 

of HCC (Wu and Dunn, 2015, Lin and Kao, 2013, Tseng et al., 2013, Tseng et al.,2012). 

In treatment-naive patients, the recorded 5-year resistance rates are 70% for LMV, 29% 

for ADV and 17% for TVB (2-year rate), compared to 1.2% for ETV and 0% for TDF. 

(Price, 2014). ETV and TDF are more powerful and less likely to develop resistance. 
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Mutations, and yet they remain more expensive than other generic treatment choices (Wu 

et al., 2010). Second generation NAs such as ETV and TDF can also reduce HBV viremia 

level by 6 logs within a year but have no effect on cccDNA, which has a lengthy half-life 

and results in the persistence of infection if patients do not adhere to treatment. Under 

second-generation NAs, the rates of HBeAg seroconversion (20% after one year and 40-

50% after five years) and HBsAg loss (5-10% after five years) are higher than for first-

generation NAs but are still lower compared to IFN. Peg-IFN has better performance than 

IFN and induces a stronger cccDNA and HBsAg decline in chronic patients (Wursthorn et 

al., 2016). With Peg-IFN, weekly administration for 48 weeks resulted in 29-32% HBeAg 

seroconversion and 3-7% HBsAg loss in HBeAg-positive patients. In addition, HBeAg 

change from seropositive to seronegative is durable in up to 81% of cases, and HBsAg loss 

durability reaches as high as 30% in a follow-up of 3.5 years (Cooksley et al., 2003, 

Locarnini et al., 2018). Similarly, in HBeAg-non-positive patients, 3-year post completion 

of Peg-IFN treatment with or without LMV lead to a sustained virological response (SVR 

regarded as HBV DNA<10,000 IU/mL and normal ALT) in 25% of patients and HBsAg 

loss in 9% (Locarnini et al., 2018). In contrast to SVR, the aim is to achieve a functional 

cure that implies HBeAg-negative, HBV DNA <2000 IU/ml and normal ALT (Locarnini 

et al., 2018). The older studies used detection limits of around 104 to 105 copies/ml, 

however recent developments in detecting lower levels of HBV viremia redefined SVR 

and functional cure as HBV DNA <72 IU/ml and HBV DNA< 69 IU/mL, respectively 

(Kau et al., 2018). 
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1.2 Statement of the Problem 

Despite the intervention by WHO on vaccination for minimizing the spread of HBV, the 

highest prevalence of HBV is still encountered in the Western Pacific Region and the 

African region with 6.2% and 6.1% respectively (WHO, 2019). It has, therefore, become 

pertinent to carry out further research on the acquisition and the rate of spread of HBV with 

the view of identifying the possible way of reducing the menace and mitigating the risk of 

the virus. 

A considerable amount of research efforts has gone into the transmission process of HBV 

(Hattaf and Yousffi, 2015, Liang et al., 2015, Khan et al., 2018, Emerenini and Inyama, 

2018, Mpeshe and Nyerere, 2019, Khan et al., 2019). Acquisition of Hepatitis B infection 

is by horizontal and vertical transmission process which have been identified as the main 

spread of the infection. This transmission process has been investigated by other 

researchers but neglect has been on the part that acute individuals are allowed to be full 

blown carrier by not considering treatment at the acute state until they are at the chronic 

state (Khan et al., 2018; Okamoto, 2013). According to Cuipe et al., (2007), offspring’s 

born of an infected mother can be categorized as acutely or chronically born but Khan et 

al., (2019) neglected the recruitment process where a carrier mother can give birth to an 

acute offspring. 

However, in this research, treatment at all the infectious classes will be considered in the 

models to mitigate the risk of HBV; chronic carriers will be classified as chronic aware and 

chronic unaware. Also, children born of carrier mothers shall be regarded as whether acute 
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or chronic to help in better management of those children to reduce the spread of the disease 

in line with Lavanchy, (2004) who opined that the route of transmission has important 

clinical implication on the children because they have a high probability of becoming 

chronic spreaders. Chronic infection is developed in about 80-90% of children below the 

age of one and about 30-50% of children infected before the age of 6years (Kamyad et al., 

2014). 

1.3 Justification of the Study 

Disease transmission dynamics and extrapolation from epidemiological data in predicting 

risk have been studied through the extensive use of mathematical models. Of the 2 billion 

people who have been infected with the Hepatitis B virus (HBV), WHO reported that about 

360 million have chronic (lifelong) infection and 887,000 of these people die from liver 

cirrhosis or primary hepatocellular carcinoma. Prevalence of hepatitis B is highest in 

Western Pacific Region with 6.2 percent, Africa region with prevalence range of 6.1 

percent and lowest in the America region with range of 0.7 percent of the adult population 

(WHO, 2019). 

1.4 Aim and Objectives 

The study aims at developing a new model for transmission of HBV with treatment 

dynamics and optimal control. 

The specific objectives are to: 
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1. obtain the disease-free equilibrium and endemic equilibrium of the models 

2. construct the models’ basic reproduction number using the next generation matrix 

in order to determine the nature of the outbreak. 

3. investigate using the Lyapunov function the global and local stabilities of the 

resulting equilibria i.e., the disease free and the endemic equilibrium of the model. 

4. perform numerical simulations on the model to assess the positive effect of some 

important parameters (testing rate, treatment rate of the models). 

5. perform bifurcation analysis on the equilibrium points (either forward or backward) 

using the center manifold theory 

6. develop and analyze an optimal control model for HBV to minimize cost and 

maximize treatment and recovery rate of infected individuals. 

1.5 Research Questions 

This research is expected to answer the following questions: 

1. how is the nature of the outbreak of the disease determined? 

2.  how can the spread be predicted? 

3. what are the mechanisms behind the spread of the disease?  

4. how can the blow up be prevented through the stability analysis? 
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5. how effectively can parameter sensitivity determine the nature of spread of the 

disease? 

6. how does optimal control determine the cost effectiveness of treatment? 

1.6    Scope of the Study 

The research seeks to examine the transmission process of Hepatitis B virus and the optimal 

control strategies to minimize cost and maximize treatment with the recovery rate of 

individuals infected. The study is restricted to the deterministic model where estimated 

data on already published articles and assumed values were used for the numerical 

simulations. 

1.7  Significance of the Study 

This research is expected to extend the frontiers of knowledge by improving control 

methods on the occurrence of HBV outbreak in a population. 

Results obtained in this study are good indices that can aid some crucial decisions of health 

experts in policy formulation, planning, budgeting, resource allocation and making 

appropriate decisions on controls of the Hepatitis B virus by critically considering the 

testing and treatment of individuals and also contribute to WHO 90-90-90 HBV 

elimination and coverage target for 2030.  
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1.8 Description of Some Basic Terms 

1.8.1 Transmission Dynamics 

An infectious disease agent can be transmitted in two ways: horizontally from one 

individual to another by either direct contact (licking, touching, biting), or indirectly 

through air – cough or sneeze (vectors or fomites that allow the transmission of the agent 

causing the disease without physical contact), or vertically from one individual to another. 

1.8.2 Epidemic Model: 

An epidemic model is used to explain the transmission process of contagious (infectious) 

disease by individuals in a simple manner. The ability to make disease predictions would 

enable scientists to determine inoculation plans that could have a major impact on the 

mortality rate of a specific epidemic. Infectious disease modeling is a tool for studying 

disease transmission mechanisms, forecasting the future course of an outbreak, and 

evaluating epidemic control strategies (Daley and Gani, 1999). Mathematical analysis and 

application of infectious disease have been epidemiologically modelled. Specific models 

for measles, Rubella, Chicken Pox, Whooping Cough, Diphtheria, smallpox, Malaria, 

Syphilis, HIV/AIDS, and Hepatitis have been developed (Daley and Gani, 1999). Epidemic 

models can be grouped into two which are the stochastic epidemic model and the 

deterministic epidemic model. 
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1.8.2.1 Stochastic Epidemic Model 

Stochastic models are based on chance variation in the risk of disease exposure and other 

variables. They provide much more insight into individual-level modelling, considering 

the small size of the population where each person plays a significant role in the model. 

Therefore, when heterogeneities in isolated populations are important, they are used. The 

stochastic model is an instrument that allows random variations in one or more inputs over 

time to estimate probability distributions of potential outcomes as in the case of a small 

population; they are used when these fluctuations are significant and are also adopted for 

estimating the probabilistic quantities for event outcome such as the probability 

distribution of extinction time, the associated mean, the probability distribution of final 

epidemic size etc. There are several benefits to stochastic models. More specifically, 

however, they enable close monitoring on a change-based basis of each individual in the 

population. However, they can be laborious to set up and require many simulations to 

produce useful forecasts. Such models can become very complex mathematically and do 

not explain the dynamics (Daley and Gani, 1999). 

1.8.2.2 Deterministic Epidemic Model 

When considering large populations, deterministic disease models are used, so they are 

called Compartmental models. Here, separate compartments are allocated to individuals in 

the populace, reflecting a particular epidemic stage. The transit rate from one 

compartment/state to another is mathematically represented as derivatives, so differential 
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equations formulate the model. The population size in a compartment is distinguishable 

from time, and the disease phase is deterministic. Particularly, the population changes in a 

case can only be measured using the history used to create the model (Braner and Castillo-

chavez, 2001). Most of the models that explain the actions of infectious diseases that have 

been used so far are deterministic because they need fewer data; they are relatively easy to 

set up and are readily available and user-friendly in computer software. The dynamics of 

the models are now well understood to generally use deterministic models to test whether 

a specific control strategy would be successful. In addition, several other more complex 

models can combine stochastic components. 

Deterministic disease models of various population sizes were formulated and 

mathematically analyzed (Anderson and May, 1981, 1998, Hochberg, 1991). 

 

1.8.3 Basic Reproduction Number (𝑹𝟎) 

One of the basic issues in mathematical epidemiology is to establish threshold conditions 

that decide when a disease is introduced into the population i.e., the conditions whereby 

contagious diseases can be transmitted to a susceptible group (Reluga 2009). These 

threshold conditions are defined by the basic reproduction number, 𝑅0. 

In epidemiology, an infection's basic reproduction number (𝑅0) is the average number of 

secondary cases that a typical single infected case will cause in a population with no 
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immunity to the disease in the absence of infection-control interventions. It is of great 

importance due to its ability to detect the spread of an infection through a population. In 

particular, through the work of (Ross, 1911) and others, the origin of the basic reproduction 

principle can be traced. It was first applied by George MacDonald in 1952, who developed 

a mathematical model for the spread of malaria. 

In infectious disease epidemiology, the basic reproduction number is arguably the most 

significant quantity. It is one of the urgently predicted epidemic situations for emerging 

infectious diseases, and its importance offers insight into the design of control interventions 

for existing infections. Theoretically, the number of basic reproduction numbers plays a 

critical role in studying infectious disease models and consequent insight. 

When  𝑅0 < 1 , the infection fizzles out eventually (given that the rate of infection remains 

unchanged). However, there can be an infection blowout in a population if  𝑅0 > 1. Large 

values may indicate the likelihood of a major outbreak (Hyman and Li, 2000). In general, 

the larger the values, the harder the epidemic can be managed. In particular, (1-1/𝑅0  ) 

provides the percentage of the vaccinated population needed to stop the prolonged spread 

of infection (Driessche and Watmough, 2002). 

Several factors affect the basic reproductive number 𝑅0, which includes the length of the 

infectivity of the infected individuals, the infectivity of the organism and the number of 

susceptible individuals in the population who are in contact with the affected patients. 
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In the calculation of the basic reproduction number, several methods are used which 

rearrange the largest Jacobian matrix value, the next-generation process (Diekmann and 

Hesrterbeck, 2000), the survival function, intrinsic growth rate calculations (Chowell et 

al., 2003), the presence of endemic equilibrium (Ajelli, 2008), among others. The choice 

of which approach to use depends on the model's features in question (Heffernan et al., 

2005). 

1.9 Arrangement of the Thesis 

The organization of this thesis is in five chapters. Chapter one highlights the introduction 

to the study carried out, statement of the problem, justification for the study, aim and 

objectives, research questions, scope of the study, significance of the study and description 

of some basic terms used. Chapter two includes a detailed review of fundamental concepts 

and existing related studies on Hepatitis B Virus and its transmission process. The 

concluding part of chapter two contains a detailed review of related literature that situate 

the works done on HBV and the various methods used. Chapter three covers the description 

of the conceptual design, materials and method. Chapter four focuses on results, discussion 

of the results obtained, and evaluation of the techniques. The thesis is finally concluded in 

chapter five with summarized discussion of results, contributions to knowledge, 

recommendations, and suggestions for further work. 
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CHAPTER TWO  

2.0 LITERATURE REVIEW 

Whilst there are enormous and abundant literature on the mathematical models for 

contagious diseases, there has been renewed interest in the dynamics of the Hepatitis B 

virus and how best to control the transmission dynamics of the virus. This section reviews 

literatures on various methods and mathematical approaches used to control the 

transmission dynamics of the virus. 

2.1 Conceptual Issues 

2.1.1 Hepatitis B Virus 

Hepatitis B Virus, commonly called HBV, is a deoxyribonucleic acid (DNA) virus with a 

strikingly compact genomic composition. It has a relaxed circular (but not covalently 

closed), partially double-stranded DNA genome. The complete genome is approximately 

3200 nucleotides (3.2 kilobases or kb) long. The genome economy of HBV is achieved 

through a competitive strategic approach to encoding four genes' proteins overlapping: the 

envelope (S); core (C); polymerase (P); and X regions (Rosenberg, 2001). 

The virus is a part of the family of hepadnaviridae, which is divided into two genera: 

mammal-infecting ortho-hepadnaviruses and bird-infecting avi-hepadnaviruses. They have 

similar morphological shapes and are counter-parts to HBV, the antigens of the envelope 

and nucleocapsid virus. They reproduce in the liver but are present in extrahepatic sites and 
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have their own endogenous DNA polymerase and partly double-strand and partly single-

strand genomes (Cossart and Field, 1970). HBV consists of an outer 42nm diameter 

spherical lipoprotein envelope and an inner 27nm diameter icosahedral nucleocapsid core 

enclosing the DNA genome, polymerase and a protein Kinase (Cossart and Field, 1970).  

The virus is one of the smallest enveloped animal viruses that exist with a diameter of 42 

nm. The external envelope includes embedded proteins that participate in and lead to viral 

binding of vulnerable cells. Although pleomorphism occurs, which consists of filamentlike 

and sphere-shaped bodies which lack a core, these particles are non-infective and consist 

of lipid and protein, which forms part of the surface of a virion known as a surface antigen 

(HBsAg) (Ciupe et al., 2014). 

2.1.2 Epidemiology of Hepatitis B Virus 

The Hepatitis B virus (HBV) must first be bound, as a parasite, to a cell capable of 

sustaining its replication to replicate. Although, the liver is the most successful type of cell 

to replicate HBV, it has been found that other extrahepatic sites can support image to a 

lesser degree. Patients infected with acute Hepatitis B have been reported in mononuclear 

cells, bile duct epithelial, endothelial, pancreatic acinar cells and smooth muscle tissue, as 

well as in adrenal glands, gonads, cultured bone marrow, kidneys, lymph nodes, spleen and 

thyroid glands, HBV replicative intermediates and viral transcripts (Chang, 2011). 

Although, the virus does not appear to be associated with tissue damage in each of these 

extrahepatic sites, it invoked its existence in such remote reservoirs to explain the 

recurrence of HBV infection following orthotopic liver transplantation. 
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Hepadnaviruses rely on a special technique for replications of retroviruses in DNA viruses. 

They use reversal transcriptions of minus-strand DNA of the 'pregenomic' ribonucleic acid 

(RNA) rather than DNA replication directly from the DNA template (DNA polymerase). 

DNA from the minus strand DNA template is transcribed by the hepatocyte nucleus and 

transformed by host proteins called chaperones, which act as a template of messenger and 

pregenomic RNA, into covalently closed circular DNA (cccDNA). DNA is the host protein 

known as DNA polymerase. The messenger RNA translates viral proteins secreted from 

the hepatocyte and are packaged into the virion. Even though, it is tough trying to nurture 

HBV from clinical material in vitro in the traditional sense, there are transfected cells in 

vitro replication of the intact virus and its protein portion with many cell lines which have 

been transfected with HBV DNA (Cossart and Field, 1970). 

2.1.3 HBV Life Cycle 

The HBV life cycle starts when the outermost envelope protein (pre S1 region of the large 

envelope polypeptide) of HBV binds to a cellular receptor of the host cell (Ezzikouri et al., 

2014). A process known as receptor-mediated endocytosis enables the entry of the 

nucleocapsid into the cytoplasm of the host cell. After uncoating and synthesis of viral 

plus-strand DNA, genomic DNA enters the nucleus of the host cell where the single-

stranded gap is repaired and double-stranded DNA (dsDNA) matures to a 3.2-kb covalently 

closed circular DNA (cccDNA) (Chisari, 2000). The cccDNA then undergoes transcription 

by host cell RNA polymerase and is responsible for producing all viral mRNAs. Three 

smaller sub genomic mRNAs of 2.4 kb, 2.1 kb and 0.7 kb are necessary to translate 
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envelope proteins (S, pre S1 and pre S2) and the X protein. The translation of the larger 

genomic RNA (pgRNA of 3.5 kb) transcripts produces pre-core and core proteins along 

with hepatitis B e antigen (HBeAg) (Enders et al., 1997, Nassal et al., 2000, Kock and 

Schlicht, 2013). The core protein (HBcAg) produced earlier has an important job to rapidly 

form homodimers that self-assemble into capsid particles in the nucleus and cytoplasm 

(Chisari, 2000). Intra-nuclear capsid particles are empty and have an unknown role, while 

cytoplasmic capsid particles are true nucleocapsids (Chisari, 2000). Similarly, pgRNAs are 

translated in the cytoplasm of the host cell to produce a polymerase protein P which 

contains a viral packaging signal resulting in the encapsulation of the pgRNA-P protein 

complex within the capsids produced by the core (Miyanohara et al., 1986, Gallina et al., 

1989, Birnbaum and Nassal, 1990, Hirsch et al., 2000, Bartenschlager and Schaller, 2002, 

Pollack and Ganem, 2014). Once encapsulation is complete, reverse transcription and DNA 

replication begin, which extends the negative strand. Afterwards, the positive-strand 

synthesis takes place, and then the endoplasmic reticulum (ER) or the Golgi apparatus are 

the sites where the envelope proteins are gotten. After which the assembling of progeny 

virions, vesicle fusion starts at the plasma membrane, followed by the release of the 

assembled progeny virions (Lien et al., 1986, Staprans et al., 1991, Loeb et al., 1991, 

Summers and Mason, 1992, Wang and Seeger, 1992, Wang and Seeger, 1993, Miller et 

al., 1994, Standring et al., 2006, Persing et al., 2006, Cheng et al., 2006, Tavis and Ganem, 

2013, Tavis et al., 2014, Chisari et al., 2016). 
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2.1.4 Pathogenicity of HBV 

Young children (who acquire infection from their mothers at birth) typically do not show 

symptoms i.e., asymptomatic and do not necessarily have to go through the acute phase of 

HBV infection. However, 80 to 90% of these asymptomatic children develop chronic 

Hepatitis B, of which 25% die of cirrhosis or liver cancer in adulthood (Elgouhari et al., 

2008). On the other hand, adults (who acquire infection through horizontal transmission) 

usually go through the acute phase and mostly recover. Only 3-5% of them develop the 

next severe chronic state of HBV infection (Alter, 2003, Chu et al., 2003). Once HBV 

disease has progressed to the chronic phase, it leads to more critical versions of the disease, 

including cirrhosis, decompensate cirrhosis, hepatocellular carcinoma (HCC, liver cancer) 

and liver failure. Approximately 8% to 20% of chronic infections develop cirrhosis, while 

20% subsequently develop HCC within five years. Those who develop liver cancer have a 

5-year survival rate of only 10% (Hui et al., 2002, Fattovich et al., 2002, Fattovich, 2003a, 

Fattovich, 2003b). A lot of factors determine the progression rates of cirrhosis and HCC 

which include age at infection, gender, extent of HBV replication, certain HBV genotypes 

and variants, coinfection with HCV, HDV, or HIV, alcohol consumption, exposure to 

aflatoxin B1, genetic factors of the host, and probable comorbidities including metabolic 

syndrome, diabetes, obesity and tobacco smoking (Locarnini et al., 2018). Of all these 

factors, HBeAg positivity and HBV DNA levels are the main markers of HBV progression 

rate to HCC (Locarnini et al., 2018). For example, the progression risk of cirrhosis and 
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HCC starts increasing at viral loads >104 copies/mL (2 x 103 IU/mL), and goes very high 

at viral loads >107 copies/mL (2 x 106 IU/mL). 

2.1.5 Phases of HBV Infection 

There are two major phases in HBV infection, the acute phase and the chronic phase. 

Acute phase: The acute phase may last up to six months (with or without symptoms) and 

is identified by the presence of HBsAg, HBc-IgM antibodies (the first antibody to appear, 

which usually disappears in six months), and possibly HBeAg. There are four sub-phases 

in the natural history of acute HBV infection: 

• The incubation phase 

• The symptomatic hepatitis phase 

• The recovery phase 

• The HBsAg clearance phase 

In the incubation phase, the infection spreads and replicates and is in an early development 

phase. This phase can last up to 12 weeks. Symptoms start to appear in the symptomatic 

phase, demonstrating increased levels of ALT. This symptomatic phase lasts for 4-12 

weeks, followed by normalization of ALT levels in the recovery phase. In the last stage, 

clearance of HBsAg in the serum along with the development of Hepatitis B surface 

antibodies (anti-HBs) is observed (Lok and McMahon, 2004). 



25 

 

Most patients with acute hepatitis B are HBeAg-positive and highly infectious because of 

the high number of virions. However, HBeAg-negative and HBsAg positive patients are 

also very contagious (Fung and Lok, 2004). Acute fulminant hepatitis B also occurs in 1% 

of acutely infected patients and causes about 10% of cases of acute liver failure. 

Chronic Phase: By definition, an HBV infection is chronic if HBsAg persists longer than 

six months (Lok and McMahon, 2004). It is also possible to classify the natural history of 

chronic hepatitis B into four sub-phases (but not all patients go through all four phases): 

immune tolerance, immune clearance, immune control, and immune escape. As the name 

suggests, in the immune tolerant phase, the body does not act against the HBV virus, and 

liver damage does not occur (usually measured by the amount of ALT produced by the 

liver). High levels of HBV DNA in the serum are also detected, and HBeAg positivity and 

anti-HBe negativity (Lok and McMahon, 2004). This phase is prevalent in those who 

acquire HBV infection at birth, which can last for 20-30 years (Elgouhari et al., 2008). The 

immune clearance phase follows the immune tolerant phase and, in this phase, the body 

starts reacting to the virus and tries to clear the infection. This phase is also characterized 

by an increase in ALT levels, inducing variable inflammation of the liver (fibrosis) and 

fluctuating high HBV DNA levels in the serum. The seroconversion of HBeAg to anti-HBe 

is an important outcome of this phase. Initiation of antiviral therapy is essential (and more 

beneficial) in this phase; otherwise, the immune system will try to clear the infection on its 

own, which may lead to permanent liver damage. During the immune control phase, the 

immune system controls the virus and brings ALT levels down to normal, resulting in 

minimal liver damage. A small percentage of HBsAg and a low level of HBV DNA in the 
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serum were observed after the clearance of HBeAg, which is also an indicator of this phase. 

In some people, the virus escapes, and some inactive HBsAg re-activate, leading to liver 

damage. This phase is identified by negative HBeAg, positive anti-HBe and high viral load 

(Fung and Lok, 2004). HBeAg negativity is caused by a mutation in the precore or core 

promoter region of the HBV genome, preventing HBeAg production. Each of the phases, 

as mentioned above, can last for several years but the duration can suddenly change 

depending upon the complex interactions between the host, virus and the environment. The 

infection is usually noticed in the fourth phase, after which antiviral treatment is often 

provided (Yuen et al., 2005). 

2.2 Review of Methodological Approaches 

The review of the various methods used in this research are shown in this section. 

2.2.1 Next Generation Matrix 

One of the ways to derive the basic reproduction number of any model with more than one 

infected class is the method of next-generation matrix formulation by (Diekmann et al., 

1990 and Dreissche and Watmough 2002). Diekmann and Hesterbeck (2002) and 

Hefferman et al. (2005) studied the next generation matrix method as a natural approach 

in the derivation of basic reproduction number in models that includes multiple classes of 

infected individuals. Hence, the basic reproduction number has been defined as the spectral 

radius (i.e., the domain eigenvalue) of the next generation matrix. Define 𝑥𝑠 to be the set 

of all disease-free state, that is 
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𝑥𝑠 = {𝑥 ≥ 0|𝑥𝑖 = 0, 𝑖 = 1,2, . . . . . 𝑚}       (2.1) 

In order to compute 𝑅0, it is important to distinguish new infectious from all other changes 

in the population. 

 Let 𝐹𝑖(𝑥) be the rate of appearance of new infections in compartment; 

𝑉𝑖
+ be the rate of transfer of individuals into compartment i by all other means 

𝑉𝑖
− be the rate of transfer of individuals out of compartment i. 

It is assumed that each function (𝐹𝑖(𝑥), 𝑉𝑖
+and   𝑉𝑖

−)is continuously differentiable at least 

twice with respect to each variable. 

The transmission model consists of the non-negative initial conditions together with the 

following system of equations: 

𝑥𝑖 = 𝑓𝑖(𝑥) = 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥), 𝑖 = 1,2, . . . . . . , 𝑛     (2.2) 

Where 𝑉𝑖 = 𝑉𝑖
− − 𝑉𝑖

+ and the functions satisfying condition: 

A1: if 𝑥 ≥ 0 then 𝐹𝑖,𝑉𝑖
−, 𝑉𝑖

+ ≥ 0 for 𝑖 = 1,2, 𝑛 

Note: if the compartment is empty, then through death, infection or any other means, there 

can be no transfer of individuals from the compartment. 

A2: if 𝑥𝑖 = 0, then 𝑉𝑖
− = 0 (No one leaves the compartment). In particular if 𝑥 ∈ 𝑋𝑠, then 

𝑉𝑖
− = 0 For 𝑖 = 1,2, . . . . . 𝑚 
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A3: 𝐹𝑖 = 0, 𝑖 > 𝑚 (m is the number of infective classes) 

A4: if 𝑥 ∈ 𝑋𝑠, then 𝐹𝑖 = 0, and 𝑉𝑖 = 0 for all 𝑖 = 1,2, . . . . . 𝑚 

A5: if 𝐹(𝑥)is then set to zero, then all the eigenvalues of 𝐷𝑓(𝑥0) having negative real parts. 

Lemma 2.1: If 𝑥0 is a disease-free equilibrium (DFE) of (2.1) and 𝑓𝑖(𝑥) satisfies A1-A5 

then the derivatives 𝐷𝑓(𝑥0) and 𝐷𝑣(𝑥0) are partitioned as  

𝐷𝐹(𝑥0) = (
𝐹 0
0 0

) , 𝑉(𝑥0) = (
𝑉 0
𝐽3 𝐽4

)      (2.3) 

Where F and V are the m x n matrices defined by 

𝐹 = [
𝜕𝐹(𝑥0)

𝜕𝑥𝑖
]   and  𝑉 = [

𝜕𝑉(𝑥0)

𝜕𝑥𝑗
]       (2.4) 

With1 ≤ 𝑖 ≤ 𝑚, 𝐹 is non – negative and 𝑉 is a non- singular M-matrix. 

From Diekmann et at. (1990) 𝐹𝑉−1is called the model’s next generation matrix and 𝑅0 is 

set to be equal to the spectral radius 𝑝(𝐹𝑉−1) i.e. 

𝑅0 = 𝑝(𝐹𝑉
−1)         (2.5) 
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2.2.2 Asymptotically Stable 

2.2.2.1 Locally Asymptotically Stable 

The equation point 𝑃0 is said to be locally asymptotically stable if it is stable in addition 

there is a ball about 𝑃0 such that every trajectory which enters the circle at some time to 

approaches 𝑃0 as 𝑡 → ∞. 

2.2.2.2 Globally Asymptotically Stable 

The equilibrium point 𝑃0 is said to be globally asymptotically stable if all trajectory 

approaches the equilibrium point 𝑃0as 𝑡 → +∞ (irrespective of earlier behavior), the 𝑃0 is 

said to be globally asymptotically stable. 

2.2.3 Stability 

The stability characteristics describe how a system behaves if its state is initiated near to a 

given point of equilibrium but not precisely at it. If a system is originally exactly equal to 

an equilibrium point with the state, then by definition, it can never move. The state may, 

however, stay close by when initiated nearby, or it may step on. 

Suppose X
__

is an equilibrium point of time-invariant system then X
__

is an equilibrium point 

of  𝑋(𝑡) = 𝑓(𝑋(𝑡))         (2.6) 
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2.2.4 Linearization and Stability 

According to definitions, the stability properties depend only on the nature of the system 

near the equilibrium point. Therefore, replacing the complete nonlinear definition with a 

simplified description that approximates the true system near the point of equilibrium to 

perform an analysis of stability is always technically valid and mathematically convenient. 

To disclose the properties of stability, a close approximation is often enough. In its 

definition, the linearization of the nonlinear system is based on the linearization of the 

nonlinear function f. The procedure approximates f close b, which is defined by a single 

function of a single variable for the first-order method. 

𝑓(𝑥
−
+ 𝑦) = 𝑓(𝑥

−
+
𝑑𝑓(𝑥

−
)

𝑑𝑥
)𝑦        (2.7) 

n functions are described by an n-order system, each of which depends on n variables. In 

this circumstance, each operates as approximated by the relations. 

𝑓𝑖(𝑥1̅̅̅ + 𝑦1, 𝑥2̅̅ ̅ + 𝑦2, ⋯ 𝑥𝑛̅̅ ̅ + 𝑦𝑛) ≈ 𝑓𝑖(𝑥1̅̅̅, 𝑥2̅̅ ̅,⋯ 𝑥𝑛̅̅ ̅) +
𝜕𝑓1(𝑥1̅̅̅̅ ,𝑥2̅̅̅̅ ,⋯𝑥𝑛̅̅ ̅̅ )

𝜕𝑥1
𝑦1 +

𝜕𝑓2(𝑥1̅̅̅̅ ,𝑥2̅̅̅̅ ,⋯𝑥𝑛̅̅ ̅̅ )

𝜕𝑥2
𝑦2 +⋯+

𝜕𝑓𝑖(𝑥1̅̅̅̅ ,𝑥2̅̅̅̅ ,⋯𝑥𝑛̅̅ ̅̅ )

𝜕𝑥𝑖
𝑦𝑛      (2.8) 

where 𝑖 = 1,2, . . . . . 𝑛 is in matrix form. This can be written as  
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𝑓(�̅� + 𝑦) ≈ 𝑓(�̅�) + 𝑓(𝑦)        (2.9) 

 where 𝑓 =

[
 
 
 
 
 
𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
 ⋯

𝜕𝑓2

𝜕𝑥𝑛

⋮
𝜕𝑓𝑛

𝜕𝑥1

⋮
𝜕𝑓𝑛

𝜕𝑥2

⋮
𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 
 
 

      (2.10) 

The matrix 𝑓 is called the Jacobian matrix of 𝐹. Now, consider the matrix equation 

𝑥 = 𝑓(𝑥(𝑡))          (2.11) 

Setting𝑥(𝑡) = 𝑥
−
+ 𝑦(𝑡), to obtain 

𝑦 = 𝑓(𝑥
−
+ 𝑦(𝑡)) = 𝑓(𝑥

−
) + 𝐹(𝑦(𝑡))       (2.12) 

Since 𝑥
−
 is an equilibrium point of f, 𝑓(𝑥

−
) = 0 

therefore, 

𝑦(𝑡) = 𝐹(𝑦(𝑡))         (2.13) 

Thus, the stability properties of the original system can be inferred from the linearized 

system using the following results: 

1. If all eigenvalues of F are strictly in the left half-plane, then 𝑥
−

 is asymptotically stable 

for the nonlinear system. 

2. If at least one eigenvalue of F has a positive real part, then  𝑥
−
 is unstable for the 

nonlinear system. 
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3. If the eigenvalues of F are all in the left half-plane, but at least one has a zero real part 

then 𝑥
−

 may be either stable, asymptotically stable or unstable for the nonlinear system 

(Lungu et al., 2007). 

Theorem 1.1: Derrick and Grossman, (1976): Consider the system 

𝑥1 = 𝑎11𝑥 + 𝑎12𝑦 

𝑦1 = 𝑎21𝑥 + 𝑎22𝑦         (2.14) 

where the 𝑎𝑖𝑗are constants and  𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0 so that the original (0, 0) is the only 

initial point  

Let 𝜆1and 𝜆2 be the two roots of the auxiliary equation 

𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 0     (2.15) 

then 

(a) The origin is stable if 𝜆1and 𝜆2 are pure imaginary. 

(b) The origin is asymptotically stable if 𝑅𝑒 𝜆1 < 0 and  

(c) The origin is unstable in all other cases. 

Moreover, the behavior of the orbits near the origin is shown in the Table 2.1 
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Table 2.1: Behaviour of the orbits near the origin (Derrick and Grossman, 1976) 

 𝜆1, 𝜆2 Type of critical point 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

Real, distinct, negative 

 

Real, distinct, positive 

 

Real, distinct, opposite signs 

 

Real, equal, negative 

 

Real, equal, positive 

 

Complex conjugate, not pure 

imaginary negative real parts 

Complex conjugate, not pure 

imaginary positive real parts 

Pure imaginary 

Stable node 

 

Unstable node 

 

Saddle point (unstable) 

 

Stable node 

 

Unstable node 

 

Stable forms 

 

Unstable 

 

Center (stable) 
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2.2.5 Descartes’ Rule of Signs 

Theorem 1.2: The number of positive zeros of a polynomial with real coefficients is either 

equal to or even less than the number of variations in the polynomial's sign. 

Proof: the idea of the proof is this: group together the factors belonging to negative and 

imaginary roots, on the other hand: 

𝑝(𝑥) − [(𝑥 − 𝑟1)(𝑥 − 𝑟2). . . (𝑥 − 𝑟𝑘]. 𝑥[(𝑥 − 𝑟𝑘+1)(𝑥 − 𝑟𝑘+2). . . (𝑥 − 𝑟𝑛)]  (2.16) 

(We assume that the leading coefficient of 𝑃(𝑥) is unity, since the roots are unchanged by 

dividing by an in case 𝑎𝑛is root unity). We will show two things: 

(a) The number of variations in sign of the factors corresponding to the negative and 

imaginary roots is even, i.e., if the expression 

𝑝(𝑥) = (𝑥 − 𝑟𝑘+1)(𝑥 − 𝑟𝑘+2). . . (𝑥 − 𝑟𝑛)      (2.17) 

(b) When a polynomial 𝑔(𝑥) is multiplied by (𝑥 − 𝑟),with r positive, the number of 

variations is sign of (𝑥 − 𝑟) 𝑔(𝑥) is at least one more than the number of variations in sign 

of 𝑔(𝑥). 

Once (a) and (b) have been proved, the proof of the theorem is complete by returning to 

(2.16) and rewriting (2.17) as 

𝑝(𝑥) − [(𝑘 − 𝑛). . . . (𝑥 − 𝑟𝑘)]𝑝(𝑥)       (2.18) 
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and reworking (a), we conclude that 𝑝(𝑥)has an even number of variations in sign. 

Then, by (b), 

(𝑥 − 𝑣𝑘)𝑝(𝑥)          (2.19) 

has at least two more variations in sign that does 𝑃(𝑥).by (b) against; 

(𝑥 − 𝑟𝑘−1)[(𝑥 − 𝑟𝑘)𝑃(𝑥)]        (2.20) 

has at least two more variations in sign than does 𝑃(𝑥),and finally 

𝑃(𝑥) = [(𝑥 − 𝑟1)(𝑥 − 𝑟2). . . (𝑥 − 𝑟𝑘]𝑃(𝑥)      (2.21) 

  

has at least k more variations in sign than does 𝑝(𝑥). Observe, however, k is the number of 

positive zeros of 𝑃(𝑥),and if we let 𝑛(𝑃), 𝑛(𝑃)denote the number of variations in sign of 

𝑃(𝑥), 

𝑝(𝑥) respectively, then,  

𝑛(𝑝) ≥ 𝑘 + 𝑛(𝑝) 

or          (2.22) 

𝑘 ≤ 𝑛(𝑝) − 𝑛(𝑝)   

But according to (a), 𝑛(𝑃)is even and hence the theorem will be proved. 



36 

 

The theorem also suggests that the number of negative roots is equal to or less than an even 

number of variations in the symbol. 

2.2.6 Lyapunov Stability Method 

Lyapunov stability method is used to determine the stability of the mode. In Lyapunov 

process, stability of linear and nonlinear systems can be obtained without any prior 

knowledge of solutions. 

Two methods for demonstrating stability were suggested by Lyapunov (1892). In a 

sequence that was then shown to be convergent within limits, the first approach established 

the solution. The second, which is used almost exclusively nowadays, uses a function of 

Lyapunov𝑣(𝑘) that has an analogy to the potential function of classical dynamics. 

Consider the autonomous system. 

),,(

),,(

),,(

3213

1

3

3212

1

2

3211

1

1

xxxfx

xxxfx

xxxfx

=

=

=

         (2.23) 

where it is assumed that the origin is the critical point. 

Let ),,(
321 xxxv be a continuous real-valued function on the  xxx 321

,,  plane with 

continuous partial derivatives. if D is the region containing the origin, then: 
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Theorem 1.3 (Derrick and Grossman, 1976): 

I. if 𝑣(0,0,0) = 0 and 0),,(
321
xxxv for all other point in D, then ),,(

321 xxxv  is 

said to be positive definite in D. 

II. if 𝑣(0,0,0) = 0 and 0),,(
321
xxxv for all other point in D, then ),,(

321 xxxv is 

said to be negative definite. 

III. if 0),,(
321
xxxv , then ),,(

321 xxxv is said to be positive semi definite in D. 

IV. if 0),,(
321
xxxv , then ),,(

321 xxxv is said to be negative semi definite in D. 

V. if ),,(
321 xxxv satisfies none of the above conditions, then v is said to be indefinite 

in D. 

2.2.6.1 Lyapunov Functions 

Let ),,(
321 xxxv be a continuous differentiable, positive definite function and  

3

3

2

2

1

1
321
),,( x

x

v
x

x

v
x

x

v
v xxx




+




+




=  

=
𝜕𝑣

𝜕𝑥1
𝑓1(𝑥1, 𝑥2, 𝑥3) +

𝜕𝑣

𝜕𝑥2
𝑓2(𝑥1, 𝑥2, 𝑥3) +

𝜕𝑣

𝜕𝑥3
𝑓3(𝑥1, 𝑥2, 𝑥3)    (2.24) 

Conditions for Lyapunov function of a system 

(1) ),,(
321 xxxv must be continuously differentiable 
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(2) ),,(
321 xxxv must be positive definite 

(3) ),,(
321 xxxv must have its derivative along the orbits define by (2.24) 

Theorem 1.4: (Derrick and Grossman, 1976) 

let ),,(
321 xxxv be a Lyapunov function for the system (2.23), then if 

I. ),,(
321 xxxv is negative semi definite, the origin is stable 

II. ),,(
321 xxxv is negative definite, the origin is asymptotically stable 

2.2.7 Bifurcation 

Center manifold theory was used to evaluate a non-hyperbolic equilibrium's local stability 

(linearization matrix has at least one own value with zero real part) Carr (1981). 

Guckenheimer and Homes (1983), Wiggins (1990). We will describe a theory that can 

determine the local equilibrium of the non-hyperbolic balance and solve the problem of 

another balance being present (bifurcated from the non-hyperbolic stability). This theory 

is based on the idea of the general centre-manifold. 

Let us consider a general system of ODEs with parameter 𝜑: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜑), 𝑓:ℜ𝑛 × ℜ → ℜ𝑛, 𝑓 ∈ 𝐶2(ℜ𝑛 ×ℜ)     (2.25) 
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Without loss of generality, we assume that 𝑥 = 0 is equilibrium for system (2.25) for all 

values of the parameter 𝜑 that is 𝑓(0, 𝜑) = 0 for all𝜑. 

Theorem 1.4: Assume: 

A1: 𝐴 = 𝐷𝑥𝑓(0,0) = (
𝜕𝑓𝑖

𝜕𝑥𝑗
(0,0)) is the linearization matrix of system (2.25) around 

equilibrium 𝑥 = 0 with 𝜑 evaluated at 0. Zero is a simple eigenvalue of A and all other 

eigenvalues of A have negative real parts; 

A2: Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v 

corresponding to the zero eigenvalue. 

Let 𝑓𝑘denote the 𝑘𝑡ℎcomponent of 𝑓,and  

𝑎 = ∑ 𝑣𝑘𝑤𝑖
𝑛
𝑘,𝑖,𝑗=1 𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
(0,0)       (2.26) 

𝑏 = ∑ 𝑣𝑘𝑤𝑖
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝜑𝑗
(0,0)𝑛

𝑘,𝑗=1         (2.27) 

The local dynamics of system (2.25) around 𝑥 = 0 are totally determined by a and b. 

I. 𝑎 > 0, 𝑏 > 0,when 𝜑 > 0,with |𝜑| << 1, 𝑥 = 0 is locally asymptotically stable 

and there exists a positive unstable equilibrium; when 0 > 𝜑 << 1, 𝑥 = 0, is 

unstable and there exists a negative and locally asymptotically stable equilibrium; 
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II. 𝑎 < 0, 𝑏 < 0,when 𝜑 < 0,with|𝜑| << 1, 𝑥 = 0 is unstable; when 0 > 𝜑 <<

1, 𝑥 = 0, is locally asymptotically stable and exists a positive and unstable 

equilibrium. 

III. 𝑎 > 0, 𝑏 > 0,when 𝜑 < 0, with |𝜑| << 1, 𝑥 = 0 is unstable and there exists a 

locally asymptotically stable negative equilibrium; when 0 > 𝜑 << 1, 𝑥 = 0, is 

stable and a positive unstable equilibrium appears; 

IV. 𝑎 < 0, 𝑏 < 0, when 𝜑 change from negative to positive, 𝑥 = 0 changes its stability 

from stable to unstable. Correspondently, a negative unstable equilibrium becomes 

positive and locally asymptotically stable. 

Proof: 

Let 𝜉𝑐and 𝜉𝑐 be the generalized eigenspaces of A for the zero eigenvalue and all other 

eigenvalues, respectively, it is follows from the center manifold theory that center manifold 

𝑊𝑐 is one dimensional and ℜ𝑛 = 𝜉𝑐⊗𝜉𝑠. Parameterize the center manifold by 𝑐(𝑡)and 

decompose it into 𝜉𝑐and 𝜉𝑐, that is, 

𝑊 = {𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑): 𝑣, ℎ(𝑐, 𝜑) = 0, |𝑐| ≤ 𝑐0, 𝑐(0) = 0},    (2.28) 

Where 𝑐(𝑡) ∈ 𝜉𝑐and ℎ(𝑐, 𝜑) ∈ 𝜉𝑐. Because the center manifold is tangent to 𝜉𝑐at the 

origin, ℎ(𝑐, 𝜑)is higher order term (ℎ(𝑐, 𝜑) has at least order 2). It also follows by the 

invariance of the center manifold under the flow that; 

𝑑

𝑑𝑡
((𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑)) = 𝑓(𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑), 𝜑),     (2.29) 
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Applying Taylor expansion to the right-hand side of equation (2.29) at (0,0) and noticing 

that ℎ(𝑐, 𝜑) is higher order, we obtain that  

𝑓(𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑), 𝜑) = 𝑓(0,0) + 𝐷𝑥𝑓(0,0)((𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑) + 𝐷𝜑𝑓(0,0)𝜑 +
1

2
(𝐼𝑛⊗

(𝑐𝑤 + ℎ(𝑐, 𝜑))1)(𝐷𝑥𝑥
2 𝑓(0,0))(𝑐(𝑡)𝑤 + ℎ(𝑐, 𝜑)) + 𝜑(𝐷𝑥𝜑

2 𝑓(0,0))(𝑐𝑤 + ℎ(𝑐, 𝜑)) +

1

2
𝜑2(𝐷𝜑𝜑

2 𝑓(0,0))+ higher order term,      (2.30) 

where𝐷𝑥𝜑
2 is the Hessian matrix; 𝐼𝑛 is the identity matrix of order n; ⊗is the Kronecker 

product. Using 

𝑓(0,0) = 𝐷𝑥𝑓(0,0)𝑐(𝑡)𝑤 = 𝐷𝜑𝑓(0,0) = 𝐷𝜑𝜑
2 𝑓(0,0) = 0    (2.31) 

and the fact that  𝑐ℎ(𝑐, 𝜑)is of higher order, we simplify the above expansion for f as 

(higher order terms are dropped). 

𝑓(0,0) = (𝐷𝑥𝑓)ℎ(𝑐, 𝜑) +
𝑐2

2
(𝐼𝑛⊗𝑤 ′)(𝐷𝑥𝑥

2 𝑓)𝑤 + 𝑐𝜑(𝐷𝑥𝜑
2 )𝑤   (2.32) 

Multiplying both sides of equation (2.29) by v and using the fact that 𝑣, ℎ = 0 and 

𝑣𝐷𝑥𝑓(0,0) = 0, 

we finally obtain the following equation for 𝑐(𝑡) 

𝑑𝑐

𝑑𝑡
=

𝑐2

2
𝑣(𝐼𝑛⊗𝑤′)𝐷𝑥𝑥

2 𝑓𝑤 + 𝑐𝜑𝑣𝐷𝑥𝜑
2 𝑓𝑤      (2.33) 

=
𝑐2

2
∑ 𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
+ ∑ 𝑣𝑘𝑤𝑖

𝑛
𝑘𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝜑
𝑐𝜑𝑛

𝑘,𝑖,𝑗      (2.34) 
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=
𝑞

2
𝑐2 + 𝑏𝜑𝑐          (2.35) 

Namely, 

𝑑𝑐

𝑑𝑡
=

𝑎

2
𝑐2 + 𝑏𝜑𝑐          (2.36) 

Obviously, at 𝜑 = 0 a transcritical bifurcation takes place in equation (2.36). 

2.2.8 Pontryagin’s Maximum Principle 

In optimal control theory, Pontryagin's maximum principle is used to identify the optimum 

feasible control for moving a dynamical system from one state to another, particularly 

when state or input controls are constrained. 

Theorem 1.5: The necessary conditions that (𝑥0
∗, 𝑢∗(𝑡)) be an optimal initial condition 

and optimal control for the optimal control problem are the existence of a non-zero 𝑘-

dimensional vector λ with 𝜆1 ≤ 0 and an 𝑛-dimensional vector function 𝑃(𝑡) such that for 

𝑡 ∈ [𝑡0, 𝑡1]: 

(i) 𝑃(𝑡)′ = −𝑃(𝑡)′𝑓𝑥(𝑡, 𝑥
∗(𝑡), 𝑢∗(𝑡)); for 𝑡 ∈ (𝑡0, 𝑡1) and 𝑢 ∈ 𝑈 

(ii) 𝑃(𝑡)′[𝑓(𝑡, 𝑥∗(𝑡), 𝑢) − 𝑓(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡))] ≤ 0; 

(iii) 𝑃(𝑡1)
′ = 𝜆′𝜙𝑥1(𝑒); 

(iv) 𝑃(𝑡0)
′ = −𝜆′𝜙𝑥0(𝑒); 
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(v) 𝑃(𝑡1)
′𝑓(𝑡1, 𝑥

∗(𝑡1), 𝑢
∗(𝑡1)) = −𝜆

′𝜙𝑡1(𝑒); 

(vi) 𝑃(𝑡0)
′𝑓(𝑡0, 𝑥

∗(𝑡0), 𝑢
∗(𝑡0)) = 𝜆

′𝜙𝑡0(𝑒); 

If 𝑓(𝑡, 𝑥, 𝑢) has a continuous partial derivative 𝑓𝑡(𝑡, 𝑥, 𝑢), then the condition 

(vii) 𝑃(𝑡)′𝑓(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡)) = 𝜆′𝜙𝑡0(𝑡0, 𝑡1, 𝑥
∗(𝑡0), 𝑥

∗(𝑡1)) +

∫ 𝑃(𝑠)′
𝑡

𝑡0
𝑓𝑡(𝑠, 𝑥

∗(𝑠), 𝑢∗(𝑠))𝑑𝑠 

holds for each 𝑡 ∈ [𝑡0, 𝑡1]. 

The proof of theorem 1.5 can be found in (Fleming and Rishel, 1975) 

2.2.9 Sensitivity Indices 

The sensitivity of the reproduction number 𝑅0 to each of the parameters, which measures 

initial disease transmission, is calculated using the approach of (Arriola and Hyman, 2005). 

Sensitive indices measure the relative change in state variable when the parameter changes. 

When the variable is a differentiable function of the parameter, the sensitivity index may 

be alternatively defined using partial derivatives. The forward sensitivity index with 

respect to each of the parameter used in the HBV models is presented below using the 

following formula 

ℏℓ
𝑘 =

𝜕𝑘

𝜕ℓ

ℓ

𝑘
          (2.37) 
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2.3 Gaps  Identified in Literatures 

Many researchers have worked on Hepatitis B Virus (HBV) and obtained good results. 

Some of the papers are reviewed in this section and the gaps identified which go a long 

way in helping to situate and establish the results emanating from this research. 

Marchuk et al., (1991) considered a statistical model of antiviral immune response and 

described a method of fitting the model to the data characterizing acute viral hepatitis B. 

The effect of HBsAg specific antibodies on the challenge of HBV; vaccination and 

challenge resistance using live hepatitis B virus; virus dose—relationships of incubation 

period were shown. The model's sensitivity analysis was evaluated and shown in terms of 

parameter variations. In their results, they obtained an estimate value region for stimulation 

rate constant against the established empirical approach where they made comparisons with 

the parameters gotten, thus creating an independent way to validate the parameters 

estimates. 

Edmunds et al. (1996) investigated a deterministic, compartmental, mathematical model 

for the transmission dynamics of the hepatitis B virus (HBV) in a high-endemic country 

was identified. The model was used to preliminary analyze the potential effects of mass 

infant immunization for HBV epidemiology. It was pointed out in their results that HBV 

eradication can be accomplished by immunizing less than 70% of children, which is 

relatively low compared to other viral infections in infancy. 
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Williams et al., (1996) considered a statistical model approach of the complex 

epidemiology of hepatitis B (HBV). Using a mathematical model of HBV transmission 

dynamics that can reflect universal infant and adolescent vaccination strategies and those 

targeting genito-urinary (GU) clinic attendants and infants born to infected mothers, a 

method for doing it was presented. Model structure, epidemiological support, and 

parameterization was also outlined. They pointed out in their results, the effect of various 

vaccine methods, the simulations exhibit non-linearities. For each approach used, the 

average number of carriers avoided per vaccine dose offers a measure of costs and benefits, 

varying temporarily throughout the programme and the extent of coverage of the vaccine. 

Screening before vaccination greatly increases payback per dose in bisexuals but not in 

heterosexuals; mass infant vaccination provides the lowest efficacy ratio and best after 

antenatal screening vaccination of children. Generally speaking, the coverage of vaccines 

yields lower payback per dose. The model offers a valuable framework for the cost and 

benefit evaluation of immunization programmes. 

Wilson et al., (1998) addressed the deterministic model of the potential appearance of the 

hepatitis B virus vaccine escape variant (HBV). The model identifies the main unknowns 

that decide this process: the protection offered by the current vaccines against unique 

variants of HBV; the infectiousness of these variants; and the current prevalence of variant 

infectious individuals (each factor relative to wild-type). By making assumptions about 

these unknowns, their results showed that even a highly contagious variant would still take 

decades to emerge under a vaccine program that affords little protection against the variant. 

It was then concluded that the current low variant prevalence is not evidence of cross-
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reactivity or the current vaccines' infectiousness in the variants. Since any vaccine failure 

will be inconspicuous for decades, it may be reasonable to recommend vaccine changes 

now rather than later. 

Zhao et al., (2000) examined the dynamics, evaluation and transmission of mathematical 

model of HBV including a long-term effect of the vaccination program. The model was 

compartmented as a set of partial differential equations. Sero-survey data was used to 

estimate all parameters expressed in the model as a non-linear function of age and time 

since vaccination. In their findings, they discovered that the model suits well for sero-

surveys both prior to and after vaccination. Also, the age-specific prevalence rates of HBV 

infection and HBV carriers for the observed and estimated agree with each other. 

According to their model, if all newborns are vaccinated according to the schedule, the rate 

of HBV carriage will decline sharply overtime to 0.2% in 70 years. By then, the ratio of 

chronic hepatitis B will be around 5%. 

Ribiero et. al., (2002) reviewed the state of the art in modelling and interpreting data 

obtained from patients treated with antiviral agents infected with the hepatitis B virus. They 

hope that their results will help formulate new therapies for antiviral and immune-

modulating effects with increased understanding and quantitative tools and may even 

ultimately predict long-term patient responses based on viral kinetic studies. 

Goldstein et al., (2005) developed a mathematical model to measure the age-specific risk 

of contracting HBV infection, acute hepatitis B (illness and death), and progression to 

chronic infection with HBV. Deaths associated with HBV among chronically infected 
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individuals were estimated from the mortality curves for HBV-related cirrhosis and 

hepatocellular carcinoma (HCC) and corrected for background mortality. Their results 

pointed out the effect of hepatitis B vaccination determined from the effectiveness of the 

vaccine and the coverage of the vaccination sequence, with and without the first dose of 

vaccine given within 24 h after birth (i.e., birth dose) to avoid perinatal HBV infection. 

They concluded that on estimate, 620 000 people die from HBV-related causes worldwide 

in the year 2000: 580 000 (94%) from chronic infection-related cirrhosis and HCC and 40 

000 (6%) from acute Hepatitis B. In the year, 2000 surviving birth cohort, the model 

predicted that 64.8 million would become HBV-infected without vaccination, and 1.4 

million would die of HBV-related disease. Infections acquired in early childhood during 

the perinatal period (5 years of age) and >5 years of age accounted for 21%, 48%, and 31% 

of deaths, respectively. With 90% coverage and the first dose given at birth, they observed 

that routine infant vaccination against Hepatitis B will prevent 84% of global HBV-related 

deaths. 

Wang and Wang, (2007) examined a mathematical model to simulate hepatitis B virus 

(HBV) infection with spatial dependency. Through the geometric singular perturbation 

process, the presence of moving waves was created. Numerical simulations have shown 

that the model supports travel profiles that are not monotonous. The influences on the 

minimum wave speed of different parameters were also discussed. Their result showed that 

if the diffusion coefficient of virus is small, we can obtain the minimal wave speed and 

also the numerical simulations show that the model has non-monotonic traveling waves. 
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Ciupe et al., (2007) presented the fundamental model for the analysis of studies of HBV 

therapy performed in chronically infected patients. To research acute infection, they 

introduced additional models where immune responses presumably play an important role 

in deciding if the condition will be cleared or become chronic. They incrementally added 

complexity and clarified each step of the modelling process. They then validated the model 

against experimental data to assess how well the biological system is described and how 

useful its predictions are. They found, in particular, that a cell-mediated immune response 

plays an important role in controlling the virus after viral load peaks.  

Long et al., (2008) developed a mathematical model to explain how, based on Nowak's 

population dynamics model of immune responses to persistent viruses, the relationship 

between the hepatitis B virus (HBV) and the cellular immune response to the infection was 

established. There are two potential balance states in the model: full recovery, coexisting 

state of uninfected and contaminated hepatocytes. The stability state of each equilibrium 

point was discussed, with different parameter sets satisfying the various conditions used in 

the simulation. Indeed, their findings showed that the model could view the broad spectrum 

of infection clinical manifestations, including acute hepatitis, fulminant hepatitis, acute-

turn-chronic hepatitis, acute-phase chronic hepatitis, recurrent hepatitis, and so on. In the 

underlying processes, immunomics and infectomics may both be involved. The model 

suggests that for HBV infection resolution, a rapid and vigorous CTL response is needed. 

Lau et al., (2007) investigated the mathematical model and effect of early viral load decline 

on virus-specific T-cell reactivity in 30 hepatitis B e antigen (HBeAg)-positive patients 
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with chronic hepatitis B who were randomized to receive adefovir dipivoxil (ADV) or 

emtricitabine (ADV/FTC) monotherapy. Their findings showed that the rate of loss of 

infected hepatocytes was higher in fast than in slow responders (P = 0.0007) and associated 

inversely with intrahepatic covalently closed circular HBV DNA pre-treatment levels. In 

rapid responders, the frequency of HBV core-specific CD4+ T-cells increased 

significantly, peaking between week 16 and 24, while in both subsets, the HBV surface-

specific CD4+ T-cells increased. However, these increases in the reactivity of CD4+ T 

cells were temporary, and no growth was observed in HBV-specific CD8+ T cells. By 

week 48, just 3/30 (10 per cent) of patients had HBeAg seroconversion. 

Gourley et al., (2008) formulated and analyzed the global dynamics of a simple model of 

hepatitis B virus in terms of delay differential equations. Compared to the well-known 

simple virus model in the literature, the model has two major and novel characteristics. In 

particular, it uses the more practical standard feature of incidence and specifically 

introduces a time delay in developing viruses. As a result, the number of reproductive 

diseases no longer depends on the size of the patient's liver (number of initial healthy liver 

cells). Nature and component values of the endemic steady state for the model directly 

depended on the delay in time. Their findings showed that a globally attractive endemic 

equilibrium will occur in some biologically interesting limiting scenarios regardless of the 

time delay period. 

Thornley et al., (2008) examined a mathematical model of hepatitis B virus (HBV) 

transmission to forecast the potential prevalence of chronic hepatitis B (CHB) in the 
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Tongan population of New Zealand under various control strategies. Their result pointed 

that in the New Zealand Tongan population, most CHB was projected to plateau at 2% if 

coverage remained at current levels, which is insufficient to achieve long-term elimination 

of HBV as against 73% projected to be the crucial proportion of immunization coverage 

needed for virus elimination. It was not possible to measure the impact of HBV carriage 

screening and early disease management. Hence, they conclude that it is likely to reduce 

the population burden of HBV infection and accelerate elimination. 

Xu and Ma, (2009) investigated a Hepatitis B virus (HBV) model with spatial diffusion 

and infection rate saturation response in which a distinct delay modelled the intracellular 

incubation period with respect to time. The local stability of both the infected steady-state 

and uninfected steady state was analyzed and explored by evaluating the corresponding 

characteristic equations. Their results showed that the uninfected steady state is 

asymptotically stable globally if the basic reproductive number is less than unity. If the 

basic reproductive number is greater than unity, appropriate conditions have been obtained 

by successively changing the combined lower-upper solution pairs for the global stability 

of the infected steady state. 

Zou et al., (2010) investigated a mathematical model to study the transmission dynamics 

and control of HBV taking into consideration HBV infection in China. The existence and 

stability of the equilibria were shown. The sensitivity analysis of the basic reproduction 

number was carried out. They thought that the optimal control strategy is a combination of 
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immunization of newborns, retroactive immunization of susceptible adults and reduction 

of contacts. 

Wang et al., (2010) implemented an improved HBV model with a standard incidence 

mechanism and cytokine-mediated 'cure' based on empirical evidence. They showed that 

infection-free equilibrium is globally asymptotically stable by carrying out a global 

analysis of the updated model and studying the stability of balance if the basic reproductive 

number of the virus is less than one and, on the other hand, the infection equilibrium is 

globally asymptotically stable if the basic reproductive number of the virus is greater than 

one. The research and data obtained from the model and other similar models could have 

a major effect on preventing hepatitis B virus mortality in the future. 

Bhattacharyya and Ghosh (2010) studied the dynamics of a disease under the 

administration of a vaccine and antiviral drug where the disease transmits directly from the 

parents to the offspring (vertical transmission) and also by interaction with infectious 

individuals (horizontal transmission). They developed a 3D model with Susceptible-

Infected-Recovered under vaccination for the susceptible and antiviral treatment of the 

infected. They considered a theoretical control approach to evaluate the cost-effectiveness 

of the control mechanism using the maximum theory of Pontryagin. Their findings showed 

that although vaccination decreases horizontal transmission to those susceptible, 

administering an antiviral drug to infected individuals reduces the probability of vertical 

transmission. Therefore, in managing the disease, which has vertical and horizontal 

communication, the vaccine and antiviral medicine play different roles.  
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Pang et al., (2010) developed a model to examine the effects of vaccination and other HBV 

infection control steps. Many countries made some proposals (such as the free HBV 

vaccination program for all newborns in China) to control HBV transmission. The model 

has simple dynamic behavior that, with the basic reproduction number 𝑅0<1, The model 

has a globally asymptotically stable disease-free equilibrium and, with 𝑅0>1, a globally 

asymptotically stable endemic equilibrium. Their results show that vaccination is a very 

efficient measure of infection control. 

Qesmi et al., (2010) proposed a mathematical model of ordinary differential equations 

explaining the dynamics of the HBV/HCV and its interaction with both liver and blood 

cells. A single model was used to explain the infection of either virus; a single model was 

used because the dynamics in the host (liver infected) are identical. The transcritical and 

backward bifurcation method was used for the analysis. Their results pointed out that for 

the backward bifurcation to occur𝑅0<1, which has an important implication on drug 

therapy protocols, since it is helpful for control mechanisms and disease eradication. 

Mann and Roberts (2011) provided a SECIR compartmental mathematical model for HBV 

transmission using local data on infection incidence and vaccine coverage, dividing the 

population into age groups. Their result estimated the basic reproduction number, 𝑅0, to be 

1.53 which was dramatically reduced to below one by vaccination campaign. However, the 

population appears to have a significant number of carriers operating as a source of 

infection. 
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Pang et al., (2012) studied the dynamical behavior of a hepatitis virus model with CTL 

immune responses. Analyzing the model, they showed that if the basic reproductive ratio 

of the virus is less than one, and the virus free equilibrium is locally asymptotically stable, 

if the basic reproductive ratio is greater than one, the endemic equilibrium is globally 

asymptotically stable. Their results showed that the mechanism is uniformly persistent 

when the basic reproductive ratio is greater than one, meaning that the virus is endemic. 

Mathematical research and computational simulations indicate that CTL immune 

responses play a critical role in disease eradication. 

Hattaf et al., (2012) investigated the dynamical behavior of a virus dynamics model, 

focusing on general incidence rate and cure rate. Their result pointed that if the basic 

reproduction number 𝑅0 <1, then the virus remains in the host but the infection becomes 

endemic if 𝑅0> 1. The disease dies out and the virus is cleared if the basic reproduction 

number 𝑅0 ≤ 1. 

Zhang and Zhou (2012) formulated a mathematical model to describe the spread of 

hepatitis B. They analyzed equilibrium stability and disease persistence. Their findings 

showed that the basic reproductive number q0 completely determines the model's 

dynamics. The disease-free balance, if q0 < 1, is globally stable. The disease-free balance 

is unstable when it is q0 > 1, and the disease is uniformly persistent. In addition, under 

certain conditions, it was shown that the endemic equilibrium is globally attractive. The 

model was applied in China to HBV transmission. Based on the available HBV epidemic 



54 

 

data in China,  the parameter values of the model was estimated. The simulation results 

match the HBV epidemic data in China approximately. 

Muhammad et al., (2013) presented a mathematical model with the characteristics of HBV 

virus transmission. In the model, they analyzed the impact of immigrants to investigate the 

effect of immigrants on the host population. First, the fundamental threshold quantity 𝑅0 

and the local asymptotic stability of disease-free balance and endemic equilibrium were 

identified. The global stability of disease-free and endemic equilibria was also discovered. 

Their results emphasized the need for short stay immigrants and students to be tested to 

minimize the number of immigrants with illness. 

Okamoto (2013) created a formula to predict the risk of infection by needle/syringe sharing 

in mass vaccination. The procedure was presented in a logarithmic graph allowing users to 

estimate how many people would be infected if how many times under some likelihood of 

infection a needle/syringe is exchanged by how many individuals. They then applied the 

formula to the historical data from mass tuberculin skin tests (TSTs) and BCG vaccination, 

which calculated the best estimate of how much needle/syringe sharing was done in 

different birth cohorts. Their results predicted the prevalence of HBV carriers, 0.65 per 

cent at birth via vertical transmission, more than doubled in 1995 (1.46 per cent) through 

horizontal information for the oldest generation born between 1951 and 1955. Suppose the 

risk of contamination is assumed to be 10 per cent by needle/syringe sharing. In that case, 

it is theoretically possible that an average of five or more individuals shared a 

needle/syringe four times in 1995 to reach the prevalence of HBV carriers. Nevertheless, 
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needle/syringe sharing effects were marginal for the youngest generation born between 

1981 and 1985 because the later majority of HBV carriers was lower than the prevalence 

at birth. 

Adu et al., (2014) used the SIR model to predict the prevalence and incidence of Hepatitis 

B. The analysis consisted of two parts. The distribution of HBV in the district of 

Bosomtwe, followed by the modelling of HB with vaccination in the community, was 

clarified by a SIR model without immunization. There are two equilibrium states in the 

model: the disease-free and endemic equilibrium states, respectively. After that, they 

addressed the stability condition of each point of equilibrium. Their results pointed out that 

whenever the transmission parameter value was increased, 𝑅0> 1, but when the value is 

reduced, 𝑅0< 1. The combination of increasing vaccination of newborns and immunization 

of susceptible adults helps to reduce HB prevalence in Bosomtwe District. 

Kamyad et al., (2014) investigated the dynamics of hepatitis B virus (HBV) infection 

regulated by vaccination and treatment. Initially, for both vaccination and treatment, they 

found constant tests. In continuous controls, they studied the nature and stability of the 

model's disease-free and endemic steady-state solutions by deciding the basic reproduction 

number. Next, to minimize both the number of contagious people and the associated costs, 

they took the controls and formulated the required optimal control problem and obtained 

the optimal control strategy. Their findings show that the best way to monitor hepatitis B 

virus infection is to incorporate vaccination and treatment optimally. 
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Hattaf and Yousfi (2015) developed a hepatitis B virus (HBV) model with spatial diffusion, 

general incidence rate and time delays subject to homogeneous Neumann boundary 

conditions. Using the linearization method and building sufficient Lyapunov functionals, 

they analyzed the stability of the disease-free equilibrium and the chronic infection 

equilibrium. Their results showed R0 becomes less than one when all fixed and delay 

parameters are large which shows that delay play a crucial role in the eradication of virus 

from the liver. 

Liang et al., (2015) evaluated the independent effect of newborn hepatitis vaccination on 

reducing HBV prevalence in China since its implementation in 1992-2006.  According to 

the national serosurvey in 1992, they compared the simulated results with the model's 

initial conditions. Their result pointed that newborn vaccination could impact HBV 

transmission in the population born before 1992 indirectly by its herd immunity effect, but 

the contribution was very limited. 

Owolabi (2016) considered a multi-components nonlinear fractional-in-space reaction-

diffusion equations, consisting of an enhanced deterministic model describing the spread 

of hepatitis B virus disease in high-end areas. Their results showed that combination of 

successful treatment and vaccination is strongly recommended as a good control measure, 

which is critical for tracking the effectiveness of HBV disease control by carefully selecting 

parameters. 

Olayinka et al., (2016) studied to determine the prevalence, HBV spread, and infection-

related factors in a stable population in Nigeria. They performed a cross-sectional analysis 
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using a multistage sampling technique among the general population. Data on 

demographic, social, and behavioral variables were gathered using HBV seromarker-tested 

questionnaires and blood samples. There were descriptive, bivariate, and multivariate 

studies performed. They found that the prevalence of infection with hepatitis B was 12.2% 

(confidence interval [CI]= 10.3–14.5). About half of the participants, 527 (54.6%), had 

evidence of prior HBV exposure, while 306 (31.7%) had no serological evidence of 

infection or vaccination. Just 76 (7.9 per cent) participants displayed serological evidence 

of vaccine immunity to HBV. Dental care outside the health facility (odds ratios [OR] = 

3.4, 95 percent CI = 1.52-7.70), local circumcision (OR = 1.73, 95 percent CI = 1.17-2.57), 

and uvulectomy (OR = 1.65, 95 percent = 1.06-2.57) were factors associated with testing 

positive for HBV infection. Only dental procedures outside the health facility remained 

relevant with logistic regression (adjusted OR = 3.32, 95 per cent CI = 1.38-7.97). This 

first national hepatitis B seroprevalence survey outlines Nigeria's epidemiology and high 

prevalence of HBV infection and highlights the need for improved HBV vaccination.  

Ikobah et al., (2016) conducted a cross-sectional analytical study using the multistage 

sampling technique in July 2014 to select 749 children from six secondary schools in 

Calabar, Cross River State, Nigeria. The Cross River State Medical Ethical Committee 

received ethical approval. Blood samples were obtained using rapid chromatographic 

immunoassays with test kits from ABON (China) with sensitivity, specificity and accuracy 

of >99 per cent, 97 per cent and 98.5 per cent, respectively, for the qualitative detection of 

HBsAg. The data were analyzed using version 20.2 of SPSS. Their result showed that nine 

of the749 students screened were positive for HBsAg giving an overall prevalence of 1.2 
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per cent. For males and 1.8 per cent for females, the sex-specific majority was 0.8 per cent. 

Age was the predictor of hepatitis B infection after multivariate analysis (OR 3.92; 95 per 

cent CI 1.22-12.63; p-value 0.02). The incidence was poor for infection with HBV. The 

implementation of the vaccine is justifiable because of the public health value of the virus, 

considering the low prevalence. 

Fatehi et al., (2018) proposed a new comprehensive mathematical model for hepatitis B 

immune response dynamics that considers the contributions of innate and adaptive immune 

responses and cytokines. To identify parameter regions where the model exhibits clearance 

of infection, maintenance of a chronic condition, or periodic oscillations, stability analysis 

of different steady states was carried out. Their results showed the effects of treatment with 

nucleoside analogues and interferon and determined the critical efficacy of the treatment. 

Emerenini and Inyama, (2018) studied the Hepatitis B transmission dynamics, formulating 

a mathematical model that considers the various classes of persons, including the 

immunized, prone, latent, contaminated and recovered levels. The role of newborn babies' 

vaccination against hepatitis B and the care of people who are both latently and actively 

infected in controlling the spread are factored into the model. The model was based on the 

model of the regular SEIR. The disease-free equilibrium state of the model was established, 

and its stability analyzed Using the Routh-Hurwitz theorem. Their results show that effort 

can be made to eradicate Hepatitis B. Also, to ensure that the amount of the rate of recovery 

of the latent class, the rate at which latently infected individuals become actively infected 

and the rate of natural death has a lower bound. 
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Zhang and Zhang (2018) formulated a hepatitis B virus model for newborn vaccine and 

treatment prevention strategies. The model was used to simulate annual new infected 

hepatitis B cases in China from 2004 to 2016 using the least-square. In addition, the 

classical optimal theory studied the optimal control problem with newborn vaccine and 

care appearing as time functions.  Their results show that the simple reproductive number 

𝑅0 determines the disease's equilibrium and persistence stability.  

Khan et al.,(2018) proposed an epidemic model for hepatitis B virus transmission and the 

classification of various stages of infection and hospitalized groups. The model was 

formulated, and its basic mathematical properties, such as life, positivity, and biological 

viability, were analyzed. They found the basic reproductive number of the model by 

exploiting the next generation matrix method. To demonstrate the effect of different 

parameters on the transmission of the disease, they carried out a sensitivity analysis. The 

stability of the equilibrium of the model was investigated in terms of the basic number of 

reproductions. They also obtained the strength of their model. Their results showed that 

the hospitalization and vaccination are one of the effective control mechanisms to control 

the hepatitis B infection.  

Anmole Razzaq, (2019) showed that numerical modelling is a tool to appreciate how the 

syndrome pushes and in what stately way. He studied HBV dynamics numerically and then 

framed an entirely constant Non-Standard Finite Difference (NSFD) framework for an 

HBV mathematical model. He introduces a numerical array that dynamically identifies and 

contains the solution's positivity, which is one of the key requirements when modelling a 
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prevalent contagious. In their findings, the showed that the utility of the proposed Non-

Standard Finite Alteration scheme is demonstrated by the contrast between the 

revolutionary Non-Standard Finite Alteration structure, the Euler method and the Runge-

Kutta system of order four (RK-4). For any time steps used, the NSFD scheme shows 

convergence to the exact equilibrium facts of the model, but for large time steps, Euler and 

RK-4 fail. 

Mpeshe and Nyerere, (2019) formulated and analyzed a simple deterministic model to 

determine the dynamics and control of the disease using ordinary differential equations. To 

evaluate the impact of initial disease transmission, the simple replication number 𝑅0 was 

selected, and they performed stability analysis. Their results showed that concerning the 

value of 𝑅0, both the disease-free equilibrium and the endemic equilibrium are globally 

stable. Also, 𝑅0 strongly impairs chronic carriers' vertical transmission and recovery rate 

after screening and treatment. Effective mechanisms are therefore required to minimize 

vertical transmission and effective screening of individuals to treat those that may be found 

infected. Further findings from the numerical analysis indicate that it is persistent when the 

disease is introduced into the population, and thus successful control measures are required. 

Khan et al., (2019) developed an epidemic mathematical model for hepatitis B contagious 

disease. They showed the model's nature, positivity, and biological viability. They found 

the threshold quantity of the model. Also, they analyzed the sensitivity indices to 

demonstrate the influence of different parameters on the propagation of the hepatitis B 

virus. They considered stability conditions to conduct the stability analysis by using the 
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linear stability method. They used the theory of the central manifold to discuss the 

existence of the proposed model's backward bifurcation. Their results showed that 

migration, vaccination, and hospitalization are the effective measures for the controlling 

the spread of the virus. 

Ullah et al., (2019) developed a mathematical model with hospitalized population to 

investigate the dynamics of HBV infection.  Their results demonstrated the viability of the 

control strategy by providing simulations for both with and without control models. 

Danane et al., (2020) presented and investigated a fractional differential mathematical 

model explaining the dynamics of hepatitis B viral infection with DNA-containing capsids, 

liver hepatocytes and humoral immune response. Antibodies have become the humoral 

immunity, and the key function of these antibodies is to attack free viruses. A memory term 

described by a fractional derivative was applied to each equation of their proposed model 

to explain the time required for the interaction between biological liver cells and viral 

particles and the time needed to activate the humoral immune response. All alternatives 

with non-negative initial conditions are positive and rounded, which is biologically 

compatible. The global stability of all equilibria by constructing some appropriate 

Lyapunov functionals was performed, depending on the baseline reproduction number and 

the reproduction number of the antibody immune response. The results showed that the 

order of the fractional derivative does not affect the stability of the three equilibria.  

Gahamanyi et al., (2021) used the fuzzy logic strategy to solve an optimal control problem 

for the hepatitis B virus (HBV). Their numerical results were compared with those obtained 



62 

 

using the direct method to see if this numerical method is effective. They considered a 

patient who has been on treatment for 12 months and two drugs are used as controls. The 

response of HBV to drugs, in particular, can be modeled, and a feedback can be 

approximated by solving a linear quadratic problem. The drugs lower the risk of HBV 

infection. Furthermore, the results of both numerical methods agree well with experimental 

data, proving the efficacy of the fuzzy logic strategy in solving optimal problems. 

Zada et al., (2021) presented a dynamic of the Hepatitis B virus, which can be controlled 

through education (awareness), vaccination, and treatment. They implemented constant 

controls in terms of treatment, vaccination, and public awareness campaigns (awareness). 

They used time as a control and formulated an appropriate optimal control problem, 

acquiring an optimal control strategy in order to reduce the number of infected humans and 

the costs associated with infection. 
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CHAPTER THREE  

3.0 METHODOLOGY 

Mathematical models are developed and analyzed in this section. These models are in three 

(3) cases, with solutions for each case shown. 

3.1 Mathematical Formulation, Analysis and Method of Solution for 

HBV Model Case 1 

Keeping the HBV transmission axioms in mind, Khan et al., (2019) postulated a 

mathematical model taking into account the horizontal transmission and the vertical 

transmission as the primary source of transmission of  HBV, the movement of susceptible, 

latent, and acute populations, vaccination of susceptible populations, and hospitalization 

of acute and chronic populations. Individuals who were susceptible, latent, acute, chronic 

carriers and hospitalized as well as those who had been vaccinated were all divided into 

different groups for this purpose. The model is presented below: 

𝑆 ′(𝑡) = 𝜇𝜔(1 − 𝑣𝐶(𝑡)) + 𝜓𝑉(𝑡) − (𝛽𝐴(𝑡) + 𝛾𝛽𝐶(𝑡) + 𝛾3 + 𝜇0 + 𝛿1)𝑆(𝑡) 

𝐿′(𝑡) = (𝛽𝐴(𝑡) + 𝛾𝛽𝐶(𝑡))𝑆(𝑡) − (𝜎 + 𝜇0 + 𝛿1)𝐿(𝑡) 

𝐴′(𝑡) = 𝜎𝐿(𝑡) − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1)𝐴(𝑡) 

𝐶 ′(𝑡) = 𝑞𝛾1𝐴(𝑡) − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣)𝐶(𝑡)    (3.1) 

𝐻′(𝑡) = 𝜗2𝐶(𝑡) + 𝜗1𝐴(𝑡) − (𝜗3 + 𝜇0 + 𝜇2)𝐻(𝑡) 

𝑅′(𝑡) = 𝛾2𝐶(𝑡) + (1 − 𝑞)𝛾1𝐴(𝑡) + 𝜗3𝐻(𝑡) − 𝜇0𝑅(𝑡) 

𝑉 ′(𝑡) = 𝜇(1 − 𝜔) + 𝛾3𝑆(𝑡) − (𝜓 + 𝜇0)𝑉(𝑡).  
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According to Pan and Zhang (2005), children born of carrier mothers with failed 

vaccination can be classified into two categories; the children born that can be acutely 

infected and the children born that can be chronically infected with HBV. These two 

categories were neglected by Khan et al., (2019).  

To proceed further, we extend the work of Khan et al., (2019) by implementing the 

following assumptions on our model; 

At time t, the total population denoted by 𝑁(𝑡) is categorized into the seven subgroups 

corresponding to different epidemiological status. 

𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)    (3.2) 

where 𝑆(𝑡) represent the susceptible population, 𝐿(𝑡) is the Latent populace, 𝐴(𝑡) is the 

populace who have an acute HBV infection, 𝐶(𝑡) is the populace who are chronically 

infected, 𝐻(𝑡) are the hospitalized individuals while 𝑅(𝑡) are removed class and 𝑉(𝑡) are 

the individual that receive vaccination. The schematic diagram of the epidemiology of 

Hepatitis B virus is presented in Figure 3.1. The different compartments are used to 

represent the various virus phases and the arrows indicates the progression of various 

individuals from one phase to the other. At time 𝑡, it is assumed that the susceptible 

individual 𝑆, are recruited into the population at a constant rate 𝜇𝜔(1 − 𝑣𝐶(𝑡)) where 𝜇 is 

the new born rate, 𝜔 is the proportion of birth without effective vaccination while 𝜈 is the 

ratio of parentally infected population that progress to chronic state. The constant natural 

mortality rate for individuals in the population is, 𝜇0. HBV infected individuals 
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(𝐶(𝑡) 𝑎𝑛𝑑 𝐻(𝑡)) have an additional death rate due to HBV, 𝜇1 𝑎𝑛𝑑 𝜇2 respectively. It is 

assumed that infected individuals who are hospitalized are not infectious.  Susceptible 

Individual S, may contract the virus if he or she comes into contact with other HBV-

infected people in 𝐴(𝑡)𝑎𝑛𝑑 𝐶(𝑡) population at the rate 𝛽(𝐴 + 𝛾𝐶) (The force of infection 

caused by HBV), where 𝛽𝐴 and 𝛽𝐶 denotes the effective contact rates for HBV infection 

at the acute and chronic compartment respectively and the modification parameter 𝛾 > 1 

accounts for a higher risk of HBV acquisition at the chronic phase. The parameter 𝛿1  in 

the 𝑆(𝑡), 𝐿(𝑡), 𝐴(𝑡) represent the migration rate of individual while 𝜓 is the Induced 

immunity rate with waning vaccine. 

Individuals in the latent population becomes acute carriers at a rate 𝜎, individuals at the 

acute stage are moved to chronic stage at a rate 𝛾1 while 𝛾2 is the rate by which chronic 

carriers migrate to the recovered state. Individuals who are at the acute and chronic phase 

get hospitalized at a rate 𝜗1 𝑎𝑛𝑑 𝜗2 respectively while 𝜗3 is the rate of recovery of 

hospitalized individuals. A percentage of the new born receive effective vaccination at a 

rate 𝜇(1 − 𝜔).  𝑞  is the rate at which people who have recovered from the virus fail in the 

acute class.  The parameters 𝑟 𝑎𝑛𝑑 𝑏 are the rate of children born of infected mother 

without active vaccine that goes to the acute and chronic compartments respectively. 

With these assumptions, this schematic diagram is developed: 
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Figure 3.1: Flow diagram for HBV model case 1 

𝑆 ′(𝑡) = 𝜇𝜔(1 − 𝑣𝐶(𝑡)) + 𝜑𝑉(𝑡) − (𝛽(𝐴(𝑡) + 𝛾𝐶(𝑡)) + 𝛾3 + 𝜇0 + 𝛿1)𝑆(𝑡) − 𝑟𝐴(𝑡) − 𝑏𝐶(𝑡) 

𝐿′(𝑡) = 𝛽(𝐴(𝑡) + 𝛾𝐶(𝑡))𝑆(𝑡) − (𝜎 + 𝜇0 + 𝛿1)𝐿(𝑡) 

𝐴′(𝑡) = 𝜎𝐿(𝑡) − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴(𝑡) 

𝐶 ′(𝑡) = 𝑞𝛾1𝐴(𝑡) − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶(𝑡)    (3.3) 

𝐻′(𝑡) = 𝜗2𝐶(𝑡) + 𝜗1𝐴(𝑡) − (𝜗3 + 𝜇0 + 𝜇2)𝐻(𝑡) 

𝑅′(𝑡) = 𝛾2𝐶(𝑡) + (1 − 𝑞)𝛾1𝐴(𝑡) + 𝜗3𝐻(𝑡) − 𝜇0𝑅(𝑡) 

𝑉 ′(𝑡) = 𝜇(1 − 𝜔) + 𝛾3𝑆(𝑡) − (𝜑 + 𝜇0)𝑉(𝑡). 

3.1.1 Positivity and Boundedness of Solution 

To be epidemiologically meaningful, the system of equations (3.3) must demonstrate that 

all solutions with non-negative initial conditions will remain non-negative. The proof of 
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the positivity and boundedness of the system of equations in system (3.3) follows from the 

following Lemma 3.1: 

Lemma 3.1: The parameters' initial values are 

{𝑆(0) ≥ 0, 𝐿(0) ≥ 0, 𝐴(0) ≥ 0, 𝐶(0) ≥ 0,𝐻(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ 0,𝑁(0) ≥ 0} ∈ 𝛷 

Then, for all 𝑡 ≥ 0, the solution of the model{𝑆(𝑡), 𝐿(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝐻(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑁(𝑡)} 

is positive. 

Proof: Taking the first equation in (3.3) to consideration,  

𝑑𝑆

𝑑𝑡
= 𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶, 

then, 

𝑑𝑆

𝑑𝑡
≥ −(𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆, 

∫
1

𝑆
𝑑𝑆 ≥ ∫−(𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1) 𝑑𝑡 

𝑆 ≥ 𝑆0𝑒
−(𝛽(𝐴+𝛾𝐶)+𝛾3+𝜇0+𝛿1)𝑡 ≥ 0. 

Hence, 𝑆 ≥ 0. 

In relation to the second equation in (3.3), 
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𝑑𝐿

𝑑𝑡
= 𝛽(𝐴 + 𝛾𝐶)𝑆 − (𝜎 + 𝜇0 + 𝛿1)𝐿, 

then, 

𝑑𝐿

𝑑𝑡
≥ −(𝜎 + 𝜇0 + 𝛿1)𝐿, 

∫
1

𝐿
𝑑𝐿 ≥ ∫−(𝜎 + 𝜇0 + 𝛿1) 𝑑𝑡, 

𝐿 ≥ 𝐿0𝑒
−(𝜎+𝜇0+𝛿1)𝑡 ≥ 0. 

Hence, 𝐿 ≥ 0. 

In relation to the third equation in (3.3),  

𝑑𝐴

𝑑𝑡
= 𝜎𝐿 − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴, 

so that, 

𝑑𝐴

𝑑𝑡
≥ −(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴, 

∫
1

𝐴
𝑑𝐴 ≥ ∫−(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟1) 𝑑𝑡, 

𝐴 ≥ 𝐴0𝑒
−(𝜗1+𝛾1+𝜇0+𝛿1−𝑟)𝑡 ≥ 0. 

Hence, 𝐴 ≥ 0. 
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With respect to the fourth equation in (3.3),  

𝑑𝐶

𝑑𝑡
= 𝑞𝛾1𝐴 − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶, 

then, 

𝑑𝐶

𝑑𝑡
≥ −(𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶, 

∫
1

𝐶
𝑑𝐶 ≥ ∫−(𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏) 𝑑𝑡, 

𝐶 ≥ 𝐶0𝑒
−(𝜗2+𝛾2+𝜇0+𝜇1−𝜇𝜔𝑣−𝑏)𝑡 ≥ 0. 

Hence, 𝐶 ≥ 0. 

Following from the fifth equation in (3.3),  

dH

𝑑𝑡
= 𝜗2𝐶(𝑡) + 𝜗1𝐴(𝑡) − (𝜗3 + 𝜇0 + 𝜇2)𝐻(𝑡), 

then, 

𝑑𝐻

𝑑𝑡
≥ −(𝜗3 + 𝜇0 + 𝜇2)𝐻, 

∫
1

𝐻
𝑑𝐻 ≥ ∫−(𝜗3 + 𝜇0 + 𝜇2) 𝑑𝑡, 

𝐻 ≥ 𝐻0𝑒
−(𝜗3+𝜇0+𝜇2)𝑡 ≥ 0. 
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Hence, 𝐻 ≥ 0. 

From the sixth equation in (3.3),  

dR

dt
= 𝛾2𝐶(𝑡) + (1 − 𝑞)𝛾1𝐴(𝑡) + 𝜗3𝐻(𝑡) − 𝜇0𝑅(𝑡), 

then, 

𝑑𝑅

𝑑𝑡
≥ −𝜇0𝑅, 

∫
1

𝑅
𝑑𝑅 ≥ ∫−𝜇0 𝑑𝑡, 

𝑅 ≥ 𝑅0𝑒
−(𝜇0)𝑡 ≥ 0. 

Hence, 𝑅 ≥ 0. 

with respect to the seventh equation in (3.3),  

dV

dt
= 𝜇(1 − 𝜔) + 𝛾3𝑆(𝑡) − (𝜑 + 𝜇0)𝑉(𝑡), 

𝑑𝑉

𝑑𝑡
≥ −(𝜑 + 𝜇0)𝑉, 

∫
1

𝑉
𝑑𝑉 ≥ ∫−(𝜑 + 𝜇0) 𝑑𝑡, 

𝑉 ≥ 𝑉0𝑒
−(𝜑+𝜇0)𝑡 ≥ 0. 
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Hence, 𝑉 ≥ 0. 

Clearly, the above state variables are positive on bounding plane  ℝ+
7 .  

For the boundedness the following calculation follows: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)  

𝑁′ = 𝑆′ + 𝐿′ + 𝐴′ + 𝐶′ + 𝐻′ + 𝑅′ + 𝑉′   

𝑁′ = 𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶 + 𝛽(𝐴 + 𝛾𝐶)𝑆 −

(𝜎 + 𝜇0 + 𝛿1)𝐿 + 𝜎𝐿 − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴 + 𝑞𝛾1𝐴 − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 −

𝜇𝜔𝑣 − 𝑏)𝐶 + 𝜗2𝐶 + 𝜗1𝐴 − (𝜗3 + 𝜇0 + 𝜇2)𝐻 + 𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 − 𝜇0𝑅 +

𝜇(1 − 𝜔) + 𝛾3𝑆 − (𝜑 + 𝜇0)𝑉       (3.4) 

Simplifying (3.4) gives: 

𝑁′ = 𝜇 − 𝜇0[𝑆 + 𝐿 + 𝐴 + 𝐶 + 𝐻 + 𝑅 + 𝑉] − 𝛿1[𝑆 + 𝐿 + 𝐴] − 𝜇1𝐶 − 𝜇2𝐻      (3.5) 

𝑁′ + 𝜇0𝑁 = 𝜇 − 𝛿1[𝑆 + 𝐿 + 𝐴] − 𝜇1𝐶 − 𝜇2𝐻     (3.6) 

𝑁′ + 𝜇0𝑁 ≤ 𝜇          (3.7) 

Integrating (3.7) gives: 

𝑁′ ≤
𝜇

𝜇0
+ 𝑘𝑒−𝜇0𝑡 



72 

 

max
lim
𝑛→∞

𝑁 ≤ lim
𝑛→∞

(
𝜇

𝜇0
+ 𝑘𝑒−𝜇0𝑡) ≤

𝜇

𝜇0
 

As a result, the model system's solutions (3.3) are positive and bounded in the region  

𝒯 = {(𝑆 + 𝐿 + 𝐴 + 𝐶 + 𝐻 + 𝑅 + 𝑉)} ∈ ℝ+
7 : 𝑆 + 𝐿 + 𝐴 + 𝐶 + 𝐻 + 𝑅 + 𝑉 ≤

𝜇

𝜇0
 

It follows from Lemma 3.1 that it is sufficient to take into account the system dynamics 

(3.3) and the model is said to be epidemiologically well-posed.  

3.1.2 Equilibrium Points and Reproduction Number 

The system of equation in (3.3) has a disease-free equilibrium, which is given by: 

𝐸𝑜 = [
𝜇(𝜇0𝜔+𝜑)

𝜑𝛿1+𝜑𝜇0+𝛿1𝜇0+𝛾3𝜇0+𝜇02
, 0,0,0,0,0,

𝜇(𝜇0+𝛾3+𝛿1−𝜔𝛿1−𝜔𝜇0)

𝜑𝛿1+𝜑𝜇0+𝛿1𝜇0+𝛾3𝜇0+𝜇02
]                              (3.8) 

The endemic steady states are calculated here which is done by setting system of equation 

in (3.3) to zero and setting 𝑆 = 𝑆∗, 𝐿 = 𝐿∗, 𝐴 = 𝐴∗, 𝐶 = 𝐶∗, 𝐻 = 𝐻∗, 𝑅 = 𝑅∗and 𝑉 = 𝑉∗    

so that,  

0 = 𝜇𝜔(1 − 𝑣𝐶(𝑡)) + 𝜑𝑉∗(𝑡) − (𝛽(𝐴∗(𝑡) + 𝛾𝐶∗(𝑡)) + 𝛾3 + 𝜇0 + 𝛿1)𝑆
∗(𝑡) − 𝑟𝐴∗(𝑡) − 𝑏𝐶∗(𝑡) 

0 = 𝛽(𝐴∗(𝑡) + 𝛾𝐶∗(𝑡))𝑆∗(𝑡) − (𝜎 + 𝜇0 + 𝛿1)𝐿
∗(𝑡) 

0 = 𝜎𝐿∗(𝑡) − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴
∗(𝑡) 

0 = 𝑞𝛾1𝐴
∗(𝑡) − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶

∗(𝑡)    (3.9) 

0 = 𝜗2𝐶
∗(𝑡) + 𝜗1𝐴

∗(𝑡) − (𝜗3 + 𝜇0 + 𝜇2)𝐻
∗(𝑡) 

0 = 𝛾2𝐶
∗(𝑡) + (1 − 𝑞)𝛾1𝐴

∗(𝑡) + 𝜗3𝐻
∗(𝑡) − 𝜇0𝑅

∗(𝑡) 

0 = 𝜇(1 − 𝜔) + 𝛾3𝑆
∗(𝑡) − (𝜑 + 𝜇0)𝑉

∗(𝑡)   
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and by solving gives: 

𝑆∗(𝑡) =
𝐵1𝐵2𝐵3

𝛽𝜎(𝛾𝑞𝛾1+𝐵3)
  

𝐿∗((𝑡) =
−𝐵3𝐵2(−((𝐵5−𝜑)𝜔+𝜑)𝜇𝑆

∗+(−𝜑𝛾3+𝐵0𝐵5)

𝐵5𝑆∗(𝑟𝐵3+𝛾1𝑞(𝜇𝜔𝜈+𝑏))𝜎
  

𝐴∗(𝑡) = −
𝑞𝜎𝛾1𝛾((𝐵5−𝜑)𝜔+𝜑)𝛽𝜇𝐵3𝐿

∗

(𝐵3𝐵2)(𝛾𝑞𝛾1+𝐵3)
               (3.10) 

𝐶∗(𝑡) = −
𝑞𝛾1(𝛾𝑞𝛾1+𝐵3)𝐴

∗

𝑞𝜎𝛾1𝛾((𝐵5−𝜑)𝜔+𝜑)𝛽𝜇𝐵3
       

𝐻∗(𝑡) = −
(𝑞𝛾1𝜗2+𝐵3𝜗1)𝐴

∗

𝐵4
  

𝑅∗(𝑡) = −
((𝐵4(q-1)𝐵3−(𝐵4𝛾2+𝜗2𝜗3)𝑞)𝛾1-B3𝜗1𝜗3)𝐻

∗

(𝑞𝛾1𝜗2+𝐵3𝜗1)𝜇0
  

𝑉∗(𝑡) = −
(𝛽𝜇(𝜔-1)(𝛾𝑞𝛾1+𝐵3)𝜎)𝑆

∗

𝐵5
.      

Where, 

𝐵1 = 𝜎 + 𝜇0 + 𝛿1, 𝐵2 = 𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟, 𝐵3 = 𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 −

𝑏, 𝐵4= = 𝜗3 + 𝜇0 + 𝜇2, 𝐵5 = 𝜑 + 𝜇0  

The basic reproduction number was computed via the next generation matrix approach. To 

determine the next generation matrix for the model considered in case 1, the following are 

considered: 

1. The number of ways that new infections can arise or be created 

2. The number of ways that infections can be transferred between compartments 
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Thus, the latent L, acute A, chronic C compartments which are the infectious class of 

system (3.3) are considered i.e. 

𝐿′(𝑡) = (𝛽𝐴(𝑡) + 𝛾𝛽𝐶(𝑡))𝑆(𝑡) − (𝜎 + 𝜇0 + 𝛿1)𝐿(𝑡) 

𝐴′(𝑡) = 𝜎𝐿(𝑡) − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴(𝑡) 

𝐶 ′(𝑡) = 𝑞𝛾1𝐴(𝑡) − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶(𝑡) 

Then 𝐹𝑖 and 𝑉𝑖 are computed as follows: 

𝐹 = (
𝛽(𝐴 + 𝛾𝐶)𝑆

0
0

) 

𝑉𝑖
+ = (

0
𝜎𝐿
𝑞𝛾1𝐴

),         𝑉𝑖
− = (

(𝜎 + 𝜇0+ 𝛿1)𝐿
(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴

(𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶
) 

𝑉 = 𝑉𝑖
− + 𝑉𝑖

+ = (

(𝜎 + 𝜇0+ 𝛿1)𝐿
(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1)𝐴 − 𝜎𝐿

(𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣)𝐶 − 𝑞𝛾1𝐴
) 

The variational matrix of F and V 

𝐹 =

(

 
 
 

𝜕𝑓1
𝜕𝐿

𝜕𝑓1
𝜕𝐴

𝜕𝑓1
𝜕𝐶

𝜕𝑓2
𝜕𝐿

𝜕𝑓2
𝜕𝐴

𝜕𝑓2
𝜕𝐶

𝜕𝑓3
𝜕𝐿

𝜕𝑓3
𝜕𝐴

𝜕𝑓3
𝜕𝐶)

 
 
 

= (
0 𝛽𝑆 𝛽𝛾𝑆
0 0 0
0 0 0

) 
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𝑉 =

(

 
 
 

𝜕𝑣1
𝜕𝐿

𝜕𝑣1
𝜕𝐴

𝜕𝑣1
𝜕𝐶

𝜕𝑣2
𝜕𝐿

𝜕𝑣2
𝜕𝐴

𝜕𝑣2
𝜕𝐶

𝜕𝑣3
𝜕𝐿

𝜕𝑣3
𝜕𝐴

𝜕𝑣3
𝜕𝐶 )

 
 
 

= (
𝑀1 0 0
−𝜎 𝑀2 0
0 −𝑞𝛾1 𝑀3

) 

 𝑉−1 =

(

 
 

1

𝑀1
0 0

−𝜎

𝑀1

1

𝑀2
0

0
−𝑞𝛾1

(𝑀3)(𝑀2)

1

(𝑀3))

 
 

 

𝐹𝑉−1

= (
0

𝛽𝜇(𝜇0𝜔 + 𝜑)

𝜑𝛿1 + 𝜑𝜇0 + 𝛿1𝜇0 + 𝛾3𝜇0 + 𝜇0
2

𝛽𝛾𝜇(𝜇0𝜔 + 𝜑)

𝜑𝛿1 + 𝜑𝜇0 + 𝛿1𝜇0 + 𝛾3𝜇0 + 𝜇0
2

0 0 0
0 0 0

)

(

 
 
 
 

1

𝑀1

0 0

−𝜎

𝑀1

1

𝑀2

0

0
−𝑞𝛾1

(𝑀3)(𝑀2)

1

(𝑀3))

 
 
 
 

 

𝑅0 = 𝜌(𝐹𝑉
−1) = 𝑚𝑎𝑥(𝜆1, 𝜆2, 𝜆3) , that is the spectral radius of the given matrix which is 

its largest eigenvalue given by 𝑅0 

𝑅0 =
𝛽𝜎𝜇(𝜇0𝜔+𝜑)(𝑀3)

((𝜇02+(𝜑+𝛿1+𝛾3)𝜇0+𝛿1𝜑)(𝑀3)(𝑀2)(𝑀1))
.        (3.11) 

Where, 𝑀1 = 𝜎 + 𝜇0 + 𝛿,𝑀2 = 𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟,𝑀3 = 𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇0 −

𝜇1 − 𝜗2 

3.1.3 Local Stability Analysis of the Disease Free Equilibrium 𝑬𝒐 

Theorem 3.1:𝐸𝑜 is asymptotically stable locally if 𝑅𝑜< 1 and it is unstable if 𝑅𝑜 > 1. 



76 

 

Proof. The resulting matrix from the linearized model is 
𝑑𝑋

𝑑𝑡
= 𝐴𝑋 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
𝑇 , (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) ∈ 𝑅+

7 , and 

𝐴 =

[
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 − 𝛽(𝐴 + 𝛾𝐶) 0 −(𝛽𝑆 + 𝑟) −(𝛾𝛽𝑆 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

𝛽(𝐴 + 𝛾𝐶) −𝑀1 𝛽𝑆 𝛾𝛽𝑆 0 0 0
0 𝜎 −𝑀2 0 0 0 0
0 0 𝑞𝛾1 𝑀3 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0

𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]
 
 
 
 
 
 

            (3.12) 

The resulting Jacobian matrix of (3.12) at 𝐸𝑜 is 

𝐽(𝐸𝑜)

=

[
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 − 𝜆 0 −(𝛽𝑆0 + 𝑟) −(𝛾𝛽𝑆0 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

0 −𝑀1 𝛽𝑆0 𝛾𝛽𝑆0 0 0 0
0 𝜎 −𝑀2 0 0 0 0
0 0 𝑞𝛾1 𝑀3 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 − 𝜆 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 − 𝜆 0

𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0 + 𝜆)]
 
 
 
 
 
 

 

           (3.13) 

from (3.13), 𝜆1 = −(𝜑 + 𝜇0),𝜆2 = −𝜇0, 𝜆3 =-𝜗3 − 𝜇0 − 𝜇2,𝜆4=−𝜇0 − 𝛿1 − 𝛾3 and the 

resulting quadratic equation is: 

𝑓(𝜆) = 𝜆3 + (𝑀1 +𝑀2 +𝑀3)𝜆
2 + (𝑀1𝑀2 +𝑀3𝑀1 +𝑀2𝑀3 − 𝜎𝛽𝑆0)𝜆 − 𝜎𝛽𝑆0𝑀3 +

𝑀1𝑀2𝑀3          (3.14) 
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Now, 𝜆1,
2 𝜆3< 0   since the values are assumed positive. If 𝑅0< 1, therefore, 𝐸𝑜 is 

stableand unstable when 𝑅0> 1. 

3.1.4 Global Stability of Disease Free Equilibrium 

The global behavior of the equilibrium system (3.3) is analyzed here in this section. 

Theorem 3.2: For system (3.3), the disease-free equilibrium 𝐸𝑜 is asymptotically stable 

globally if 𝑅0 < 1. 

Proof: Considering the Lyapunov function defined as: 

𝑮(𝑳,𝑨, 𝑪) = (𝑀3𝜎𝐵)𝐿 + (𝑀3𝑀1𝐵)𝐴 + (𝛽𝜎𝛾Λ)𝐶     (3.15) 

𝑮′ = (𝑀3𝜎𝐵)𝐿′+ (𝑀3𝑀1𝐵)𝐴′+ (𝛽𝜎𝛾Λ)𝐶′      (3.16) 

𝑮′ = (𝑀3𝜎𝐵)[(𝛽𝐴𝑆 + 𝛾𝛽𝐶𝑆) − 𝑀1𝐿] + (𝑀3𝑀1𝐵)[𝜎𝐿 −𝑀2𝐴] + (𝛽𝜎𝛾Λ)[𝑞𝛾1𝐴 −𝑀3𝐶] 

           (3.17) 

𝑮′ = 𝑀3𝜎𝛽𝐴𝑆𝐵 +𝑀3𝜎𝛾𝛽𝐶𝑆𝐵 −𝑀3𝑀1𝜎𝐵𝐿 +𝑀3𝑀1𝐵𝜎𝐿 −𝑀3𝑀2𝑀1𝐵𝐴 +

𝛽𝜎𝛾𝑞𝛾1𝐴Λ −𝑀3𝛽𝜎𝛾ΛC        (3.18) 

𝑮′ = [𝑀3𝜎𝛽𝑆𝐵 + 𝛽𝜎𝛾𝑞𝛾1Λ −𝑀3𝑀2𝑀1𝐵]𝐴 + [𝑀3𝑀1𝐵𝜎 −𝑀2𝑀1𝜎𝐵]𝐿 + [𝑀2𝜎𝛾𝛽𝑆𝐵 −

𝑀3𝛽𝜎𝛾Λ]C          (3.19) 

𝑮′ =
𝟏

𝑀3𝑀2𝑀1𝐵
[
𝛽𝜎Λ(𝑀2+𝛾𝑞𝛾1)

𝑀3𝑀2𝑀1𝐵
− 1]𝐴 + [𝑀3𝑀1𝐵𝜎 −𝑀3𝑀1𝜎𝐵]𝐿 + [𝑀3𝜎𝛾𝛽𝑆𝐵 −

𝑀3𝛽𝜎𝛾Λ]C          (3.20) 
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𝑮′ =
𝟏

𝑀3𝑀2𝑀1𝐵
[𝑹𝟎 − 1]𝐴        (3.21) 

From Equation (3.21), it can be deduced that the DFE is globally stable since R0< 1.  

3.1.5 Bifurcation Analysis 

Many traditional epidemic models contain thresholds, which are established by the basic 

reproductive process. If 𝑅0 ≤ 1, disease- free equilibrium of the equivalent model is 

globally stable in the feasible region. If  𝑅0 > 1, the model has a unique endemic 

equilibrium that is globally stable in addition to the unstable disease-free equilibrium. This 

means that the disease is eradicated if  𝑅0 < 1,  and it persists in the population if 𝑅0 >

1.  However, there is mounting evidence that the basic reproductive number 𝑅0 alone is 

insufficient to fully determine the global dynamics of disease transmission. Indeed, for 

some simple epidemiologic models, backward bifurcation with multiple endemic equilibria 

and Hopf bifurcation yielding a periodic solution can occur. (Hadler and Castillo-Chavez 

(1995), Alexander and Moghades (2004; 2005)). 

When 𝑅0  is greater than but close to one in a model with only forward bifurcation, the 

level (number of fraction) of infective individuals is low; however, when 𝑅0  is less than 

but close to one in a system with backward bifurcation, the model has two endemic 

equilibria, one of which is a saddle and the other which is locally asymptotically stable. 

While the model with forward bifurcation has a unique endemic equilibrium, when 𝑅0 is 

more than but near to one, the level (number or fraction) of infective individuals is higher. 

There are usually two thresholds for systems with backward bifurcation: 𝑅0 = 𝑅𝑐(0 <
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𝑅𝑐 < 1). There is a saddle-node bifurcation at 𝑅0 = 𝑅𝑐, and a backward bifurcation at 𝑅0 =

1.  

The center manifold theory is used in this study to perform bifurcation analysis at the 

disease-free equilibrium as presented in (Buonomo and Lacitignola, 2011). 

The focus is now on the disease-free equilibrium 𝐸0, with the transcritical bifurcation at 

𝑅0 = 1 being investigated.  

At the disease-free equilibrium 𝐸0, the Jacobian matrix of equation (3.3) is given as: 

𝐽(𝐸𝑜)

=

[
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 − 𝜆 0 −(𝛽𝑆0 + 𝑟) −(𝛾𝛽𝑆0 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

0 −𝑀1 𝛽𝑆0 𝛾𝛽𝑆0 0 0 0
0 𝜎 −𝑀2 0 0 0 0
0 0 𝑞𝛾1 𝑀3 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 − 𝜆 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 − 𝜆 0

𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0 + 𝜆)]
 
 
 
 
 
 

 

The Centre Manifold Theorem as stated in Theorem 1.4 is now applied to ascertain if the 

system (3.3) exhibits a backward or forward bifurcation at  𝑅0 = 1 as follows: 

Recall that  

𝑅0 =
𝛽𝜎𝜇(𝜇0𝜔 + 𝜑)(𝑀3)

((𝜇02 + (𝜑 + 𝛿1 + 𝛾3)𝜇0 + 𝛿1𝜑)(𝑀3)(𝑀2)(𝑀1))
 

Let  𝛽 =𝛽∗ be a bifurcation parameter and if the case 𝑅0 = 1is taken into account.  

By solving for 𝛽 = 𝛽∗, then 
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𝛽∗𝜎𝜇(𝜇0𝜔+𝜑)(𝑀3)

((𝜇0
2+(𝜑+𝛿1+𝛾3)𝜇0+𝛿1𝜑)(𝑀3)(𝑀2)(𝑀1))

= 1     (3.22) 

𝛽 = 𝛽∗ =
((𝜇0

2+(𝜑+𝛿1+𝛾3)𝜇0+𝛿1𝜑)(𝑀3)(𝑀2)(𝑀1))

𝜎𝜇(𝜇0𝜔+𝜑)(𝑀3))
     (3.23) 

The Jacobian matrix of equation (3.3) at the disease-free equilibrium 𝐸0, 𝛽
∗ is given by 

𝐽(𝐸0, 𝛽
∗) =

[
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 0 −(𝛽∗𝑆0 + 𝑟) −(𝛾𝛽∗𝑆0 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

0 −𝑀1 𝛽∗𝑆0 𝛾𝛽∗𝑆0 0 0 0
0 𝜎 −𝑀2 0 0 0 0
0 0 𝑞𝛾1 −𝑀3 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0
𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]

 
 
 
 
 
 

 

           (3.24) 

The characteristic equation of (3.24) has a simple zero eigenvalue i.e.  

|𝐽(𝐸0, 𝛽
∗) − 𝜆I| = 0        (3.25)

𝜆1 = −(𝜑 + 𝜇0),𝜆2 = −𝜇0, 𝜆3 = -𝜗3 − 𝜇0 − 𝜇2,  𝜆4=−𝜇0 − 𝛿1 − 𝛾3 and the resulting 

quadratic equation is: 

𝑓(𝜆) = 𝜆3 + (𝑀1 +𝑀2 +𝑀3)𝜆
2 + (𝑀1𝑀2 +𝑀3𝑀1 +𝑀2𝑀3 − 𝜎𝛽

∗𝑆)𝜆      (3.26) 

The roots of equation (3.26) are three negative eigenvalues (by Descartes rule of signs). As 

a result, 𝜆5 = 0 is a simple zero eigenvalue and the other eigenvalues are real and negative, 

the assumptions of theorem 1.4 (Centre Manifold theorem) are then verified. 

Furthermore, the right eigenvector associated with the zero eigenvalue 𝜆3 = 0 given by  
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𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7)
𝑇 are obtained as follows:  

[
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 0 −(𝛽∗𝑆0 + 𝑟) −(𝛾𝛽∗𝑆0 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

0 −𝑀1 𝛽∗𝑆0 𝛾𝛽∗𝑆0 0 0 0
0 𝜎 −𝑀2 0 0 0 0
0 0 𝑞𝛾1 −𝑀3 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0
𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑤1
𝑤2
𝑤3
𝑤4
𝑤5
𝑤6
𝑤7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
0
0
0
0
0
0
0]
 
 
 
 
 
 

 

           (3.27) 

(−𝜇0 − 𝛿1 − 𝛾3)𝑤1 − (𝛽
∗𝑆 + 𝑟)𝑤3 − (𝛾𝛽

∗𝑆 + 𝜇𝜔𝜈 + 𝑏)𝑤4 + 𝜑𝑤7 = 0  (3.28) 

−𝑀1𝑤2+ (𝛽
∗
𝑆)𝑤3+ (𝛾𝛽

∗
𝑆)𝑤4 = 0       (3.29) 

𝜎𝑤2 − 𝑀2𝑤3 = 0                                                                                                                   (3.30) 

(𝑞𝛾1)𝑤3 − 𝑀3𝑤4 = 0         (3.31) 

𝜗1𝑤3 + 𝜗2𝑤4 + (𝜗3 − 𝜇0 − 𝜇2)𝑤5 = 0      (3.32) 

(1 − 𝑞)𝛾1𝑤3 + 𝛾2𝑤4 + 𝜗3𝑤5 − 𝜇0𝑤6 = 0      (3.33) 

𝛾3𝑤1 − (𝜑 + 𝜇0)𝑤7 = 0        (3.34) 

Solving equations (3.28) to (3.34) simultaneously gives: 

𝑤1 = 

−
1

𝑞𝛾1(𝜇0+𝛿1+𝛾3)𝜎
((𝜇0

3 − (𝑏 + 𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛿1 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜇0
2 +

(𝛿1
2 − (2𝑏 + 2𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛾2 − 𝛾1 − 2𝜇1 − 2𝜗2 − 𝜗1)𝛿1 − (𝑀3)𝜎 − (𝛾1 + 𝜗1 −
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𝑟)(𝑀3))𝜇0 − (𝑀3)𝛿1
2 − (𝛾1 + 𝜗1 − 𝑟 + 𝜎)(𝑀3)𝛿1 + 𝜎((𝜇𝜔(𝑞 − 1)𝜈 + (𝑞 − 1)𝑏 + 𝛾2 +

𝜗2 + 𝜇1)𝛾1 − 𝜗1(𝑀3))𝑤4  

𝑤2 =
1

𝑞𝛾1𝜎
(𝑀3𝑀2)𝑤4 

𝑤3 =
1

𝑞𝛾1
(𝑀3)𝑤4 

𝑤5 =
((𝑀3)𝜗1 − 𝑞𝛾1𝜗2)𝑤4
𝑞𝛾1(𝜗3 + 𝜇0 + 𝜇2)

 

𝑤6 =
1

𝜇0𝑞𝛾1(𝜗3+𝜇0+𝜇2)
((1 − 𝑞)𝜇0 + (𝑏 + 𝜇𝜔𝜈 − 𝜇1)𝑞 + 𝛾2 + 𝜇1 + 𝜗2 − 𝑏 − 𝜇𝜔𝜈)𝜗3 + (𝜇0 + 𝜇2)((1 −

𝑞)𝜇0 + (𝑏 + 𝜇𝜔𝜈 − 𝜇1 − 𝜗2) + 𝛾2 + 𝜇1 + 𝜗2 − 𝑏 − 𝜇𝜔𝜈))𝛾1 − 𝜗1𝜗3(𝑀3))𝑤4  

𝑤7 = 

−
1

𝑞𝛾1(𝜇0+𝛿1+𝛾3)(𝜑+𝜇0)
((𝜇0

3 − (𝑏 + 𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛿1 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜇0
2 +

(𝛿1
2 − (2𝑏 + 2𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛾2 − 𝛾1 − 2𝜇1 − 2𝜗2 − 𝜗1)𝛿1 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝛾1 −

𝜇1 − 𝜗2 − 𝜗1)𝜎 − (𝛾1 + 𝜗1 − 𝑟)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝜇0 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 −

𝜗2)𝛿1
2 − (𝛾1 + 𝜗1 − 𝑟 + 𝜎)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1 + 𝜎((𝜇𝜔(𝑞 − 1)𝜈 + (𝑞 −

1)𝑏 + 𝛾2 + 𝜗2 + 𝜇1)𝛾1 − 𝜗1(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝑤4  

Therefore, 
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𝑤 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝑞𝛾1(𝜇0 + 𝛿1 + 𝛾3)𝜎
((𝜇0

3 − (𝑏 + 𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛿1 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜇0
2 + (𝛿1

2 − 2𝛾2 − 𝛾1 − 2𝜇1 − 2𝜗2 − 𝜗1)𝛿1

−(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜎 − (𝛾1 + 𝜗1 − 𝑟)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝜇0 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1
2 − (𝛾1 + 𝜗1 − 𝑟 + 𝜎)

(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1 + 𝜎((𝜇𝜔(𝑞 − 1)𝜈 + (𝑞 − 1)𝑏 + 𝛾2 + 𝜗2 + 𝜇1)𝛾1 − 𝜗1(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝑤4,
1

𝑞𝛾1𝜎
((𝛾2 + 𝜇1 + 𝜗2 + 𝜇0 − 𝑏 − 𝜇𝜔𝜈)(𝑟 − 𝜇0 − 𝛾1 − 𝜗1 − 𝛿1))𝑤4,

1

𝑞𝛾1
(𝛾2 + 𝜇1 + 𝜗2 + 𝜇0 − 𝑏 − 𝜇𝜔𝜈)𝑤4,

1

𝜇0𝑞𝛾1(𝜗3 + 𝜇0 + 𝜇2)
((1 − 𝑞)𝜇0 + (+𝜗2 − 𝑏 − 𝜇𝜔𝜈)𝜗3 + (𝜇0 + 𝜇2)((1 − 𝑞)𝜇0 + (𝑏 + 𝜇𝜔𝜈 − 𝜇1 − 𝜗2)𝑞

+𝛾2 + 𝜇1 + 𝜗2 − 𝑏 − 𝜇𝜔𝜈))𝛾1 − 𝜗1𝜗3(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2 − 𝜇0))𝑤4,

−
1

𝑞𝛾1(𝜇0 + 𝛿1 + 𝛾3)(𝜑 + 𝜇0)
((𝜇0

3 − (𝑏 + 𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛿1 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜇0
2 + (𝛿1

2 −−𝜗1)𝛿1

−(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜎 − (𝛾1 + 𝜗1 − 𝑟)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝜇0 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1
2 − (𝛾1 + 𝜗1 − 𝑟 + 𝜎)

(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1 + 𝜎((𝜇𝜔(𝑞 − 1)𝜈 + (𝑞 − 1)𝑏 + 𝛾2 + 𝜗2 + 𝜇1)𝛾1 − 𝜗1(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝑤4 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

 

where 𝑤4 > 0 is a free right eigenvector. 

Similarly, the left eigenvector associated with the zero eigenvalue is computed as follows: 

Let the left eigenvector associated with the zero eigenvalue 𝜆5 = 0 given by 

𝑙 = (𝑙1, 𝑙2, 𝑙3, 𝑙4,, 𝑙5, 𝑙6, 𝑙7) 

then, 

𝑙.

[
 
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 0 −(𝛽∗𝑆 + 𝑟) −(𝛾𝛽∗𝑆 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

0 −(𝑀1) 𝛽∗𝑆 𝛾𝛽∗𝑆 0 0 0

0 𝜎 −(𝑀2) 0 0 0 0
0 0 𝑞𝛾1 (𝑀3) 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0

𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
0
0
0
0
0
0
0]
 
 
 
 
 
 

  

           (3.35) 

𝑙1(−𝜇0 − 𝛿1 − 𝛾3) + 𝑙7(𝛾3) = 0                     (3.36) 

𝑙2 − (𝑀1) + 𝑙3𝜎 = 0         (3.37) 

𝑙1(−𝛽
∗𝑆 − 𝑟) + 𝑙2(𝛽

∗𝑆) + 𝑙3((𝑀2)) + 𝑙4𝑞𝛾1 + 𝑙5𝜗1 + 𝑙6(1 − 𝑞)𝛾1 = 0  (3.38) 
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𝑙1(−(𝛾𝛽
∗𝑆 + 𝜇𝜔𝜈 + 𝑏)) + 𝑙2(𝛾𝛽

∗𝑆) + 𝑙4(𝑀3)) + 𝑙5𝜗2 + 𝑙6𝛾2 = 0  (3.39) 

𝑙5(−𝜗3 − 𝜇0 − 𝜇2) + 𝑙6𝜗3 = 0       (3.40) 

−𝑙6𝜇0 = 0          (3.41)  

𝑙1𝜑 + 𝑙7(−𝜑 − 𝜇0) = 0        (3.42) 

The simultaneous solution of equations (3.36) - (3.42) yields: 

𝑙1 = 0, 𝑙2 = 𝑙2, 𝑙3 =
(𝑀1)𝑙2
𝜎

, 𝑙4 = −
𝛾(𝑀1)(𝑀2)𝑙2
𝜎(𝛾𝑞𝛾1 +𝑀3)

𝑙5 = 0, 𝑙6 = 0, 𝑙7 = 0 

therefore, 

𝑙 = [0, 𝑙2,
(𝑀1)𝑙2
𝜎

,−
𝛾(𝑀1)(𝑀2)𝑙2
𝜎(𝛾𝑞𝛾1 +𝑀3)

, 0,0,0] 

where 𝑙2 > 0 is a free left eigenvector. 

3.1.5.1 The Computation of the Coefficient 𝒂 and 𝒃 for Model Case 1 

The coefficients (as defined in theorem 1.4): 

𝑎 = ∑ 𝑙𝑚𝑤𝑖𝑤𝑗
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕𝑥𝑗

7

𝑚,𝑖,𝑗=1

, 𝑏 = ∑ 𝑙𝑚𝑤𝑖
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕φ

7

𝑚,𝑖,𝑗=1

 

may now be computed explicitly using system (3.3) and only the nonzero components of 

the left eigenvector 𝑙, as follows: 

𝑆 = 𝑥1, 𝐿 = 𝑥2, 𝐴 = 𝑥3, 𝐶 = 𝑥4,𝐻 = 𝑥5, 𝑅 = 𝑥6 , 𝑉 = 𝑥7 
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Furthermore, introducing the vector  𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
𝑇 , The system (3.3) 

model can now be written in the form; 

𝑑𝑋

𝑑𝑡
= 𝑓(𝑥) , where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7)

𝑇 

It implies that system of equation (3.3) can be expressed as follows in terms of the new 

variables: 

dx1

𝑑𝑡
= 𝜇𝜔(1 − 𝑣𝑓4) + 𝜑𝑓7 − (𝛽𝑓3 + 𝛾𝑓4) + 𝛾3 + 𝜇0 + 𝛿1)𝑓1 − 𝑟𝑓3 − 𝑏𝑓4  

dx2

𝑑𝑡
= 𝛽(𝑓3 + 𝛾𝑓4)𝑓1 − (𝜎 + 𝜇0 + 𝛿1)𝑓2  

dx3

𝑑𝑡
= 𝜎𝑓2 − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝑓3   

dx4

𝑑𝑡
= 𝑞𝛾1𝑓3 − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝑓4    (3.43) 

dx5

𝑑𝑡
= 𝜗2𝑓4 + 𝜗1𝑓3 − (𝜗3 + 𝜇0 + 𝜇2)𝑓5  

dx6

𝑑𝑡
= 𝛾2𝑓4 + (1 − 𝑞)𝛾1𝑓3 + 𝜗3𝑓5 − 𝜇0𝑓6  

dx7

𝑑𝑡
= 𝜇(1 − 𝜔) + 𝛾3𝑓1 − (𝜑 + 𝜇0)𝑓7   

𝑎 = 2𝑙2𝑤1𝑤4
𝜕2𝑓2(𝐸0, 𝛽

∗)

𝜕𝑥1𝜕𝑥4
+ 2𝑙2𝑤1𝑤3

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥3𝜕𝑥4
 

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥4
= 𝛾𝛽∗,

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥3𝜕𝑥4
= 𝛽∗ 

∴ 𝑎 = 2𝑙2𝑤1𝑤4𝛾𝛽
∗ + 2𝑙2𝑤1𝑤3𝛽

∗   
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𝑎 = 2𝑙2𝑤1𝛽
∗(𝛾𝑤4 +𝑤3) 

𝑏 = 𝑙2𝑤1(𝛾𝑥4 + 𝑥3) + 𝑙2𝑤3𝑥1 + 𝑙2𝑤4𝛾𝑥1 

𝑎 = −
1

𝑞𝛾1(𝜇0+𝛿1+𝛾3)𝜎
(2𝑙2(𝜇0

3 − (𝑏 + 𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛿1 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜇0
2 + (𝛿1

2 − (2𝑏 +

2𝜇𝜔𝜈 + 𝑟 − 𝜎 − 2𝛾2 − 𝛾1 − 2𝜇1 − 2𝜗2 − 𝜗1)𝛿1 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝛾1 − 𝜇1 − 𝜗2 − 𝜗1)𝜎 − (𝛾1 + 𝜗1 −

𝑟)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2))𝜇0 − (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 − 𝜗2)𝛿1
2 − (𝛾1 + 𝜗1 − 𝑟 + 𝜎)(𝑏 + 𝜇𝜔𝜈 − 𝛾2 −

𝜇1 − 𝜗2)𝛿1 + 𝜎((𝜇𝜔(𝑞 − 1)𝜈 + (𝑞 − 1)𝑏 + 𝛾2 + 𝜗2 + 𝜇1)𝛾1 − 𝜗1(𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇1 −

𝜗2))𝑤4𝛽 (𝛾𝑤4 −
(𝜇𝜔𝜈−𝑏−𝛾2−𝜇1−𝜗2−𝜇0)𝑤4

𝑞𝛾1
)  

𝑏 =
𝑙2𝑤3𝜇(𝜇0𝜔 + 𝜑)

𝜑𝛿1 + 𝜑𝜇0 + 𝛿1𝜇0 + 𝛾3𝜇0 + 𝜇02
+

𝑙2𝑤4𝛾𝜇(𝜇0𝜔 + 𝜑)

𝜑𝛿1 + 𝜑𝜇0 + 𝛿1𝜇0 + 𝛾3𝜇0 + 𝜇02
 

Since the coefficient b is always positive, the sign of the coefficient a determines the local 

dynamics around the disease-free equilibrium for 𝛽 = 𝛽∗., according to theorem 1.4. As a 

result, the following result is established. 

Theorem 3.3: The unique equilibrium 𝐸∗is locally asymptotically stable for 𝑅0 > 1. Since 

𝑎 < 0, locally stability of 𝐸∗infers its global stability.  

3.1.6 Local Stability of Endemic Equilibrium 

Theorem 3.4: If 𝑅0 > 1, then the endemic equilibrium is locally asymptotically stable. 

Proof: The endemic equilibria of system (3.3), denoted by (𝑆∗, 𝐿∗, 𝐴∗, 𝐶∗, 𝐻∗, 𝑅∗, 𝑉∗), can 

be rewritten as: 



87 

 

Let 𝑆 = 𝑥 + 𝑆∗, 𝐿 = 𝑦 + 𝐿∗, 𝐴 = 𝑧 + 𝐴∗, 𝐶 = 𝑐 + 𝑆∗, 𝐻 = ℎ+ 𝑆∗, 𝑅 = 𝑝 + 𝑆∗, 𝑉 = 𝑗 + 𝑆∗ 

𝐴

=

[
 
 
 
 
 
 
 
−𝜇0 − 𝛿1 − 𝛾3 − 𝛽𝐴 − 𝛾𝛽𝐶 0 −(𝛽𝑆 + 𝑟) −(𝛾𝛽𝑆 + 𝜇𝜔𝜈 + 𝑏) 0 0 𝜑

𝛽𝐴 + 𝛾𝛽𝐶 −(𝜎 + 𝜇0 + 𝛿1) 𝛽𝑆 𝛾𝛽𝑆 0 0 0
0 𝜎 −(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟) 0 0 0 0
0 0 𝑞𝛾1 (𝑏 + 𝜇𝜔𝜈 − 𝛾2 − 𝜇0 − 𝜇1 − 𝜗2) 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0
𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]

 
 
 
 
 
 
 

 

           (3.44) 

(3.44) can be rewritten as: 

𝐴 =

[
 
 
 
 
 
 
−𝑚1 0 −(𝛽𝑆 + 𝑟) −𝑚2 0 0 𝜑
𝑚3 −𝑚4 𝛽𝑆 𝛾𝛽𝑆 0 0 0
0 𝜎 −𝑚5 0 0 0 0
0 0 𝑞𝛾1 𝑚6 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 0
𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0)]

 
 
 
 
 
 

 (3.45)                                  

𝐽

=

[
 
 
 
 
 
 
−𝑚1 − 𝜆 0 −(𝛽𝑆 ∗ +𝑟) −𝑚2 0 0 𝜑
𝑚3 −𝑚4 − 𝜆 𝛽𝑆 ∗ 𝛾𝛽𝑆 ∗ 0 0 0
0 𝜎 −𝑚5 − 𝜆 0 0 0 0
0 0 𝑞𝛾1 𝑚6 − 𝜆 0 0 0
0 0 𝜗1 𝜗2 𝜗3 − 𝜇0 − 𝜇2 − 𝜆 0 0
0 0 (1 − 𝑞)𝛾1 𝛾2 𝜗3 −𝜇0 − 𝜆 0
𝛾3 0 0 0 0 0 −(𝜑 + 𝜇0 + 𝜆)]

 
 
 
 
 
 

 

           (3.46) 

From (3.46), 𝜆1 = −(𝜑 + 𝜇0),  𝜆2 = −𝜇0,  𝜆3 = −(𝜗3 + 𝜇0 + 𝜇2),𝜆4 = −𝑚4,then ; 
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𝐽 = [

−𝑚1 − 𝜆 −(𝛽𝑆 ∗ +𝑟) −𝑚2

0 −𝑚5 − 𝜆 0
0 𝑞𝛾1 −𝑚6 − 𝜆

]      (3.47) 

from (3.47); 

𝜆3 + (𝑚1 +𝑚5 +𝑚6)𝜆
2 + (𝑚1𝑚5 +𝑚1𝑚6 +𝑚6𝑚5)𝜆 + 𝑚1𝑚5𝑚6  (3.48) 

The result of the determinant of the Jacobian matrix is of the form: 

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 

where 

𝑎0 = 1 

𝑎1 = 𝑚1 +𝑚5 +𝑚6 

𝑎2 = 𝑚1𝑚5 +𝑚1𝑚6 +𝑚6𝑚5 

𝑎3 = 𝑚1𝑚5𝑚6 

By Routh-Hurwitz criterion governing the polynomials of order 3, it follows: 

1. 𝑎2. 𝑎3are positive 

2. 𝑎1𝑎2 > 𝑎3 

From equation (3.48)1 and 2 are satisfied. 

Therefore, endemic equilibrium is locally asymptotically stable. 
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3.1.7 Global Stability of Endemic Equilibrium 

Theorem 3.5: The equations of the model have a positive distinctive endemic equilibrium 

whenever 𝑅0 > 1, which is said to be globally asymptotically stable. 

Proof: Considering the Lyapunov function defined as: 

𝐿(𝑆∗, 𝐿∗, 𝐴∗, 𝐶∗, 𝐻∗, 𝑅∗, 𝑉∗) = (𝑆 − 𝑆∗ 𝑙𝑛 (
𝑆

𝑆∗
)) + (𝐿 − 𝐿∗ 𝑙𝑛 (

𝐿

𝐿∗
)) + (𝐴 − 𝐴∗ 𝑙𝑛 (

𝐴

𝐴∗
)) +

(𝐶 − 𝐶∗ 𝑙𝑛 (
𝐶

𝐶∗
)) + (𝐻 − 𝐻∗ 𝑙𝑛 (

𝐻

𝐻∗
)) + (𝑅 − 𝑅∗ 𝑙𝑛 (

𝑅

𝑅∗
)) + (𝑉 − 𝑉∗ 𝑙𝑛 (

𝑉

𝑉∗
)) (3.49) 

where L takes it derivative along the system of equation directly as: 

𝑑𝐿

𝑑𝑡
= (

1−𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (

1−𝐿∗

𝐿
)
𝑑𝐿

𝑑𝑡
+ (

1−𝐴∗

𝐴
)
𝑑𝐴

𝑑𝑡
+ (

1−𝐶∗

𝐶
)
𝑑𝐶

𝑑𝑡
+ (

1−𝐻∗

𝐻
)
𝑑𝐻

𝑑𝑡
+

(
1−𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
+ (

1−𝑉∗

𝑉
)
𝑑𝑉

𝑑𝑡
        (3.50) 

𝑑𝐿

𝑑𝑡
= (

1−𝑆∗

𝑆
) 𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶 +

(
1−𝐿∗

𝐿
)𝛽(𝐴 + 𝛾𝐶)𝑆 − (𝜎 + 𝜇0 + 𝛿1)𝐿 + (

1−𝐴∗

𝐴
)𝜎𝐿 − (𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴 +

(
1−𝐶∗

𝐶
) 𝑞𝛾1𝐴 − (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶 + (

1−𝐻∗

𝐻
)𝜗2𝐶 + 𝜗1𝐴 − (𝜗3 + 𝜇0 +

𝜇2)𝐻 + (
1−𝑅∗

𝑅
) 𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 − 𝜇0𝑅 + (

1−𝑉∗

𝑉
) 𝜇(1 − 𝜔) + 𝛾3𝑆 − (𝜑 + 𝜇0)𝑉  

At equilibrium, 
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𝜇𝜔(1 − 𝑣𝐶) = (𝛽(𝐴∗ + 𝛾𝐶∗) + 𝛾3 + 𝜇0 + 𝛿1)𝑆
∗ + 𝑟𝐴∗ + 𝑏𝐶∗ − 𝜑𝑉∗  

(𝜎 + 𝜇0 + 𝛿1) =
𝛽(𝐴∗ + 𝛾𝐶∗)𝑆∗

𝐿∗
 

(𝜗1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟) =
𝜎𝐿∗

𝐴∗
 

(𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏) =
𝑞𝛾1𝐴

∗

𝐶∗
      (3.51) 

(𝜗3 + 𝜇0 + 𝜇2) =
𝜗2𝐶

∗+𝜗1𝐴
∗

𝐻∗
  

𝜇0 =
𝛾2𝐶

∗+(1−𝑞)𝛾1𝐴
∗+𝜗3𝐻

∗

𝑅∗
  

(𝜑 + 𝜇0) =
𝜇(1−𝜔)+𝛾3𝑆

∗

𝑉∗
   

𝑑𝐿

𝑑𝑡
= (

1−𝑆∗

𝑆
) (𝛽(𝐴∗ + 𝛾𝐶∗) + 𝛾3 + 𝜇0 + 𝛿1)𝑆

∗ + 𝑟𝐴∗ + 𝑏𝐶∗ − 𝜑𝑉∗ + 𝜑𝑉 − (𝛽(𝐴 +

𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶 + (
1−𝐿∗

𝐿
)𝛽(𝐴 + 𝛾𝐶)𝑆 −

𝛽(𝐴∗+𝛾𝐶∗)𝑆∗𝐿

𝐿∗
+ (

1−𝐴∗

𝐴
)𝜎𝐿 −

𝜎𝐿∗𝐴

𝐴∗
+ (

1−𝐶∗

𝐶
) 𝑞𝛾1𝐴 −

𝑞𝛾1𝐴
∗𝐶

𝐶∗
+ (

1−𝐻∗

𝐻
)𝜗2𝐶 + 𝜗1𝐴 −

(𝜗2𝐶
∗+𝜗1𝐴

∗)𝐻

𝐻∗
+ (

1−𝑅∗

𝑅
) 𝛾2𝐶 + (1 −

𝑞)𝛾1𝐴 + 𝜗3𝐻 −
(𝛾2𝐶

∗+(1−𝑞)𝛾1𝐴
∗+𝜗3𝐻

)∗)𝑅

𝑅∗
+ (

1−𝑉∗

𝑉
) 𝜇(1 − 𝜔) + 𝛾3𝑆 −

(𝜇(1−𝜔)+𝛾3𝑆
∗)𝑉

𝑉∗
(3.52) 

= (
1−𝑆∗

𝑆
)𝛽𝐴∗𝑆∗ + 𝛽𝛾𝐶∗𝑆∗ + 𝛾3𝑆

∗ + 𝜇0𝑆
∗ + 𝛿1𝑆

∗ + 𝑟𝐴∗ + 𝑏𝐶∗ − 𝜑𝑉∗ + 𝜑𝑉 − 𝛽𝐴𝑆 −

𝛾𝐶𝑆 − 𝛾3𝑆 − 𝜇0𝑆 − 𝛿1𝑆 − 𝑟𝐴 − 𝑏𝐶 + (
1−𝐿∗

𝐿
)𝛽𝐴𝑆 + 𝛾𝐶𝑆 −

𝛽𝐴∗𝑆∗𝐿

𝐿∗
−
𝛾𝐶∗𝑆∗𝐿

𝐿∗
+

(
1−𝐴∗

𝐴
)𝜎𝐿 (1 −

𝐿∗𝐴

𝐿𝐴∗
) + (

1−𝐶∗

𝐶
) 𝑞𝛾1𝐴(1 −

𝐴∗𝐶

𝐴𝐶∗
) + (

1−𝐻∗

𝐻
)𝜗2𝐶 + 𝜗1𝐴(1 −

(𝐶∗+𝐴8)𝐻

(𝐶+𝐴)𝐻∗
) +

(
1−𝑅∗

𝑅
) 𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 −

(𝛾2𝐶
∗+(1−𝑞)𝛾1𝐴

∗+𝜗3𝐻
)∗)𝑅

𝑅∗
+ (

1−𝑉∗

𝑉
) 𝜇(1 − 𝜔) + 𝛾3𝑆 −

(𝜇(1−𝜔)+𝛾3𝑆
∗)𝑉

𝑉∗
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let 
𝑑𝐿

𝑑𝑡
= 𝑃 − 𝑄 

where P are the positive terms and Q are the negative terms such that; 

𝑃 = (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆
∗ +

𝑟𝐴𝑆∗

𝑆
+
𝑏𝐶𝑆∗

𝑆
+ (𝜎 + 𝜇0 + 𝛿1)𝐿

∗ + (𝜗1 + 𝛾1 + 𝜇0 +

𝛿1 − 𝑟)𝐴
∗ + (𝜗2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶

∗ + (𝜗3 + 𝜇0 + 𝜇2)𝐻
∗ + 𝜇0𝑅

∗ + (𝜑 +

𝜇0)𝑉
∗  

𝑄 =
𝜇𝜔(1−𝑣𝐶)𝑆∗

𝑆
+
𝜑𝑉𝑆∗

𝑆
+
𝛽(𝐴+𝛾𝐶)𝑆𝐿∗

𝐿
+
𝜎𝐿𝐴∗

𝐴
+
𝑞𝛾1𝐴𝐶

∗

𝐶
+
𝜗2𝐶𝐻

∗

𝐻
+
𝜗1𝐴𝐻

∗

𝐻
+
𝛾2𝐶𝑅

∗

𝑅
+

(1−𝑞)𝛾1𝐴𝑅
∗

𝑅
+
𝜗3𝐻𝑅

∗

𝑅
+
𝜇(1−𝜔)𝑉∗

𝑉
+
𝛾3𝑆𝑉

∗

𝑉
  

If P<Q, then, 
𝑑𝐿

𝑑𝑡
≤ 0. 

𝑑𝐿

𝑑𝑡
= 0, on condition that𝑆 = 𝑆∗, 𝐿 = 𝐿∗, 𝐴 = 𝐴∗, 𝐶 = 𝐶∗, 𝐻 = 𝐻∗, 𝑅 = 𝑅∗, 𝑉 = 𝑉∗. 

Hence, by the invariant principle postulated by LaSalle (LaSalle, 1976), the greatest 

invariant set in {𝑆∗, 𝐿∗, 𝐴∗, 𝐶∗, 𝐻∗, 𝑅∗, 𝑉∗ ∈ 𝛩:
𝑑𝐿

𝑑𝑡
= 0}is a singleton of 𝐸∗, where 𝐸∗is the 

endemic equilibrium. 

This implies that globally, the endemic equilibrium is asymptotically stable. 



92 

 

3.2 Mathematical Formulation, Analysis and Method of Solution for 

HBV Model Case 2 

It has been clinically shown that a proportion of HBV acutely infected individuals can 

spontaneously clear the virus (Pan and Zhang, 2005, Zhao et al., 2000). Also, infectious 

individuals under treatment can become prone to re-infection if they fall out of treatment 

or indulge in habits like alcohol, use of drugs which can reduce the impact of the treatment. 

In view of this, the following model is developed where the population is divided into 

different states, namely: the susceptible, the acute, the chronic carriers, the treated and the 

recovered states.  

At time 𝑡, denoted by 𝑁(𝑡), the total population is divided into the following 5 

classes/subgroups corresponding to different epidemiological status. 

𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑅(𝑡)     (3.52) 

where 𝑆(𝑡) are the susceptible populace, 𝐴(𝑡) is the populace thst are acutely infected with 

HBV, 𝐶(𝑡) are the chronically/ clinically infected individuals, while 𝑇(𝑡) are individual 

under treatment and 𝑅(𝑡) are the removed classes. Figure 3.2 represents schematically the 

epidemiology of HBV. The various disease stages are replicated by the various 

compartments (circle) and the arrows demonstrates the way individual progress from one 

state to the other). It is assumed that at time 𝑡, susceptible individual 𝑆, enter the population 

at a constant rate 휁(1 − 𝛼)(1 − 𝛾𝐶)where 휁 is the birth rate,𝛼 is the proportion of 

population successfully immunized while 𝛾 is the probability that children born to carrier 



93 

 

mothers will develop to chronic state.  At all classes, individuals die at a constant natural 

mortality rate, 𝜇. It is assumed that HBV infected individuals on treatment are not 

infectious. Susceptible individual 𝑆, may acquire HBV infection when in contact with 

individuals in 𝐴, 𝐶, 𝑎𝑛𝑑 𝑇 populace at a rate 𝜆𝑠 (force of infection associated with HBV),  

where 𝜆𝑠 = 𝛽𝐴 + 𝜉𝛽𝐶        (3.53) 

and 𝛽𝐴 and 𝛽𝐶 are the effective contact rate for HBV infection to occur/ probability that a 

contact will result in an acute and chronic HBV compartment, respectively and 

modification 𝜉 > 1 account for a higher risk of HBV acquisition for people living with 

chronic HBV. 

A proportion of the acute HBV infected individuals 휂, becomes chronic carriers and then 

get treated at 𝜎 while the remaining proportion (1 − 휂) spontaneously clear the virus, 
1

𝜔
  is 

the duration of acute phase. A proportion of the treated HBV individuals 𝜅, recover with 

full immunity, some were in the process of recovering in the treated populace at a rate, 𝜐 

and duration for the treatment is given as 𝜌 while the remaining proportion (1 − 𝜅) 

becomes susceptible. Those individuals in the process of recovering in the treated populace 

at a rate, 𝜐 if engage/expose in high-risk habit and those on treatment 𝜌 can be re-infected 

at the rate 𝜈𝜌 if fall out of treatment at a rate, 휀. 
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Figure 3.2: Compartmental flow diagram of HBV model Case 2. 

These assumptions lead to the emergence of the systems of equation in 3.54 

𝑑𝑆

𝑑𝑡
= 휁(1 − 𝛼)(1 − 𝛾𝐶) − 𝜆𝑠𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅  

𝑑𝐴

𝑑𝑡
= 𝜆𝑠𝑆 − 𝜔𝐴 − 𝜇𝐴  

𝑑𝐶

𝑑𝑡
= 휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − 𝜎𝐶 − 𝜇𝐶                                                                             (3.54)

   

𝑑𝑇

𝑑𝑡
= 𝜎𝐶 − 𝜌𝑇 − 𝜇𝑇  

𝑑𝑅

𝑑𝑡
= 휁𝛼 + 𝑘𝜐𝜌𝑇 − 휀𝑅 − 𝜇𝑅  

where  𝜆𝑠 = 𝛽𝐴 + 𝜉𝛽𝐶 
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3.2.1 Positivity and Boundedness of Solutions 

For the system of equations (3.54) to be epidemiologically meaningful, it is important to 

prove that all solution with non-negative initial conditions will remain non-negative. The 

proof of the positivity and boundedness of system of equations in system (3.54) follows 

from Lemma 3.2.1 stated below: 

Lemma 3.2.1: The initial values of the parameters are 

{𝑆(0) ≥ 0, 𝐴(0) ≥ 0, 𝐶(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ ,0𝑎𝑛𝑑𝑁(0) ≥ 0} ∈ 𝛷 

Then the solution of the model {𝑆(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑁(𝑡)} is positive for all 

 𝑡 ≥ 0. 

Proof:  Considering the first equation in (3.54); 

𝑑𝑆

𝑑𝑡
= 휁(1 − 𝛼)(1 − 𝛾𝐶) − 𝜆𝑠𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅 

𝑑𝑆

𝑑𝑡
≥ −(𝜆𝑠 + 𝜇)𝑆 

∫
1

𝑆
𝑑𝑆 ≥ ∫−(𝜆𝑠 + 𝜇)𝑑𝑡 

𝑆 ≥ 𝑆0𝑒
−(𝜆𝑠+𝜇)𝑡 ≥ 0 

Hence, 𝑆 ≥ 0 
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with respect to the second equation in (3.54); 

𝑑𝐴

𝑑𝑡
= 𝜆𝑠𝑆 − 𝜔𝐴 − 𝜇𝐴 

𝑑𝐴

𝑑𝑡
≥ −(𝜔 + 𝜇)𝐴 

∫
1

𝐴
𝑑𝐴 ≥ ∫−(𝜔 + 𝜇) 𝑑𝑡 

𝐴 ≥ 𝐴0𝑒
−(𝜔+𝜇)𝑡 ≥ 0 

Hence, 𝐴 ≥ 0 

with respect to the third equation in (3.54); 

𝑑𝐶

𝑑𝑡
= 휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − (𝜎 + 𝜇)𝐶 

𝑑𝐶

𝑑𝑡
≥ 휁(1 − 𝛼)𝛾𝐶 − (𝜎 + 𝜇)𝐶 

∫
1

𝐶
𝑑𝐶 ≥ ∫(휁(1 − 𝛼)𝛾𝐶 − (𝜎 + 𝜇)𝐶)𝑑𝑡 

𝐶 ≥ 𝐶0𝑒
( (1−𝛼)𝛾𝐶−(𝜎+𝜇)𝐶)𝑡 ≥ 0 

Hence, 𝐶 ≥ 0 

with respect to the fourth equation in (3.54); 
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𝑑𝑇

𝑑𝑡
= 𝜎𝐶 − 𝜌𝑇 − 𝜇𝑇 

𝑑𝑇

𝑑𝑡
≥ −(𝜌 + 𝜇)𝑇 

∫
1

𝑇
𝑑𝑇 ≥ ∫−(𝜌 + 𝜇) 𝑑𝑡 

𝑇 ≥ 𝑇0𝑒
−(𝜌+𝜇)𝑡 ≥ 0 

Hence, 𝑇 ≥ 0 

with respect to the fifth equation in (3.54); 

𝑑𝑅

𝑑𝑡
= 휁𝛼 + 𝑘𝜐𝜌𝑇 − 휀𝑅 − 𝜇𝑅 

𝑑𝑅

𝑑𝑡
≥ −(휀 + 𝜇)𝑅 

∫
1

𝑅
𝑑𝑅 ≥ ∫−(휀 + 𝜇) 𝑑𝑡 

𝑅 ≥ 𝑅0𝑒
−( +𝜇)𝑡 ≥ 0 

Hence, 𝑅 ≥ 0 

Clearly, the above state variables are positive on bounding plane  ℝ+
5 .  

For the boundedness the following calculation follows: 
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𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡)  

𝑁′ = 𝑆′ + 𝐿′ + 𝐴′ + 𝐶′ + 𝑇′   

𝑁′ = 휁(1 − 𝛼)(1 − 𝛾𝐶) − (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅 +

(𝛽𝐴 + 𝜉𝛽𝐶)𝑆 − (𝜔 + 𝜇)𝐴 + 휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − 𝜎𝐶 − 𝜇𝐶 + 𝜎𝐶 − 𝜌𝑇 −

𝜇𝑇 + 휁𝛼 + 𝑘𝜐𝜌𝑇 − 휀𝑅 − 𝜇𝑅        (3.55) 

Simplifying (3.55) gives: 

𝑁′ = 휁 − 𝜇[𝑆 + 𝐴 + 𝐶 + 𝑇 + 𝑅] + 𝛾𝐶      (3.56) 

𝑁′ + 𝜇𝑁 = 휁 + 𝛾𝐶         (3.57) 

𝑁′ + 𝜇𝑁 ≤ 휁          (3.58) 

Integrating (3.58) gives: 

𝑁′ ≤
𝜇
+ 𝑘𝑒−𝜇𝑡  

max
lim
𝑛→∞

𝑁 ≤ lim
𝑛→∞

(
휁

𝜇
+ 𝑘𝑒−𝜇𝑡) ≤

휁

𝜇
 

It follows that the solutions of the model system (3.54) are positive and bounded in the 

region 

𝒯 = {(𝑆 + 𝐴 + 𝐶 + 𝑇 + 𝑅)} ∈ ℝ+
5 : 𝑆 + 𝐴 + 𝐶 + 𝑇 + 𝑅 ≤

휁

𝜇
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It follows from Lemma 3.2.1 that it is sufficient to consider the dynamics of system (3.54) 

and the model can be considered to be epidemiologically well-posed.  

3.2.2 Equilibrium Points and Reproduction Number 

The disease-free equilibrium of the equation (3.54) exists and is given by:  

𝐸𝑜 = [
(1−𝛼𝜇)

𝜇
, 0,0,0,0]                                                                                         (3.59) 

The endemic steady states are calculated here which is done by setting system of equation 

in (3.54) to zero and setting 𝑆 = 𝑆∗, 𝐴 = 𝐴∗, 𝐶 = 𝐶∗, 𝑇 = 𝑇∗, 𝑅 = 𝑅∗ so that; 

0 = 휁(1 − 𝛼)(1 − 𝛾𝐶) − 𝜆𝑠𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅 

0 = 𝜆𝑠𝑆 − 𝜔𝐴 − 𝜇𝐴  

0 = 휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − 𝜎𝐶 − 𝜇𝐶                                                                 (3.60) 

0 = 𝜎𝐶 − 𝜌𝑇 − 𝜇𝑇 

0 = 휁𝛼 + 𝑘𝜐𝜌𝑇 − 휀𝑅 − 𝜇𝑅 

𝑆∗ = −(
(𝜇+𝜔)( 𝛾(𝜇+𝜌)(𝛼−1)𝜌𝜎𝜈+𝜇2+𝜇𝜌+𝜇𝜎) (𝛼𝜇− −𝜇)

𝐿
)  (3.61) 

𝐴∗ = (
𝑆∗

𝛬(𝜇+𝜔)
)        (3.62) 

𝐶∗ = −(
(𝜇+𝜌) 𝜔𝛬𝜉(𝛼𝜇− −𝜇)

𝐿
)      (3.63) 
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𝑇∗ = (
𝐶∗

𝜎(𝜇+𝜌)
)        (3.64) 

𝑅∗ = (
𝐻

𝐿
)         (3.65) 

where 

𝐿 = 𝜇(𝛬휂𝑘𝜔𝜌𝜎𝜐 + 𝛬휁𝛼휀𝛾𝜇 + 𝛬휁𝛼휀𝛾𝜌 + 𝛬휁𝛼𝛾𝜇2 + 𝛬휁𝛼𝛾𝜇𝜌 + 휁𝛼휀𝛾𝜇2 + 휁𝛼휀𝛾𝜇𝜔 +

휁𝛼휀𝛾𝜇𝜌 + 휁𝛼𝛾𝜇3 + 휁𝛼𝛾𝜇2𝜔 + 휁𝛼𝛾𝜇2𝜌 + 휁𝛼𝛾𝜇𝜔𝜌 − 𝛬휁휀𝛾𝜇 − 𝛬휁휀𝛾𝜌 − 𝛬휁𝛾𝜇2 −

𝛬휁𝛾𝜇𝜌 + 𝛬휀휂𝜇𝜔 + 𝛬휀휂𝜔𝜌 + 𝛬휀휂𝜔𝜎 + 𝛬휀𝜌𝜎𝜐 + 𝛬휂𝜇2𝜔+𝛬휂𝜇𝜔𝜌 + 𝛬휂𝜇𝜔𝜎 + 𝛬𝜇𝜌𝜎𝜐 −

휁휀𝛾𝜇2 − 휁휀𝛾𝜇𝜔 − 휁휀𝛾𝜇𝜌 − 휁𝛾𝜇3 − 휁𝛾𝜇2𝜔 − 휁𝛾𝜇2𝜌 − 휁𝛾𝜇𝜔𝜌 + 휀𝜇𝜌𝜎𝜐 + 휀𝜔𝜌𝜎𝜐 +

𝜇2𝜌𝜎𝜐 + 𝜇𝜔𝜌𝜎𝜐 + 𝛬휀𝜇2 + 𝛬휀𝜇𝜌 + 𝛬휀𝜇𝜎 + 𝛬𝜇3 + 𝛬𝜇2𝜌 + 𝛬𝜇2𝜎 + 휀𝜇3 + 휀𝜇2𝜌 +

휀𝜇2𝜎 + 휀𝜇𝜔𝜌 + 휀𝜇𝜔𝜎 + 𝜇4 + 𝜇3𝜔 + 𝜇3𝜌 + 𝜇3𝜎 + 𝜇2𝜔𝜌 + 𝜇2𝜔𝜎 

𝐻 = (𝛼2 − 𝛼)𝛾𝜇3 + (𝛬 + 𝜔 + 𝜌)𝛼2 + (−𝛬 − 𝜔 − 𝜌)𝛼)𝛾𝜇2 + (𝛬𝜌 + 𝜔𝜌)𝛼2 + (−𝛬𝜌 −

𝜔𝜌)𝛼)𝛾𝜇)휁2 + (𝛼𝜇4 + (𝜌 + 𝜔 + 𝜎 + 𝛬)𝛼𝜇3 + ((𝜎𝜈 + 𝛬 + 𝜔)𝜌 + (휂𝜔 + 𝜎)𝛬 +

𝜔𝜎)𝛼𝜇2 + ((휂𝜔 + 𝜎𝜈)𝛬 + 𝜔𝜎𝜈)𝜌 + 𝛬휂𝜔𝜎)𝛼𝜇 + 𝛬휂𝑘𝜔𝜌𝜎𝜈)휁  

The basic reproduction number is computed using the next generation matrix approach. To 

determine the next generation matrix for the model considered in case 2, the following are 

considered: 

1. The number of ways that new infections can arise or be created 

2. The number of ways that infections can be transferred between compartments 
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Then 𝐹𝑖 and 𝑉𝑖 are computed as follows: 

𝐹 = [
휁𝛽(1 − 𝛼𝜇)

𝜇

휁𝜉𝛽(1 − 𝛼𝜇)

𝜇
0 0

] 

𝑉 = [
𝜔 + 𝜇 0
−휂𝜔 −휁(1-𝛼)𝛾 + (𝜎 + 𝜇)

] 

𝑉−1 =

[
 
 
 

1

𝜔 + 𝜇
0

−
휂𝜔

(𝜔 + 𝜇)(휁(1-𝛼)𝛾 + (𝜎 + 𝜇))
−

1

휁(1-𝛼)𝛾 + (𝜎 + 𝜇)]
 
 
 

 

𝑅0 = 𝜌(𝐹𝑉
−1) = 𝑚𝑎𝑥(𝜆1, 𝜆2) , that is the spectral radius of the given matrix which is its 

largest eigenvalue given by R0 

𝑅0 =
𝛽 (1 −𝛼)

𝜇(𝜔+𝜇)
 −

𝜉𝛽 (1−𝛼) 𝜔

𝜇(𝜔+𝜇)( (1-𝛼)𝛾+(𝜎+𝜇))
                                                                      (3.66)  

3.2.3 Local Stability Analysis of  the Disease Free Equilibrium 𝑬𝒐 

Theorem 3.2.1:𝐸𝑜 is locally asymptotically stable if 𝑅𝑜< 1 and unstable if 𝑅𝑜> 1. 

Proof. The resulting matrix from the linearized model is 
𝑑𝑋

𝑑𝑡
= 𝐴𝑋 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
𝑇 , (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ 𝑅+

5 , and 
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𝐴 =

(

 
 
 

−𝛽 𝐴 − 𝜉𝛽 − 𝜇 (1 − 휂)𝜔 − 𝛽 𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽 𝑆 (1 − 𝑘)𝜐𝜌 𝜖

𝛽 𝐴 + 𝜉𝛽 𝐶 −𝜔 − 𝜇 + 𝛽 𝑆 𝜉𝛽 𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 
 
     (3.67) 

The resulting Jacobian matrix of (3.67) at 𝐸𝑜 is 

𝐽(𝐸0) =

(

 
 
 

−𝜇 − 𝜆 (1 − 휂)𝜔 − 𝛽𝑆0 휁𝛾(𝛼 − 1) − 𝜉𝛽𝑆0 (1 − 𝑘)𝜐𝜌 𝜖

0 𝛽𝑆0 −𝜔 − 𝜇 − 𝜆 𝜉𝛽𝑆0 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 − 𝜆 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 − 𝜆 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇 − 𝜆)

 
 
 
  (3.68)  

From (3.68) 𝜆1 = −휀 − 𝜇, 𝜆2 = −𝜌 − 𝜇, 𝜆3 = −𝜇 and the resulting quadratic equation is:              

𝑓(𝜆) = 𝜆2 + (휁𝛼𝛾 − 휁𝛾 − 𝛽𝑆0 + 2𝜇 + 𝜔 + 𝜎)𝜆 − 휁𝛼𝛽𝛾𝑆0 − 𝛽휂𝜔𝑆0𝜉+ 휁𝛼𝛾𝜇 + 𝜔𝜎 + 휁𝛼𝛾𝜔 + 휁𝛽𝛾𝑆0 −

휁𝛾𝜇 − 휁𝛾𝜔 − 𝛽𝜇𝑆0 − 𝛽𝜎𝑆0 + 𝜇
2 + 𝜇𝜔 + 𝜇𝜎              (3.69) 

Now, 𝜆1, 𝜆2< 0   since the values are assumed positive. If 𝑅𝑜< 1, therefore, 𝐸𝑜 is stable and 

unstable when 𝑅𝑜> 1. 

3.2.4 Global Stability of the Disease Free Equilibrium 

The global behavior of the equilibrium system (3.54) is analyzed here in this section.  

Theorem 3.2.2: For system (3.54), the disease-free equilibrium 𝐸𝑜 is asymptotically stable 

globally if 𝑅0 < 1. 

Proof: Considering the Lyapunov function defined as: 
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G(A, C, T) = μa5(σa2 + a1a4 − a3a4)A + ξβζ(αμ − μ − ε)a4C + ξβζ(αμ − μ − ε)a2T 

                  (3.70) 

G′ = μa5(σa2 + a1a4 − a3a4)A′ + ξβζ(αμ − μ − ε)a4C′ + ξβζ(αμ − μ − ε)a2T′  

                  (3.71) 

G′ = μa5(σa2 + a1a4 − a3a4) [(βA + ξβC) (
−ζ(αμ−μ−ε)

μa5
) − a0A] + ξβζ(αμ − μ −

ε)a4[ηωA + a1C + a2T − a3C] + ξβζ(αμ − μ − ε)a2[σC − a4T]                             (3.72)

   

where 𝑎0 = (𝜔 + 𝜇), 𝑎1 = 휁(1-𝛼)𝛾, 𝑎2 = (1 − 𝜐)𝜌 , 𝑎3 = (𝜎 + 𝜇),    𝑎4 = (𝜌 +

𝜇), 𝑎5 = (휀 + 𝜇), 𝑆 =
(1−𝛼𝜇)

𝜇
 

Expanding (3.72) gives: 

G′ = μa0a5(σa2 + a1a4 − a3a4) [
−βζ(αμ−μ−ε)

μa0a5
+

ξβζa4ηω(αμ−μ−ε)

μa0a5(σa2+a1a4−a3a4)
− 1] A +

[−ξβσa2ζ(αμ − μ − ε) − a1a4ξβσa2ζ(αμ − μ − ε) + ξβσa2ζ(αμ − μ −

ε)a3a4)(−ζ(αμ − μ − ε)) + ξβζ(αμ − μ − ε)a4a1 − ξβζ(αμ − μ − ε)a4a3 + σξβζ(αμ −

μ − ε)a2]C + [ξβζ(αμ − μ − ε)a4a2 − ξβζ(αμ − μ − ε)a4a2]T                                   (3.73) 

Simplifying (3.73) gives; 

𝑮′ = 𝜇𝑎0𝑎5(𝜎𝑎2 + 𝑎1𝑎4 − 𝑎3𝑎4) [
−𝛽 (𝛼𝜇−𝜇− )

𝜇𝑎0𝑎5
+

𝜉𝛽 𝑎4 𝜔(𝛼𝜇−𝜇− )

𝜇𝑎0𝑎5(𝜎𝑎2+𝑎1𝑎4−𝑎3𝑎4)
− 1] 𝐴        (3.74)   

𝑮′ = 𝜇𝑎0𝑎5(𝜎𝑎2 + 𝑎1𝑎4 − 𝑎3𝑎4)[𝑅0 − 1]𝐴                                                              (3.75)           

⇒ 𝑮′ ≤ 0, 𝑖𝑓 𝑅0 ≤ 1.                                                                                                    (3.76) 

 Thus, the disease-free equilibrium is globally asymptotically stable. 
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3.2.5 Bifurcation Analysis 

Here, bifurcation analysis is performed at the disease-free equilibrium by center manifold 

theory as presented in (Buonomo and Lacitignola, 2011). 

Now, the focus is on the disease-free equilibrium 𝐸0 and investigates the occurrence of the 

transcritical bifurcation at 𝑅0 = 1. 

The Jacobian matrix of equation (3.68) at the disease-free equilibrium 𝐸0 is given by  

𝐽(𝐸0) =

(

 
 

−𝜇 (1 − 휂)𝜔 − 𝛽𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽𝑆 (1 − 𝑘)𝜐𝜌 𝜖
0 𝛽𝑆 − 𝜔 − 𝜇 𝜉𝛽𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 

   (3.77) 

The Centre Manifold Theorem as stated in Theorem 1.4 is now applied to determine if the 

model system (3.54) exhibit a backward or forward bifurcation at𝑅0 = 1 as follows: 

Recall that  

𝑅0 =
𝛽휁(1 − 𝛼)

𝜇(𝜔 + 𝜇)
 −

𝜉𝛽휁(1 − 𝛼)휂𝜔

𝜇(𝜔 + 𝜇)(휁(1-𝛼)𝛾 + (𝜎 + 𝜇))
 

Let  𝛽 =𝛽∗ be a bifurcation parameter and if the case 𝑅0 = 1 is considered.  

By solving for 𝛽 = 𝛽∗, then 

𝛽 (1 −𝛼)

𝜇(𝜔+𝜇)
 −

𝜉𝛽 (1−𝛼) 𝜔

𝜇(𝜔+𝜇)( (1-𝛼)𝛾+(𝜎+𝜇))
= 1       (3.78)  
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𝛽 = 𝛽∗ = −
𝜇(𝜔+𝜇)(휁(1−𝛼)𝛾−(𝜎+𝜇))

(휁(1−𝛼)𝛾−𝜉휂𝜔−(𝜎+𝜇))(휁(1−𝛼))
      (3.79) 

The Jacobian matrix of equation (3.54) at the disease-free equilibrium 𝐸0, 𝛽
∗ is given by  

𝐽(𝐸0, 𝛽
∗) =

(

 
 

−𝜇 (1 − 휂)𝜔 − 𝛽∗𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽∗𝑆 (1 − 𝑘)𝜐𝜌 𝜖
0 𝛽∗𝑆 − 𝜔 − 𝜇 𝜉𝛽∗𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 

  (3.80) 

The characteristic equation of (3.80) has a simple zero eigenvalue i.e.  

|𝐽(𝐸0, 𝛽
∗) − 𝜆I| = 0        (3.81) 

𝜆1 = −휀 − 𝜇, 𝜆2 = −𝜌 − 𝜇, 𝜆3 = −𝜇 and the resulting quadratic equation is:             

𝑓(𝜆) = 𝜆2 + (휁𝛼𝛾 − 휁𝛾 − 𝛽∗𝑆 + 2𝜇 + 𝜔 + 𝜎)𝜆 − 휁𝛼𝛽∗𝛾𝑆 − 𝛽∗휂𝜔𝑆𝜉 + 휁𝛼𝛾𝜇 + 𝜔𝜎 +

휁𝛼𝛾𝜔 + 휁𝛽∗𝛾𝑆 − 휁𝛾𝜇 − 휁𝛾𝜔 − 𝛽∗𝜇𝑆 − 𝛽∗𝜎𝑆 + 𝜇2 + 𝜇𝜔 + 𝜇𝜎   (3.82)  

Equation (3.82) gives two negative eigenvalues as its roots (by Descartes rule of signs). 

Thus, 𝜆4 = 0 is a simple zero eigenvalue and the other eigenvalues are real and negative, 

then the assumptions of theorem 1.9 (Centre Manifold theorem) is then verified. 

Furthermore, the right eigenvector associated with the zero eigenvalue 𝜆2 = 0 given by  

𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5)
𝑇 are obtained as follows:  

(

 
 

−𝜇 (1 − 휂)𝜔 − 𝛽∗𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽∗𝑆 (1 − 𝑘)𝜐𝜌 𝜖
0 𝛽∗𝑆 − 𝜔 − 𝜇 𝜉𝛽∗𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 

(

 
 

𝑤1
𝑤2
𝑤3
𝑤4
𝑤5)

 
 
=

(

 
 

0
0
0
0
0)

 
 

  (3.83) 
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−𝜇𝑤1 + ((1 − 휂)𝜔 − 𝛽
∗𝑆)𝑤2 + (휁𝛾(𝛼 − 1) − 𝜉𝛽

∗𝑆)𝑤3 + ((1 − 𝑘)𝜈𝜌)𝑤4 + 휀𝑤5 = 0  (3.84) 

(𝛽∗𝑆 − 𝜔 − 𝜇)𝑤2 + (𝜉𝛽
∗𝑆)𝑤3 = 0       (3.85) 

휂𝜔𝑤2 + (휁𝛾(1 − 𝛼) − 𝜎 − 𝜇)𝑤3 + ((1 − 𝜈)𝜌)𝑤4 = 0    (3.86) 

𝜎𝑤3 + (−𝜌 − 𝜇)𝑤4 = 0        (3.87) 

𝑘𝜈𝜌𝑤4 + (−휀 − 𝜇)𝑤5 = 0        (3.88) 

Solving equations (3.84) - (3.88) simultaneously gives 

𝑤1

= −
1

휂𝜔𝜎(𝜇 + 𝜖)
(

휂 𝑘𝜔𝜌𝜎𝜐 + 휁𝛼 𝜖 𝛾𝜇 + 휁𝛼 𝜖 𝛾𝜌 + 휁𝛼𝛾𝜇2 + 휁𝛼𝛾𝜇𝜌 − 휁 𝜖 𝛾𝜇 − 휁 𝜖 𝛾𝜌

−휁𝛾𝜇2 − 휁𝛾𝜇𝜌 + 𝜖 휂𝜇𝜔 + 𝜖 휂𝜔𝜌 + 𝜖 휂𝜔𝜎 + 𝜖 𝜌𝜎𝜐 + 𝜇2휂𝜔 + 𝜇𝜌휂𝜔 +

𝜇𝜎휂𝜔 + 𝜇𝜌𝜎𝜐 + 𝜖 𝜇2 + 𝜖 𝜇𝜌 + 𝜖 𝜇𝜎 + 𝜇3 + 𝜇2𝜌 + 𝜇2𝜎

)𝑤4 

 

𝑤2 =
(휁𝛼𝛾𝜇 + 휁𝛼𝛾𝜌 − 휁𝛾𝜇 − 휁𝛾𝜌 + 𝜌𝜎𝜐 + 𝜇2 + 𝜇𝜌 + 𝜇𝜎)𝑤4

휂𝜔𝜎
 

𝑤3 =
(𝜌 + 𝜇)𝑤4

𝜎
 

𝑤5 =
𝑘𝜐𝜌𝑤4
𝜇 + 𝜖

 

Therefore; 

𝑤

=

(

  
 −

1

휂𝜔𝜎(𝜇 + 𝜖)
(

휂 𝑘𝜔𝜌𝜎𝜐 + 휁𝛼 𝜖 𝛾𝜇 + 휁𝛼 𝜖 𝛾𝜌 + 휁𝛼𝛾𝜇2 + 휁𝛼𝛾𝜇𝜌 − 휁 𝜖 𝛾𝜇 − 휁 𝜖 𝛾𝜌

−휁𝛾𝜇2 − 휁𝛾𝜇𝜌 + 𝜖 휂𝜇𝜔 + 𝜖 휂𝜔𝜌 + 𝜖 휂𝜔𝜎 + 𝜖 𝜌𝜎𝜐 + 𝜇2휂𝜔 + 𝜇𝜌휂𝜔 +

𝜇𝜎휂𝜔 + 𝜇𝜌𝜎𝜐 + 𝜖 𝜇2 + 𝜖 𝜇𝜌 + 𝜖 𝜇𝜎 + 𝜇3 + 𝜇2𝜌 + 𝜇2𝜎

)𝑤4,

(휁𝛼𝛾𝜇 + 휁𝛼𝛾𝜌 − 휁𝛾𝜇 − 휁𝛾𝜌 + 𝜌𝜎𝜐 + 𝜇2 + 𝜇𝜌 + 𝜇𝜎)𝑤4
휂𝜔𝜎

,
(𝜌 + 𝜇)𝑤4

𝜎
,𝑤4,

𝑘𝜐𝜌𝑤4
𝜇 + 𝜖 )

  
 

𝑇
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where 𝑤4 > 0 is a free right eigenvector. 

Similarly, the left eigenvector associated with the zero eigenvalue is computed as follows: 

Let the left eigenvector associated with the zero eigenvalue 𝜆4 = 0 given by 

𝑙 = (𝑙1, 𝑙2, 𝑙3, 𝑙4,, 𝑙5) 

then, 

𝑙

(

 
 

−𝜇 (1 − 휂)𝜔 − 𝛽∗𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽∗𝑆 (1 − 𝑘)𝜐𝜌 𝜖
0 𝛽∗𝑆 − 𝜔 − 𝜇 𝜉𝛽∗𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 
=

(

 
 

0
0
0
0
0)

 
 

  (3.89) 

𝑙1(−𝜇) = 0          (3.90) 

𝑙1((1 − 휂)𝜔 − 𝛽
∗𝑆) + 𝑙2(𝛽

∗𝑆 − 𝜔 − 𝜇)) + 𝑙3휂𝜔 = 0    (3.91) 

𝑙1(휁𝛾(𝛼 − 1) − 𝜉𝛽∗𝑆) + 𝑙3(휁𝛾(1 − 𝛼) − 𝜎 − 𝜇) + 𝑙4𝜎 = 0    (3.92) 

𝑙1((1 − 𝑘)𝜈𝜌) + 𝑙3((1 − 𝜈)𝜌) + 𝑙4(−𝜌 − 𝜇) + 𝑙5(𝑘𝜈𝜌)    (3.93) 

𝑙1휀 + 𝑙5(−휀 − 𝜇) = 0         (3.94) 

The simultaneous solution of equations (3.90) - (3.94) yields: 

𝑙1 = 0, 𝑙2

=
(휁𝛼𝛾𝜇 + 휁𝛼𝛾𝜌 + 휂𝜔𝜇𝜉+ 휂𝜔𝜌𝜉 + 휂𝜔𝜎𝜉 − 휁𝛾𝜇 − 𝜉𝛾𝜌 + 𝜌𝜎𝜈 + 𝜇2 + 𝜇𝜌 + 𝜇𝜎)𝑙3

𝜇2𝜉+ 𝜇𝜔𝜉+ 𝜇𝜌𝜉 + 𝜇𝜎𝜉+ 𝜔𝜌𝜉 +𝜔𝜎𝜉
, 𝑙3

= 𝑙3, 𝑙4 =
(휁𝛼𝛾𝜉− 𝜌𝜈𝜉 + 𝜇𝜉+ 𝜌𝜉 + 𝜎𝜉)𝑙3

𝜇𝜉 + 𝜌𝜉 + 𝜎𝜉
, 𝑙5 = 0 

therefore, 
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𝑙

=

[
 
 
 
 0,
(휁𝛼𝛾𝜇 + 휁𝛼𝛾𝜌 + 휂𝜔𝜇𝜉+ 휂𝜔𝜌𝜉 + 휂𝜔𝜎𝜉 − 휁𝛾𝜇 − 𝜉𝛾𝜌 + 𝜌𝜎𝜈 + 𝜇2 + 𝜇𝜌 + 𝜇𝜎)𝑙3

𝜇2𝜉+ 𝜇𝜔𝜉+ 𝜇𝜌𝜉 + 𝜇𝜎𝜉 + 𝜔𝜌𝜉 +𝜔𝜎𝜉
,

(휁𝛼𝛾𝜉− 𝜌𝜈𝜉+ 𝜇𝜉+ 𝜌𝜉 + 𝜎𝜉)𝑙3
𝜇𝜉 + 𝜌𝜉 + 𝜎𝜉

, 0
]
 
 
 
 

 

where 𝑙3 > 0 is a free left eigenvector. 

3.2.5.1 The Computation of the Coefficient 𝒂 and 𝒃 for Model Case 2 

The coefficients (as defined in theorem 1.4): 

𝑎 = ∑ 𝑙𝑚𝑤𝑖𝑤𝑗
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕𝑥𝑗

5

𝑚,𝑖,𝑗=1

, 𝑏 = ∑ 𝑙𝑚𝑤𝑖
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕φ

5

𝑚,𝑖,𝑗=1

 

may now be explicitly computed taking into account of system (3.54) and considering only 

the nonzero components of the left eigenvector 𝑙 it follows that: 

𝑆 = 𝑥1, 𝐴 = 𝑥2, 𝐶 = 𝑥3, 𝑇 = 𝑥4, 𝑅 = 𝑥5. 

Furthermore, introducing the vector  𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
𝑇 , then the model in system 

(3.54) can now be written in the form 

𝑑𝑋

𝑑𝑡
= 𝑓(𝑥) , where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5)

𝑇 

It implies that system (3.54) can be written in term of the new variables as 
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dx1
𝑑𝑡

= 𝑓1 = 휁(1 − 𝛼)(1 − 𝛾𝑥3) − (𝛽𝑥2 + 𝜉𝛽𝑥3)𝑥1 + (1 − 휂)𝜔𝑥2 − 𝜇𝑥1 + (1 − 𝑘)𝜈𝜌𝑥4 + 휀𝑥5 

dx2
𝑑𝑡

= 𝑓2 = (𝛽𝑥2 + 𝜉𝛽𝑥3)𝑥1 − (𝜔 + 𝜇)𝑥2 

dx3

𝑑𝑡
= 𝑓3 = 휂𝜔𝑥2 + 휁(1 − 𝛼)𝛾𝑥3 + (1 − 𝜐)𝜌𝑥4 − (𝜎 + 𝜇)𝑥3    (3.95) 

dx4
𝑑𝑡

= 𝑓4 = 𝜎𝑥3 − (𝜌 + 𝜇)𝑥4 

dx5

𝑑𝑡
= 𝑓5 = 휁𝛼 + 𝑘𝜐𝜌𝑥4 − (휀 + 𝜇)𝑥5   

𝑎 = 2𝑙2𝑤1𝑤3
𝜕2𝑓2(𝐸0, 𝛽

∗)

𝜕𝑥1𝜕𝑥3
+ 2𝑙2𝑤1𝑤4

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥4
+ 2𝑙2𝑤1𝑤2

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥2
 

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥3
= 𝜉𝛽∗,

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥4
= 𝜉𝛽∗ ,     

𝜕2𝑓2(𝐸0, 𝛽
∗)

𝜕𝑥1𝜕𝑥2
= 𝛽∗ 

∴ 𝑎 = 2𝑙2𝑤1𝑤3𝜉𝛽
∗ + 2𝑙2𝑤1𝑤4𝜉𝛽

∗ + 2𝑙2𝑤1𝑤2𝛽
∗   

𝑎 = 2𝑙2𝑤1𝛽
∗(𝑤3𝜉+𝑤4𝜉+ 𝑤2) 

𝑏 = 𝑙2𝑤1(𝑥3𝜉+ 𝑥4𝜉 + 𝑥2) + 𝑙2𝑥1𝑤2 + 𝑙2𝑥1𝑤3𝜉+ 𝑙2𝑥1𝑤4𝜉 

a = −
1

𝜎 𝜔(𝜇+𝜖)
(2𝛽𝑙2(휁𝛼𝜖𝛾𝜇 + 휁𝛼𝜖𝛾𝜌 + 휁𝛼𝛾𝜇

2 + 휁𝛼𝛾𝜇𝜌 + 6휂𝜔𝜌𝜎𝜐 − 휁𝜖𝛾𝜇 − 휁𝜖𝛾𝜌 −

휁𝛾𝜇2 − 휁𝛾𝜇𝜌 + 𝜖휂𝜇𝜔 + 𝜖휂𝜔𝜌 + 𝜖휂𝜔𝜎 + 𝜖휂𝜔𝜎 + 𝜖𝜌𝜎𝜐 + 𝜇2휂𝜔 + 𝜇𝜌휂𝜔 + 𝜇𝜎휂𝜔 +

𝜇𝜌𝜎𝜐 + 𝜖𝜇2 + 𝜖𝜇𝜌 + 𝜖𝜇𝜎 + 𝜇3 + 𝜇2𝜌 + 𝜇2𝜎))  
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b =
(( 𝛼𝛾𝜇+ 𝛼𝛾𝜌+ 𝜔𝜇𝜉+ 𝜔𝜌𝜉+ 𝜔𝜎𝜉− 𝛾𝜇− 𝛾𝜌+𝜌𝜎𝜐+𝜇2+𝜇𝜌+𝜇𝜎)𝑙3𝑤2 (𝛼𝜇−𝜖−𝜇))

((𝜇2𝜉+𝜇𝜔𝜉+𝜇𝜌𝜉+𝜇𝜎𝜉+𝜔𝜌𝜉+𝜔𝜎𝜉)𝜇(𝜇+𝜖))
+ 

((ζαγμ+ζαγρ+ηωμξ+ηωρξ+ηωσξ−ζγμ−ζγρ+ρσυ+μ2+μρ+μσ)l3w3ξζ(αμ−ϵ−μ))

((μ2ξ+μωξ+μρξ+μσξ+ωρξ+ωσξ)μ(μ+ϵ))
+ 

((ζαγμ + ζαγρ + ηωμξ + ηωρξ + ηωσξ − ζγμ − ζγρ + ρσυ + μ2 + μρ + μσ)l3w4ξζ(αμ − ϵ − μ))

((μ2ξ + μωξ + μρξ + μσξ + ωρξ + ωσξ)μ(μ + ϵ))
 

The coefficient b is always positive so that according to theorem 1.4, it is the sign of the 

coefficient a that decides the local dynamics around the disease-free equilibrium for 𝛽 =

𝛽∗. Thus, the following result is established. 

Theorem 3.2.3: the unique equilibrium 𝐸∗is locally asymptotically stable for 𝑅0 > 1. 

Since 𝑎 < 0, locally stability of 𝐸∗implies its global stability 

3.2.6 Local Stability of Endemic Equilibrium 

Theorem 3.2.4: If 𝑅0 > 1, then the endemic equilibrium is locally asymptotically stable. 

Proof: The endemic equilibria of system (3.54), denoted by(𝑆∗, 𝐴∗, 𝐶∗, 𝑇∗, 𝑅∗), can be 

rewritten as: 

Let S = x + 𝑆∗, 𝐴 = 𝑦 + 𝐴∗, 𝐶 = 𝑧 + 𝐶∗, 𝑇 = 𝑝 + 𝑇∗, 𝑅 = 𝑗 + 𝑅∗ 

𝐽 =

(

 
 

−𝛽 𝐴 − 𝜉𝛽 − 𝜇 (1 − 휂)𝜔 − 𝛽 𝑆 휁𝛾(𝛼 − 1) − 𝜉𝛽 𝑆 (1 − 𝑘)𝜐𝜌 𝜖
𝛽 𝐴 + 𝜉𝛽 𝐶 −𝜔 − 𝜇 + 𝛽 𝑆 𝜉𝛽 𝑆 0 0

0 𝜔휂 휁𝛾(1 − 𝛼) − 𝜎 − 𝜇 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇)

 
 

  (3.96) 
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(3.96) can be rewritten as: 

𝐽 =

(

 
 

𝑏1 − 𝜆 (1 − 휂)𝜔 − 𝛽 𝑆 𝑏2 (1 − 𝑘)𝜐𝜌 𝜖
𝑏3 −𝜔 − 𝜇 + 𝛽 𝑆 − 𝜆 𝜉𝛽 𝑆 0 0

0 𝜔휂 𝑏4 − 𝜆 (1 − 𝜐)𝜌 0
0 0 𝜎 −𝜌 − 𝜇 − 𝜆 0
0 0 0 𝑘𝜐𝜌 −𝜖 − 𝜇 − 𝜆)

 
 

  (3.97)  

From (3.97), 𝜆1 = −(𝜖 + 𝜇), 𝜆2 = −(𝜌 + 𝜇),then ; 

𝐽 = [
𝑏1 − 𝜆 (1 − 휂)𝜔 − 𝛽 𝑆 𝑏2
𝑏3 −𝜔 − 𝜇 + 𝛽 𝑆 − 𝜆 𝜉𝛽 𝑆
0 𝜔휂 𝑏4 − 𝜆

]      (3.98) 

from (3.98) we have; 

𝜆3 + (𝜇 + 𝜔 − 𝛽𝑆 − 𝑏1 − 𝑏4)𝜆
2 + (𝛽𝑆𝑏1 + 𝛽𝑆𝑏3 + 𝛽𝑆𝑏4 + 𝜔휂𝑏3 − 𝜉𝛽 𝑆𝜔휂 − 𝜇𝑏1 −

𝜇𝑏4 − 𝜔𝑏1 − 𝜔𝑏3 − 𝜔𝑏4 + 𝑏1𝑏4)𝜆 + 𝜉𝛽 𝑆𝜔휂𝑏1 − 𝛽𝑆𝑏1𝑏4 − 𝛽𝑆𝑏3𝑏4 − 𝜔휂𝑏2𝑏3 −

𝜔휂𝑏3𝑏4 + 𝜇𝑏1𝑏4 + 𝜔𝑏1𝑏4 + 𝜔𝑏3𝑏4  

The result of the determinant of the Jacobian matrix is of the form: 

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3                  (3.99)  

where 

𝑎0 = 1 

𝑎1 = 𝜇 + 𝜔 − 𝛽𝑆 − 𝑏1 − 𝑏4 

𝑎2 = 𝛽𝑆𝑏1 + 𝛽𝑆𝑏3 + 𝛽𝑆𝑏4 + 𝜔휂𝑏3 − 𝜉𝛽 𝑆𝜔휂 − 𝜇𝑏1 − 𝜇𝑏4 − 𝜔𝑏1 −𝜔𝑏3 − 𝜔𝑏4 + 𝑏1𝑏4 
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𝑎3 = 𝜉𝛽 𝑆𝜔휂𝑏1 − 𝛽𝑆𝑏1𝑏4 − 𝛽𝑆𝑏3𝑏4 − 𝜔휂𝑏2𝑏3 − 𝜔휂𝑏3𝑏4 + 𝜇𝑏1𝑏4 + 𝜔𝑏1𝑏4 + 𝜔𝑏3𝑏4 

By Routh-Hurwitz criterion governing the polynomials of order 3, we have the following: 

1. 𝑎2. 𝑎3are positive 

2. 𝑎1𝑎2 > 𝑎3 

From equation (3.99)1 and 2 are satisfied. 

Therefore, endemic equilibrium is locally asymptotically stable. 

3.2.7 Global Stability of the Endemic Equilibrium 

Theorem 3.2.5: The equations of the model have a positive distinctive endemic 

equilibrium whenever 𝑅0> 1, which is said to be globally asymptotically stable. 

Proof: Considering the Lyapunov function defined as: 

𝐿(𝑆∗, 𝐴∗, 𝐶∗, 𝑇∗, 𝑅∗) = (𝑆 − 𝑆∗ 𝑙𝑛 (
𝑆

𝑆∗
)) + (𝐴 − 𝐴∗ 𝑙𝑛 (

𝐴

𝐴∗
)) + (𝐶 − 𝐶∗ 𝑙𝑛 (

𝐶

𝐶∗
)) + (𝑇 −

𝑇∗ 𝑙𝑛 (
𝑇

𝑇∗
)) + (𝑅 − 𝑅∗ 𝑙𝑛 (

𝑅

𝑅∗
))                    (3.100) 

where L takes it derivative along the system directly as: 

𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝐴∗

𝐴
)
𝑑𝐴

𝑑𝑡
+ (1 −

𝐶∗

𝐶
)
𝑑𝐶

𝑑𝑡
+ (1 −

𝑇∗

𝑇
)
𝑑𝑇

𝑑𝑡
+ (1 −

𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
                 (3.101) 
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𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
) [휁(1 − 𝛼)(1 − 𝛾𝐶) − (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅] +

(1 −
𝐴∗

𝐴
) [(𝛽𝐴 + 𝜉𝛽𝐶)𝑆 − (𝜔 + 𝜇)𝐴] + (1 −

𝐶∗

𝐶
) [휂𝜔𝐴 + (1 − 𝜐)𝜌𝑇 − (𝜎 + 𝜇 − 휁(1 −

𝛼)𝛾)𝐶] + (1 −
𝑇∗

𝑇
) [𝜎𝐶 − (𝜌 + 𝜇)𝑇] + (1 −

𝑅∗

𝑅
) [휁𝛼 + 𝑘𝜐𝜌𝑇 − (휀 + 𝜇)𝑅]              (3.102) 

At equilibrium, 

휁(1 − 𝛼)(1 − 𝛾𝐶) = (𝛽𝐴∗ + 𝜉𝛽𝐶∗)𝑆∗ − (1 − 휂)𝜔𝐴∗ + 𝜇𝑆∗ − (1 − 𝑘)𝜈𝜌𝑇∗ − 휀𝑅∗ 

(𝜔 + 𝜇) =
(𝛽𝐴∗ + 𝜉𝛽𝐶∗)𝑆∗

𝐴∗
 

(𝜎 + 𝜇 − 휁(1 − 𝛼)𝛾) =
𝜔𝐴∗+(1−𝜐)𝜌𝑇∗

𝐶∗
                (3.103)  

(𝜌 + 𝜇) =
𝜎𝐶∗

𝑇∗
 

(휀 + 𝜇) =
휁𝛼 + 𝑘𝜐𝜌𝑇∗

𝑅∗
 

𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
) [(𝛽𝐴∗ + 𝜉𝛽𝐶∗)𝑆∗ − (1 − 휂)𝜔𝐴∗ + 𝜇𝑆∗ − (1 − 𝑘)𝜈𝜌𝑇∗ − 휀𝑅∗ − (𝛽𝐴 +

𝜉𝛽𝐶)𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅] + (1 −
𝐴∗

𝐴
) [(𝛽𝐴 + 𝜉𝛽𝐶)𝑆 −

(𝛽𝐴∗+𝜉𝛽𝐶∗)𝑆∗𝐴

𝐴∗
] + (1 −

𝐶∗

𝐶
) [휂𝜔𝐴 + (1 − 𝜐)𝜌𝑇 −

𝜔𝐴∗+(1−𝜐)𝜌𝑇∗𝐶

𝐶∗
] + (1 −

𝑇∗

𝑇
) [𝜎𝐶 −

𝜎𝐶∗𝑇

𝑇∗
] + (1 −

𝑅∗

𝑅
) [휁𝛼 + 𝑘𝜐𝜌𝑇 −

𝛼+𝑘𝜐𝜌𝑇∗𝑅

𝑅∗
]  

= (1 −
𝑆∗

𝑆
) [
𝛽𝐴∗𝑆∗ + 𝜉𝛽𝐶∗𝑆∗ − (1 − 휂)𝜔𝐴∗ + 𝜇𝑆∗ − (1 − 𝑘)𝜈𝜌𝑇∗ − 휀𝑅∗ − 𝛽𝐴𝑆 − 𝜉𝛽𝐶𝑆

+(1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅
] +

(1 −
𝐴∗

𝐴
) [𝛽𝐴𝑆 + 𝜉𝛽𝐶𝑆 + −

𝛽𝐴∗𝑆∗𝐴

𝐴∗
−
𝜉𝛽𝐶∗𝑆∗𝐴

𝐴∗
] + (1 −

𝐶∗

𝐶
)휂𝜔𝐴 + (1 − 𝜐)𝜌𝑇 [1 −

𝐴∗𝑇∗𝐶

𝐴𝑇𝐶∗
] + (1 −

𝑇∗

𝑇
) 𝜎𝐶 [1 −

𝐶∗𝑇

𝐶𝑇∗
] + (1 −

𝑅∗

𝑅
) 휁𝛼 + 𝑘𝜐𝜌𝑇 [1 −

𝑇∗𝑅

𝑇𝑅∗
]          (3.104) 
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= (1 −
𝑆∗

𝑆
) [
−𝛽𝐴𝑆 (1 −

𝐴∗𝑆∗

𝐴𝑆
) − 𝜉𝛽𝐶𝑆 (1 −

𝐶∗𝑆∗

𝐶𝑆
) + (1 − 휂)𝜔𝐴 (1 −

𝐴∗

𝐴
) − 𝜇𝑆 (1 −

𝑆∗

𝑆
)

+(1 − 𝑘)𝜈𝜌𝑇 (1 −
𝑇∗

𝑇
) + 휀𝑅 (1 −

𝑅∗

𝑅
)

]+ (1−

𝐴∗

𝐴
) [𝛽𝐴𝑆 (1− 𝐴∗𝑆∗

𝑆𝐴∗
)+ 𝜉𝛽𝐶𝑆 (1− 𝐶∗𝑆∗𝐴

𝑆𝐶𝐴∗
)]+휂𝜔𝐴+ (1− 𝜐)𝜌𝑇 (1− 𝐶∗

𝐶
) [1 − 𝐴∗𝑇∗𝐶

𝐴𝑇𝐶∗
]+𝜎𝐶 (1−

𝑇∗

𝑇
) [1− 𝐶∗𝑇

𝐶𝑇∗
]+휁𝛼+ 𝑘𝜐𝜌𝑇 (1− 𝑅∗

𝑅
) [1− 𝑇∗𝑅

𝑇𝑅∗
]                                 (3.105) 

= −𝜇𝑆 (1 −
𝑆∗

𝑆
)
2

− 𝛽𝐴𝑆 (1 −
𝑆∗

𝑆
) (1 −

𝐴∗𝑆∗

𝐴𝑆
) − 𝜉𝛽𝐶𝑆 (1 −

𝑆∗

𝑆
) (1 −

𝐶∗𝑆∗

𝐶𝑆
) + (1 −

휂)𝜔𝐴 (1 −
𝑆∗

𝑆
) (1 −

𝐴∗

𝐴
) + (1 − 𝑘)𝜈𝜌𝑇 (1 −

𝑆∗

𝑆
) (1 −

𝑇∗

𝑇
) + 휀𝑅 (1 −

𝑆∗

𝑆
) (1 −

𝑅∗

𝑅
) +

𝛽𝐴𝑆 (1 −
𝐴∗

𝐴
) (1 −

𝐴∗𝑆∗

𝑆𝐴∗
) + 𝜉𝛽𝐶𝑆 (1 −

𝐴∗

𝐴
) (1 −

𝐶∗𝑆∗𝐴

𝑆𝐶𝐴∗
) + 휂𝜔𝐴 + (1 − 𝜐)𝜌𝑇 (1 −

𝐶∗

𝐶
) (1 −

𝐴∗𝑇∗𝐶

𝐴𝑇𝐶∗
) + 𝜎𝐶 (1 −

𝑇∗

𝑇
) (1 −

𝐶∗𝑇

𝐶𝑇∗
) + 휁𝛼 + 𝑘𝜐𝜌𝑇 (1 −

𝑅∗

𝑅
) (1 −

𝑇∗𝑅

𝑇𝑅∗
)  

= −𝜇𝑆 (1 −
𝑆∗

𝑆
)
2

+ 𝑃1(𝑆, 𝐴, 𝐶, 𝑇, 𝑅) + 𝑃2(𝑆, 𝐴, 𝐶, 𝑇, 𝑅)          (3.106) 

where, 

𝑃1(𝑆, 𝐴, 𝐶, 𝑇, 𝑅) = −𝛽𝐴𝑆 (1 −
𝑆∗

𝑆
) (1 −

𝐴∗𝑆∗

𝐴𝑆
) − 𝜉𝛽𝐶𝑆 (1 −

𝑆∗

𝑆
) (1 −

𝐶∗𝑆∗

𝐶𝑆
)  

𝑃2(𝑆, 𝐴, 𝐶, 𝑇, 𝑅) = (1 − 휂)𝜔𝐴 (1 −
𝑆∗

𝑆
) (1 −

𝐴∗

𝐴
) + (1 − 𝑘)𝜈𝜌𝑇 (1 −

𝑆∗

𝑆
) (1 −

𝑇∗

𝑇
) +

휀𝑅 (1 −
𝑆∗

𝑆
) (1 −

𝑅∗

𝑅
) + 𝛽𝐴𝑆 (1 −

𝐴∗

𝐴
) (1 −

𝐴∗𝑆∗

𝑆𝐴∗
) + 𝜉𝛽𝐶𝑆 (1 −

𝐴∗

𝐴
) (1 −

𝐶∗𝑆∗𝐴

𝑆𝐶𝐴∗
) + 휂𝜔𝐴 +

(1 − 𝜐)𝜌𝑇 (1 −
𝐶∗

𝐶
) (1 −

𝐴∗𝑇∗𝐶

𝐴𝑇𝐶∗
) + 𝜎𝐶 (1 −

𝑇∗

𝑇
) (1 −

𝐶∗𝑇

𝐶𝑇∗
) + 휁𝛼 + 𝑘𝜐𝜌𝑇 (1 −

𝑅∗

𝑅
) (1 −

𝑇∗𝑅

𝑇𝑅∗
)  

𝑃1 ≤ 0 whenever 𝐴𝑆 ≥ 𝐴∗𝑆∗, 𝐶𝑆 ≥ 𝐶∗𝑆∗, 𝑇𝑆 ≥ 𝑇∗𝑆∗                (3.107) 
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and 

𝑃2 ≤ 0 whenever 𝐴∗𝑆 ≥ 𝐴∗𝑆∗, 𝐴∗𝐶𝑆 ≥ 𝐴𝐶∗𝑆∗, 𝑇𝑆𝐴∗ ≥ 𝑇∗𝑆∗𝐴, 𝐴𝑇𝐶∗ ≥ 𝐴∗𝑇∗𝐶, 𝐶𝑇∗ ≥

𝐶∗𝑇, 𝑇𝑅∗ ≥ 𝑇∗𝑅                   (3.108) 

Thus,  

𝑑𝐿

𝑑𝑡
≤ 0  if the condition in (3.107) and (3.108) holds. 

Therefore, by LaSalle asymptotic stability theorem (LaSalle, 1976), and Oke et al., (2020) 

the positive equilibrium state 
𝑑𝐿

𝑑𝑡  
  is globally asymptotically stable in the positive region 𝑅+

5 . 

3.3 Mathematical Formulation, Analysis and Methods of Solutions for 

HBV Model Case 3 

Some chronic carriers are unaware of their status and as such transmit the virus 

unknowingly and also at higher risk of cirrhosis and makes treatment less effective (Meffre 

et al., 2004, Lin et al., 2009, Piorkowsky, 2009, Cohen et al.,2011, Mcpherson et al.,2013, 

Niederau,2014). 

In view of this, this model is developed to factor them in; where the population is divided 

into the following different groups, namely, the susceptible, the acute, the chronic unaware 

carriers, the chronic aware carriers, the treated chronic aware and the recovered individuals.  

The total population at time 𝑡, denoted by 𝑁(𝑡) is divided into the 6 subgroups 

corresponding to different epidemiological status. Susceptible individuals 𝑆(𝑡), Acute 

𝐴(𝑡), Unaware Chronically Infected 𝐶𝑢(𝑡), Aware Chronically infected 𝐶𝑎(𝑡), Treated 
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𝑇𝑐(𝑡), Removed/Recovered Class 𝑅(𝑡). The model equation is subject to the initial 

conditions, 

𝑆(𝑡) ≥ 0, 𝐴(𝑡) ≥ 0, 𝐶𝑢(𝑡) ≥ 0, 𝐶𝑎(𝑡) ≥ 0, 𝑇𝑐(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0   (3.109) 

Figure 3.3 represents schematically the epidemiology of HBV infected model. The 

different disease stages are reproduced by the different circle and the arrows indicate the 

way individual progress from one stage to the other. It is assumed that at time 𝑡, susceptible 

individual 𝑆, enter the population at a constant rate 𝛱. In all classes, individuals die at a 

constant natural mortality rate, 𝜇. HBV chronically infected individuals (𝐶𝑢(𝑡), 

𝐶𝑎(𝑡)) have an additional death rate due to HBV, 𝑑𝑐 Zhang and Zhang (2018). It is 

assumed that HBV infected individuals on treatment, 𝑇𝑐(𝑡) do not transmit HBV infection. 

Susceptible individual 𝑆(𝑡), may acquire HBV infection when in contact with individuals 

in A, 𝐶𝑢, 𝑎𝑛𝑑 𝐶𝑎, populace at a rate 𝜆 (force of infection associated with HBV), where 

𝜆 =
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
        (3.110) 

Parameter 𝛽 represent the probability that a contact will result in an HBV infection while 

α1, α2 > 1 respectively account for modification parameter of chronic HBV infected 

individuals 

A proportion of the acute HBV infected individuals 𝜎, spontaneously clear the virus, then 

return to been susceptible. The HBV acutely infected individuals develop the chronic 

without been aware if no testing at a rate, 𝛾. The acutely infected and chronic unaware 
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individual progress to Chronic aware stage with a testing 𝜈1, 𝜈2 respectively and moved to 

treatment stage after testing at the rate 𝛿. 𝜔 is the recovery rate of treated infected 

individual with full immunity. 

 

Figure 3.3:Compartmental flow diagram of HBV model case 3 

These assumptions lead to the systems of equation in 3.111 

𝑑𝑆

𝑑𝑡
= 𝛱 − 𝜆𝑆 + 𝜎𝐴 − 𝜇𝑆 

𝑑𝐴

𝑑𝑡
= 𝜆𝑆 − (𝜎 + 𝛾 + 𝜈1)𝐴 

𝑑𝐶𝑢
𝑑𝑡

= 𝛾𝐴 − (𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 

𝑑𝐶𝑎

𝑑𝑡
= 𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎       (3.111) 

𝑑𝑇𝑐
𝑑𝑡

= 𝛿𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐 

𝑑𝑅

𝑑𝑡
= 𝜔𝑇𝑐-𝜇𝑅 
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where 𝜆 =
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
 

3.3.1 Positivity and Boundedness of Solutions 

For the system of equations (3.111) to be epidemiologically meaningful, it is important to 

prove that all solution with non-negative initial conditions will remain non-negative. The 

proof of the positivity and boundedness of system of equations in system (3.111) follows 

from Lemma 3.3.1 stated below: 

Lemma 3.3.1: The initial values of the parameters are 

{𝑆(0) ≥ 0, 𝐴(0) ≥ 0, 𝐶𝑢(0) ≥ 0, 𝐶𝑎(0) ≥ 0, 𝑇𝑐(0) ≥ 0, 𝑅(0) ≥ ,0𝑎𝑛𝑑𝑁(0) ≥ 0} ∈ 𝛷 

Then the solution of the model {𝑆(𝑡), 𝐴(𝑡), 𝐶𝑢(𝑡), 𝐶𝑎(𝑡), 𝑇𝑐(𝑡), 𝑅(𝑡), 𝑁(𝑡)} is positive for 

all 𝑡 ≥ 0. 

Proof 

Considering the first equation in (3.111), 

𝑑𝑆

𝑑𝑡
= 𝛱 − 𝜆𝑆 + 𝜎𝐴 − 𝜇𝑆 

𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝜇)𝑆 

∫
1

𝑆
𝑑𝑆 ≥ ∫−(𝜆 + 𝜇) 𝑑𝑡 

𝑆 ≥ 𝑆0𝑒
−(𝜆+𝜇)𝑡 ≥ 0 



119 

 

Hence, 𝑆 ≥ 0 

with respect to the second equation in (3.111); 

𝑑𝐴

𝑑𝑡
= 𝜆𝑆 − (𝜎 + 𝛾 + 𝜈1)𝐴 

𝑑𝐴

𝑑𝑡
≥ −(𝜎 + 𝛾 + 𝜈1)𝐴 

∫
1

𝐴
𝑑𝐴 ≥ ∫−(𝜎 + 𝛾 + 𝜈1) 𝑑𝑡 

𝐴 ≥ 𝐴0𝑒
−(𝜎+𝛾+𝜈1)𝑡 ≥ 0 

Hence, 𝐴 ≥ 0 

with respect to the third equation in (3.111); 

𝑑𝐶𝑢
𝑑𝑡

= 𝛾𝐴 − (𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 

𝑑𝐶𝑢
𝑑𝑡

≥ −(𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 

∫
1

𝐶𝑢
𝑑𝐶𝑢 ≥ ∫(𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 𝑑𝑡 

𝐶𝑢 ≥ 𝐶𝑢0𝑒
((𝜈2+𝜇+𝑑𝑐)𝑡 ≥ 0 

Hence, 𝐶𝑢 ≥ 0 
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with respect to the fourth equation in (3.111); 

𝑑𝐶𝑎
𝑑𝑡

= 𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎 

𝑑𝐶𝑎
𝑑𝑡

≥ −(𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎 

∫
1

𝐶𝑎
𝑑𝐶𝑎 ≥ ∫−(𝛿 + 𝜇 + 𝑑𝑐) 𝑑𝑡 

𝐶𝑎 ≥ 𝐶𝑎0𝑒
−(𝛿+𝜇+𝑑𝑐)𝑡 ≥ 0 

Hence, 𝐶𝑎 ≥ 0 

with respect to the fifth equation in (3.111); 

𝑑𝑇𝑐
𝑑𝑡

= 𝛿𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐 

𝑑𝑇𝑐
𝑑𝑡

≥ −(𝜔 + 𝜇)𝑇𝑐 

∫
1

𝑇𝑐
𝑑𝑇𝑐 ≥ ∫−(𝜔 + 𝜇)𝑑𝑡 

𝑇𝑐 ≥ 𝑇𝑐0𝑒
−(𝜔+𝜇)𝑡 ≥ 0 

Hence, 𝑇𝑐 ≥ 0 

with respect to the sixth equation in (3.111); 
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𝑑𝑅

𝑑𝑡
= 𝜔𝑇𝑐-𝜇𝑅 

𝑑𝑅

𝑑𝑡
≥ −𝜇𝑅 

∫
1

𝑅
𝑑𝑅 ≥ ∫−𝜇 𝑑𝑡 

𝑅 ≥ 𝑅0𝑒
−𝜇𝑡 ≥ 0 

Hence, 𝑅 ≥ 0 

Clearly, the above state variables are positive on bounding plane  ℝ+
6 .  

For the boundedness the following calculation follows: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝐶𝑢(𝑡) + 𝐶𝑎(𝑡) + 𝑇𝑐(𝑡) + 𝑅(𝑡) 

𝑁′ = 𝑆′ + 𝐴′ + 𝐶𝑢′ + 𝐶𝑎′ + 𝑇𝑐′+ 𝑅′   

𝑁′ = 𝛱 − 𝜆𝑆 + 𝜎𝐴 − 𝜇𝑆 + 𝜆𝑆 − (𝜎 + 𝛾 + 𝜈1)𝐴 + 𝛾𝐴 − (𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 + 𝜈2𝐶𝑢 +

𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎 + 𝛿𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐 + 𝜔𝑇𝑐-𝜇𝑅    (3.112) 

Simplifying (3.112) gives: 

𝑁′ = 𝛱 − 𝜇[𝑆 + 𝐴 + 𝐶𝑢 + 𝐶𝑎 + 𝑇𝑐 + 𝑅] − 𝑑𝑐𝐶𝑢     (3.113) 

𝑁′ + 𝜇𝑁 = 𝛱 − 𝑑𝑐𝐶𝑢         (3.114) 

𝑁′ + 𝜇𝑁 ≤ 𝛱          (3.115) 



122 

 

Integrating (3.115) gives: 

𝑁′ ≤
𝛱

𝜇
+ 𝑘𝑒−𝜇𝑡  

max
lim
𝑛→∞

𝑁 ≤ lim
𝑛→∞

(
𝛱

𝜇
+ 𝑘𝑒−𝜇𝑡) ≤

𝛱

𝜇
 

It follows that the solutions of the model system (3.111) are positive and bounded in the 

region 

𝒯 = {(𝑆 + 𝐴 + 𝐶𝑢 + 𝐶𝑎 + 𝑇𝑐 + 𝑅)} ∈ ℝ+
6 : 𝑆 + 𝐴 + 𝐶𝑢 + 𝐶𝑎 + 𝑇𝑐 + 𝑅 ≤

𝛱

𝜇
 

It follows from Lemma 3.3.1 that it is sufficient to consider the dynamics of system 

(3.111) and the model can be considered to be epidemiologically well-posed.  

3.3.2 Equilibrium Points and Reproduction Number 

The disease-free equilibrium of the equation (3.111) exists and is given by:  

(𝐸𝑜) = [
𝛱

𝜇
, 0,0,0,0,0]                                                                                             (3.116) 

The endemic steady states are calculated here which is done by setting system of equation 

in (3.111) to zero and setting 𝑆 = 𝑆∗, 𝐴 = 𝐴∗, 𝐶𝑢 = 𝐶𝑢
∗, 𝐶𝑎 = 𝐶𝑎

∗, 𝑇𝑐 = 𝑇𝑐
∗, 𝑅 = 𝑅∗  

so that  
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0 = 𝛱 − (
𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎)

𝑁
) 𝑆 + 𝜎𝐴 − 𝜇𝑆 

0 = (
𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎)

𝑁
)𝑆 − (𝜎 + 𝛾 + 𝜈1)𝐴 

0 = 𝛾𝐴 − (𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢 

0 = 𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎       (3.117) 

0 = 𝛿𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐 

0 = 𝜔𝑇𝑐-𝜇𝑅 

𝑆∗ = (

Π(𝜇3+(𝛿+𝛾+2𝑑𝑐+𝜐1+𝜐2)𝜇
2+(𝑑𝑐

2+(𝜐1+𝜐2+𝛿+𝛾)𝑑𝑐+

(𝜐2+𝛿)𝛾+(𝜐2+𝛿)𝜐1+𝛿𝜐2)𝜇)+𝛿(𝜐1𝑑𝑐+𝜐2(𝜐1+𝛾))(𝜐1+𝜎+𝛾)

𝐿
)             (3.118) 

𝐴∗ =

−(

(𝜐1−𝛽+𝛾+𝜎)𝑑𝑐
2+((2𝜐1−2𝛽+2𝛾+2𝜎)𝜇+(𝜐2+𝛿−𝛽𝛼1)𝛾+(𝜐2+𝛿−𝛽𝛼2)𝜐1−(𝛽−𝜎)(𝜐2+𝛿))𝑑𝑐+

(𝜐1−𝛽+𝛾+𝜎)𝜇
2+((𝜐2+𝛿−𝛽𝛼1)𝛾+(𝜐2+𝛿−𝛽𝛼2)𝜐1−(𝛽−𝜎)(𝜐2+𝛿))𝜇+((−𝛿𝛼1−𝛼2𝜐2)𝛽)Π

𝐿
) (3.119) 

𝐶𝑢
∗ = 𝐴∗𝛾                   (3.120) 

𝐶𝑎
∗ =

𝐶𝑢
∗((𝜐1+𝜐1𝜇+𝜐2((𝜐1+𝛾)

𝛾
                     (3.121) 

𝑇𝑐
∗ = −(𝐶𝑎

∗ (
𝜇2

𝑑𝑐
2 +

𝜇

𝑑𝑐
+

𝜐2

𝜇2
+

1

𝜐1+𝜐2
) 𝛿)                     (3.122) 

𝑅∗ = 𝜔𝑇𝑐
∗

                          (3.123) 

where 
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𝐿 = ((𝜐2 + 𝜇 + 𝑑𝑐)(𝜐1 + 𝛾 + 𝜎)𝜇3 + ((2𝜐1 + 2𝛾 + 2𝜎)𝑑𝑐) + (𝜐1 + 𝛾 + 𝜎)𝜐2 + (𝛽 + 𝛿)𝛾 + (𝛽 +

𝛿)𝜐1 + 𝛿𝜎)𝜇2 + ((𝜐1 + 𝛾 + 𝜎)𝑑𝑐
2 + ((𝜐1 + 𝛾 + 𝜎)𝜐2 − 𝛾2 + (2𝛽 + 𝛿 − 𝜎 − 2𝜐1)𝛾 − 𝜐12 + (2𝛽 + 𝛿 −

𝜎)𝜐1 + 𝛿𝜎)𝑑𝑐 + ((𝛽 + 𝛿)𝛾 + (𝛽 + 𝛿)𝜐1 + 𝛿𝜎)𝜐2 + 𝛽(𝜐1 + 𝛾)(𝛾𝛼1 + 𝛼2𝜐1 + 𝛿))𝜇 − (𝜐1 + 𝛾)(𝜐1 −

𝛽 + 𝛾 + 𝜎)𝑑𝑐
2 + (−(𝜐1 + 𝛾)(𝜐1 − 𝛽 + 𝛾 + 𝜎)𝜐2 + (𝛽𝛼1 − 𝛿)𝛾2 + ((−𝛿 + (𝛼1 + 𝛼2)𝛽)𝜐1 + 𝛿(𝛽 −

𝜎))𝛾 + (𝛿 + 𝛼2𝜐1)𝛽𝜐1)𝑑𝑐 +  𝛽(𝛾𝛼1 + 𝛼2𝜐1 + 𝛿)𝜐2 + 𝛿𝛾𝛼1)(𝜐1 + 𝛾)(𝛿 + 𝜇 + 𝑑𝑐)(𝜇 + 𝜔)  

The basic reproduction number is computed using the next generation matrix approach. To 

determine the next generation matrix for the model considered in case 3, the following are 

considered: 

1. The number of ways that new infections can arise or be created 

2. The number of ways that infections can be transferred between compartments 

Then 𝐹𝑖 and 𝑉𝑖 are computed as follows: 

𝐹 = [
𝛽 𝛽𝛼1 𝛽𝛼2
0 0 0
0 0 0

] 

 

𝑉 = [

𝜎 + 𝛾 + 𝜐1 0 0
−𝛾 𝑑𝑐 + 𝜇 + 𝜐2 0
−𝜐1 −𝜐2 𝑑𝑐 + 𝜇 + 𝛿

] 
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𝑉−1 =

[
 
 
 
 
 
 

1

𝜎 + 𝛾 + 𝜐1
0 0

𝛾

(𝜎 + 𝛾 + 𝜐1)(𝑑𝑐 + 𝜇 + 𝜐2)

1

𝑑𝑐 + 𝜇 + 𝜐2
0

𝛾𝜐2 + 𝜐1𝜇 + 𝜐1𝑑𝑐 + 𝜐1𝜐2
(𝜎 + 𝛾 + 𝜐1)(𝑑𝑐 + 𝜇 + 𝜐2)(𝑑𝑐 + 𝜇 + 𝛿)

𝜐2
(𝑑𝑐 + 𝜇 + 𝜐2)(𝑑𝑐 + 𝜇 + 𝛿)

1

(𝑑𝑐 + 𝜇 + 𝛿)]
 
 
 
 
 
 

 

 The reproduction number is given by (FV−1), and 

𝑅𝑜 =
𝛽

𝜎+𝛾+𝜐1
+

𝛽𝛼1𝛾

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)
+

𝛽𝛼2(𝛾𝜐2+𝜐1𝜇+𝜐1𝑑𝑐+𝜐1𝜐2)

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)(𝑑𝑐+𝜇+𝛿)  
                               (3.124)  

3.3.3 Local Stability Analysis of the Disease Free Equilibrium 𝑬𝒐 

Theorem 3.3.1:𝐸𝑜 is locally asymptotically stable if 𝑅𝑜< 1 and unstable if 𝑅𝑜> 1. 

Proof: The resulting matrix from the linearized model is 
𝑑𝑋

𝑑𝑡
= 𝐴𝑋 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5,𝑥6)
𝑇 , (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5,𝑥6) ∈ 𝑅+

6 , and 

The resulting Jacobian matrix at 𝐸𝑜 is 

𝐽(𝐸0) =

[
 
 
 
 
 
 
−𝜇− 𝜆 −𝛽+ 𝜎 −𝛽𝛼1 −𝛽𝛼2 0 0
0 𝛽−𝜎− 𝛾− 𝜈1− 𝜆 𝛽𝛼1 𝛽𝛼2 0 0
0 𝛾 −𝑑𝑐−𝜇− 𝜈2−𝜆 0 0 0
0 𝜈1 𝜈2 −𝑑𝑐−𝜇−𝛿− 𝜆 0 0
0 0 0 𝛿 −𝜔−𝜇− 𝜆 0
0 0 0 0 𝜔 −𝜇− 𝜆]

 
 
 
 
 
 

                     (3.125) 

From (3.125) 𝜆1 = −𝜇,  𝜆2 = −𝜔 − 𝜇, 𝜆3 = −𝜇 
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and the resulting quadratic equation is: 

(𝛽 − 𝜎 − 𝛾 − 𝜈1 − 𝜆)(−𝑑𝑐 − 𝜇 − 𝜈2 − 𝜆)(−𝑑𝑐 − 𝜇 − 𝛿 − 𝜆) − 𝛽𝛼1(−𝑑𝑐 − 𝜇 − 𝛿 −

𝜆)𝛾 + 𝛽𝛼2((−𝑑𝑐 − 𝜇 − 𝜈2 − 𝜆)𝜈1 − 𝛾𝜈2)             (3.126) 

𝑓(𝜆) = 𝜆3 + (2𝜇 + 𝜈1 + 𝜈2 − 𝛽 + 𝛿 + 𝛾 + 𝜎 + 2𝑑𝑐)𝜆
2 + (𝛽𝛼2𝜈1 − 𝛽𝛿 − 2𝛽𝜇 −

2𝛽𝑑𝑐 − 𝛽𝜈2 + 𝛿𝛾 + 𝛿𝜇 + 𝛿𝜎 + 𝛿𝑑𝑐 + 𝛿𝜈1 + 𝛿𝜈2 + 2𝛾𝜇 + 2𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇
2 + 2𝜇𝜎 +

2𝜇𝑑𝑐 + 2𝜇𝜈1 + 𝜇𝜈2 + 2𝜎𝑑𝑐 + 𝜎𝜈2 + 𝑑𝑐
2 + 2𝑑𝑐𝜈1 + 𝑑𝑐𝜈2 + 𝜈1𝜈2 − 𝛾𝛽𝛼1)𝜆 + 𝛾𝜇

2 +

𝛾𝑑𝑐
2 + 𝜇2𝜎 + 𝜇2𝜈1 + 𝜎𝑑𝑐

2 + 𝑑𝑐
2𝜈1 + 𝜇𝜎𝜈2 + 2𝜇𝑑𝑐𝜈1 + 𝜇𝜈1𝜈2 + 𝜎𝑑𝑐𝜈2 + 𝑑𝑐𝜈1𝜈2 −

𝛽𝛿𝜇 − 𝛽𝛿𝑑𝑐 − 𝛽𝛿𝜈2 − 2𝛽𝜇𝑑𝑐 − 𝛽𝜇𝜈2 − 𝛽𝑑𝑐𝜈2 − 𝛽𝜇
2 − 𝛽𝑑𝑐

2 + 𝛿𝛾𝜇 + 𝛿𝛾𝑑𝑐 + 𝛿𝛾𝜈2 +

𝛿𝜇𝜎 + 𝛿𝜇𝜈1 + 𝛿𝜎𝑑𝑐 + 𝛿𝜎𝜈2 + 𝛿𝑑𝑐𝜈1 + 𝛿𝜈1𝜈2 + 2𝛾𝜇𝑑𝑐 + 𝛾𝜇𝜈2 + 𝛾𝑑𝑐𝜈2 + 2𝜇𝜎𝑑𝑐 −

𝛽𝛿𝛾𝛼1 − 𝛽𝛾𝜇𝛼1 − 𝛽𝛾𝛼1𝑑𝑐 + 𝜈2𝛾𝛽𝛼2 + 𝜈1𝛽𝛼2𝑑𝑐 + 𝜈1𝛽𝛼2𝜇 + 𝜈1𝛽𝛼2𝜈2           (3.127) 

Now, 𝜆1,𝜆2, 𝜆3< 0   since the values are assumed positive. If 𝑅𝑜< 1, 𝐸𝑜 is stable and unstable 

when 𝑅𝑜> 1. 

3.3.4 Global Stability of the Disease Free Equilibrium 

The global behavior of the equilibrium system (3.111) is analyzed here in this section.  

Theorem 3.3.2: For system (3.111), the disease-free equilibrium 𝐸𝑜 is asymptotically 

stable globally if 𝑅0 < 1. 

Proof: Considering the Lyapunov function defined as: 
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𝐺(𝐴, 𝐶𝑢, 𝐶𝑎) = (
1

𝐵0
) 𝐴 + (

𝛽𝛼1

𝐵0𝐵1
+

𝛽𝛼2𝜐2

𝐵0𝐵1𝐵2
) 𝐶𝑢 + (

𝛽𝛼2

𝐵0𝐵2
) 𝐶𝑎        (3.128) 

G′(𝐴, 𝐶𝑢, 𝐶𝑎) = (
1

𝐵0
)𝐴′ + (

𝛽𝛼1

𝐵0𝐵1
+

𝛽𝛼2𝜐2

𝐵0𝐵1𝐵2
)𝐶𝑢′+ (

𝛽𝛼2

𝐵0𝐵2
) 𝐶𝑎′        (3.129) 

G′(𝐴, 𝐶𝑢, 𝐶𝑎) = (
1

𝐵0
) ((

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 − (𝜎 + 𝛾 + 𝜈1)𝐴) + (

𝛽𝛼1

𝐵0𝐵1
+

𝛽𝛼2𝜐2

𝐵0𝐵1𝐵2
) (𝛾𝐴 −

(𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢) + (
𝛽𝛼2

𝐵0𝐵2
) (𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎)       (3.130) 

At DFE, S=N so that (3.130) becomes: 

G′(𝐴, 𝐶𝑢, 𝐶𝑎) = (
1

𝐵0
) (𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎) − (𝜎 + 𝛾 + 𝜈1)𝐴) + (

𝛽𝛼1

𝐵0𝐵1
+

𝛽𝛼2𝜐2

𝐵0𝐵1𝐵2
) (𝛾𝐴 −

(𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢) + (
𝛽𝛼2

𝐵0𝐵2
) (𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 + 𝜇 + 𝑑𝑐)𝐶𝑎)          (3.131)  

Expanding and simplifying (3.131) gives: 

G′ = [
𝛽

𝐵0
+
𝛽𝛼1𝛾

𝐵0𝐵1
+
𝛽𝛼2𝜐2𝛾

𝐵0𝐵1𝐵2
+
𝛽𝛼2𝜈1

𝐵0𝐵2
− 1]𝑨 + [

𝛽𝛼1

𝐵0
−
𝛽𝛼1𝐵1

𝐵0𝐵1
−
𝛽𝛼2𝜐2𝐵1

𝐵0𝐵1𝐵2
+
𝛽𝛼2𝜈2

𝐵0𝐵2
] 𝐶𝑢 + [

𝛽𝛼2

𝐵0
−

𝛽𝛼2𝐵2

𝐵0𝐵2
] 𝐶𝑎         (3.132) 

𝐺′ = [𝑅0 − 1] 𝐴 ≤ 0         (3.133)  

From Equation (3.133), it can be deduced that the DFE is globally stable since 𝑅0< 1.  

3.3.5 Bifurcation Analysis 
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Here, bifurcation analysis is performed at the disease-free equilibrium by centre manifold 

theory as presented in (Buonomo and Lacitignola, 2011). 

Now, the focus is on the disease-free equilibrium 𝐸0 and investigate the occurrence of the 

transcritical bifurcation at 𝑅0 = 1. 

The Jacobian matrix of equation (3.125) at the disease- free equilibrium 𝐸0 is given by  

𝐽(𝐸0) =

[
 
 
 
 
 
 
−𝜇 −𝛽+𝜎 −𝛽𝛼1 −𝛽𝛼2 0 0
0 𝛽−𝜎− 𝛾− 𝜈1 𝛽𝛼1 𝛽𝛼2 0 0
0 𝛾 −𝑑𝑐−𝜇− 𝜈2 0 0 0
0 𝜈1 𝜈2 −𝑑𝑐−𝜇− 𝛿 0 0
0 0 0 𝛿 −𝜔−𝜇 0
0 0 0 0 𝜔 −𝜇]

 
 
 
 
 
 

         (3.134) 

The Centre Manifold theorem as stated in theorem 1.4 is now applied to determine if the 

model system (3.111) exhibit a backward or forward bifurcation at 𝑅0 = 1 as follows: 

Recall that  

𝑅0 =
𝛽

𝜎+𝛾+𝜐1
+

𝛽𝛼1𝛾

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)
+

𝛽𝛼2(𝛾𝜐2+𝜐1𝜇+𝜐1𝑑𝑐+𝜐1𝜐2)

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)(𝑑𝑐+𝜇+𝛿)
  

Let  𝛽 =𝛽∗ be a bifurcation parameter and if the case 𝑅0 = 1is considered.  

By solving for 𝛽 = 𝛽∗, then 

𝛽

𝜎+𝛾+𝜐1
+

𝛽𝛼1𝛾

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)
+

𝛽𝛼2(𝛾𝜐2+𝜐1𝜇+𝜐1𝑑𝑐+𝜐1𝜐2)

(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)(𝑑𝑐+𝜇+𝛿)
= 1   (3.135) 
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𝛽 = 𝛽∗ =
(𝜎+𝛾+𝜐1)(𝑑𝑐+𝜇+𝜐2)(𝑑𝑐+𝜇+𝛿)

𝛼1𝛾(𝑑𝑐+𝜇+𝛿)+𝛼2𝛾𝜐2+𝛼2(𝑑𝑐+𝜇+𝜐2)𝜐1+(𝑑𝑐+𝜇+𝜐2)(𝑑𝑐+𝜇+𝛿)
   (3.136) 

The Jacobian matrix of equation (3.111) at the disease-free equilibrium 𝐸0, 𝛽
∗ is given by  

𝐽(𝐸0, 𝛽
∗) =

[
 
 
 
 
 
 
 −𝜇 −𝛽

∗
+𝜎 −𝛽

∗
𝛼1 −𝛽

∗
𝛼2 0 0

0 𝛽
∗
−𝜎−𝛾− 𝜈1 𝛽

∗
𝛼1 𝛽

∗
𝛼2 0 0

0 𝛾 −𝑑𝑐−𝜇− 𝜈2 0 0 0
0 𝜈1 𝜈2 −𝑑𝑐−𝜇−𝛿 0 0
0 0 0 𝛿 −𝜔−𝜇 0
0 0 0 0 𝜔 −𝜇]

 
 
 
 
 
 
 

 (3.137) 

The characteristic equation of (3.137) has a simple zero eigenvalue i.e.  

|𝐽(𝐸0, 𝛽
∗) − 𝜆I| = 0        (3.138) 

𝜆1 = −𝜇, 𝜆2 = −𝜔 − 𝜇, 𝜆3 = −𝜇 and the resulting quadratic equation is:              

f(λ) = λ3 + (2μ + ν1 + ν2 − β ∗ +δ + γ + σ + 2dc)λ
2 + (β ∗ α2ν1 − β ∗ δ − 2β ∗ μ −

2β ∗ dc − β ∗ ν2 + δγ + δμ + δσ + δdc + δν1 + δν2 + 2γμ + 2γdc + γν2 + μ
2 + 2μσ +

2μdc + 2μν1 + μν2 + 2σdc + σν2 + dc
2 + 2dcν1 + dcν2 + ν1ν2 − γβ ∗ α1)λ     (3.139)  

Equation (3.139) gives three negative eigenvalues as its roots (by Descartes rule of signs). 

Thus, 𝜆4 = 0 is a simple zero eigenvalue and the other eigenvalues are real and negative, 

then the assumptions of theorem 1.4 (Centre Manifold theorem) is then verified. 

Furthermore, the right eigenvector associated with the zero eigenvalue 𝜆3 = 0 given by  

𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6)
𝑇 are obtained as follows:  
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[
 
 
 
 
 
−𝜇 −𝛽∗ + 𝜎 −𝛽∗𝛼1 −𝛽∗𝛼2 0 0
0 𝛽∗ − 𝜎 − 𝛾 − 𝜈1 𝛽∗𝛼1 𝛽∗𝛼2 0 0
0 𝛾 −𝑑𝑐 − 𝜇 − 𝜈2 0 0 0
0 𝜈1 𝜈2 −𝑑𝑐 − 𝜇 − 𝛿 0 0
0 0 0 𝛿 −𝜔 − 𝜇 0
0 0 0 0 𝜔 −𝜇]

 
 
 
 
 

[
 
 
 
 
 
𝑤1
𝑤2
𝑤3
𝑤4
𝑤5
𝑤6]
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 (3.140) 

 

−𝜇𝑤1 + (−𝛽
∗ + 𝜎)𝑤2 + (−𝛽

∗𝛼1)𝑤3 + (−𝛽
∗𝛼2)𝑤4 = 0    (3.141) 

(𝛽∗ − 𝜎 − 𝛾 − 𝜈1)𝑤2 + (𝛽
∗𝛼1)𝑤3 + (𝛽

∗𝛼2)𝑤4 = 0     (3.142) 

𝛾𝑤2 + (−𝑑𝑐 − 𝜇 − 𝜈2)𝑤3 = 0       (3.143) 

𝜈1𝑤2 + 𝜈2𝑤3 + (−𝑑𝑐 − 𝜇 − 𝛿)𝑤4 = 0      (3.144) 

𝛿𝑤4 + (−𝜔 − 𝜇)𝑤5 = 0        (3.145) 

𝜔𝑤5 + (−𝜇)𝑤6 = 0         (3.146) 

Solving equations (3.141) - (3.146) simultaneously gives: 

𝑤1 = −
1

𝛾𝜇
(𝛾𝜇 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3 

𝑤2 =
(𝑑𝑐 + 𝜇 + 𝜈2)𝑤3

𝛾
 

𝑤4 =
(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3

(𝑑𝑐 + 𝜇 + 𝛿)𝛾
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𝑤5 =
𝛿(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3

(𝜔 + 𝜇)(𝑑𝑐 + 𝜇 + 𝛿)𝛾
 

𝑤6 =
𝛿𝜔(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3

(𝜔 + 𝜇)𝜇(𝑑𝑐 + 𝜇 + 𝛿)𝛾
 

 

Therefore, 

𝑤

=

(

 
 

−
1

𝛾𝜇
(𝛾𝜇 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3,

(𝑑𝑐 + 𝜇 + 𝜈2)𝑤3
𝛾

,𝑤3

(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3
(𝑑𝑐 + 𝜇 + 𝛿)𝛾

,
𝛿(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3

(𝜔 + 𝜇)(𝑑𝑐 + 𝜇 + 𝛿)𝛾
,
𝛿𝜔(𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝑤3

(𝜔 + 𝜇)𝜇(𝑑𝑐 + 𝜇 + 𝛿)𝛾 )

 
 

𝑇

 

where 𝑤3 > 0 is a free right eigenvector. 

Similarly, the left eigenvector associated with the zero eigenvalue is computed as follows: 

Let the left eigenvector associated with the zero eigenvalue 𝜆3 = 0 given by 

𝑙 = (𝑙1, 𝑙2, 𝑙3, 𝑙4,, 𝑙5, 𝑙6) 

then, 

𝑙

[
 
 
 
 
 
 
 −𝜇 −𝛽

∗
+𝜎 −𝛽

∗
𝛼1 −𝛽

∗
𝛼2 0 0

0 𝛽
∗
−𝜎−𝛾− 𝜈1 𝛽

∗
𝛼1 𝛽

∗
𝛼2 0 0

0 𝛾 −𝑑𝑐−𝜇− 𝜈2 0 0 0
0 𝜈1 𝜈2 −𝑑𝑐− 𝜇−𝛿 0 0
0 0 0 𝛿 −𝜔−𝜇 0
0 0 0 0 𝜔 −𝜇]

 
 
 
 
 
 
 

 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 (3.147) 
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𝑙1(−𝜇) = 0          (3.148) 

𝑙1(−𝛽
∗ + 𝜎) + 𝑙2(𝛽

∗ − 𝜎 − 𝛾 − 𝜈1) + 𝑙3𝛾 + 𝑙4𝜈1 = 0    (3.149) 

𝑙1(−𝛽
∗𝛼1) + 𝑙2(𝛽

∗𝛼1) + 𝑙3(−𝑑𝑐 − 𝜇 − 𝜈2) + 𝑙4𝜈2 = 0    (3.150) 

𝑙1(−𝛽
∗𝛼2) + 𝑙2(𝛽

∗𝛼2) + 𝑙4(−𝑑𝑐 − 𝜇 − 𝛿) + 𝑙5(𝛿) = 0    (3.151) 

𝑙5(−𝜔 − 𝜇) + 𝑙6(𝜔) = 0        (3.152) 

𝑙6(−𝜇) = 0          (3.153) 

The simultaneous solution of equations (3.148) - (3.153) yields: 

𝑙1 = 0, 𝑙2 =

(
𝛿𝛾𝛼1 + 𝛾𝜇𝛼1 + 𝛾𝛼1𝑑𝑐 + 𝛾𝛼2𝜈2 + 𝜇𝛼2𝜈1 + 𝛼2𝜈1𝑑𝑐 + 𝛼2𝜈1𝜈2

+𝜇𝛿 + 𝛿𝑑𝑐 + 𝛿𝜈2 + 𝜇
2 + 2𝜇𝑑𝑐 + 𝜇𝜈2 + 𝑑𝑐

2 + 𝑑𝑐𝜈2
) 𝑙4

𝛾𝜇 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2
, 𝑙3

=
(𝛿𝛼1 + 𝜇𝛼1 + 𝛼1𝑑𝑐 + 𝛼2𝜈2)𝑙4

𝛼2(𝑑𝑐 + 𝜇 + 𝜈2)
, 𝑙4 = 𝑙4, 𝑙5 = 0, 𝑙6=0 

therefore, 

𝑙 =

[
 
 
 
 
 

0,

(
𝛿𝛾𝛼1 + 𝛾𝜇𝛼1 + 𝛾𝛼1𝑑𝑐 + 𝛾𝛼2𝜈2 + 𝜇𝛼2𝜈1 + 𝛼2𝜈1𝑑𝑐 + 𝛼2𝜈1𝜈2

+𝜇𝛿 + 𝛿𝑑𝑐 + 𝛿𝜈2 + 𝜇
2 + 2𝜇𝑑𝑐 + 𝜇𝜈2 + 𝑑𝑐

2 + 𝑑𝑐𝜈2
) 𝑙4

𝛾𝜇 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇𝜈1 + 𝑑𝑐𝜈1 + 𝜈1𝜈2
,

(𝛿𝛼1 + 𝜇𝛼1 + 𝛼1𝑑𝑐 + 𝛼2𝜈2)𝑙4
𝛼2(𝑑𝑐 + 𝜇 + 𝜈2)

, 0,0
]
 
 
 
 
 

 

where 𝑙4 > 0 is a free left eigenvector. 

3.3.5.1 The Computation of the Coefficient 𝒂 and 𝒃 for Model Case 3 

The coefficients (as defined in theorem 1.4): 
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𝑎 = ∑ 𝑙𝑚𝑤𝑖𝑤𝑗
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕𝑥𝑗

6

𝑚,𝑖,𝑗=1

, 𝑏 = ∑ 𝑙𝑚𝑤𝑖
𝜕2𝑓𝑚(𝐸0, 𝛽

∗)

𝜕𝑥𝑖𝜕φ

6

𝑚,𝑖,𝑗=1

 

may now be explicitly computed taking into account of system (3.111) and considering 

only the nonzero components of the left eigenvector 𝑙 it follows that: 

𝑆 = 𝑥1, 𝐴 = 𝑥2,𝐶𝑢 = 𝑥3, 𝐶𝑎 = 𝑥4, 𝑇𝑐 = 𝑥5, 𝑅 = 𝑥6 

Furthermore, introducing the vector  𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)
𝑇 , then the model in system 

(3.111) can now be written in the form 

𝑑𝑋

𝑑𝑡
= 𝑓(𝑥) , where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)

𝑇 

It implies that system (3.111) can be written in term of the new variables as: 

dx1
𝑑𝑡

= 𝑓1 = 𝛱 − (
𝛽(𝑥2 + 𝛼1𝑥3 + 𝛼2𝑥4)

𝑁
)𝑥1 + 𝜎𝑥2 − 𝜇𝑥1 

dx2
𝑑𝑡

= 𝑓2 = (
𝛽(𝑥2 + 𝛼1𝑥3 + 𝛼2𝑥4)

𝑁
)𝑥1 − (𝜎 + 𝛾 + 𝜈1)𝑥2 

dx3

𝑑𝑡
= 𝑓3 = 𝛾𝑥2 − (𝜈2 + 𝜇 + 𝑑𝑐)𝑥3       (3.154) 

dx4
𝑑𝑡

= 𝑓4 = 𝜈2𝑥3 + 𝜈1𝑥2 − (𝛿 + 𝜇 + 𝑑𝑐)𝑥4 

dx5
𝑑𝑡

= 𝑓5 = 𝛿𝑥4 − (𝜔 + 𝜇)𝑥5 

dx6
𝑑𝑡

= 𝑓6 = 𝜔𝑥5 − 𝜇𝑥6 
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a = −
1

(x1+x2+x3+x4+x5+x6)3
(2𝛽∗𝑙2(ω1x2 + ω1x3 + ω1x4 + ω1x5 + ω1x6 − ω2x1 −

ω3x1 − ω4x1 − ω5x1 − ω6x1)(𝛼1ω
1
x3 + 𝛼1ω

2
x3 − 𝛼1ω3x1 − 𝛼1ω3x2 − 𝛼1ω3x4 −

𝛼1ω3x5 − 𝛼1ω3x6 + 𝛼1ω4x3 + 𝛼1ω5x3 + 𝛼1ω6x3 + 𝛼2ω1x4 + 𝛼2ω2x4 + 𝛼2ω3x4 −

𝛼2ω4x1 − 𝛼2ω4x2 − 𝛼2ω4x3 − 𝛼2ω4x5 − 𝛼2ω4x6)) + 𝛼2ω5x4 + 𝛼2ω6x4 + ω1x2 −

ω2x1 − ω2x3 − ω2x4 − ω2x5 − ω6x2 + ω3x2 + ω4x2 + ω5x2 + ω6x2  

b =
(
𝛿𝛾𝛼1+𝛾𝜇𝛼1+𝛾𝛼1𝑑𝑐+𝛾𝛼2𝜈2+𝜇𝛼2𝜈1+𝛼2𝜈1𝑑𝑐+𝛼2𝜈1𝜈2

+𝜇𝛿+𝛿𝑑𝑐+𝛿𝜈2+𝜇
2+2𝜇𝑑𝑐+𝜇𝜈2+𝑑𝑐

2+𝑑𝑐𝜈2
)𝑙4((𝑑𝑐+𝜇+𝜈2)ω3)

((𝛾𝜇+𝛾𝑑𝑐+𝛾𝜈2+𝜇𝜎+𝜇𝜈1+𝜎𝑑𝑐+𝜎𝜈2+𝑑𝑐𝜈1+𝜈1𝜈2)𝛾𝛼2)
+

(
𝛿𝛾𝛼1+𝛾𝜇𝛼1+𝛾𝛼1𝑑𝑐+𝛾𝛼2𝜈2+𝜇𝛼2𝜈1+𝛼2𝜈1𝑑𝑐+𝛼2𝜈1𝜈2

+𝜇𝛿+𝛿𝑑𝑐+𝛿𝜈2+𝜇
2+2𝜇𝑑𝑐+𝜇𝜈2+𝑑𝑐

2+𝑑𝑐𝜈2
)𝑙4(ω3𝛼1)

((𝛾𝜇+𝛾𝑑𝑐+𝛾𝜈2+𝜇𝜎+𝜇𝜈1+𝜎𝑑𝑐+𝜎𝜈2+𝑑𝑐𝜈1+𝜈1𝜈2)𝛼2)
+

(
𝛿𝛾𝛼1+𝛾𝜇𝛼1+𝛾𝛼1𝑑𝑐+𝛾𝛼2𝜈2+𝜇𝛼2𝜈1+𝛼2𝜈1𝑑𝑐+𝛼2𝜈1𝜈2

+𝜇𝛿+𝛿𝑑𝑐+𝛿𝜈2+𝜇
2+2𝜇𝑑𝑐+𝜇𝜈2+𝑑𝑐

2+𝑑𝑐𝜈2
)𝑙4((𝛾𝜈2+𝜇𝜈1+𝑑𝑐𝜈1+𝜈1𝜈2)ω3)

((𝛾𝜇+𝛾𝑑𝑐+𝛾𝜈2+𝜇𝜎+𝜇𝜈1+𝜎𝑑𝑐+𝜎𝜈2+𝑑𝑐𝜈1+𝜈1𝜈2)(𝑑𝑐+𝜇+𝛿)𝛾)
  

The coefficient b is always positive so that according to theorem 1.4, it is the sign of the 

coefficient a that decides the local dynamics around the disease-free equilibrium for 𝛽 =

𝛽∗. Thus, the following result is established. 

Theorem 3.3.3: The unique equilibrium 𝐸∗is locally asymptotically stable for 𝑅0 > 1. 

Since 𝑎 < 0, locally stability of 𝐸∗implies its global stability 

3.3.6 Local Stability of Endemic Equilibrium 

Theorem 3.3.4: If 𝑅0 > 1, then the endemic equilibrium is locally asymptotically stable. 
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Proof: 

The endemic equilibria of system (3.111), denoted by(𝑆∗, 𝐴∗, 𝐶𝑢
∗, 𝐶𝑎

∗, 𝑇𝑐
∗, 𝑅∗),can be 

rewritten as: 

Let S = x + 𝑆∗, 𝐴 = 𝑦 + 𝐴∗, 𝐶𝑢 = 𝑧 + 𝐶𝑢
∗, 𝐶𝑎 = ℎ + 𝐶𝑎

∗, 𝑇𝑐 = 𝑝 + 𝑇𝑐
∗, 𝑅 = 𝑗 + 𝑅∗ 

𝐽 =

[
 
 
 
 
 
𝐵0 − 𝜇 − 𝜆 −𝐵1 + 𝜎 −𝐵2 −𝐵3 𝐵4 𝐵5

−𝐵6 𝐵7 − 𝜎 − 𝛾 − 𝜈1 − 𝜆 𝐵8 𝐵9 −𝐵11 −𝐵12

0 𝛾 −𝑑𝑐 − 𝜇 − 𝜈2 − 𝜆 0 0 0

0 𝜈1 𝜈2 −𝑑𝑐 − 𝜇 − 𝛿 − 𝜆 0 0

0 0 0 𝛿 −𝜔 − 𝜇 − 𝜆 0

0 0 0 0 𝜔 −𝜇 − 𝜆]
 
 
 
 
 

(3.155) 

From (3.155), 𝜆1 = −𝜇, 𝜆2 = −(𝜔 + 𝜇), 𝜆3 = −(𝑑𝑐 + 𝜇 + 𝜈2),then; 

𝐽 = [

𝐵0 − 𝜇 − 𝜆 −𝐵1 + 𝜎 −𝐵2
−𝐵6 𝐵7 − 𝜎 − 𝛾 − 𝜈1 − 𝜆 𝐵8
0 𝛾 −𝑑𝑐 − 𝜇 − 𝜈2 − 𝜆

]             (3.156) 

from (3.156); 

𝜆3 + (𝛾 + 2𝜇 + 𝜎 − 𝐵0 − 𝐵4 + 𝑑𝑐 + 𝜈1 + 𝜈2)𝜆
2 + (2𝛾𝜇 − 𝐵0𝛾 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇

2 +

2𝜇𝜎 − 𝜇𝐵0 − 2𝜇𝐵4 + 𝜇𝑑𝑐 + 2𝜇𝜈1 + 𝜇𝜈2 − 𝜎𝐵0 + 𝜎𝐵3 + 𝜎𝑑𝑐 + 𝜎𝜈2 + 𝐵0𝐵4 − 𝐵0𝑑𝑐 −

𝐵0𝜈1 − 𝐵0𝜈2 − 𝐵3𝐵1 − 𝐵4𝑑𝑐 − 𝐵4𝜈2 + 𝑑𝑐𝜈1 + 𝜈1𝜈2)𝜆 + 𝐵5𝛾 + 𝛾𝜇𝜈2 + 𝜇𝜎𝜈2 + 𝜇𝜈1𝜈2 +

𝐵3𝐵2𝛾 + 𝛾𝜇
2 + 𝜇2𝜎 + 𝜇2𝜈1 + 𝜇𝑑𝑐𝜈1 + 𝛾𝜇𝑑𝑐 + 𝜇𝜎𝑑𝑐 − 𝜇

2𝐵4 − 𝛾𝜇𝐵0 − 𝛾𝐵0𝑑𝑐 −

𝛾𝐵0𝜈2 − 𝜇𝜎𝐵0 + 𝜇𝜎𝐵3 + 𝜇𝐵0𝐵4 − 𝜇𝐵0𝜈1 − 𝜇𝐵3𝐵1 − 𝜇𝐵4𝑑𝑐 − 𝜇𝐵4𝜈2 − 𝜎𝐵0𝑑𝑐 −

𝜎𝐵0𝜈2 + 𝜎𝐵3𝑑𝑐 + 𝜎𝐵3𝜈2 + 𝐵0𝐵4𝑑𝑐 + 𝐵0𝐵4𝜈2 − 𝐵0𝑑𝑐𝜈1 − 𝐵0𝜈1𝜈2 − 𝐵3𝐵1𝑑𝑐 − 𝐵3𝐵1𝜈2  

The result of the determinant of the Jacobian matrix is of the form: 
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𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3                 (3.157)  

where 

𝑎0 = 1 

𝑎1 = 𝛾 + 2𝜇 + 𝜎 − 𝐵0 − 𝐵4 + 𝑑𝑐 + 𝜈1 + 𝜈2 

𝑎2 = 2𝛾𝜇 − 𝐵0𝛾 + 𝛾𝑑𝑐 + 𝛾𝜈2 + 𝜇
2 + 2𝜇𝜎 − 𝜇𝐵0 − 2𝜇𝐵4 + 𝜇𝑑𝑐 + 2𝜇𝜈1 + 𝜇𝜈2 − 𝜎𝐵0 +

𝜎𝐵3 + 𝜎𝑑𝑐 + 𝜎𝜈2 + 𝐵0𝐵4 − 𝐵0𝑑𝑐 − 𝐵0𝜈1 − 𝐵0𝜈2 − 𝐵3𝐵1 − 𝐵4𝑑𝑐 − 𝐵4𝜈2 + 𝑑𝑐𝜈1 + 𝜈1𝜈2  

𝑎3 = 𝐵5𝛾 + 𝛾𝜇𝜈2 + 𝜇𝜎𝜈2 + 𝜇𝜈1𝜈2 + 𝐵3𝐵2𝛾 + 𝛾𝜇
2 + 𝜇2𝜎 + 𝜇2𝜈1 + 𝜇𝑑𝑐𝜈1 + 𝛾𝜇𝑑𝑐 +

𝜇𝜎𝑑𝑐 − 𝜇
2𝐵4 − 𝛾𝜇𝐵0 − 𝛾𝐵0𝑑𝑐 − 𝛾𝐵0𝜈2 − 𝜇𝜎𝐵0 + 𝜇𝜎𝐵3 + 𝜇𝐵0𝐵4 − 𝜇𝐵0𝜈1 − 𝜇𝐵3𝐵1 −

𝜇𝐵4𝑑𝑐 − 𝜇𝐵4𝜈2 − 𝜎𝐵0𝑑𝑐 − 𝜎𝐵0𝜈2 + 𝜎𝐵3𝑑𝑐 + 𝜎𝐵3𝜈2 + 𝐵0𝐵4𝑑𝑐 + 𝐵0𝐵4𝜈2 − 𝐵0𝑑𝑐𝜈1 −

𝐵0𝜈1𝜈2 − 𝐵3𝐵1𝑑𝑐 − 𝐵3𝐵1𝜈2  

By Routh-Hurwitz criterion governing the polynomials of order 3, we have the following: 

1. 𝑎2. 𝑎3are positive 

2. 𝑎1𝑎2 > 𝑎3 

From equation (3.157)1 and 2 are satisfied. 

Therefore, endemic equilibrium is locally asymptotically stable. 
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3.3.7 Global Stability of the Endemic Equilibrium 

Theorem 3.3.5: The equations of the model have a positive distinctive endemic 

equilibrium whenever 𝑅0> 1, which is said to be globally asymptotically stable. 

Proof: Considering the Lyapunov function defined as: 

𝐿(𝑆∗, 𝐴∗, 𝐶𝑢
∗, 𝐶𝑎

∗, 𝑇𝑐
∗, 𝑅∗) = (𝑆 − 𝑆∗ 𝑙𝑛 (

𝑆

𝑆∗
)) + (𝐴 − 𝐴∗ 𝑙𝑛 (

𝐴

𝐴∗
)) + (𝐶𝑢 −

𝐶𝑢
∗ 𝑙𝑛 (

𝐶𝑢

𝐶𝑢
∗)) + (𝐶𝑎 − 𝐶𝑎

∗ 𝑙𝑛 (
𝐶𝑎

𝐶𝑎
∗)) + (𝑇𝑐 − 𝑇𝑐

∗ 𝑙𝑛 (
𝑇𝑐

𝑇𝑐
∗)) + (𝑅 − 𝑅

∗ 𝑙𝑛 (
𝑅

𝑅∗
))   (3.158) 

where L takes it derivative along the system directly as: 

𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝐴∗

𝐴
)
𝑑𝐴

𝑑𝑡
+ (1 −

𝐶𝑢
∗

𝐶𝑢
)
𝑑𝐶𝑢

𝑑𝑡
+ (1 −

𝐶𝑎
∗

𝐶𝑎
)
𝑑𝐶𝑎

𝑑𝑡
+ (1 −

𝑇𝑐
∗

𝑇𝑐
)
𝑑𝑇𝑐

𝑑𝑡
+ (1 −

𝑅∗

𝑅
)
𝑑𝑅

𝑑𝑡
                  (3.159) 

𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
) [𝛱 − (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 + 𝜎𝐴 − 𝜇𝑆] + (1 −

𝐴∗

𝐴
) [(

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 −

(𝜎 + 𝛾 + 𝜈1)𝐴] + (1 −
𝐶𝑢

∗

𝐶𝑢
) [𝛾𝐴 − (𝜈2 + 𝜇 + 𝑑𝑐)𝐶𝑢] + (1 −

𝐶𝑎
∗

𝐶𝑎
) [𝜈2𝐶𝑢 + 𝜈1𝐴 − (𝛿 +

𝜇 + 𝑑𝑐)𝐶𝑎] + (1 −
𝑇𝑐
∗

𝑇𝑐
) [𝛿𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐] + (1 −

𝑅∗

𝑅
) [𝜔𝑇𝑐 − 𝜇𝑅]                       (3.160) 

At equilibrium, 
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𝛱 = (
𝛽(𝐴∗+𝛼1𝐶𝑢∗+𝛼2𝐶𝑎∗)

𝑁∗
) 𝑆 ∗ −𝜎𝐴 ∗ +𝜇𝑆 ∗ 

(𝜎 + 𝛾 + 𝜈1) = (
𝛽(𝐴∗+𝛼1𝐶𝑢∗+𝛼2𝐶𝑎∗)

𝐴𝑁∗
) 𝑆 ∗  

(𝜈2 + 𝜇 + 𝑑𝑐) =
𝛾𝐴∗

𝐶𝑢∗
                          (3.161)  

(𝛿 + 𝜇 + 𝑑𝑐) =
𝜈2𝐶𝑢 ∗

𝐶𝑎 ∗
+
𝜈1𝐴 ∗

𝐶𝑎 ∗
 

(𝜔 + 𝜇) =
𝛿𝐶𝑎 ∗

𝑇𝑐 ∗
 

𝜔 =
𝜇𝑅 ∗

𝑇𝑐 ∗
 

𝑑𝐿

𝑑𝑡
= (1 −

𝑆∗

𝑆
) [(

𝛽(𝐴∗+𝛼1𝐶𝑢∗+𝛼2𝐶𝑎∗)

𝑁∗
) 𝑆 ∗ −𝜎𝐴 ∗ +𝜇𝑆 ∗ −(

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 + 𝜎𝐴 −

𝜇𝑆] + (1 −
𝐴∗

𝐴
) [(

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 − (

𝛽(𝐴∗+𝛼1𝐶𝑢∗+𝛼2𝐶𝑎∗)

𝐴𝑁∗
) 𝑆 ∗ 𝐴] + (1 −

𝐶𝑢
∗

𝐶𝑢
) [𝛾𝐴 −

𝛾𝐴∗

𝐶𝑢∗
𝐶𝑢] + (1 −

𝐶𝑎
∗

𝐶𝑎
) [𝜈2𝐶𝑢 + 𝜈1𝐴 −

𝜈2𝐶𝑢∗

𝐶𝑎∗
+
𝜈1𝐴∗

𝐶𝑎∗
𝐶𝑎] + (1 −

𝑇𝑐
∗

𝑇𝑐
) [𝛿𝐶𝑎 −

𝛿𝐶𝑎∗

𝑇𝑐∗
𝑇𝑐] + (1 −

𝑅∗

𝑅
) [

𝜇𝑅∗

𝑇𝑐∗
𝑇𝑐 − 𝜇𝑅]  

= (1 −
𝑆∗

𝑆
) [

𝛽𝐴∗𝑆∗

𝑁∗
+
𝛽𝛼1𝐶𝑢∗𝑆∗

𝑁∗
+
𝛽𝛼2𝐶𝑎∗𝑆∗

𝑁∗
− 𝜎𝐴 ∗ +𝜇𝑆 ∗ −

𝛽𝐴𝑆

𝑁
−
𝛽𝛼1𝐶𝑢𝑆

𝑁
−
𝛽𝛼2𝐶𝑎𝑆

𝑁
+ 𝜎𝐴 −

𝜇𝑆] + (1 −
𝐴∗

𝐴
) [

𝛽𝐴𝑆

𝑁
−
𝛽𝐴𝑆∗

𝑁∗
+
𝛽𝛼1𝐶𝑢𝑆

𝑁
−
𝛽𝛼1𝐶𝑢∗𝑆∗𝐴

𝐴∗𝑁∗
+
𝛽𝛼2𝐶𝑎𝑆

𝑁
−
𝛽𝛼2𝐶𝑎∗𝑆∗𝐴

𝐴∗𝑁∗
] + (1 −

𝐶𝑢
∗

𝐶𝑢
) 𝛾𝐴 [1 −

𝐴∗𝐶𝑢

𝐴𝐶𝑢∗
] + (1 −

𝐶𝑎
∗

𝐶𝑎
) [𝜈2𝐶𝑢 (1 −

𝐶𝑢
∗𝐶𝑎

𝐶𝑢𝐶𝑎∗
) + 𝜈1𝐴 (1 −

𝐴∗𝐶𝑎

𝐴𝐶𝑎∗
)] + 𝛿𝐶𝑎 (1 −

𝑇𝑐
∗

𝑇𝑐
) [1 −

𝐶𝑎∗𝑇𝑐

𝐶𝑎𝑇𝑐∗
] − 𝜇𝑅 (1 −

𝑅∗

𝑅
) [1 −

𝑅∗𝑇𝑐

𝑅𝑇𝑐∗
]               (3.162) 
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= (1 −
𝑆∗

𝑆
) [−

𝛽𝐴𝑆

𝑁
(1 −

𝐴∗𝑆∗𝑁

𝐴𝑆𝑁∗
) −

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝐶𝑢∗𝑆∗𝑁

𝐶𝑢𝑆𝑁∗
) +

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝐶𝑎∗𝑆∗𝑁

𝐶𝑎𝑆𝑁∗
) − 𝜎𝐴 (1 −

𝐴∗

𝐴
) − 𝜇𝑆 − (1 −

𝑆∗

𝑆
)] + (1 −

𝐴∗

𝐴
) [

𝛽𝐴𝑆

𝑁
(1 −

𝐴∗𝑆∗𝑁

𝐴𝑆𝑁∗
) −

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝐶𝑢∗𝑆∗𝐴𝑁

𝐶𝑢𝑆𝐴∗𝑁∗
) +

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝐶𝑎∗𝑆∗𝐴𝑁

𝐶𝑎𝑆𝐴∗𝑁∗
)] + (1 −

𝐶𝑢
∗

𝐶𝑢
) 𝛾𝐴 [1 −

𝐴∗𝐶𝑢

𝐴𝐶𝑢∗
] + (1 −

𝐶𝑎
∗

𝐶𝑎
) [𝜈2𝐶𝑢 (1 −

𝐶𝑢
∗𝐶𝑎

𝐶𝑢𝐶𝑎∗
) + 𝜈1𝐴 (1 −

𝐴∗𝐶𝑎

𝐴𝐶𝑎∗
)] +

𝛿𝐶𝑎 (1 −
𝑇𝑐
∗

𝑇𝑐
) [1 −

𝐶𝑎∗𝑇𝑐

𝐶𝑎𝑇𝑐∗
] − 𝜇𝑅 (1 −

𝑅∗

𝑅
) [1 −

𝑅∗𝑇𝑐

𝑅𝑇𝑐∗
]                (3.163) 

= −𝜇𝑆 (1 −
𝑆∗

𝑆
)
2

−
𝛽𝐴𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐴∗𝑆∗𝑁

𝐴𝑆𝑁∗
) −

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐶𝑢∗𝑆∗𝑁

𝐶𝑢𝑆𝑁∗
) −

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐶𝑎∗𝑆∗𝑁

𝐶𝑎𝑆𝑁∗
) − 𝜎𝐴 (1 −

𝑆∗

𝑆
) (1 −

𝐴∗

𝐴
) +

𝛽𝐴𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝑆∗𝑁

𝑆𝑁∗
) +

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝐶𝑢∗𝑆∗𝐴𝑁

𝐶𝑢𝑆𝐴∗𝑁∗
) +

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝐶𝑎∗𝑆∗𝐴𝑁

𝐶𝑎𝑆𝐴∗𝑁∗
) + 𝜎𝐴 (1 −

𝐶𝑢
∗

𝐶𝑢
) (1 −

𝐴∗𝐶𝑢

𝐴𝐶𝑢∗
) + 𝜈2𝐶𝑢 (1 −

𝐶𝑎
∗

𝐶𝑎
) (1 −

𝐶𝑢
∗𝐶𝑎

𝐶𝑢𝐶𝑎∗
) + 𝜈1𝐴(1 −

𝐶𝑎
∗

𝐶𝑎
) (1 −

𝐴∗𝐶𝑎

𝐴𝐶𝑎∗
) +  𝛿𝐶𝑎 (1 −

𝑇𝑐
∗

𝑇𝑐
) (1 −

𝐶𝑎∗𝑇𝑐

𝐶𝑎𝑇𝑐∗
) − 𝜇𝑅 (1 −

𝑅∗

𝑅
) (1 −

𝑅∗𝑇𝑐

𝑅𝑇𝑐∗
)  

= −𝜇𝑆 (1 −
𝑆∗

𝑆
)
2

+ 𝑃1(𝑆, 𝐴, 𝐶𝑎, 𝐶𝑢, 𝑇𝑐, 𝑅) + 𝑃2(𝑆, 𝐴, 𝐶𝑎, 𝐶𝑢, 𝑇𝑐, 𝑅)                    (3.164) 

where, 

𝑃1(𝑆, 𝐴, 𝐶𝑎, 𝐶𝑢, 𝑇𝑐, 𝑅) = −
𝛽𝐴𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐴∗𝑆∗𝑁

𝐴𝑆𝑁∗
) −

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐶𝑢∗𝑆∗𝑁

𝐶𝑢𝑆𝑁∗
) −

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝑆∗

𝑆
) (1 −

𝐶𝑎∗𝑆∗𝑁

𝐶𝑎𝑆𝑁∗
) − 𝜎𝐴 (1 −

𝑆∗

𝑆
) (1 −

𝐴∗

𝐴
) − 𝜇𝑅 (1 −

𝑅∗

𝑅
) (1 −

𝑅∗𝑇𝑐

𝑅𝑇𝑐∗
)  
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𝑃2(𝑆, 𝐴, 𝐶𝑎, 𝐶𝑢, 𝑇𝑐, 𝑅) =
𝛽𝐴𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝑆∗𝑁

𝑆𝑁∗
) +

𝛽𝛼1𝐶𝑢𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝐶𝑢∗𝑆∗𝐴𝑁

𝐶𝑢𝑆𝐴∗𝑁∗
) +

𝛽𝛼2𝐶𝑎𝑆

𝑁
(1 −

𝐴∗

𝐴
) (1 −

𝐶𝑎∗𝑆∗𝐴𝑁

𝐶𝑎𝑆𝐴∗𝑁∗
) + 𝜎𝐴 (1 −

𝐶𝑢
∗

𝐶𝑢
) (1 −

𝐴∗𝐶𝑢

𝐴𝐶𝑢∗
) + 𝜈2𝐶𝑢 (1 −

𝐶𝑎
∗

𝐶𝑎
) (1 −

𝐶𝑢
∗𝐶𝑎

𝐶𝑢𝐶𝑎∗
) + 𝜈1𝐴 (1 −

𝐶𝑎
∗

𝐶𝑎
) (1 −

𝐴∗𝐶𝑎

𝐴𝐶𝑎∗
) + 𝛿𝐶𝑎 (1 −

𝑇𝑐
∗

𝑇𝑐
) (1 −

𝐶𝑎∗𝑇𝑐

𝐶𝑎𝑇𝑐∗
)  

𝑃1 ≤ 0 whenever 𝐴𝑆𝑁 ∗≥ 𝐴∗𝑆∗𝑁, 𝐶𝑢𝑆𝑁 ∗≥ 𝐶𝑢
∗𝑆∗𝑁, 𝐶𝑎𝑆𝑁 ∗≥ 𝐶𝑎

∗𝑆∗𝑁,𝑅𝑇𝑐 ∗≥ 𝑅 ∗ 𝑇𝑐  

                     (3.165) 

and 𝑃2 ≤ 0   whenever 𝑆∗𝑁 ≥ 𝑆𝑁 ∗, 𝐶𝑢 ∗ 𝑆 ∗ 𝐴𝑁 ≥ 𝐶𝑢𝑆𝐴 ∗ 𝑁 ∗, 𝐶𝑎
∗𝑆∗𝐴𝑁 ≥ 𝐶𝑎𝑆𝐴 ∗ 𝑁 ∗

, 𝐴 ∗ 𝐶𝑢 ≥ 𝐴𝐶𝑢 ∗ , 𝐶𝑢 ∗ 𝐶𝑎 ≥ 𝐶𝑢𝐶𝑎
∗, 𝐴 ∗ 𝐶𝑎 ≥ 𝐴𝐶𝑎

∗, 𝐶𝑎
∗
𝑇𝑐 ≥ 𝐶𝑎𝑇𝑐 ∗          (3.166) 

Thus, 
𝑑𝐿

𝑑𝑡
≤ 0if the condition in (3.165) and (3.166) holds. 

Therefore, by LaSalle asymptotic stability theorem (LaSalle, 1976), and Oke et al., (2020) 

the positive equilibrium state  
𝑑𝐿

𝑑𝑡
  is globally asymptotically stable in the positive region 𝑅+

6 . 

3.4 Application of Optimal Control to the HBV Models 

Here, the main interest of this study is to suggest possible(s) optimal method of 

reducing/minimizing HBV transmission. Many mathematical models already exist 

describing HBV but the best control for the diseases still remain a subject of debate. 

Previous mathematical models have considered vaccination and treatment as controls. 

However, these have their limitations. Generally, vaccines are not 100% effective, and 

therefore only a proportion of vaccinated individuals are protected, then some proportion 

of the vaccinated individuals may be susceptible again to that disease. (Keeling and Rolani 
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,2008). 

However, testing and treatment will be more effective in a vaccinated population hence, 

the inclusion of testing as control in the present work (Niederau, 2014). 

The preventive and treatment control for Hepatitis B includes vaccination, testing at 

various infectious stage and appropriate treatment (Niederau, 2014). It is believed that, if 

appropriate preventive measures are instituted globally, liver cirrhosis will be reduced 

greatly as early testing will help reduce death rate through liver cirrhosis (WHO, 2019) 

3.4.1 The Optimal Control Strategy for HBV Model Case 1 

Here, the formulation of the optimal control problem, analysis of the optimal control 

problem, adjoint conditions, optimality conditions and the optimality system for the 

Hepatitis B model case 1 are considered. 

3.4.2 The Optimal Control Formulation for HBV Model Case 1 

𝑆 ′(𝑡) = 𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶 

𝐿′(𝑡) = 𝛽(𝐴 + 𝛾𝐶)𝑆 − (𝜎 + 𝜇0 + 𝛿1)𝐿 

𝐴′(𝑡) = 𝜎𝐿 − (𝑢1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴 

𝐶 ′(𝑡) = 𝑞𝛾1𝐴 − (𝑢2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶     (3.167)  

𝐻′(𝑡) = 𝑢2𝐶 + 𝑢1𝐴 − (𝜗3 + 𝜇0 + 𝜇2)𝐻 

𝑅′(𝑡) = 𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 − 𝜇0𝑅 

𝑉 ′(𝑡) = 𝜇(1 − 𝜔) + 𝛾3𝑆 − (𝜑 + 𝜇0)𝑉 

The controls used in system (3.167) represent effective time dependent testing measures 
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(𝑢1) and treatment efforts (𝑢2) to reduce the case of liver cirrhosis. The controls 𝑢 in 

(3.167) is defined to be 𝑢 ∈ [0,1], where 𝑢 ranges from no control (𝑢 = 0) to maximum 

control (𝑢 = 1).Note that 𝑢1, 𝑢2 ∈ 𝑢. 

The interest of this research is to find the optimal control strategy 𝑢 throughout the length 

of 0 ≤ 𝑡 ≤ 𝑡𝑓 such that the numbers of chronic carriers 𝐶 is minimized whileminimizing 

the cost of control 𝑢.Thus, the objective function is 

𝐽(𝑢1, 𝑢2) = ∫ (𝐺1𝐿 + 𝐺2𝐴 + 𝐺3𝐶 + 𝐺4𝑢1
2 + 𝐺5𝑢2

2)𝑑𝑡
𝑡𝑓

0
    (3.168) 

where coefficients 𝐺1, 𝐺2, 𝐺3, 𝐺4 𝑎𝑛𝑑 𝐺5 are positive weights to balance the factors. 

As a result, an optimal control 

𝑢∗ = {𝑢1
∗, 𝑢2

∗} 

is defined, such that, 

𝐽(𝑢1
∗, 𝑢2

∗) = min
𝑢1,𝑢2

{𝐽(𝑢1, 𝑢2)|𝑢1,𝑢2 ∈ 𝑢}      (3.169) 

where 

𝑢 = {(𝑢1, 𝑢2)|𝑢1,𝑢2: [0, 𝑡𝑓] → [0,1]}       (3.170) 

is Lebesgue measurable and convex on 𝑢, then there exists an optimal control 𝑢 satisfying 

the conditions in section 2.2.8. 
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3.4.3 The Analysis of the HBV Optimal Control Problem Model Case 1 

Since there exist an optimal control for minimizing the functional (3.168) subject to system 

of equations (3.167), the Pontryagins’ maximum principle (Fleming and Rishel, 1975) is 

used to derive necessary conditions for this optimal control. 

The Hamiltonian is defined as follows:  

�̅� = 𝐺1𝐿 + 𝐺2𝐴 + 𝐺3𝐶 + 𝐺4𝑢1
2 + 𝐺5𝑢2

2 + 𝜆1[𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) +

𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶] + 𝜆2[𝛽(𝐴 + 𝛾𝐶)𝑆 − (𝜎 + 𝜇0 + 𝛿1)𝐿] + 𝜆3[𝜎𝐿 − (𝑢1 + 𝛾1 +

𝜇0 + 𝛿1 − 𝑟)𝐴] + 𝜆4[𝑞𝛾1𝐴 − (𝑢2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶] + 𝜆5[𝑢2𝐶 + 𝑢1𝐴 −

(𝜗3 + 𝜇0 + 𝜇2)𝐻] + 𝜆6[𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 − 𝜇0𝑅] + 𝜆7[𝜇(1 − 𝜔) + 𝛾3𝑆 − (𝜑 +

𝜇0)𝑉]           (3.171) 

3.4.4 The Adjoint Conditions for HBV Model Case 1 

In order to attach the system of ordinary differential equation in (3.167) on to the objective 

function in (3.168), the adjoint functions (or co-state variables) were used. The 

Pontryagins’ Maximum Principle gives the necessary conditions that the adjoint functions 

must satisfy. Thus, the differential equations satisfied by system (3.167) are: 
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𝑑𝜆1
𝑑𝑡

= −
𝜕�̅�

𝜕𝑆
= −𝜆1(−𝛽𝐴 − 𝛽𝛾𝐶 − 𝛾3 − 𝜇0 − 𝛿1) − 𝜆2(𝛽𝐴 + 𝛽𝛾𝐶) − 𝜆7𝛾3

𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻

𝜕𝐿
= −𝜆2(𝜎 − 𝜇0 − 𝛿1) − 𝜆3𝜎 − 𝐺1

𝑑𝜆3
𝑑𝑡

= −
𝜕𝐻

𝜕𝐴
= −𝜆1(−𝛽𝑆 − 𝑟) − 𝜆2𝛽𝑆 − 𝜆3(−𝑢1 − 𝛾1 − 𝜇0 − 𝛿1 + 𝑟) − 𝜆4𝑞𝛾1 − 𝜆5𝑢1 − 𝜆6(1 − 𝑞)𝛾1 − 𝐺2

𝑑𝜆4
𝑑𝑡

= −
𝜕�̅�

𝜕𝐶
= −𝜆1(−𝛽𝛾𝑆 − 𝜇𝜔𝑣 − 𝑏) − 𝜆2𝛽𝛾𝑆 − 𝜆4(𝜇𝜔𝑣 + 𝑏 − 𝑢2 − 𝛾2 − 𝜇0 − 𝜇1) − 𝜆5𝑢2 − 𝜆6𝛾2 − 𝐺3

𝑑𝜆5
𝑑𝑡

= −
𝜕𝐻

𝜕𝐻
= −𝜆5(−𝜗3 − 𝜇0 − 𝜇2) − 𝜆6𝜗3

𝑑𝜆6
𝑑𝑡

= −
𝜕𝐻

𝜕𝑅
= 𝜆6𝜇0

𝑑𝜆7
𝑑𝑡

= −
𝜕𝐻

𝜕𝑇
= −𝜆1𝜑 − 𝜆7(−𝜑 − 𝜇0) }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

(3.172) 

with the boundary conditions (or Transversality conditions) at the final time, 𝑡𝑓: 

𝜆1(𝑡𝑓) = 0,  𝜆2(𝑡𝑓) = 0,  𝜆3(𝑡𝑓) = 0,  𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0, 𝜆6(𝑡𝑓) = 0, 𝜆7(𝑡𝑓) = 0 

3.4.5 The Optimality Conditions for  HBV Model Case 1 

The Hamiltonian in equation (3.171) is minimized with respect to the controls 𝑢1 and 𝑢2 

separately in order to obtain the optimal value of 𝑢1
∗, 𝑢2

∗. At these controls’ values, the 

maximum Hamiltonian is obtained. The derivative of the Hamiltonian with respect to 𝑢1 

and 𝑢2 is thus zero, since at the absolute minimum or maximum the slope of a function is 

zero. Thus, 

𝜕�̅�

𝜕𝑢1
= 2𝐺4𝑢1 − 𝜆3𝐴 + 𝜆5𝐴 = 0 

Thus, 
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𝑢1 =
𝐴(𝜆3−𝜆5)

2𝐺4
         (3.173) 

Similar reasoning gives  

𝜕�̅�

𝜕𝑢2
= 2𝐺5𝑢2 − 𝜆4𝐶 + 𝜆5𝐶 = 0 

Thus 

𝑢2 =
𝐶(𝜆4−𝜆5)

2𝐺5
                   (3.174) 

At the absolute minimum 𝑢 = 𝑢∗, therefore the optimality conditions are     

𝑢1
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢1)}        (3.175) 

𝑢2
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢2)}    

3.4.6 The Optimality System for the HBV Model Case 1 

The optimality system consists of the state system, the adjoint system, initial conditions 

and the transversality conditions. Thus, 
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𝑆 ′(𝑡) = 𝜇𝜔(1 − 𝑣𝐶) + 𝜑𝑉 − (𝛽(𝐴 + 𝛾𝐶) + 𝛾3 + 𝜇0 + 𝛿1)𝑆 − 𝑟𝐴 − 𝑏𝐶

𝐿′(𝑡) = 𝛽(𝐴 + 𝛾𝐶)𝑆 − (𝜎 + 𝜇0 + 𝛿1)𝐿

𝐴′(𝑡) = 𝜎𝐿 − (𝑢1 + 𝛾1 + 𝜇0 + 𝛿1 − 𝑟)𝐴

𝐶 ′(𝑡) = 𝑞𝛾1𝐴 − (𝑢2 + 𝛾2 + 𝜇0 + 𝜇1 − 𝜇𝜔𝑣 − 𝑏)𝐶

𝐻′(𝑡) = 𝑢2𝐶 + 𝑢1𝐴 − (𝜗3 + 𝜇0 + 𝜇2)𝐻

𝑅′(𝑡) = 𝛾2𝐶 + (1 − 𝑞)𝛾1𝐴 + 𝜗3𝐻 − 𝜇0𝑅

𝑉 ′(𝑡) = 𝜇(1 − 𝜔) + 𝛾3𝑆 − (𝜑 + 𝜇0)𝑉

𝜆1
′(𝑡) = −𝜆1(−𝛽𝐴 − 𝛽𝛾𝐶 − 𝛾3 − 𝜇0 − 𝛿1) − 𝜆2(𝛽𝐴 + 𝛽𝛾𝐶) − 𝜆7𝛾3

𝜆2
′(𝑡) = −𝜆2(𝜎 − 𝜇0 − 𝛿1) − 𝜆3𝜎 − 𝐺1

𝜆3
′(𝑡) = −𝜆1(−𝛽𝑆 − 𝑟) − 𝜆2𝛽𝑆 − 𝜆3(−𝑢1 − 𝛾1 − 𝜇0 − 𝛿1 + 𝑟) − 𝜆4𝑞𝛾1 − 𝜆5𝑢1 − 𝜆6(1 − 𝑞)𝛾1 − 𝐺2
𝜆4

′(𝑡) = 𝜆1(−𝛽𝛾𝑆 − 𝜇𝜔𝑣 − 𝑏) − 𝜆2𝛽𝛾𝑆 − 𝜆4(𝜇𝜔𝑣 + 𝑏 − 𝑢2 − 𝛾2 − 𝜇0 − 𝜇1) − 𝜆5𝑢2 − 𝜆6𝛾2 − 𝐺3
𝜆5

′(𝑡) = −𝜆5(−𝜗3 − 𝜇0 − 𝜇2) − 𝜆6𝜗3
𝜆6

′(𝑡) = 𝜆6𝜇0
𝜆7

′(𝑡) = −𝜆1𝜑 − 𝜆7(−𝜑 − 𝜇0)

𝑆(0) = 700, 𝐿(0) = 100, 𝐴(0) = 100, 𝐶(0) = 100, 𝐻(0) = 50, 𝑅(0) = 30, 𝑉(0) = 600 

𝜆1(𝑡𝑓) = 0, 𝜆2(𝑡𝑓) = 0, 𝜆3(𝑡𝑓) = 0, 𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0,  𝜆6(𝑡𝑓) = 0             }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (3.176) 

The optimality system in (3.176) was solved numerically by using both the forward and 

backward finite difference scheme. 

3.5 The Optimal Control Strategy for HBV Model Case 2 

Here, the formulation of the optimal control problem, analysis of the optimal control 

problem, adjoint conditions, optimality conditions and the optimality system for the HBV 

model case 2 are considered. 

3.5.1 The Optimal Control Formulation for HBV Model Case 2 

𝑆′ = 휁(1 − 𝛼)(1 − 𝛾𝐶) − (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅 

𝐴′ = (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 − (𝜔 + 𝜇 + 𝜇1)𝐴 

𝐶′ = 휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − (𝜇 + 𝜇2)𝐶                                                        (3.177)                  

𝑇′ = 𝜇1𝐴 + (𝜇2)𝐶 − (𝜌 + 𝜇)𝑇  

𝑅′ = 휁𝛼 + 𝑘𝜐𝜌𝑇 − (휀 + 𝜇)𝑅 
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The controls used in system (3.177) represent effective time dependent testing measures 

(𝑢1) and treatment efforts (𝑢2) to reduce the case of liver cirrhosis. The controls 𝑢 in 

(3.177) is defined to be 𝑢 ∈ [0,1], where 𝑢 ranges from no control (𝑢 = 0) to maximum 

control (𝑢 = 1).Note that 𝑢1, 𝑢2 ∈ 𝑢. 

The interest of this research is to find the optimal control strategy 𝑢 throughout the length 

of 0 ≤ 𝑡 ≤ 𝑡𝑓 such that the numbers of chronic carriers 𝐶 is minimized while minimizing 

the cost of control 𝑢.Thus, the objective function is 

𝐽(𝑢1, 𝑢2) = ∫ (𝐷1𝐴 + 𝐷2𝐶 + 𝐷3𝑢1
2 + 𝐷4𝑢2

2)𝑑𝑡
𝑡𝑓

0
     (3.178) 

where coefficients 𝐷1, 𝐷2, 𝐷3 𝑎𝑛𝑑𝐷4 are positive weights to balance the factors. 

Thus, an optimal control 

𝑢∗ = {𝑢1
∗, 𝑢2

∗} 

is defined such that, 

𝐽(𝑢1
∗, 𝑢2

∗) = min
𝑢1,𝑢2

{𝐽(𝑢1, 𝑢2)|𝑢1,𝑢2 ∈ 𝑢}      (3.179) 

where 

𝑢 = {(𝑢1, 𝑢2)|𝑢1,𝑢2: [0, 𝑡𝑓] → [0,1]}       (3.180) 

is Lebesgue measurable and convex on 𝑢, then there exists an optimal control 𝑢 satisfying 

the conditions in section 2.2.8. 
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3.5.2 The Analysis of the HBV Optimal Control Problem Model Case 2 

Since there exist an optimal control for minimizing the functional (3.178) subject to system 

of equations (3.177), the Pontryagins’ maximum principle (Fleming and Rishel, 1975) is 

used to derive necessary conditions for this optimal control. 

The Hamiltonian is defined as follows:  

�̅� = 𝐷1𝐴 + 𝐷2𝐶 + 𝐷3𝑢1
2 + 𝐷4𝑢2

2 + 𝜆1[휁(1 − 𝛼)(1 − 𝛾𝐶) − (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 + (1 −

휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅] + 𝜆2[(𝛽𝐴 + 𝜉𝛽𝐶)𝑆 − (𝜔 + 𝜇 + 𝜇1)𝐴] + 𝜆3[𝜎휂𝜔𝐴 +

휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − (𝜎 + 𝜇 + 𝜇2)𝐶] + 𝜆4[𝜇1𝐴 + (𝜇2 + 𝜎)𝐶 − (𝜌 + 𝜇)𝑇] +

𝜆5[휁𝛼 + 𝑘𝜐𝜌𝑇 − (휀 + 𝜇)𝑅]        (3.179) 

3.5.3 The Adjoint Conditions for HBV Model Case 2 

In order to attach the system of ordinary differential equation in (3.177) on to the objective 

function in (3.178), the adjoint functions (or co-state variables) were used. The 

Pontryagins’ Maximum Principle gives the necessary conditions that the adjoint functions 

must satisfy. Thus, the differential equations satisfied by system (3.177) are: 

𝑑𝜆1
𝑑𝑡

= −
𝜕�̅�

𝜕𝑆
= −𝜆1(−𝛽𝐴 − 𝜉𝛽𝐶 − 𝜇) − 𝜆2(𝛽𝐴 + 𝜉𝛽𝐶) 

𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻

𝜕𝐴
= −𝜆1(−𝛽𝑆 + (1 − 휂)𝜔) − 𝜆2(𝛽𝑆 − 𝜔 − 𝜇 − 𝑢1) − 𝜆3휂𝜔 − 𝜆4𝜇1 − 𝐷1  

𝑑𝜆3

𝑑𝑡
= −

𝜕�̅�

𝜕𝐶
= −𝜆1(−휁(1 − 𝛼)𝛾 − 𝜉𝛽𝑆) − 𝜆2𝜉𝛽𝑆 − 𝜆3(휁(1 − 𝛼)𝛾−𝑢2 − 𝜇) − 𝜆4−𝑢2 − 𝐷2       (3.180) 

𝑑𝜆4
𝑑𝑡

= −
𝜕𝐻

𝜕𝑇
= −𝜆1((1 − 𝑘)𝜈𝜌) − 𝜆3((1 − 𝜈)𝜌) − 𝜆4(−𝜌 − 𝜇) − 𝜆5𝑘𝜈𝜌 

𝑑𝜆5
𝑑𝑡

= −
𝜕𝐻

𝜕𝑅
= −𝜆1휀 − 𝜆5(−휀 − 𝜇) 
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with the boundary conditions (or Transversality conditions) at the final time, 𝑡𝑓: 

𝜆1(𝑡𝑓) = 0,  𝜆2(𝑡𝑓) = 0,  𝜆3(𝑡𝑓) = 0,  𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0 

3.5.4 The Optimality Conditions for HBV Model Case 2 

The Hamiltonian in (3.179) is minimized with respect to the controls 𝑢1 and 𝑢2 separately 

in order to obtain the optimal value of 𝑢1
∗, 𝑢2

∗. At these controls’ values, the maximum 

Hamiltonian is obtained. The derivative of the Hamiltonian with respect to 𝑢1 and 𝑢2 is 

thus zero, since at the absolute minimum or maximum the slope of a function is zero. Thus, 

𝜕�̅�

𝜕𝑢1
= 2𝐷3𝑢1 − 𝜆2𝐴 + 𝜆4𝐴 = 0 

Thus, 

𝑢1 =
𝐴(𝜆2−𝜆4)

2𝐷3
                     (3.181) 

Similar reasoning gives  

𝜕�̅�

𝜕𝑢2
= 2𝐷4𝑢2 − 𝜆3𝐶 + 𝜆4𝐶 = 0 

Thus 

𝑢2 =
𝐶(𝜆3−𝜆4)

2𝐷4
                     (3.182) 

At the absolute minimum 𝑢 = 𝑢∗, therefore the optimality conditions are     
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𝑢1
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢1)}        (3.183) 

𝑢2
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢2)}    

3.5.5 The Optimality System for the HBV Model Case 2 

The optimality system consists of the state system, the adjoint system, initial conditions 

and the transversality conditions. Thus, 

𝑆 ′(𝑡) = 휁(1 − 𝛼)(1 − 𝛾𝐶) − (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 + (1 − 휂)𝜔𝐴 − 𝜇𝑆 + (1 − 𝑘)𝜈𝜌𝑇 + 휀𝑅 

𝐴′(𝑡) = (𝛽𝐴 + 𝜉𝛽𝐶)𝑆 − (𝜔 + 𝜇 + 𝜇1)𝐴 

𝐶 ′(𝑡) = 𝜎휂𝜔𝐴 + 휁(1 − 𝛼)𝛾𝐶 + (1 − 𝜐)𝜌𝑇 − (𝜎 + 𝜇 + 𝜇2)𝐶 

𝑇 ′(𝑡) = 𝜇1𝐴 + (𝜇2 + 𝜎)𝐶 − (𝜌 + 𝜇)𝑇 

𝑅′(𝑡) = 휁𝛼 + 𝑘𝜐𝜌𝑇 − (휀 + 𝜇)𝑅 

𝜆1
′(𝑡) = −𝜆1(−𝛽𝐴 − 𝜉𝛽𝐶 − 𝜇) − 𝜆2(𝛽𝐴 + 𝜉𝛽𝐶)      (3.184)  

𝜆2
′(𝑡) =    −𝜆1(−𝛽𝑆 + (1 − 휂)𝜔) − 𝜆2(𝛽𝑆 − 𝜔 − 𝜇 −  𝑢1) − 𝜆3휂𝜔 − 𝜆4𝜇1 − 𝐷1  

𝜆3
′(𝑡) = −𝜆1(−휁(1 − 𝛼)𝛾 − 𝜉𝛽𝑆) − 𝜆2𝜉𝛽𝑆 − 𝜆3(휁(1 − 𝛼)𝛾−𝑢2 − 𝜇 − 𝜎) − 𝜆4−𝑢2 − 𝐷2 

𝜆4
′(𝑡) = −𝜆1((1 − 𝑘)𝜈𝜌) − 𝜆3((1 − 𝜈)𝜌) − 𝜆4(−𝜌 − 𝜇) − 𝜆5𝑘𝜈𝜌 

𝜆5
′(𝑡) = −𝜆1휀 − 𝜆5(−휀 − 𝜇) 

𝑆(0) = 700, 𝐴(0) = 100, 𝐶(0) = 100, 𝑇(0) = 50, 𝑅(0) = 30 

𝜆1(𝑡𝑓) = 0, 𝜆2(𝑡𝑓) = 0, 𝜆3(𝑡𝑓) = 0, 𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0 

The optimality system in (3.184) was solved numerically by using both the forward and 

backward finite difference scheme. 
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3.6 The Optimal Control Strategy for HBV Model Case 3 

Here, the formulation of the optimal control problem, analysis of the optimal control 

problem, adjoint conditions, optimality conditions and the optimality system for the HBV 

model case 3 are considered. 

3.6.1 The Optimal Control Formulation for HBV Model Case 3 

𝑑𝑆

𝑑𝑡
= 𝛱 − (

𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎)

𝑁
)𝑆 + 𝜎𝐴 − 𝜇𝑆 

𝑑𝐴

𝑑𝑡
= (

𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎)

𝑁
)𝑆 − (𝜎 + 𝛾 + 𝜇1)𝐴 

𝑑𝐶𝑢

𝑑𝑡
= 𝛾𝐴 − (𝜇2 + 𝜇 + 𝑑𝑐)𝐶𝑢        (3.185) 

𝑑𝐶𝑎

𝑑𝑡
= 𝜇2𝐶𝑢 + 𝜇1𝐴 − (𝜇3 + 𝜇 + 𝑑𝑐)𝐶𝑎        

𝑑𝑇𝑐
𝑑𝑡

= 𝜇3𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐 

𝑑𝑅

𝑑𝑡
= 𝜔𝑇𝑐-𝜇𝑅 

The controls used in system (3.185) represent effective time dependent testing measures 

(𝑢1, 𝑢2) and treatment efforts (𝑢3) to reduce the case of liver cirrhosis. The controls 𝑢 in 

(3.185) is defined to be 𝑢 ∈ [0,1], where 𝑢 ranges from no control (𝑢 = 0) to maximum 

control (𝑢 = 1).Note that 𝑢1, 𝑢2, 𝑢3 ∈ 𝑢. 

It is of interest to find the optimal control strategy 𝑢 throughout the length of 0 ≤ 𝑡 ≤
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𝑡𝑓such that the numbers of chronic carriers 𝐶 is minimized while minimizing the cost of 

control 𝑢.Thus, the objective function is 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ (𝐷1𝐴 + 𝐷2𝐶𝑢 + 𝐷3𝐶𝑎+𝐷4𝑢1
2 + 𝐷5𝑢2

2 + 𝐷6𝑢3
2)𝑑𝑡

𝑡𝑓

0
  (3.186) 

where coefficients 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5 𝑎𝑛𝑑𝐷6 are positive weights to balance the factors. 

Thus, an optimal control 

𝑢∗ = {𝑢1
∗, 𝑢2

∗, 𝑢3
∗} 

is defined such that, 

𝐽(𝑢1
∗, 𝑢2

∗, 𝑢3
∗) = min

𝑢1,𝑢2
{𝐽(𝑢1, 𝑢2, 𝑢3)|𝑢1,𝑢2,𝑢3 ∈ 𝑢}     (3.187) 

where 

𝑢 = {(𝑢1, 𝑢2, 𝑢3)|𝑢1,𝑢2,,𝑢3: [0, 𝑡𝑓] → [0,1]}      (3.188) 

is Lebesgue measurable and convex on 𝑢, then there exists an optimal control 𝑢 satisfying 

the conditions in section 2.2.8. 

3.6.2 The Analysis of the HBV Optimal Control Problem Model Case 3 

Since there exist an optimal control for minimizing the functional (3.186) subject to system 

of equations (3.185), the Pontryagins’ maximum principle (Fleming and Rishel, 1975) is 

used to derive necessary conditions for this optimal control. 
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The Hamiltonian is defined as follows:  

�̅� = 𝐷1𝐴 + 𝐷2𝐶𝑢 + 𝐷3𝐶𝑎+𝐷4𝑢1
2 + 𝐷5𝑢2

2 + 𝐷6𝑢3
2 + 𝜆1 [𝛱 − (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 +

𝜎𝐴 − 𝜇𝑆] + 𝜆2 [(
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
) 𝑆 − (𝜎 + 𝛾 + 𝜇1)𝐴] + 𝜆3[𝛾𝐴 − (𝜇2 + 𝜇 + 𝑑𝑐)𝐶𝑢] +

𝜆4[𝜇2𝐶𝑢 + 𝜇1𝐴 − (𝜇3 + 𝜇 + 𝑑𝑐)𝐶𝑎] + 𝜆5[𝜇3𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐] + 𝜆6[𝜔𝑇𝑐- 𝜇𝑅] (3.187) 

3.6.3 The Adjoint Conditions for HBV Model Case 3 

In order to attach the system of ordinary differential equation in (3.185) on to the objective 

function in (3.186), the adjoint functions (or co-state variables) were used. The 

Pontryagins’ maximum principle gives the necessary conditions that the adjoint functions 

must satisfy. Thus, the differential equations satisfied by system (3.185) are: 

𝑑𝜆1

𝑑𝑡
= −

𝜕�̅�

𝜕𝑆
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
− 𝜇) −

𝜆2 (−
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
+

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
)  

𝑑𝜆2

𝑑𝑡
= −

𝜕�̅�

𝜕𝐴
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
−

𝛽𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
+ 𝜎) −

𝜆2 (−
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
−

𝛽𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
− 𝜎 − 𝛾 − 𝜇1) − 𝛾𝜆3 − 𝜇1𝜆4 − 𝐷1  

𝑑𝜆3

𝑑𝑡
= −

𝜕�̅�

𝜕𝐶𝑢
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
−

𝛽𝛼1𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
+

𝛽𝛼1𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆3(−𝜇2 − 𝜇 − 𝑑𝑐) − 𝜇2𝜆4 − 𝐷2  
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𝑑𝜆4

𝑑𝑡
= −

𝜕�̅�

𝜕𝐶𝑎
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
−

𝛽𝛼2𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
+

𝛽𝛼2𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆4(−𝜇3 − 𝜇 − 𝑑𝑐) − 𝜇3𝜆5 − 𝐷3  

𝑑𝜆5

𝑑𝑡
= −

𝜕�̅�

𝜕𝑅
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
) + 𝜆2 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
) − 𝜆5(−𝜔 − 𝜇) − 𝜔𝜆6  

𝑑𝜆6

𝑑𝑡
= −

𝜕�̅�

𝜕𝑅
= −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
) + 𝜆2 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)2
) + 𝜇𝜆6  

with the boundary conditions (or Transversality conditions) at the final time, 𝑡𝑓: 

𝜆1(𝑡𝑓) = 0,  𝜆2(𝑡𝑓) = 0,  𝜆3(𝑡𝑓) = 0,  𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0,  𝜆6(𝑡𝑓) = 0 

3.6.4 The Optimality Conditions for HBV Model Case 3 

The Hamiltonian equation in (3.187) is minimized with respect to the controls 𝑢1, 𝑢2  and 

𝑢3 separately in order to obtain the optimal value of 𝑢1
∗, 𝑢2

∗, 𝑢3
∗. At these controls’ values, 

the maximum Hamiltonian is obtained. The derivative of the Hamiltonian with respect to 

𝑢1,𝑢2and 𝑢3 is thus zero, since at the absolute minimum or maximum the slope of a 

function is zero. Thus, 

𝜕�̅�

𝜕𝑢1
= 2𝐷4𝑢1 − 𝜆2𝐴 + 𝜆4𝐴 = 0 

Thus, 

𝑢1 =
𝐴(𝜆2−𝜆4)

2𝐷4
                   (3.188) 



155 

 

Similar reasoning gives  

𝜕�̅�

𝜕𝑢2
= 2𝐷5𝑢2 − 𝜆3𝐶𝑢 + 𝜆4𝐶𝑢 = 0 

Thus 

𝑢2 =
𝐶𝑢(𝜆3−𝜆4)

2𝐷5
                  (3.189) 

Also, 

∂H̅

∂u3
= 2D6u3 − λ4Ca + λ5Ca = 0 

Thus 

𝑢3 =
𝐶𝑎(𝜆4−𝜆5)

2𝐷6
                  (3.190) 

At the absolute minimum 𝑢 = 𝑢∗, therefore the optimality conditions are     

𝑢1
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢1)}     

𝑢2
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢2)}        (3.191) 

𝑢3
∗ = 𝑚𝑖𝑛{1,𝑚𝑎𝑥(0, 𝑢3)}    

3.6.5 The Optimality System for the HBV Model Case 3 

The optimality system consists of the state system, the adjoint system, initial conditions 

and the transversality conditions. Thus, 

𝑆 ′(𝑡) = 𝛱 − (
𝛽(𝐴 + 𝛼1𝐶𝑢 + 𝛼2𝐶𝑎)

𝑁
)𝑆 + 𝜎𝐴 − 𝜇𝑆 
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𝐴′(𝑡) = (
𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑁
)𝑆 − (𝜎 + 𝛾 + 𝜇1)𝐴 

𝐶𝑢
′(𝑡) = 𝛾𝐴 − (𝜇2 + 𝜇 + 𝑑𝑐)𝐶𝑢 

𝐶𝑎
′(𝑡) = 𝜇2𝐶𝑢 + 𝜇1𝐴 − (𝜇3 + 𝜇 + 𝑑𝑐)𝐶𝑎 

𝑇𝑐
′(𝑡) = 𝜇3𝐶𝑎 − (𝜔 + 𝜇)𝑇𝑐  

𝑅′(𝑡) = 𝜔𝑇𝑐-𝜇𝑅 

𝜆1
′(𝑡) = −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 −

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
− 𝜇) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 +

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
)  

𝜆2
′(𝑡) =  −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 −

𝛽𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
+ 𝜎) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 −

𝛽𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
− 𝜎 − 𝛾 − 𝜇1) − 𝛾𝜆3 − 𝜇1𝜆4 − 𝐷1      

     

𝜆3
′(𝑡) = −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 −

𝛽𝛼1𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 +

𝛽𝛼1𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆3(−𝜇2 − 𝜇 − 𝑑𝑐) − 𝜇2𝜆4 − 𝐷2     (3.192) 

𝜆4
′(𝑡) = −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 −

𝛽𝛼2𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆2 (−

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2 +

𝛽𝛼2𝑆

𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅
) − 𝜆4(−𝜇3 − 𝜇 − 𝑑𝑐) − 𝜇3𝜆5 − 𝐷3  

𝜆5
′(𝑡) = −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2) + 𝜆2 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2) − 𝜆5(−𝜔 − 𝜇) − 𝜔𝜆6  

𝜆6
′(𝑡) = −𝜆1 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2) + 𝜆2 (

𝛽(𝐴+𝛼1𝐶𝑢+𝛼2𝐶𝑎)𝑆

(𝑆+𝐴+𝐶𝑢+𝐶𝑎+𝑇𝑐+𝑅)
2) + 𝜇𝜆6

  

𝑆(0) = 700, 𝐴(0) = 100, 𝐶𝑢(0) = 100, 𝐶𝑎(0) = 100, 𝑇𝑐(0) = 50, 𝑅(0) = 30 

𝜆1(𝑡𝑓) = 0, 𝜆2(𝑡𝑓) = 0, 𝜆3(𝑡𝑓) = 0, 𝜆4(𝑡𝑓) = 0,  𝜆5(𝑡𝑓) = 0, 𝜆6(𝑡𝑓) = 0 

The optimality system in (3.192) was solved numerically by using both the forward and 

backward finite difference scheme. 
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CHAPTER FOUR  

4.0 RESULTS AND DISCUSSION OF FINDINGS 

4.1 Results 

The numerical computations are carried out using the MAPLE 18 program pseudocode 

with computation times of 5.0s on windows 13 operating system. The complete solutions 

of the study are numerically demonstrated in tables and graphs for the various population 

dynamics.  

4.1.1 Results for HBV Model Case 1 

  For comprehensive understanding of the transmission process of Hepatitis B virus, a 

numerical computation of the mathematical analysis is carried out along with optimal 

control analysis. Based on various reports on the theoretical studies of related HBV model, 

the following default parameter values are gotten from existing literatures. Therefore, the 

results from this study are taken from the appropriate parameter defined except otherwise 

declared on each graph. Hence, the HBV mathematical formulation solutions for case 1 

are presented as follows: 
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Table 4.1 Parameter’s specifications for HBV model case 1 

Parameter Values Source 

𝛽 0.095 Khan et al., (2019) 

𝜎 0.016 Khan et al., (2019) 

𝛾 0.16 Khan et al., (2019) 

𝑞 0.885 Khan et al., (2019) 

𝛾1 0.01095 Khan et al., (2019) 

𝜇 0.0121 Khan et al., (2019) 

 𝜔 0.32 Khan et al., (2019) 

 𝜐 0.11 Khan et al., (2019) 

 𝛾2 0.0000684 Khan et al., (2019) 

 𝜇0 0.00693 Khan et al., (2019) 
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 𝜇1, 𝜇2 0.002 Khan et al., (2019) 

 𝜗1 0.36 Khan et al., (2019) 

 𝜗2 0.2 Khan et al., (2019) 

𝜗3 0.34 Khan et al., (2019) 

 𝛿1 0.95 Khan et al., (2019) 

 𝑟 0.2 Estimated 

𝛾3 0.5 Estimated 

 𝜑 0.1 Khan et al., (2019) 

𝑏 0.2 Estimated 
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Table 4.2:Sensitivity Indices on 𝑅0 for HBV model formulation of case 1. 

 

 

 

 

Parameter Sensitivity Index Parameter Sensitivity Index 

𝑏 0.0069333 ʋ 0.0001477 

𝛽 1.0000000 𝛾2 -0.0023712 

𝛾 0.0229172 𝛾3 -0.0327537 

µ 1.0001477 𝜇0 -0.0928449 

𝜔 0.0218425 𝜇1 -0.0069333 

𝜑 0.0737448 𝜗1 -0.2935349 

𝑞 0.0229172 𝜗2 -0.0204534 

𝑟 0.1630749 𝛾1 -0.0663663 

𝜎 0.8567502 𝛿1 -2.5853932 
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Figure 4.1: Behavioural dynamics of susceptible population when 𝑅0 < 1 
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Figure 4.2: Behavioural dynamics of vaccinated population when 𝑅0 < 1 
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Figure 4.3: Behavioural dynamics of latent population when 𝑅0 < 1 
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Figure 4.4: Behavioural dynamics of acute population when 𝑅0 < 1 
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Figure 4.5: Behavioural dynamics of chronic population when 𝑅0 < 1 
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Figure 4.6: Behavioural dynamics of hospitalized population when 𝑅0 < 1 
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Figure 4.7: Behavioural dynamics of recovered population when 𝑅0 < 1 
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Figure 4.8: Behavioural dynamics of susceptible population when varying the acutely and 

chronically infected rate 
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Figure 4.9: Behavioural dynamics of latent population when varying the acutely and 

chronically infected rate 
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Figure 4.10: Behavioural dynamics of acute population when varying the acutely and 

chronically infected rate 
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Figure 4.11: Behavioural dynamics of chronic population when varying the acutely and 

chronically infected rate 
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Figure 4.12: Behavioural dynamics of hospitalized population when varying the acutely 

and chronically infected rate 
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Figure 4.13: Behavioural dynamics of recovered population when varying the acutely and 

chronically infected rate 
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Figure 4.14: Behavioural dynamics of vaccination population when varying the acutely and 

chronically infected rate 
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Figure 4.15: The effect of control on susceptible individuals for HBV model case1 

 

Figure 4.16: The effect of control on latent individualsfor HBV model case1 
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Figure 4.17: The effect of control on acute individuals for HBV model case1 

 

 

Figure 4.18: The effect of control on chronic individuals for HBV model case1 
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Figure 4.19: The effect of control on hospitalized individuals for HBV model 1 

 

 

Figure 4.20: The effect of control on recovered individuals for HBV model case1 
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Figure 4.21: The effect of control on vaccinated individuals for HBV model case1 

 

4.1.2 Results for HBV Model Case 2 

To enhance insight to the clarity of the Hepatitis B virus spontaneous clearance of acutely 

infected individuals with high immune response, individuals who fall out of treatment due 

to risk factors and impacts of treatment at the infectious state of the virus, a computational 

analysis and optimal control analysis is done. The parameter values adopted are gotten 

from existing studies. The results are tabulated and graphically presented. However, each 

graph defined the variation in the values. 
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Table 4.3 Parameter’s specification for HBV model case 2 

Parameter Values Sources 

휁 0.0121 Zhang and Zhou, (2012) 

𝛼 0.320 Zhao et al., (2000) 

𝛾 0.11 Liang et al., (2015) 

𝛽 0.0095 Khan et al., (2019) 

𝜉 0.16 Owolabi (2016) 

휂 0.067 Pang et al., (2011) 

𝜔 0.16 Zhang and Zhou, (2012) 

𝜇 0.00693 Khan et al., (2019) 

𝜅 0.34 Estimated 

𝜐 0.05 Pang et al., (2011) 
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𝜌 0.05 Pang et al., (2011) 

𝜖 0.02 Estimated 

𝜎 0.59 Zhang and Zhou, (2012) 

 

Table 4.4: Sensitivity Indices on 𝑅0 of HBV model case 2 

Parameter Sensitivity Index Parameter Sensitivity Index 

 휁 1.0022506 휂 -0.471635 

𝛽 0.9999999 𝜔 -0.579735 

𝜌 0.5736264 𝜐 -0.030395 

𝛾 0.0092650 𝜉 -0.011490 

𝜎 0.0022251 µ -1.046896 
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Figure 4.22: Behavioural dynamics of susceptible population when 𝑅0 < 1 
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Figure 4.23: Behavioural dynamics of acute population when 𝑅0 < 1 
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Figure 4.24: Behavioural dynamics of chronic population when 𝑅0 < 1 
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Figure 4.25: Behavioural dynamics of treated population when 𝑅0 < 1 
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Figure 4.26: Behavioural dynamics of recovered population when 𝑅0 < 1 
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Figure 4.27: Behavioural dynamics susceptible population when varying treatment rate of 

chronic individuals and recovery rate 
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Figure 4.28: Behavioural dynamics acute population when varying treatment rate of 

chronic individuals and recovery rate 
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Figure 4.29: Behavioural dynamics chronic population when varying treatment rate of 

chronic individuals and recovery rate 
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Figure 4.30: Behavioural dynamics treated population when varying treatment rate of 

chronic individuals and recovery rate 



190 

 

 

Figure 4.31: Behavioural dynamics recovered population when varying treatment rate of 

chronic individuals and recovery rate 
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Figure 4.32: The effect of control on susceptible individuals for HBV model case2 

 

Figure 4.33: The effect of control on acute individualsfor HBV model case2 
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Figure 4.34: The effect of control on chronic individuals for HBV model case2 

 

 

Figure 4.35: The effect of control on treated individuals for HBV model case2 
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Figure 4.36: The effect of control on recovered individuals for HBV model case2 

 

4.1.3 Results for HBV Model Case 3 

The quantitative and qualitative analysis of the HBV chronic unaware and chronic aware 

individuals with impact on testing and treatment are comprehensively examined along with 

the optimal controls’ analysis by numerical computational method. Here, the subsequent 

default values are assumed for the embedded parameters taken from theoretical studies in 

literatures. The values remain unchanged although the computations except otherwise 

indicated. The obtained results are offered in tabular form and graphical representation. 
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Table 4.5 Parameter’s specification for HBV model case 3 

Parameter Values Sources 

Π 0.07 Zhao et al., (2000) 

𝛾 0.9 Liang et al., (2015) 

𝛽 0.008 Zhang and Zhou, (2012) 

𝜎 0.59 Zhang and Zhou, (2012) 

𝜇, d(c)  0.00693 Khan et al., (2019) 

𝜈1, 𝜈2 0.002 Zhang and Zhou, (2012) 

𝜔 0.1 Zhao et al., (2000) 

𝛼1, 𝛼2 0.0016 Zhao et al., (2000) 

𝛿 0.0085 Khan et al., (2019) 
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Table 4.6:Sensitivity Indices on 𝑅0 for HBV model case 3 

Parameter Sensitivity Index Parameter Sensitivity Index 

𝛽 1.000000 µ -0.028545 

𝛿 0.018176 𝛼1 -0.471635 

𝜎 0.037853 𝛼2 -0.045644 

𝜐1 0.0022251 𝛾 -0.579735 

𝜐2 0.471635 𝑑𝑐 -1.538220 
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Figure 4.37: Behavioural dynamics of susceptible population when 𝑅0 < 1 
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Figure 4.38:Behavioural dynamics of acute population when 𝑅0 < 1 
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Figure 4.39: Behavioural dynamics of chronic unaware population when 𝑅0 < 1 
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Figure 4.40: Behavioural dynamics of chronic aware population when 𝑅0 < 1 
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Figure 4.41: Behavioural dynamics of treated population when 𝑅0 < 1 
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Figure 4.42: Behavioural dynamics of recovered population when 𝑅0 < 1 
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Figure 4.43: Behavioural dynamics of susceptible population when varying testing rate for 

acute and chronic individuals and treatment for chronic individuals 
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Figure 4.44: Behavioural dynamics of acute population when varying testing rate for acute 

and chronic individuals and treatment for chronic individuals 
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Figure 4.45: Behavioural dynamics of chronic unaware population when varying testing 

rate for acute and chronic individuals and treatment for chronic individuals 
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Figure 4.46: Behavioural dynamics of chronic aware population when varying testing rate 

for acute and chronic individuals and treatment for chronic individuals 
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Figure 4.47: Behavioural dynamics of treated population when varying testing rate for 

acute and chronic individuals and treatment for chronic individuals 
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Figure 4.48: Behavioural dynamics of recovered population when varying testing rate for 

acute and chronic individuals and treatment for chronic individuals 
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Figure 4.49: The effect of control on susceptible individuals for HBV model 3 

 

 

Figure 4.50: The effect of control on acute individuals for HBV model 3 
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Figure 4.51: The effect of control on chronic unaware individuals for HBV model 3 

 

Figure 4.52: The effect of control on chronic aware individuals for HBV model 3 
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Figure 4.53: The effect of control on treated individuals for HBV model 3 

 

 

Figure 4.54: The effect of control on recovered individuals for HBV model 3 
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4.2 Discussion of Results 

The discussion of results for the three cases of the considered HBV mathematical models 

are expansively presented for various population dynamics with different emerging terms. 

The behavioral dynamics of the various population when the basic reproduction number is 

less than unity (𝑅0 < 1), the parametric sensitive of various population and the control 

strategies of Hepatitis B virus are presented. 

4.2.1 Discussion of Results for HBV Model Case 1   

Table 4.1 shows the contribution of each parameter to the basic reproduction number (𝑅0) 

when it is less than 1. From the table, it was observed that 𝑏, 𝛽, 𝛾, 𝜇, 𝜔, 𝜑, 𝑞, 𝑟, 𝜎, 𝜈 are all 

sensitive to 𝑅0. It is also clear that 𝑅0  is most sensitive to changes in the rate of children 

born without effective vaccination that goes to the chronic compartment. This change leads 

to a proportional increase or decrease in the reproduction number due to the efficacy of the 

vaccine appropriated to the children. Meanwhile, the parameters 𝛿1, 𝛾1, 𝛾2, 𝛾3, 𝜇0, 𝜇1, 𝜗1, 

and 𝜗2 exhibit an inverse response on an increasing ratio of infected contact to an infected 

individual. Therefore, the sensitivity index of children without effective vaccination should 

be discouraged by ensuring proper vaccination as reported by Zhao et al., (2000). 

Behavioral dynamics of susceptible population when 𝑅0 < 1 is demonstrated in Figure 4.1. 

As noticed, a strong early asymptotical decrease toward a limiting zero of susceptible 

population exists. However, overtime, a gradual increase in the susceptible population is 

obtained which later remain stable and does not tends to zero. This indicates that 
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susceptible population will never be zero and endemicity will not exist as such the disease 

will die out over time due to the basic reproduction number less than unity. In Figure 4.2, 

the same behavioural dynamics of the vaccinated population is seen as susceptible 

population. The disease vanishes over time due to non-existence of endemicity showing 

vaccination population will not be zero when 𝑅0 < 1 which authenticates the analysis 

shown in section 3.1.1. The observation obtained agrees well with the findings of Khan et 

al., (2019) for population dynamics with basic reproduction number less than 1, and as 

such, the average contact infected number in relation to infectious persons decline in 

magnitude.  

Figures 4.3 - 4.7 display the dynamical performance of the latent, acute, chronic, 

hospitalized and the recovered population respectively. A downward momentous decrease 

is observed in the population at the early time of the disease as depicted in Figures 4.3 - 

4.6. As the time progresses, an insignificant variation in the population dynamics is noticed 

indicating that the disease dies out early due to the reproduction number that is less than 

unity. Though, the behaviour is influenced by increasing vaccination and other intervention 

strategies that resist the upsurge in the spread of the disease. Meanwhile, in Figure 4.7, a 

sharp rise in the recovery population is obtained demonstrating the effectiveness of the 

control strategies employed. The recovery reached the peak thereby eliminating the virus 

from the population. This resulted to overall declination in the population which tends to 

zero overtime. The results complement existing reports on Hepatitis B Virus and basic 

reproduction number.    
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The effect of varying acutely infected offspring (r) and chronically infected offspring (b) 

on the susceptible and latent population are investigated in Figures 4.8 and 4.9 respectively. 

A decrease in the parameters (b) and (r) boosts the susceptible and latent populations but 

reduces the spread HBV due to low interaction between the host immune system and the 

virus. Therefore, the appearance of HBV and the pathogenesis reduces which thereby 

lessen the potential injury on the liver. Hence, the liver is shielded from hepatocellular 

carcinoma over time. The rate of acutely infected and chronically infected individuals is 

examined in Figures 4.10 and 4.11. The parameter variations show a slight decrease in the 

acute population between the time range of 0 < 𝑡 < 6 which implies that the individuals 

are indeed in the acute phase of the virus. The vertical transmission dies down as the time 

progresses this discourages liver inflammation as a result of lowering the infected 

individuals. Meanwhile, the chronic population in Figure 4.11, depicts a high significant 

influence of the acutely infected and chronically infected individuals over time. A chronic 

infection phase is found at the time range 6 < 𝑡 <  40,  as such, the individuals are exposed 

to liver carcinoma or cirrhosis. Hence, the chronic population diminishes as the parameters 

are reduced. 

In Figures 4.12 to 4.14, the impact of rate of children born of infected mother without active 

vaccine which goes into the acute compartment (r) and chronic compartment (b) on the 

hospitalized, recovered and the vaccinated population are presented. The hospitalized 

population decreases with parameters variation along the rising time (t) as a result of short 

time effect of the acute and chronic population. This satisfies the earlier report on the 

chronic and acute populace. The recovery rate is enhanced as observed in Figure 4.13 due 
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to significant simulation of surface antibodies of Hepatitis B. In the plot maximum 

recovery rate is reached early as the parameter values are varied and a decline in the plot 

is noticed which portrays total recovery of the population. An asymptotically rise in the 

vaccinated population with variation in parameter values of (b) and (r) is seen in Figure 

4.14. This is expected as the number of successful vaccination rate increases due to 

reduction in the rate of unsuccessful vaccination of children born of infected mothers at 

birth. The results are in conformity with the work of Lavenchy (2004) and Emerenini and 

Inyama (2018), which established the fact that the impact of the treatment reduces the 

effects of vertical transmission. It also showed that it is possible to reduce the number of 

acute and chronic individuals by increasing the treatment rate. Also, the results are in 

consonance with the findings by World Health Organization (WHO, 2020) which says with 

effective information and active vaccination at birth, there is tendency to have a reduction 

in the susceptible, recovered and vaccinated individuals. 

   Figures 4.15 - 4.21 explore an optimal control model with time preventive (hospitalization 

at the acute state and hospitalization at the chronic state) strategies as control measures on 

HBV transmission. First, the controls are used to optimize the objective function. Then, 

the effect of those controls on the various compartments is shown. In Figure 4.15, the 

impact of the controls on the susceptible individuals was considered. From the figure, 

there is a slight increase on the controlled plot than the uncontrolled plot as observed on 

the graph which is as result of controls which aid recovery with full immunity on the 

populace. Also, in figure 4.16, the effect of controls was checked on the latent state, the 

figure depicts that there is no visible difference between the control plot and the 
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uncontrolled plot because, at the latent state, there cannot be any control measures that 

can be put in place at that time. 

  The impact of the controls on the acute populace is considered in Figure 4.17. From the 

plot, it was observed that there is a reduction in the population of acute(early) individuals 

under control, which implies that treatment at the acute state significantly affects the 

disease transmission model. From Figure 4.18, there is a significant decline in the 

population of chronic individuals under control over time than the uncontrolled as 

observed on the plot. The control measures' impact on the chronic individuals reduces the 

effect of liver cancer or Hepatocellular carcinoma.  

  In Figure 4.19, the effect of control measures on the hospitalized (treated) individuals was 

considered. From the plot, there is a significant difference between the control plot and 

the uncontrolled plot as noticed. There is an early rise on the controlled plot which 

signifies the effect of the controls on the hospitalized this implies that with control, the 

number of individuals on treatment will be more than those without control thereby 

reducing the chances of liver cancer and possibly death. The effect of the control measure 

on the recovered individuals was depicted in Figure 4.20. From the figure, it was observed 

that the population of recovered individuals at the control levels is far greater than those 

without control. This is an indication that with control, a large population of infected 

individuals recovers on time, making it cost-effective, i.e., profit will be maximized. The 

impact of controls on the vaccinated individuals was shown in Figure 4.21. From the plot, 

there is an increase in the number of vaccinated individuals on control than those without 
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control, which implies that vaccination can eradicate the virus in the population with many 

successful vaccinated individuals and according to WHO, (2020) successful vaccination 

still remains the surest method of mitigating the transmission process of Hepatitis B virus. 

4.2.2 Discussion of Results for HBV Model Case 2 

Table 4.2 shows the contribution of each parameter to the basic reproduction number, 𝑅0 

when it is less than unity. It was observed from the table that ζ, 𝛽, γ, 𝜎, 𝜌 are all sensitive to 

𝑅0. It is also clear that 𝑅0  is most sensitive to changes in ζ, 𝜎, 𝜌 . An increase in the 

treatment rate of chronic individual (𝜎)and also duration of treatment (𝜌) will bring about 

a proportional increase in 𝑅0 and a decrease in parameter values 𝜎, 𝜌 will result in a 

decrease in 𝑅0 with about an equivalent magnitude.The parameters휂, 𝜇, 𝜐, 𝜔, 𝜉1,𝜉2 have an 

inverse proportional relationship with 𝑅0 implying that any increase in 휂, 𝜇, 𝜐, 𝜔, 𝜉1,𝜉2will 

reduce the number of secondary infections arising from the case of HBV. This suggest that 

more effort should be concentrated at first identifying carrier mothers who are prone to 

giving birth to chronic offspring and then increasing the treatment rate of such individuals 

while adhering strictly to the duration of treatment which is in consonance with the result 

obtained by Zhang and Zhang (2018). 

Figure 4.22 demonstrates the behavioral dynamics of susceptible population when 𝑅0 < 1. 

An early asymptotical decrease toward a limiting zero of susceptible population was 

noticed. Nevertheless, overtime, an increase in the susceptible population is attained which 

later remain stable and does not tends to zero. This shows that susceptible population will 
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never be zero and the disease will die out over time due to the basic reproduction number 

less than unity. Figures 4.23 - 4.26 show the dynamical performance of the acute, chronic, 

treated and the recovered population respectively. A downward significant decrease is 

observed in the population at the early time of the disease as shown in Figures 4.23 - 4.26. 

With the passage of time, an inconsequential variation in the population dynamics is 

observed indicating that the disease dies out early due to the reproduction number that is 

less than unity. Though, the behaviour is influenced by increasing vaccination and other 

intervention strategies that resist the upsurge in the spread of the disease. This analysis 

results into the overall declination in the population which tends to zero overtime and this 

also validates the analysis shown section 3.2.2. Existing reports on Hepatitis B Virus and 

basic reproduction number complement the results obtained. 

  The impact of varying the treatment rate at the chronic state (σ) and recovery rate with full 

immunity (κ) are investigated in Figures 4.27 to 4.31. In Figure 4.27, an increase in in the 

treatment rate of individuals at chronic compartment (σ) and also, increase in the recovery 

rate of individuals under treatment with full immunity (κ) brings about an indifference in 

the susceptible population because those who recover don’t go back to been susceptible 

again i.e., recovery with full immunity is achieved which is in conformity with the work 

of Zhang and Zhou (2012). Figure 4.28 depicts the behavior of the acute population. From 

the plot, an increasing population was noticed then a fall over time which is as a result of 

those that spontaneously clear the virus due to their body immune response as stated by 

Cuipe et al., (2011) and Scagiloni et al., (2016).  
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  Figure 4.29 depicts the chronic population when varying the treatment rate at the chronic 

state (σ) and recovery rate with full immunity (κ), an increase in these parameters values 

leads to a decline in chronic population which is expected as treatment at the chronic 

population lowers the incidence of chronic Hepatitis B and invariably drops the risk of 

Hepatocellular carcinoma. Meanwhile, an inverse relationship is observed in Figures 4.30 

and 4.31, treatment rate at the chronic state (σ) and recovery rate with full immunity (κ) 

will definitely bring about a significant increase in treated population so also the recovery 

population as shown in the plots. This finding implies that treatment of chronic individuals 

and adherence with treatment brings about an increase in recovery rate which is also an 

effective measure of reducing the menace HBV which is been justified by the work of 

Zhao (2000) and Zhang and Zhou (2012). 

Figures 4.32 – 4.36 depicts an optimal control model plot with time preventive (treatment 

at the acute state and treatment at the chronic state) strategies as control measures on HBV 

transmission process. These controls are used to optimize the objective function. The 

impact of these controls on the various compartments is hereby discussed. From figure 

4.32, the impact of the controls on the susceptible individuals is significant and evident 

as there is a sharp rise in the susceptible individual population as the control measures are 

in place because several people that are treated and recovered move into the susceptible 

class again since they can be re-infected whereas when the control measures are not put 

in place, there is no noticeable increment in the susceptible population.  Figure 4.33 shows 

the impact of controls on the acute individual population. From the plot, an asymptotical 

decline in the acute individual population under control is noticed which significantly 
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shows that the application of the control measures helps in the reduction of the acute class 

and this is expected. It shows the impact of the control measures in the acute population 

is momentous. Figure 4.34 displays the impact of the control measures on the chronic 

individual’s population. It is observed from the figure that there is a reduction in the 

chronic individuals when control measures are applied compared to where there are no 

control measures. This implies that the impact of the control measures on chronic 

individuals is significantly felt. In figure 4.35, there is a significant increase in the treated 

class due to the availability of the control measure which later reduces because of the 

movement of the treated individuals to the recovered class. In figure 4.36, the effect of 

the control measure on the recovered individuals is shown. From the figure, it is 

discovered that there is a significant increase in the recovered class where there is control 

than when there is no control. This is an indication that with control, a large population 

of infected individuals recovers on time, making it cost-effective. This is justified in the 

work of Oke et al., (2020) that control strategies help in maximizing profits and 

minimizing deaths. 

4.2.3 Discussion of Results for HBV Model Case 3 

Table 4.3 shows the contribution of each parameter to the basic reproduction number. 𝑅0 

when it is less than 1. From the table, it was observed that 𝛽, 𝛿, 𝜎, 𝜐1, 𝜐2 are all sensitive to 

the basic reproduction number 𝑅0. It is also evident that 𝑅0is most sensitive to changes 

in 𝛿, 𝜎, 𝜐1, 𝜐2. An increase in the testing rate of acute individuals (𝜐1), testing at the chronic 

unaware state (𝜐2), treatment of the chronic aware individuals (𝛿) and also spontaneous 
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clearance rate (𝜎) results in a corresponding proportionate increase or decrease in thebasic 

reproduction number𝑅0.However, an inverse relationship is observed for the 

parameters𝜇, 𝛼1.𝛼2 and 𝛾 with 𝑅0 implying that any increase in 𝜇, 𝛼1.𝛼2 and 𝛾will reduce 

the number of infected contacts to an infected individual. Therefore, the result from this 

sensitivity analysis of 𝑅0 suggest that more effort should be concentrated at first testing of 

individuals at all levels for HBV and once found positive treatment should commence 

immediately in order to reduce the risk of cirrhosis or death. 

Figure 4.37 shows the dynamical behavior of susceptible population when 𝑅0 < 1. An 

early decrease toward a limiting zero of susceptible population was observed. Nonetheless, 

overtime, an increase in the susceptible population is attained which later remain stable 

and does not tends to zero. This shows that susceptible population will never be zero and 

the disease will die out over time due to the basic reproduction number less than unity. 

Figures 4.38 to 4.42 depicts the dynamical performance of the acute, chronic unaware, 

chronic aware, treated and the recovered population respectively. A descending 

momentous decrease is observed in the population at the early time of the disease as shown 

in Figures 4.39 - 4.43. As time progresses, an insignificant variation in the population 

dynamics is observed indicating that the disease dies out early due to the reproduction 

number that is less than unity. Though, the behaviour is influenced by increasing testing 

and other intervention strategies that resist the upsurge in the spread of the disease. This 

results to total declination in the population which tends to zero overtime which 

authenticate the analysis shown section 3.3.2 that says there is no HBV in the population, 
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only the susceptible individuals exist. Existing reports on Hepatitis B virus and basic 

reproduction number complement the results obtained. 

 The effect of varying the testing rate of the acute individuals (𝜐1), testing rate of chronic 

individuals (𝜐2) and treatment rate of chronic individuals (𝛿) on the population dynamics 

are shown in Figures 4.43 to 4.48.  From Figures 4.43 and 4.44, an increase in the 

parameters values reduces susceptible and acute populations thereby reducing the spread 

of HBV due to low interaction between the host immune system and the virus. Therefore, 

the appearance of HBV and the pathogenesis reduces which in so doing lessen the 

potential injury on the liver. Hence, the liver is shielded from hepatocellular carcinoma 

over time. The rate of chronic unaware and chronically aware individuals is examined in 

Figures 4.45 and 4.46. The parameter variations show a significant decrease in the chronic 

unaware population which implies that testing at the stage is a great tool for reducing the 

disease transmission. The transmission process dies down as the time progresses this 

discourages liver inflammation as a result of lowering the infected individuals. 

Meanwhile, the chronic population in Figure 4.46, depicts a high significant influence of 

the acutely infected and chronically unaware infected individuals over time. A chronic 

infection phase is found at the time range 10 < 𝑡 <  20,  as such, the individuals are 

exposed to liver carcinoma or cirrhosis. Hence, the chronic population diminishes as the 

parameters are increased. 

  In Figures 4.47 to 4.48, the impact of varying the testing rate of the acute individuals(𝜐1), 

testing rate of chronic individuals (𝜐2) and treatment rate of chronic individuals (𝛿) on the 
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treated and the recovered population are presented. The treated population increases with 

parameters variation along the rising time (t) as a result of long-time effect of parameter 

values. The recovery rate is enhanced as observed in Figure 4.48 due to significant 

simulation of surface antibodies of Hepatitis B. This is in alignment with the works of 

Pang (2010) and Ullah (2019). This result implies that an intensification in testing at all 

infectious states and rise in treatment of chronic individual will bring about a reduction in 

the HBV transmission process which is response to the WHO goal for 2030 that 

concentrating efforts on awareness program and campaign will sure bring about a decrease 

or eradication in the transmission process of the virus (WHO, 2020). 

  Figures 4.49 -4.54 show an optimal control model plots with time preventive (treatment at 

the acute state, testing at the chronic unaware condition, and treatment at the chronic aware 

state) strategies as control measures. These three controls are used to optimize the 

objective function on HBV transmission process. The effect of the control measures on 

the different compartments is discussed. Figure 4.49 shows the impact of the controls on 

the susceptible individuals. From the figure, it was observed that the population of 

susceptible individuals in the control plot is lesser than those individual not under control. 

Awareness is a form of testing that is an important control tool that helps reduce the 

number of people who will be susceptible to the virus because as they are informed, they 

take all precautionary measures to guard against the virus. In Figure 4.50, the effects of 

the controls on the acute populations are shown. From the figure, it is observed that the 

acute population reduces with time with control, indicating that treatment at the acute state 

helps the transmission process of the diseases.  
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 In Figure 4.51, the impact of the control measures on the chronic unaware population are 

considered. From the figure, an asymptotical substantial difference between the control 

plot and the uncontrolled plot is noticed which signifies the number of chronic unaware 

individuals reduces as testing on the chronic unaware individual is implemented as a 

control measure for the transmission process. Figure 4.52 depicts the effect of the control 

measures on the chronic aware population. From the figure, a great fall in the controlled 

plot is observed which shows the impact of the controls as against the uncontrolled plot. 

The number of aware individuals reduces greatly as treatment at the chronic aware state 

is implemented as a control measure for the transmission process. Figure 4.53 shows the 

impact of the control measures on the treated population. From the figure, a significant 

difference between the control plot and the uncontrolled plot is noticed. The number of 

the treated individuals increases under control as against without control which shows the 

cumulative effect of testing at the acute and the chronic unaware state. Figure 4.54 depicts 

the effect of the control measures on the recovered individuals. From the figure, the 

number of recovered individuals on the control plot is far greater than those without 

control from the plot. It is a clear sign that combining testing at the acute and chronic 

unaware state is a smart way to keep HBV transmission under control (Niederau, 2014), 

which is line with the WHO 90-90 – 90 HBV elimination and coverage target for 2030 

(WHO, 2020). 



224 

 

4.3 Findings 

In solving the problem of transmission and acquisition process of HBV, three models were 

developed. Following a mathematical modelling approach, keeping in view the horizontal 

transmission process, this study demonstrated that children born of chronically infected 

mother can be divided into acutely infected offspring or chronically infected offspring. It 

has also been shown that acutely infected individuals spontaneously clear the virus and 

treatment at all infectious class helps in mitigating the risk of HBV. However, individuals 

who fall out of treatment or indulge in habits or lifestyles that reduces the potency or effects 

of treatment which aggravate HBV transmission process, also testing at the acute state of 

the virus and chronic unaware state helps in better management of the virus. 

Impact of testing and treatment cannot be over-emphasized in this study as it is the bedrock 

of reducing the disease transmission process, strategies and control interventions are cost 

effective i.e., minimize cost and maximize the number of recovered individuals. Hence, 

early treatment could be the most fruitful way to reduce the menace of liver cirrhosis. 
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CHAPTER FIVE  

5.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

This work studied the transmission and acquisition process of Hepatitis B virus, the impact 

of testing as well as treatment as control strategies using mathematical models. 

Specifically, vertical transmission which is the main route of the disease transmission was 

checked using the basic reproduction number and the stability analysis. In addition, 

different intervention scenarios for the Hepatitis B virus were addressed and investigated.  

The background of the infectious disease; Hepatitis B Virus was discussed. Conceptual 

issues arising from Hepatitis B virus were raised and also reviews of methods used were 

analyzed. The gaps identified in literatures were vividly discussed. 

Mathematical model formulation, analysis and methods of solutions for HBV model were 

discussed.  A class of ODE system was formulated and analyzed using established 

theorems.  The positivity and boundedness of the solutions was investigated which showed 

that the solution is bounded and well posed in the various regions. Also, the basic 

reproduction number was constructed, the disease free and endemic equilibrium points 

were analyzed to be locally and globally asymptotically stable under certain conditions of 

the basic reproduction number using the Lyapunov method. When the basic reproduction 

𝑅𝑜 = 1, the behavior of the disease-free equilibrium was investigated using the bifurcation 
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analysis. Afterwards, the formulation of the optimal control problem, analysis of the 

optimal control problem, adjoint conditions, optimality conditions and the optimality 

system for the HBV models were considered using the Portryagin’s maximum principle.  

The numerical computation of the model considered was carried out. It was analytically 

and numerically established the necessary conditions under which disease-free equilibrium 

is asymptotically stable using the basic reproduction number (𝑅𝑜). Using parameters from 

published articles and some assumed values, the possibility of diseases eradication was 

shown. The results further showed the effects of varying some sensitive parameters on the 

dynamics of various populations. Thereafter, the computation on optimal control was 

highlighted to depict the impacts of control measures on the population. 

5.2 Conclusion 

A nonlinear mathematical model has been developed and analyzed to study the HBV 

transmission process. The numerical study was carried out using maple software embedded 

code for the Runge-Kutta of fourth order, and the optimal control was comprehensively 

analyzed on MATLAB pseucode for numerical computation. From this study, the 

following deductions were made: 

1. The disease-free and endemic equilibria for the various HBV models were obtained 

by setting the various compartments to zero. For the disease-free equilibrium, the 

susceptible individuals and the vaccinated individuals were determined while for 

the endemic equilibrium, all the compartmental values were determined. It was 
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noted that the disease free and endemic equilibrium of the various models exist. 

This demonstrates that the disease is controllable under various circumstances. 

2. The basic reproduction number is calculated to investigate the spread of secondary 

infected cases caused by primary infected individuals. The numerical solutions for  

𝑅0 < 1 were validated, and it was discovered that the average contact infected 

number in relation to infectious persons decreases in magnitude. This has an effect 

on the virus's transmission process.  

3. The stability analysis was determined by the linearization of the various models. 

The Jacobian matrix of the linearized models were taken and the eigenvalues were 

evaluated. It was revealed from the study that the disease-free equilibrium is 

asymptotically stable for 𝑅0 < 1. This means that solutions converge to the 

equilibrium and stay close to the equilibrium, as such, the solution is stable and the 

disease will die out as time passes. Meanwhile, the endemic equilibrium is 

asymptotically stable when 𝑅0 > 1. Thus, this portrays that the there is an urgent 

need for curbing of the disease in order not to result into endemicity; a cogent 

measure to mitigate the spread of the virus should be encouraged. 

4. The sensitivity analyses of the various models were examined and the 

importance of the most sensitive parameters is shown. This enables proper 

prediction and behavioral characteristics of some entrenched parameters in the 

models. The sensitivity analyses confirm that some parameters must be carefully 

monitored to avoid the disease blow up that may lead to uncontrollable effect of 

Hepatitis B virus in the society. 
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5. T h e  center manifold theory was used to computationally obtain the bifurcation 

results of the models. The stable upper bifurcation and unstable lower bifurcation 

revealed that overtime, bifurcation transition will exist. The results showed that the 

various models’ endemic equilibriums are locally asymptotically stable for the 

associated basic reproduction number greater than unity since 𝑎 > 0. 

6. It was computationally ascertained that models formulated and the control 

measures placed on them has significant effect in reducing the transmission and 

acquisition process of Hepatitis B virus. Thus, it is safe to argue that controls 

strategies help to mitigate the menace of Hepatitis B virus in a population. 

The objectives of the study were achieved as the models were formulated, analyzed 

qualitatively and quantitatively to situate that the combination of testing and treatment 

increase the recovery rate of an individual thereby reducing the possibility for liver cancer 

or Hepatocellular carcinoma. 

5.3 Recommendations 

The recommendations arising from this research are: 

1. Proper diagnosis i.e., testing should be carried out on an individual that shows 

symptoms of HBV before treatment is commenced.  

2. Urgent measures should be taken by the health workers and health policy makers 

in order to reduce liver cirrhosis among HBV patients and treatments at various 

state of HBV should be carried out. 
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3. For HBV control, patients who are on treatment should be properly monitored and 

encouraged to obey the treatment processes in order not to fall out of treatment or 

indulge in habits that can jeopardize the effects of the treatment. 

4. Awareness should be created; testing should be made compulsory and free as it is 

shown that chronic unaware individuals are the fast spreaders and they die faster 

of liver cirrhosis. 

5. The combination of the three control strategies proves to be the most effective in 

interrupting the transmission of HBV, vaccination still remains the best control 

strategy for mitigating the spread of the disease. It is therefore advisable that 

vaccination of susceptible individuals should be carried out in order to prevent 

individuals from contacting the disease and thereby reducing the number of 

infected individuals in the population. 

5.4 Contributions to Knowledge 

The findings of the present work and hence the contributions to knowledge are: 

1. Mathematical modeling of HBV involving vertical transmission only includes 

children born of infected mothers who are chronically infected, but the findings 

of this study have validated that children born of infected mothers can be 

acutely infected as well as chronically infected. Possible solutions for reducing 

these two modes of HBV vertical transmission were also presented. 
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2. Individuals who drop out of treatment due to their habits contribute to an 

increase in infected HBV individuals, which policymakers must address 

through a series of public awareness campaigns about the dangers of not 

adhering to treatment procedures and patterns. 

3. The formulation of the mathematical model incorporating chronically unaware 

individuals in the population is a significant contribution to this work because, 

to the best of our knowledge, it has not been considered in the literature. It has 

been clinically demonstrated that the chronically unaware individual exists, and 

this has now been confirmed by some of the findings in this study. It has been 

established in some of our findings that chronically unaware individuals exist 

and can be curtailed. 
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APPENDICES 

APPENDIX I: ALGORITHM FOR HBV OPTIMAL CONTROL CASE 1 

function HBV_CONTROL 

 

% the model parameter values %%%%%%%%%%%%%%%%%%  

 

global beta sigma a_2  q gamma_1 a_1 omega  upsilon b gamma_2 mu_0 mu_1 

mu_2 vartheta_1  vartheta_2 vartheta_3 ... 

        x0 tempControl_u1 tempControl_u2 delta_1 r gamma_3 phi G4 G5 

... 

 

    format long 

%%%%%%%%%%%%% 

    beta   = 0.095; 

   sigma   = 0.016; 

   a_2 = 0.16;  

   q = 0.885; 

   gamma_1 = 0.01095;  

   a_1 = 0.0252;     

  omega = 0.6496; 

   upsilon = 0.2994; 

   b = 0.02; 

   gamma_2 = 0.0684; 

   mu_0 = 0.00693; 

   mu_1 = 0.002; 
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    mu_2=0.002;  

    vartheta_2=0.590;  

    vartheta_1=0.36;   

    vartheta_3=0.34;   

    delta_1=0.95;  

    r=0.02;     

    gamma_3=0.5; 

    phi = 0.1; 

    G4=1; 

    G5=1; 

    delta_1=0.95;                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    dt =  0.1; tf =90; 150;  3.0;  365;   51; 2122; 

    tvec = 0 : dt : tf; 

    tfvec = tf : -dt : 0; 

    del = 0.0001; 

 

    M = length(tvec);  

 

    x = zeros(M,7);   

    lambda = zeros(M,7); 

    u=zeros(M,2); 

    maxu = [1 1]; 

 

%initial values  

    S = 100;  
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    L= 90;    

    A=80;  

    C=60;  

    T=60; 

    R=50; 

    V=40;            

     x0 = [S L A C T R V];   

     lambda0 = [0 0 0 0 0 0 0]; 

 

%%%% Without Control 

solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0,[]);   

xout = deval(solx,tvec)'; 

 

    test = -1; 

    count = 0;     

 

while((test < 0)&&(count<500)) 

 

   oldtx = x; 

   oldLambda = lambda; 

   oldtu = u; 

    solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0);    

    x = deval(solx,tvec)';%  

 

    tx=x; 

    tu=u; 
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    sollamb = ode45(@(t,lambda) Lde(t,lambda,tvec,x,u),tfvec,lambda0);  

 

 lambda = deval(sollamb,tvec)'; 

 

        u1 = u(:,1);  

        u2 = u(:,2);  

 

    oldu1=u1;     

        oldu2=u2; 

% declaration of state variable in vector 

 

        S = x(:,1); 

        L = x(:,2); 

        A = x(:,3); 

        C = x(:,4);  

        T = x(:,5); 

        R = x(:,6); 

        V = x(:,7);  

 

        lambda1 = lambda(:,1); 

        lambda2 = lambda(:,2);   

        lambda3 = lambda(:,3); 

        lambda4 = lambda(:,4);   

        lambda5 = lambda(:,5);   

        lambda6 = lambda(:,6); 

        lambda7 = lambda(:,7);   
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% %  %   UPDATE CONTROL  

          tempControl_u1 = A.*(lambda3-lambda5)/(2*G4); 

          Controltemp_u1 = min(maxu(1),max(0, tempControl_u1 ));   

        u1 = 0.5*(Controltemp_u1 + oldu1);    

 

       tempControl_u2 = C.*(lambda4-lambda5)/(2*G5);                        

         Controltemp_u2 = min(maxu(2),max(0, tempControl_u2));    

        u2 = 0.5*(Controltemp_u2 + oldu2);  

 

 

global beta sigma a_2 q gamma_1 a_1 omega  upsilon b gamma_2 mu_0 mu_1 

mu_2 vartheta_1  vartheta_2 vartheta_3 ... 

         delta_1 r gamma_3 phi G_4 G_5 ... 

% Defined parameters for easy computation 

dS = a_1*omega*(1-upsilon*C)+phi*V-

(beta*A+a_2*beta*C+gamma_3+mu_0+delta_1)*S-r*A-b*C; 

dL = (beta*A+a_2*beta*C)*S-(sigma+mu_0+delta_1)*L; 

dA = sigma*L-(u1+gamma_1+mu_0+delta_1-r)*A; 

dC = q*gamma_1*A-(-a_1*omega*upsilon-b+gamma_2+mu_0+mu_1+u2)*C; 

dT = u2*C+u1*A-(vartheta_3+mu_0+mu_2)*T; 

dR = gamma_2*C+(1-q)*gamma_1*A+vartheta_3*T-mu_0*R; 

dV = a_1*(1-omega)+gamma_3*S-(phi+mu_0)*V; 

 

 

Xprime = [dS;dL;dA;dC;dT;dR;dV]; 
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function Lprime = Lde(t,lambda,tvec,tx,tu)   

 

tspan = tvec;    

 

 

    u1=tu(:,1);   

    u2=tu(:,2);   

 

    tx=interp1(tspan,tx,t); 

    u1=pchip(tspan,u1,t);   

    u2=pchip(tspan,u2,t);   

    S = max(0,tx(1));  

    L = max(0,tx(2));  

    A = max(0,tx(3));    

    C = max(0,tx(4)); 

    T = max(0,tx(5));  

    R = max(0,tx(6));    

    V = max(0,tx(7)); 

 

    lambda1=lambda(1); 

    lambda2=lambda(2);  

    lambda3=lambda(3); 

    lambda4=lambda(4); 

    lambda5=lambda(5); 

    lambda6=lambda(6); 

    lambda7=lambda(7); 
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global beta sigma a_2 q gamma_1 a_1 omega  upsilon b gamma_2 mu_0 mu_1 

mu_2 vartheta_1  vartheta_2 vartheta_3 ... 

         delta_1 r gamma_3 phi ... 

 

dlambda1 = -lambda1*(-beta*A-a_2*beta*C-gamma_3-mu_0-delta_1)-

lambda2*(beta*A+a_2*beta*C)-lambda7*gamma_3; 

 

dlambda2 = -1-lambda2*(-sigma-beta-mu_0-delta_1)-lambda3*sigma; 

 

dlambda3 =  -1-lambda1*(-beta*S-r)-lambda2*beta*S-lambda3*(-u1-gamma_1-

mu_0-delta_1+r)-lambda4*q*gamma_1-lambda5*u1-lambda6*(1-q)*gamma_1; 

 

dlambda4 = -1-lambda1*(-a_1*omega*upsilon-b-a_2*beta*S)-

lambda2*(a_2*beta*S)-lambda4*(a_1*omega*upsilon+b-gamma_2-mu_0-mu_1-

u2)-lambda5*u2-lambda6*gamma_2;  

 

dlambda5 =  -lambda5*(-vartheta_3-mu_0-mu_2)-lambda6*vartheta_3; 

 

dlambda6 = -lambda6*(-mu_0); 

 

dlambda7 = -lambda1*phi-lambda7*(-phi-mu_0); 

 

 Lprime = 

[dlambda1;dlambda2;dlambda3;dlambda4;dlambda5;dlambda6;dlambda7]; 
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APPENDIX II: ALGORITHM FOR HBV OPTIMAL CONTROL CASE 2 

function HBV_CONTROL 

 

% the model parameter values %%%%%%%%%%%%%%%%%%  

 

global zeta beta alpha gamma eta omega  upsilon xi mu_0 mu_1 rho k ... 

        x0 tempControl_u1 tempControl_u2 epsilon  G4 G3 ... 

 

    format long 

%%%%%%%%%%%%% 

  beta   = 0.002; 

  zeta = 0.693; 

  alpha = 0.65;  

  gamma = 0.11; 

  xi = 0.1096;  

  eta = 0.25;     

  omega = 0.06496; 

  upsilon = 0.2995; 

   epsilon = 0.2323; 

   mu_0 = 0.0095; 

   mu_1 = 0.002;  

   k = 0.36; 

   rho = 0.4; 
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   G3=1; 

   G4=1; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

 

    dt =  0.1; tf =50;  

    tvec = 0 : dt : tf; 

    tfvec = tf : -dt : 0; 

    del = 0.0001; 

 

    M = length(tvec);  

 

    x = zeros(M,5);   

    lambda = zeros(M,5); 

    u=zeros(M,2); 

    maxu = [1 1]; 

 

%initial values  

 

    S = 1;  

    A=100;  

    C=10;  

    T=1; 
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    R=1; 

 

     x0 = [S A C T R];   

     lambda0 = [0 0 0 0 0]; 

 

%%%% Without Control 

solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0,[]);   

xout = deval(solx,tvec)'; 

 

    test = -1; 

    count = 0;     

 

while((test < 0)&&(count<500)) 

 

   oldtx = x; 

   oldLambda = lambda; 

   oldtu = u; 

 

 

    solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0);    

    x = deval(solx,tvec)';%  

 

    tx=x; 

    tu=u; 
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    sollamb = ode45(@(t,lambda) Lde(t,lambda,tvec,x,u),tfvec,lambda0);  

 

 lambda = deval(sollamb,tvec)'; 

 

        u1 = u(:,1);  

        u2 = u(:,2);  

        oldu1=u1;     

        oldu2=u2; 

 

% declaration of state variable in vector 

 

        S = x(:,1); 

        A = x(:,2); 

        C = x(:,3); 

        T = x(:,4);  

        R = x(:,5); 

 

        lambda1 = lambda(:,1); 

        lambda2 = lambda(:,2);   

        lambda3 = lambda(:,3); 

        lambda4 = lambda(:,4);   

        lambda5 = lambda(:,5);   

 

% %  %   UPDATE CONTROL  
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          tempControl_u1 = A.*(lambda2-lambda4)/(2*G3); 

          Controltemp_u1 = min(maxu(1),max(0, tempControl_u1 ));   

        u1 = 0.5*(Controltemp_u1 + oldu1);    

 

       tempControl_u2 = C.*(lambda3-lambda4)/(2*G4);                        

         Controltemp_u2 = min(maxu(2),max(0, tempControl_u2));    

        u2 = 0.5*(Controltemp_u2 + oldu2);  

 

        tu(:,1) = u1; 

        tu(:,2) = u2; 

% For control profile 

        temp1 = del*sum(abs(tu),2) - sum(abs(oldtu - tu),2); 

        temp2 = del*sum(abs(tx),2) - sum(abs(oldtx - tx),2); 

 

         test = min(min(min(temp1),min(temp2))); 

 

 

        x = tx; 

        u = tu;  

 

        count = count + 1;       

end 

============================================================== 

S = x(:,1); 
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 A = x(:,2); 

 C = x(:,3); 

 T = x(:,4);  

 R = x(:,5); 

 

Su = xout(:,1);  

Au = xout(:,2); 

Cu = xout(:,3);  

Tu = xout(:,4);  

Ru = xout(:,5); 

 

 u1 = u(:,1);  

 u2 = u(:,2);  

 

function Xprime = Xde(t,tx,tu,tvec) 

tspan=tvec;       

 

    u1=tu(:,1);   

    u2=tu(:,2); 

    u1=pchip(tspan,u1,t);         

    u2=pchip(tspan,u2,t);         

    S = max(0,tx(1));  

    A = max(0,tx(2));  

    C = max(0,tx(3));    
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    T = max(0,tx(4));    

    R = max(0,tx(5));  

 

 

global zeta beta alpha gamma eta omega  upsilon xi mu_0  rho k epsilon  

... 

 

% Defined parameters for easy computation 

 

dS = zeta*(1-alpha)*(1-gamma*C)-(beta*A+xi*beta*C)*S+(1-eta)*omega*A-

mu_0*S+(1-k)*upsilon*rho*T+epsilon*R; 

dA = (beta*A+xi*beta*C)*S-(omega+mu_0+u1)*A; 

dC = eta*omega*A+zeta*(1-alpha)*gamma*C+(1-upsilon)*rho*T-(mu_0+u2)*C; 

dT = u2*C+u1*A-(rho+mu_0)*T; 

dR = zeta*alpha+k*upsilon*rho*T-(mu_0+epsilon); 

 

 

Xprime = [dS;dA;dC;dT;dR]; 

 

 

function Lprime = Lde(t,lambda,tvec,tx,tu)   

 

tspan = tvec;    
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    u1=tu(:,1);   

    u2=tu(:,2);   

%     u3=tu(:,3); 

 

 

    tx=interp1(tspan,tx,t); 

    u1=pchip(tspan,u1,t);   

    u2=pchip(tspan,u2,t);   

%     u3=pchip(tspan,u3,t);  

 

    S = max(0,tx(1));  

    A = max(0,tx(2));  

    C = max(0,tx(3));    

    T = max(0,tx(4)); 

    R = max(0,tx(5));  

 

    lambda1=lambda(1); 

    lambda2=lambda(2);  

    lambda3=lambda(3); 

    lambda4=lambda(4); 

    lambda5=lambda(5); 

% display('============================== Start Adjoint Equation 

==============================================================') 
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global zeta beta alpha gamma eta omega  upsilon xi mu_0  rho k epsilon  

... 

 

dlambda1 = -lambda1*(beta*A+xi*beta*C-mu_0)-lambda2*(beta*A+xi*beta*C); 

 

dlambda2 = -1-lambda1*(beta*S+(1-eta)*omega)-lambda2*(beta*S-omega-

mu_0-u1)-lambda3*(eta*omega)-lambda4*u1; 

 

dlambda3 =  -1-lambda1*(zeta*alpha*gamma-xi*beta*S)-lambda2*xi*beta*S-

lambda3*(zeta*(1-alpha)*gamma-u2-mu_0)-lambda4*u2; 

 

dlambda4 = -lambda1*((1-k)*upsilon*rho)-lambda3*((1-upsilon)*rho)-

lambda4*(-rho-mu_0)-lambda5*(k*upsilon*rho);  

 

dlambda5 =  -lambda1*epsilon-lambda5*(-mu_0-epsilon); 

 

 Lprime = [dlambda1;dlambda2;dlambda3;dlambda4;dlambda5]; 
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APPENDIX III: ALGORITHM FOR HBV OPTIMAL CONTROL CASE 3 

global pie beta alpha_1 alpha_2 sigma  gamma mu d_c upsilon_1 upsilon_2 

omega  ... 

        x0 tempControl_u1 tempControl_u2 tempControl_u3 G4 G5 G6 ... 

    format long 

%%%%%%%%%%%%% 

pie = 0.07 

   beta   = 0.008; 

   sigma   = 0.67; 

   alpha_1 = 0.0016;  

   alpha_2 = 0.0016; 

   gamma = 0.9;  

   d_c = 0.00693;     

  omega = 0.1; 

   upsilon_1 = 0.2; 

   upsilon_2 = 0.02; 

   mu = 0.00693; 

    G4=1; 

    G5=1; 

   G6=1; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

dt =  0.1; tf =90; 150;  3.0;  365;   51; 2122; 

    tvec = 0 : dt : tf; 

    tfvec = tf : -dt : 0; 

    del = 0.0001; 
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    M = length(tvec);  

 

    x = zeros(M,6);   

    lambda = zeros(M,6); 

    u=zeros(M,3); 

    maxu = [1 1]; 

 

%initial values  

    S = 100;  

    A= 90;    

    C=80;  

    D=80;  

    T=60; 

    R=50;   

 x0 = [S A C D T R];   

 lambda0 = [0 0 0 0 0 0]; 

 

%%%% Without Control 

solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0,[]);   

xout = deval(solx,tvec)'; 

 

    test = -1; 

    count = 0;     

 

while((test < 0)&&(count<500)) 



267 

 

 

   oldtx = x; 

   oldLambda = lambda; 

   oldtu = u; 

 

 

    solx = ode45(@(t,x) Xde(t,x,u,tvec),tvec,x0);    

    x = deval(solx,tvec)';%  

 

    tx=x; 

    tu=u; 

    sollamb = ode45(@(t,lambda) Lde(t,lambda,tvec,x,u),tfvec,lambda0);  

 

 lambda = deval(sollamb,tvec)'; 

 

        u1 = u(:,1);  

        u2 = u(:,2);  

        u3 = u(:,3);                  

        oldu1=u1;     

        oldu2=u2; 

        oldu3=u3; 

 

% declaration of state variable in vector 

 

        S = x(:,1); 
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        A = x(:,2); 

        C = x(:,3); 

        D = x(:,4);  

        T = x(:,5); 

        R = x(:,6); 

 

 

        lambda1 = lambda(:,1); 

        lambda2 = lambda(:,2);   

        lambda3 = lambda(:,3); 

        lambda4 = lambda(:,4);   

        lambda5 = lambda(:,5);   

        lambda6 = lambda(:,6); 

 

 

 

% %  %   UPDATE CONTROL  

          tempControl_u1 = A.*(lambda2)/(2*G4); 

          Controltemp_u1 = min(maxu(1),max(0, tempControl_u1 ));   

        u1 = 0.5*(Controltemp_u1 + oldu1);    

 

       tempControl_u2 = C.*(lambda3)/(2*G5);                        

         Controltemp_u2 = min(maxu(2),max(0, tempControl_u2));    

        u2 = 0.5*(Controltemp_u2 + oldu2);  

 tempControl_u3 =  D.*(lambda4-lambda5)/(2*G6);                        

        Controltemp_u3 = min(maxu(3),max(0, tempControl_u3));    
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        u3 = 0.5*(Controltemp_u3 + oldu3); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        tu(:,1) = u1; 

        tu(:,2) = u2; 

        tu(:,3) = u3; 

 

% For control profile 

        temp1 = del*sum(abs(tu),2) - sum(abs(oldtu - tu),2); 

        temp2 = del*sum(abs(tx),2) - sum(abs(oldtx - tx),2); 

        temp3 = del*sum(abs(lambda),2) - sum(abs(oldLambda - 

lambda),2);  

         test = min(min(min(temp1),min(temp2),min(temp3))); 

        x = tx; 

        u = tu;  

 

        count = count + 1;       

end 

 

t=tvec; %tspan ; 

 

print(t,xout,x,u);   

 

x(end,:); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         

global  beta alpha_1 alpha_2 sigma  gamma mu d_c upsilon_1 upsilon_2 

omega  ... 



270 

 

 

dlambda1 = -lambda1*((beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2-

(beta*A+alpha_1*C+alpha_2*D)/(S+A+C+D+T+R)-mu)-lambda2*(-

(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2+(beta*A+alpha_1*C+alpha_

2*D)/(S+A+C+D+T+R)); 

 

dlambda2 = -1-lambda1*(-

beta*S/(S+A+C+D+T+R)+(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2+sig

ma)-lambda2*(beta*S/(S+A+C+D+T+R)-

(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2-sigma-gamma-u1)-

lambda3*gamma-lambda4*upsilon_1; 

 

dlambda3 =  -1-lambda1*(-

beta*alpha_1*S/(S+A+C+D+T+R)+(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+

R)^2)-lambda2*(beta*alpha_1*S/(S+A+C+D+T+R)-

(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2)-lambda3*(-d_c-mu-u2)-

lambda4*upsilon_2; 

 

dlambda4 = -1-lambda1*(-

beta*alpha_2*S/(S+A+C+D+T+R)+(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+

R)^2)-lambda2*(beta*alpha_2*S/(S+A+C+D+T+R)-

(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2)-lambda4*(-d_c-mu-u3)-

lambda5*u3; 

 

dlambda5 =  -

lambda1*(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2+lambda2*(beta*A+

alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2-lambda5*(-omega-mu)-

lambda6*omega; 

 

dlambda6 = -

lambda1*(beta*A+alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2+lambda2*(beta*A+

alpha_1*C+alpha_2*D)*S/(S+A+C+D+T+R)^2+lambda6*mu; 

Lprime = [dlambda1;dlambda2;dlambda3;dlambda4;dlambda5;dlambda6]; 

 


