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Abstract 

In the fields of quantum mechanics, the usefulness of molecular potential cannot be over 

emphasised due to its applications in evaluating diatomic molecules properties and the dynamic 

behaviour of molecules. Therefore, theoretical investigation was carried out on lithium dimer 

and cesium dimer under a modified molecular attractive potential model to obtain the solution 

of the approximate radial Schrödinger equation. Also, the thermodynamic properties of the 

molecular attractive potential were examined under various conditions. 

The goal of this study was to solve the radial Schrödinger equation for molecular attractive 

potential with the aid of Nikiforov-Uvarov method. The solution was used to acquire the energy 

equation, energy eigenvalues and its corresponding wave function for the system. Then, the 

effects of thermodynamic properties such as vibrational partition function, vibrational mean 

energy, vibrational specific heat capacity, vibrational entropy and vibrational free energy of 

the molecular attractive potential were examined using specific parameters such as dissociation 

energy, an equilibrium bond length and special screening parameter. The Rydberg-Klein-Rees 

were computed and evaluated with experimental values for the cesium dimer molecule and 

lithium dimer molecule. 

 From the study, it was observed that as the dissociation energy of the system was increasing, 

the energy of the system was also increasing. Also, the energy of the system initially increased 

and later decreased as the quantum numbers were increasing. In addition, the energy of this 

system were decreasing as the equilibrium bond length was increasing. Furthermore, the impact 

of the screening parameter was that the energy of the system increased and later decreased to 

a negative value. 

Mathematical procedures were employed to generate the eigenvalues and its corresponding 

wave functions; the spectroscopic parameters were inputted into the energy equation to obtain 
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the calculated Rydberg-Klein-Rees values which were compared with the experimental values 

which, in turn, agreed qualitatively with the theoretical findings. 
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CHAPTER ONE   

                                 INTRODUCTION 

1.1 Background of the Study. 

The description of physics that prevailed before relativity theory is described in classical 

physics which contains numerous natural features with a regular dimension and quantum 

theory  of low magnitude for natural traits (atomic and sub-atomic). (Jaeger, 2014). As soon as 

new experimental techniques to the point of investigating atomic and subatomic structures were 

established, it turned out that classical physics failed miserably to provide the correct 

explanation for many newly discovered phenomena. It was thus clear that at the microscopic 

level, the relevance of classical physics ceased and that new ideas had to be invoked to discuss 

how   atoms and molecules are made and how light interacts with them.  Classical physics has 

not been able to clarify many microscopic phases, such as radiation from the black body, photo 

electrically-powered effects, atomic stability and atomic spectroscopy (Zettili, 2009). 

Quantum mechanics is an important physical theory describing nature's physical characteristics 

at microscopic levels of atoms and subatomic particles (Richard et al., 1964). It is the 

foundation of quantum field theory, quantum technology, and quantum physics. One of the 

essential aspects of quantum mechanics is the wave equation that describes some quantum 

mechanical systems. 

The wave equation is a partial differential equation which can confine 

some scalar function𝑠  𝑢 = 𝑢(𝑥1,   𝑥2,…𝑥𝑛; 𝑡)  with one or more dependent variables and a 

time parameter (t) 𝑥1,   𝑥2,…𝑥𝑛. For example, the amount of u can be the fluid pressure or the 

shifting of the vibrating solid particles from their resting locations in a certain specified 

direction. 

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Scalar_(mathematics)
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The wave equation by itself does not suggests physical solutions; a unique solution usually is 

found when an extra condition problem like initial conditions is given for the wave amplitude 

and phase. Another major difficulty is in closed spaces, determined by boundary terms where 

solutions are like the harmonics of musical instruments, which represent standing waves or 

harmonics. A hyperbolized differentials equation is the simplest example. These changes play 

key roles in continuum mechanics, quantum mechanics, plasma physics, general relativity, 

geophysics and many more fields of science and technology. 

 The wave equation is denoted as:  

              𝜓 = 𝑒𝑖(𝑘𝑥−𝑤𝑡).                                                       (1.1) 

However, wave equation has two forms which are; relativistic and non-relativistic wave 

equations. The relativistic wave equation speculates the attitude of particles at high energies 

and velocities akin to the speed of light. Their energy equation are usually represented in 

quadratic form. Examples of relativistic wave equation are; Dirac equation and Klein Gordon 

equation, while the non-relativistic wave equation forecasts the way particles behave when they 

propagate at a speed less than the speed of light. The example of non-relativistic wave equation 

is the Schrödinger equation. This research will be limited to the non-relativistic wave equation. 

        

1.2 Statement of the Problem 

Several researches have been carried out on different kinds of potentials and their applied 

scientific and engineering uses. However, due to the disparity in the early theoretical results 

presented and the experimental outcomes, an improved modification in the potentials is 

essential. Though few potentials have been improved in order to enhance their deficiency with 

little or no attention paid to the molecular type potential. Therefore, this study focuses on the 

modified four- parameter exponential type molecular potential which will be used to generate 

energy equation. The molecules are significant to the chemical physics and molecular physics 
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in providing an accurate prediction of the potential energy inter atomic function and molecular 

electronic structure. As such, the cesium dimer and lithium dimer Rydberg-Klein-Rees shall be 

computed and checked with the results of the experiment due to the presence of spectroscopic 

parameters in molecular attractive potential. 

1.3 Justification for the Study 

The importance of molecular potentials in the areas of science and engineering most especially 

molecular physics, atomic physics, nuclear physics and others cannot be over emphasized. This 

has contributed greatly to the advancement of quantum physics, chemical physics and other 

related areas. Therefore, this study was inspired by the scientific applications of molecular 

potential for the compact molecular description such as calculation of thermodynamic 

functions, the reaction of gas phase with modelling of the equilibrium constant, etc. As such, 

this study will investigate the thermodynamic properties of molecular potential and a potential 

with four parameters of the exponential type that will be used to verify experimental results. 

  

1.4 Aim and Objectives 

This study aims to formulate a molecular attractive potential that will be used to study the 

numerical values of some molecules (cesium dimer and lithium dimer). 

The specific objectives are to; 

1. obtain the approximate solution of the radial Schrödinger equation of the modified 

potential; 

2. calculate the thermodynamic properties of the molecular attractive potential and 

3. verify the theoretical results with experimental results. 

1.5 Research Questions 

The following questions are expected to be answered by this study: 
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    1. how do we obtain the approximate  solutions of the radial Schrödinger equation? 

    2. how can we compute the properties of thermodynamics of the molecular attractive    

potential? 

   3. can the theoretical results juxtapose the experimental results?  

 

1.6 Scope of the Study 

The goal of this research is to use a molecular attractive potential to investigate the numerical 

values of various molecules (cesium dimer and lithium dimer). The study is restricted to the 

experimental results where secondary data on already established results are used for the 

numerical computations.  

 

1.7 Significance of the Study 

This work is to extend the boundaries of knowledge by the theoretical determination of 

Rydberg-Klein-Rees (RKR) values of some molecules with a four- parameter-exponential-type 

molecular potential. Results obtained in this study are good indices that can aid some decisions 

on methods, parameters and favourable molecular potential which can be used for situating 

experimental results. 

1.8 Definition of Terms. 

1.8.1    Dimer 
A dimer is an oligomer consisting of two monomers joined by bonds that can either be strong 

or weak, covalent or intermolecular. 
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1.8.2     Diatomic molecules 
  Diatomic molecules are molecules composed of only two atoms, of the same or different 

chemical elements which can either be homonuclear diatomic molecules or heteronuclear 

diatomic molecules. 

1.8.3      Cesium 
 Cesium  is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-

golden alkali metal with a melting point of 28.5 °C (83.3 °F), which makes it one of only five 

elemental metals that are liquid at or near room temperature. Cesium dimer is written as 𝐶𝑠2 

1.8.4    Lithium 
Lithium is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery 

white alkali metal. Under standard conditions, it is the lightest metal and the lightest solid 

element. Lithium dimer is written as Li2. 
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                                        CHAPTER TWO 

                                     LITERATURE REVIEW 

2.1 Conceptual Issues. 

Schrödinger wave equation is a partial differential equation that demonstrates how the physical 

system's quantum status evolves over time. The Schrödinger equation answer goes beyond 

describing massive systems, as well as molecular and atomic structure systems but potentially 

even the world in general (Schrödinger, 1926).  Schrödinger equation is widely used in sciences 

such as physics, mathematics and chemistry.                                                                                                                                                                                                                                                                                                                                

The Schrödinger equation is given as: 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [−

ℏ2

2𝑚
∇2 + 𝑉(𝑥)]𝜓(𝑥, 𝑡),                 (2.1) 

where 

2

2

2

2

2

2
2

zyx 












 ,                                                                                                       (2.2) 

∇2  is a laplacian operator, 

𝜓(𝑥, 𝑡) is a wave function (amplitude), 

m is the mass of the material particle, 

𝑉(𝑥) is the potential energy, 

  is the reduced Planck’s constant, 

 is the reduced mass of the diatomic molecule. 

Rydberg – Klein – Rees is a method used for the production of diatomic molecules empirical 

potential energy curves for experimental information for vibrational values and rotations. 

Hu et al., (2013) indicated that improved exponential-type deformed parameter   was developed 

using energy dissociation and equilibrium bond length as exact diatomic parameters. The 

screening parameter used in modeling molecular potential functions are unique because it will 
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be calculated with the aid of parameters like vibrational frequency, Lambert function and some 

other spectroscopic parameters.  

A lot of researches have been carried out on the bound states of the radial Schrödinger equation 

of various diatomic molecules with different physical potentials. Some of the physical 

potentials that have received attention are ; Tiez Hua potential  (Hamzavi et al., 2012), Kratzer 

potential (Ikot et al., 2019), Hyperbolic- sinus potential (Onate et al., 2019), P�̈�schl-Teller type 

potential (Yahya and Oyewumi, 2016), Hulth�́�n potential (Jia et al., 2008), Hulth�́�n plus 

generalized exponential coulomb potential (Okon and Popoola, 2015), Generalized hyperbolic 

potential (Okorie et al., 2019), Inversely Quadratic Yukawa plus Inversely Quadratic  Hellman  

potential  (Ita et al., 2013), Improved Rosen Morse potential (Jia et al., 2008 ; Udoh et al., 

2019), Manning Rosen potential (Wei and Dong, 2010; Ikhdair, 2011), Generalized Pöschl 

Teller and hyperbolical potential (Onate and Idiodi, 2016), General molecular potential (Ikot 

et al., 2018), modified Rosen−Morse potential (Tang et al., 2014), Modified Pöschl potential 

(Agboola. 2010), Woods- Saxon Potential (Feizi et al., 2011) , Modified Mobius Square 

Potential (Ikot et al., 2016) , Modified Yukawa potential (Okorie et al., 2018) Screened Kratzer 

potential (Ikot et al., 2019), q-deformed exponential type potential (Onate et al., 2020), q-

deformed Woods–Saxon plus Modified Coulomb potential (Okon and Popoola, 2015), 

Gaussian Potential (Omugbe et al., 2020), Hartmann potential (Hamzavi et al., 2010). 

However, there are different methods of solving Schrödinger equation with various physical 

potential models. 

Nikiforov-Uvarov (NU) method, this technique aims at reducing linear differential equation of 

a second order to a general hypergeometric equation (Nikiforov and Uvarov, 1988; Bera, 

2013). The method provides precise solutions with respect to different orthogonal functions, 

and associated energy eigen values and also its application to relativistic and non-relativistic 
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(Ikhdair et al., 2009). Recently, this method was simplified by Tezcan and Sever (2008) to    

parametric Nikiforov-Uvarov.   

Asymptotic Iteration Method (AIM) uses an appropriate variables modifications of the 

Schrödinger equation by reducing it into a hypergeometric differential equation, and it can then 

be transformed into an equation of second order differential. (Nugraha et al., 2017; Ismail and 

Saad. 2020). The procedure was more effective when the statistical features of dynamic 

problem solutions were expanded into a power of a small parameter which is essentially a 

proportion of the correlation between random impacts. 

The functional analysis approach (FAA) or modified factorization method is a second order, 

homogeneous linear differential equation, which can be utilized to solve a Schrödinger 

equation and changed into a hypergeometric equation with using the required transformation 

(Falaye et al., 2014). 

 Traditional method is used when the exact solution of quantum systems is to be acquired to 

accomplish this, a second order differential equation is employed to convert the quantum 

systems to an ordinary differential equation that have unique functions like the confluent 

hypergeometric functions, associated Laguerre polynomials and others (Dong et al., 2008). 

Shape invariance of potentials is used to find eigenvalues and eigenfunctions of different 

Hamiltonians. These depend crucially assuming a system with a negligible lowest energy 

which is not possible without supersymmetry and invariant potentials of the form are given 

where the parameter values spontaneously depart supersymmetry. However, there are two 

variations of shape invariance, the first step uses two-step shape invariance to estimate the 

spectrum and eigenstates for systems with broken supersymmetry and it transforms the initial 

super potential with broken supersymmetry becoming one in which supersymmetry is not 

broken while the second step uses supersymmetry to determine the spectrum (Asim et al., 

2018). 
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2.2 Review of Some Related Works. 

2.2.1 Derivation of Schrödinger wave equation 

The time-dependent Schrödinger wave equation 

In a particle with an unlimited potential, it was found that the wave function of a fixed-energy 

E particle is most naturally expressed as a linear wave function; 

𝜓(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝑤𝑡) .                           (2.3) 

This is a wave in the positive x direction, and the wave in the opposite direction, leading to a 

standing wave, which is necessary to fulfill the limit conditions. This intuitively relates to our 

classical conception that a particle is bound up between the walls of the potential well and 

indicates that we choose the above wave function as the proper wave function for a momentum 

free- particle of 𝑝 = ℏ𝑘 and energy E=ℏw: 

𝜕2𝜓

𝜕𝑥2
= −𝑘2𝜓.                             (2.4) 

It can be written as: 

𝐸 =
𝑝2

2𝑚
= 

ℏ2𝑘2 

2𝑚 
     ;

−ℏ2 

2𝑚 

𝜕2𝜓

𝜕𝑥2
= 

𝑝2

2𝑚
𝜓,                          (2.5) 

similarly  
𝜕𝜓 

𝜕𝑡
= −𝑖𝜔𝜓                                 (2.6) 

which can be written, using   E=𝜔ℏ, and then             (2.7)     

𝑖ℏ  
𝜕𝜓 

𝜕𝑡
= ℏ𝜔𝜓 = E𝜓 .                                   (2.8) 

Perhaps we might extend this to the scenario where   both potential energy and kinetic energy 

are present, then 

𝐸 =
𝑝2

2𝑚
+ 𝑉(𝑥),                           (2.9) 
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so that 

E𝜓 =
𝑝2

2𝑚
𝜓 + 𝑉(𝑥)𝜓,                                    (2.10) 

where wave function ψ  of the motion of a  particle in the presence of a potential V(x). However, 

the conclusions in equations (2.5) and (2.8) still apply in this case, we can now have the 

equation below: 

−ℏ2 

2𝑚 

𝜕2𝜓

𝜕𝑥2
+ 𝑉(𝑥)𝜓 =  𝑖ℏ  

𝜕𝜓 

𝜕𝑡
                           (2.11) 

which is known as the time-dependent Schrödinger wave equation. 

2.2.2 The time-independent Schrodinger equation 

The time dependency was incorporated via a complex exponential factor in the wave 

function𝑒−𝑖𝐸𝑡 ℏ⁄ , we seek a solution to the wave equation of the form to extract this time 

dependency 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝐸𝑡 ℏ⁄  ,                          (2.12) 

where space and time are separately influenced by the entire wave function. This is checked if 

the assumption allows us to generate an equation for 𝜓(𝑥), the spatial part of the wave function. 

This test solution can be replaced by the Schrödinger wave equation and the remaining partial 

derivatives are taken into account; 

−ℏ2 

2𝑚 

𝑑2𝜓(𝑥) 

𝑑𝑥2
𝑒−𝑖𝐸𝑡 ℏ⁄ +  𝑉(𝑥)𝜓 (𝑥)𝑒−𝑖𝐸𝑡 ℏ⁄ =  𝑖ℏ − 𝑒−𝑖𝐸𝑡 ℏ⁄  𝜓(𝑥) = 𝐸𝜓(𝑥)𝑒−𝑖𝐸𝑡 ℏ⁄ .  

                                     (2.13) 

We can now see that the factor 𝑒−𝑖𝐸𝑡 ℏ⁄  cancels from both sides of the equation, giving 

−ℏ2 

2𝑚 

𝑑2𝜓(𝑥) 

𝑑𝑥2
+ 𝑉(𝑥)𝜓 (𝑥) =  𝐸𝜓(𝑥).                       (2.14) 

Rearranging the terms gives 
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ℏ2 

2𝑚 

𝑑2𝜓(𝑥) 

𝑑𝑥2
+ (𝐸 − 𝑉(𝑥))𝜓 (𝑥) = 0,                         (2.15) 

which is the time-independent Schrödinger equation. 

2.3 Gaps identified in the literature. 

A lot of researchers have greatly worked on the radial Schrödinger equation using different 

methods with different potential terms. In most cases, they obtained bound state solutions 

(energy equation and the corresponding wave function). Some of the researchers went ahead 

to calculate the thermodynamic properties. Recently, few researchers have started modifying 

some potentials by increasing the parameters since it has been established that the more the 

parameters the better it fits the experimental data (Jia et al., 2012).  The findings of these 

researchers will go a long way in helping the investigation of this study.  

Jia et al., (2008) worked with the Asymptotic Iteration approach on the Hulth�́�n potential. The 

energy value and its wave functions were achieved. The centrifugal term for large screening 

parameters has been employed to cope with a new approximation approach. The results were 

compatible with the factorisation method and supersymmetric approach. 

Ikhadair, (2009) also explored Hulthen's potential utilizing Nikiforov-Uvarov. The bound state 

energy eigenvalues and their corresponding eigen functions were obtained. In the study, a new 

approximation scheme was obtained which was used for the centrifugal barrier. The 

approximated numerical results obtained are close to the numerical integration results that were 

obtained through the asymptotic iteration method.  

Oyewumi et al., (2013) studied the ro-vibrational energy value determined by the Shifted 

Deng-Fan potential model for various orbital and angular quantum states. To solve the energy 

eigen values and associated wave functions, the asymptotic iteration method was utilised. The 

thermodynamic properties were also evaluated for the Deng Shifted Fan potential. The 

approximate result achieved was near the exact value and its effect on the thermal parameters, 
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including vibration mean energy, vibrational heat capability, vibration free energy and 

vibrational entropy, was similar for the different molecules studied. 

Liu et al., (2014) used the Improved Rosen Morse potential energy model to acquire the 

rotational vibrational energy spectra for cesium molecule and sodium dimer.  The levels of 

vibrational energy predicted with the use of improved Rosen Morse potential were found for 

cesium molecule and sodium dimer were in better agreement than the predictions by Morse 

potential. 

Falaye et al., (2014) acquired the energy eigenvalues and their corresponding eigen functions 

diatomic molecular potential Tietz-Wei uses the functional analysis approach, quantum 

mechanics supersymmetry, and asymptotic iteration technique. The results from the three 

methodologies were mutually compatible 

Onate and Onyeaju (2017) used the approach of obtaining energy spectrum and its respective 

wave function utilizing the diatomic potential of Frost Musulin and also employed by the 

Nikiforov-Uvarov method. The author’s accuracy results were checked by comparing them 

with the numerical results obtained from the function analysis method. 

Ita et al., (2017) employed the Schrödinger S-wave bounding solution by using the Nikiforov- 

Uvarov parametric approach to produce the generalized Woods - saxon plus Mie- type nuclear 

potential, the S-Wave Schrödinger equation and the energy eigen spectrum from which they 

obtained the energy eigenvalues and its corresponding wave function. A certain example of 

potential was taken into account and used to obtain another eigen spectrum. Another eigen 

spectrum when A, B and C are set to be equal to 0 separately in the previous energy spectrum 

were also obtained. 
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Ikot et al., (2018) also used the asymptotic iteration method to obtain the energy equation and 

the wave function. The thermodynamic properties of Generalised molecular potential were also 

studied and it was stated that that the study of Generalised molecular potential is very useful 

for the entropy of a gaseous system.  

Jia et al., (2017)  used different values of spectroscopic parameters were  to calculate the 

Rydberg-Klein-Rees of six different diatomic molecules using the improved potential of  

Pöschl-Teller for simulating diatomic molecules by dissociating energy and equilibrium inter-

nuclear distance with an average absolute deviation of less than 1 percent. It has been pointed 

out that the improved Pöschl -Teller potential is more in line with modelling diatomic 

molecules than with Morse potential since the former is a potential function of four parameters 

while the latter can be a potential function of three parameters because the four parameters can 

interact with high inter-nuclear distances. 

Okorie et al., (2018) using a modified factorization approach with the aid of the Pekeris 

approximation system, estimated the energy spectrum and associated wave function. 

Thermodynamic features such as vibrational mean energy, vibrational mean free energy, 

vibrational heat capacity and vibrational entropy of modified Yukawa potential were 

computed. The graph showed the different attitudes of the thermodynamic characteristics as 

they change with the screening parameter. 

Ikot et al., (2019) used the Nikiforov-Uvarov approach to research the screened kratzer 

potential. The ro-vibrational energy values of the Kratzer potential for lithium and hydrogen 

chlorides and their associated own features were resolved. It was found that the binding state 

energy for the distinct diatomic molecules is increasing as the orbital quantum numbers 

increases. 
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Ebomwonyi et al., (2019) studied the combination of three potentials which are coulomb 

potential, Hulth�́�n potential, and Pöschl -Teller potential known as Coulomb-Hulth�́�n -Pöschl 

-Teller potential (CHPT) using the parametric Nikiforov-Uvarov method. The authors 

generated an expression for energy equation and studied the thermodynamic properties of 

carbon monoxide (CO). Also, the authors obtained the equation of the energy spectrum of the 

potential by setting A, B, and C =0 respectively. In addition, the authors calculated the 

information energy, Tsallis entropy, and Renyi entropy. Furthermore, the authors observed that 

as the temperature of the system rises, the partition function of the system increases. There is 

a dissociation of specific heat capacity at different values of temperature parameters.   

Farout et al., (2020) also used Nikiforov-Uvarov method to obtain exact solutions of Feinberg-

Horodecki (FH) exact momentum states of time dependent improved deformed exponential 

type equation which was reduced to improved Tietz potential when some modifications are 

made. The eigenvalues of carbon II oxide, nitrogen dimer, hydrogen dimer and lithium hydride 

using spectroscopic parameters were obtained and the FH quantised eigenvalues for the same 

set of diatomic molecules mentioned earlier. It was observed that the diatomic molecules 

studied behaved differently when varied with quantised momentum, time and screening 

parameter. 

Omugbe et al., (2020) obtained the rotational-vibrational spectrum of energy, the expectation 

values and the thermodynamic properties were achieved in the context of the method of 

approximation of Wentzel- Kramers-Brillouin, which was used to obtain an improved Greene-

Aldrich-based energy-spectrum, including the vibrational free energy, the vibration-free 

energy and the vibration entropy of Schiöberg's potential function The various values were 

compared and matched with the results of other results from other researchers. 
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Eyube et al., (2020) also worked on Improved Wei potential using the exact quantization rule. 

The authors calculated the ro-vibrational energies of different molecules such as CO, H2, and 

LiH for different quantum states. The result obtained agreed with the experimental value.  

 Horchani et al., (2020) also worked on Tietz Hua potential using the Nikiforov-Uvarov 

method. The ro-vibrational energy of the cesium molecule was calculated and it was shown 

that Tietz Hua potential fits the experiment data better than the Morse potential. It was shown 

that the Tietz Hua potential was one of the efficient and useful potential energy functions in 

fixing an experimental value for the cesium molecule and it was also stated that deformed 

modified Morse potentially was the first most widely used potential energy function that was 

used for the study of interaction of diatomic molecules. But the authors noted that as the 

equilibrium bound length approaches 0, there is a large value rather than an infinity which leads 

to a small wave function for bound vibrational states. A Perkeris type approximation was 

utilised to solve the Schrödinger equation by means of the centrifugal term, and the theoretical 

values of ro-vibrational energies were compared with the experimental values. In addition, the 

average deviation which was calculated was less than 0.001% which made it fit for the 

experimental data. However, there was an observation that as average deviation was increasing, 

the rotational level was increasing. Another spectroscopic information about cesium dimer was 

recorded. 

Onate et al., (2021) applied the supersymmetric approach to modified Tietz-Hua potential. The 

authors obtained the bound state solutions and adjusted Tietz-Hua thermal characteristics. 

Thermal effects on hydrogen fluoride (HF), hydrogen molecule (𝐻2) and Carbon II oxide (CO) 

were examined by the authors. In addition to a specific temperature range in the three 

molecules, the function of the vibrational partition drops exponentially at a given temperature 

range whereas the function of the vibration partition is constant at higher temperatures. 

However, the vibrational mean energy increases in an exponential order with the absolute 
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temperature. The vibrational specific heat capacity decreases in a monotonic manner with an 

increase in temperature. But as the temperature is rising, the specific heat capacity attains a 

constant value, the authors observed that when the temperature range is above 2, the vibrational 

entropy tends to be constant while the vibrational free energy decreases as the temperature is 

rising. The authors also compared their results with Tietz-Hua potential and it is observed that 

the values of the energy eigenvalues are very close. 
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                     CHAPTER THREE 

               RESEARCH METHODOLOGY 

3.1 Parametric Nikiforov- Uvarov Method 

The parametric Nikiforov-Uvarov method was obtained from the main Nikiforov-Uvarov 

method by Tezcan and Sever (2008). This method is less tedious and shorter and gives an 

accurate result and the parametric Nikiforov-Uvarov method was obtained from the main 

Nikiforov-Uvarov method will be used to solve the radial Schrödinger equation for molecular 

attractive potential. The standard equation for the parametric Nikiforov-Uvarov method 

according to Tezcan and Sever (2008) is given as: 

(
𝑑2

𝑑𝑠2
+

𝛼1−𝛼2

𝑠(1−𝛼3𝑠)

𝑑

𝑑𝑠
+
−𝜉1𝑠

2+𝜉2𝑠−𝜉3

𝑠2(1−𝛼3𝑠)2
)𝜓(𝑠) = 0 .                        (3.1) 

The Schrödinger equation becomes a secondary differential equation of the form with an 

appropriate coordinate transformation which is given as: 

                         
𝑑2𝜓(𝑠)  

𝑑𝑠2
 +  

�̃�(𝑠)

𝜎(𝑠)

𝑑𝜓(𝑠)

𝑑𝑠
 +

�̃�(𝑠)  

𝜎2
𝜓(𝑠) =  0,            (3.2)           

where 𝜎(𝑠), �̃�(𝑠)  are polynomials at the most second degree and �̃�(𝑠) is a first-degree 

polynomial. In this method, we define 

                       𝜋(𝑠)  =  
(𝜎,−�̃�)

2
  ± √(

𝜎,−�̃�

2
)
2

− �̃� + 𝑘𝜎,            (3.3) 

and  

                        𝜆 = 𝑘 + 𝜋 ,(𝑠),                  (3.4) 
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where 𝜆 and k are constants. Since square root under the square of the polynomial 𝜋 in 

equation (3.3) must be a polynomial, which defines the constant k by putting k into equation 

(3.3), we have  

   

                      𝜏(𝑠)  = �̃�(𝑠)  +  2𝜋(𝑠).                    (3.5) 

Since 𝜌(𝑠) >  0 𝑎𝑛𝑑 𝜎(𝑠)  >  0, then the derivative of 𝜏 will be negative Nikiforov and 

Uvarov (1988). This provides the choice of the solution. If 𝜆 in equation (3.4) is: 

𝜆 = 𝜆𝑛 = −𝑛𝜏
, −

[𝑛(𝑛−1)𝜎,,]

2
 , 𝑛 =  0,1,2, ….   .                 (3.6) 

The hypergeometric equation has a particular grade n solution of equation (3.1) with two 

independent parts can be attained 

                          𝜓(𝑠)   =  𝜙 (𝑠) 𝑦 (𝑠),           (3.7) 

where  𝑦 (𝑠) can be given as: 

                                  𝑦𝑛 (𝑠) =  
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛(𝑠) 𝜌(𝑠)]            (3.8) 

and 𝜌 (𝑠) should satisfy the condition: 

                            
𝑑

𝑑𝑠
[  𝜌(𝑠)𝜎(𝑠)]  =  𝜏(𝑠) 𝜌(𝑠),                   (3.9) 

the other factor can be written as: 

                              
 𝜙,(𝑠) 

𝜙(𝑠)
=

𝜋(𝑠)

𝜎(𝑠)
 .             (3.10) 

The typical structure of the Schrödinger equation, which is accessible with many potentials;   

                (
𝑑2

𝑑𝑠2
 +  

𝛼1−𝛼2

𝑠(1−𝛼3𝑠)

𝑑

𝑑𝑠
 +  

−𝜉1𝑠
2+𝜉2𝑠−𝜉3

𝑠2(1−𝛼3𝑠)2
)𝜓(𝑠 ) = 0.        (3.11) 

 

We may solve this as follows. When equation (3.11) is compared with equation (3.2), we 

have; 

                                 �̃� =  𝛼1 − 𝛼2𝑠,                   (3.12) 

and 

                                 𝜎 = 𝑠(1 − 𝛼3𝑠).           (3.13) 
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Also  

                                 𝜎 ̃ =  −𝜉1𝑠
2  +  𝜉2𝑠 − 𝜉3.           (3.14) 

Substituting equations (3.12), (3.13), and (3.14) into equation (3.3) yields: 

                                 𝜋 =  𝛼4 + 𝛼5𝑠 ± √(𝛼6 − 𝑘𝛼3)𝑠2 + (𝛼7 + 𝑘)𝑠 + 𝛼8  ,              (3.15) 

according to Tezcan and Sever (2008) 

                               𝛼4 =
1−𝛼1

2
,                    (3.16) 

                               𝛼5 =
𝛼2−2𝛼3

2
 ,            (3.17) 

                                𝛼6 =  𝛼5
2 + 𝜉1,            (3.18) 

                                𝛼7 =  2𝛼4𝛼5 − 𝜉2,            (3.19) 

                               𝛼8 = 𝛼4
2+𝜉3.             (3.20)

                 

The function under square root must be the square of a polynomial in equation (3.15) 

according to Nikiforov and Uvarov method, so that 

                        𝑘1,2 = −(𝛼7 + 2𝛼3𝛼8)  ± 2√𝛼8𝛼9;          (3.21) 

where we define 

                          𝛼9 = 𝛼3𝛼7 + 𝛼3
2𝛼8 + 𝛼6,                      (3.22) 

for each k the following 𝜋′𝑠 are obtained. For 

                         𝑘 =  −(𝛼7 + 2𝛼3𝛼8) − 2√𝛼8𝛼9         (3.23) 

𝜋 can now be written as 

                          𝜋 =  𝛼4 + 𝛼5𝑠 − [(√𝛼9 + 𝛼3√𝛼8)𝑠 − √𝛼8],        (3.24) 

for the same k, from equation (3.4), equation (3.12) and equation (3.15) 

                           𝜏 = 𝛼1 + 2𝛼4 − (𝛼2 − 2𝛼5)𝑠 − 2[(𝛼3√𝛼8 +√𝛼9)𝑠 − √𝛼8]      (3.25) 

and 

                                 𝜏 , = − (𝛼2 − 2𝛼5) − 2(𝛼3√𝛼8 +√𝛼9),    

                             =  −2𝛼3 − 2 (𝛼3√𝛼8 + √𝛼9)  < 0,                    (3.26) 

 the following equation is calculated if equation (3.3) is combined with equation (3.25) and 

equation (3.26):               
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  𝑛𝛼2 − (2𝑛 + 1)𝛼5 + 𝛼7 + 2𝛼3𝛼8+ 𝑛(𝑛 − 1)𝛼3 + (2𝑛 + 1)(√𝛼9 + 𝛼3√𝛼8) 

                              +2√𝑠𝛼8𝛼9 = 0,                                   (3.27)  

 which gives the equation of the energy spectrum of a given problem. From equation (3.9) 

                    𝜌(𝑠) = 𝑠𝛼10−1(1 − 𝛼3𝑠)
𝛼11
𝛼3
−𝛼10−1

 ,                                                             (3.28) 

is found and when this is used in equation (3.7) 

                     𝑦𝑛 = 𝑃𝑛
(𝛼10−1,

𝛼11
𝛼3
−𝛼10−1)

(1 − 2𝛼3𝑠) ,                                                           (3.29) 

is obtained, where: 

                         𝛼10 = 𝛼1 + 2𝛼4 + 2√𝛼8                                                                         (3.30) 

and 

                         𝛼11 = 𝛼2 − 2𝛼5 + 2(𝛼3√𝛼8 +√𝛼9)                                                         (3.31) 

and Jacobi polynomials are 𝑃𝑛
(𝛼,𝛽)

 using equation (3.9) 

                        𝜙(𝑠) = 𝑠𝛼12(1 − 𝛼3𝑠)
−𝛼12−

𝛼13
𝛼3                                                                  (3.32) 

is achieved and the general solution will be written as 

                          𝜓 =  𝜙(𝑠)𝑦(𝑠),                   (3.33)                                                                                      

                          𝜓 = 𝑠𝛼12(1 − 𝛼3𝑠)
−𝛼12−

𝛼13
𝛼3 𝑃𝑛

(𝛼10−1,
𝛼11
𝛼3
−𝛼10−1)

(1 − 2𝛼3𝑠).                    (3.34) 

Alpha functions here are given by 

                             𝛼12 = 𝛼 4 +√𝛼8                                                                                       (3.35) 

and 

                               𝛼13 = 𝛼5 − (√𝛼9 + 𝛼3√𝛼8)                                                                 (3.36) 

𝛼3 = 0 in some problems. For this type of problems when 

                              lim
𝛼3→0

𝑃𝑛
(𝛼10−1,

𝛼11
𝛼3
−𝛼10−1)

(1 − 𝛼3𝑠) = 𝐿𝑛
𝛼10−1(𝛼11𝑠)                                (3.37)                         

and 

                              lim
𝛼3→0

(1 − 𝛼3𝑠)
−𝛼12−

𝛼13
𝛼3 = 𝑒𝛼13𝑠 .                                                           (3.38) 

The solution in equation (3.34) can be written as: 

                             𝜓 = 𝑠𝛼12𝑒𝛼13𝑠𝐿𝑛
𝛼10−1(𝛼11𝑠),                                                                (3.39) 
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one may need a second solution of equation (3.10) in some cases, but in this case, the same 

procedure is followed by using: 

                             𝑘 = −(𝛼7 + 2𝛼3𝛼8) + 2√𝛼8𝛼9                                                           (3.40) 

and the solution obtained as: 

                          𝜓 = 𝑠𝛼12
∗
(1 − 𝛼3𝑠)

−𝛼12
∗ −

𝛼13
∗

𝛼3 𝑃𝑛
(𝛼10

∗ −1,
𝛼11
∗

𝛼3
−𝛼10−1)

(1 − 2𝛼3𝑠)                    (3.41) 

and the energy spectrum is 

                            𝛼2𝑛 − 2𝛼5𝑛 + (2𝑛 + 1)(√𝛼9 − 𝛼3√𝛼8) + 𝑛(𝑛 − 1)𝛼3                         (3.42) 

                                   +𝛼7 + 2𝛼3𝛼8 − 2√𝛼8𝛼9 + 𝛼5 = 0.   

Pre-defined 𝛼 parameters are; 

                          𝛼10
∗ = 𝛼1 + 2𝛼4 − 2√𝛼8,             

                          𝛼11
∗ = 𝛼2 − 2𝛼5 + 2(√𝛼9 − 𝛼3√𝛼8),                                                        (3.43)                            

                          𝛼12
∗ = 𝛼4 −√𝛼8,  

                          𝛼13
∗ = 𝛼5 − (√𝛼9 − 𝛼3√𝛼8). 

            

3.2 Solution of radial Schrödinger equation. 

Many of the potentials utilised in conjunction with the Schrödinger equation are the main 

potentials which depend on a separation between a particle and a source point. The Schrödinger 

equation in spherical coordinate by Pahlavani (2012) which is written as  

{
−ℏ2

2𝜇
 [
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
] + 𝑉(𝑟) }𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙),       

                                      (3.44) 

can be explained as the distance r from the origin of the coordinate system and two angles is 

defined as a point in space, Zenith angle 𝜃 and azimuthal angle 𝜙. Therefore, to use these 

triplets (𝑟, 𝜃, 𝜙), we can express a particular point in three-dimensional space. A unique set of 
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spherical coordinates can be defined for each point, the range can be in the form r ≥ 0, 0 ≤

0 ≤ 𝜋  𝑎𝑛𝑑 0 ≤ 𝜙 ≤ 2𝜋.   

The Schrödinger equation in spherical coordinate can be solved by using the separation of the 

wave function in terms of independent wave functions i.e. 𝜓 (𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙).The 

rotation of a molecule or the movement of an electron through an atomic nucleus could be 

described in spherical coordinate by making use of  a single coordinate i.e. the Coulumb 

potential that describes the electromagnetic interaction between an electron and a portion can 

be written as V(x,y,z) = 
𝑒1

√𝑥2+𝑦2+𝑧2
  in Cartesian coordinates, where  𝑒1 = 

𝑒

√4𝜋𝜀0
 , e is the 

elementary electric charge and 𝜀0 is the electric permittivity of free space. It might not be 

straightforward to solve the Schrödinger equation with the potential V (x,y,z) because the 

potential has three variables that are not separable in Cartesian coordinates, therefore the 

potential would be turned to V(r) = 
−𝑒1

𝑟
  which depend only on r. for this transformation, we 

used the conversion r =√𝑥2 + 𝑦2 + 𝑧2. The variables (x,y,z) in Cartesian coordinate could be 

connected to the variables (𝑟, 𝜃, 𝜙) in spherical coordinate, as follows: 

X= r sin 𝜃cos 𝜙, y= rsin 𝜃sin 𝜙, z= r cos 𝜃, 

𝜃 = 𝑐𝑜𝑠−1 (
𝑧

𝑟
) , 𝜙 = 𝑡𝑎𝑛−1 (

𝑦

𝑥
).               (3.45) 

The separable variables in spherical coordinates can be achieved using the relation of ∇2 in 

spherical coordinate as we derive the Schrödinger equation in the same coordinate. So, the 

Schrödinger equation is written as equation 3.44, 

where the  ∇2 is given in spherical coordinates: 

∇2=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
 .           (3.46) 
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The potential we are interested in is central because it only depends on the distance r from the 

origin and we look for a separable solution of the Schrödinger equation 

 𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙),                (3.47) 

using the assumed form of 𝜓(𝑟, 𝜃, 𝜙) we may write the Schrödinger equation as: 

1

𝑅(𝑟)

𝑑

𝑑𝑟
(𝑟2

𝑑𝑅(𝑟)

𝑑𝑟
) +

2𝜇

ℏ2
𝑟2(𝐸 − 𝑉(𝑟))𝑅(𝑟) =

1

𝑌(𝜃,𝜙)
[
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌(𝜃,𝜙)

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌(𝜃,𝜙)

𝜕𝜙2
].        

                                                                                                                                           (3.48) 

The expressions on both sides of the equation (3.48) are equivalent if they are the same as a 

constant L, where L = ℓ(ℓ + 1). The next two equations must therefore be true at the same 

time: 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅(𝑟)

𝑑𝑟
) + [

2𝜇

ℏ2
(𝐸 − 𝑉(𝑟)) −

𝐿

𝑟2
] 𝑅(𝑟) = 0             (3.49) 

and 

1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌(𝜃,𝜙)

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2𝑌(𝜃,𝜙)

𝜕𝜙2
+ 𝐿𝑌(𝜃, 𝜙) = 0.                      (3.50) 

Then, we have two independent equations and we can deal with these individually because the 

equation is made up of solely radial variables in equation (3.49) and equation (3.50). The 

Schrödinger wave equation is given as: 

𝑑2𝜓(𝑟)

𝑑𝑟2
  +

2𝜇 

ℏ2
 [𝐸 − 𝑉(𝑟) − ℏ2

𝑙(𝑙+1)

  2𝜇𝑟2
]  𝜓(𝑟)  =  0.                                                            (3.51)  

The attractive potential formulated by Williams and Poulios (1993) is given as: 

𝑉(𝑟) =
𝐴𝑒−2𝛼𝑟+𝐵𝑒−𝛼𝑟+𝐶

(1−𝑒−𝛼𝑟)2
,            (3.52)

            

          

where 𝐷𝑒 , 𝑒
𝛼𝑟𝑒and 𝑒2𝛼𝑟𝑒 are used to modify the molecular attractive potential which is now 

given as: 

                                      𝑉(𝑟) = 𝐷𝑒 [
𝐴𝑒2𝛼𝑟𝑒+𝐵𝑒𝛼(𝑟+𝑟𝑒)+𝐶𝑒2𝛼𝑟

(1−𝑒−𝛼𝑟)2
] 𝑒−2𝛼𝑟,                  (3.53).                                                           
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where  

𝑉(𝑟) is the interacting potential,            

𝐷𝑒 is the dissociation energy, 

𝑟𝑒 is the equilibrium bond length, 

𝛼 is the screening parameter, 

𝐸 is the non relativistic energy of the system, 

𝜇 is the reduced mass , 

ℏ is the reduced Planck’s constant, 

𝑛 is the principal quantum number, 

𝑅𝑛ℓ(𝑟) is the wave function, 

A, B and C are the potential strengths, 

ℓ is the orbital angular momentum quantum number. 

Substituting equation (3.53) into equation (3.52) gives: 

𝑑2𝜓(𝑟)

𝑑𝑟2
  +  

2𝜇𝐸 

ℏ2
 −  

2𝜇 

ℏ2
 [ 𝐷𝑒 [

𝐴𝑒2𝛼𝑟𝑒  +𝐵𝑒𝛼(𝑟+𝑟𝑒) +𝐶𝑒2𝛼𝑟 

(1−𝑒−𝛼𝑟)2
] 𝑒−2𝛼𝑟] − 𝑙(𝑙 + 1)

𝛼2𝑒−𝛼𝑟

(1−𝑒−𝛼𝑟)2
 =  0 . (3.54) 

Defining a simple variable of the form y =𝑒−𝛼𝑟 and substituting it into equation (3.54) leads 

to the equation of the form:                                                                               

𝑑2

𝑑𝑦2
 +

1

𝑦   
 
𝑑

𝑑𝑦
+ −(𝜀𝐴𝑒2𝛼𝑟𝑒−𝛿𝑜)𝑦

2+(−2𝛿𝑜−𝜀𝐵𝑒
𝛼𝑟𝑒−𝑙(𝑙+1)𝑦)−(𝜀𝐶−𝛿𝑜)

𝑦2(1−𝑦)2
= 0 ,                                     (3.55) 

where 𝛿𝑜 =
2𝜇𝐸

𝛼2ℏ2
    𝑎𝑛𝑑 𝜀 =  

2𝜇𝐷𝑒

𝛼2ℏ2
           

(𝜀𝐶 − 𝛿𝑜) = 0 ,                                                                                                            (3.56) 
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(𝜀𝐶 − 𝛿𝑜) = 0  ,                                                                                                            (3.57) 

𝛼1 = 𝛼2 = 𝛼3 = 1  ,                                                                                                  (3.58) 

𝛼4 = 0  ,                                                                                                                      (3.59) 

𝛼5 =
𝛼 2 −2𝛼3

2
= 

1−2 

2
=  

−1

2
  ,                   (3.60)                                                                                              

𝛼6  = 
1

4
  −  𝛿𝑜  +  𝜀𝐴𝑒

2𝛼𝑟𝑒 ,          (3.61) 

𝛼7   = 2𝛿𝑜 + 𝜀𝐵𝑒
𝛼𝑟𝑒 + 𝑙(𝑙 + 1)  ,           (3.62)                                                                                             

 𝛼8   =  𝜀𝐶 − 𝛿𝑜  ,           (3.63)                                                                                                                   

𝛼9    = 
1

4 
+  𝜀(𝐴𝑒2𝛼𝑟𝑒 + 𝐵𝑒𝛼𝑟𝑒 + 𝐶 ) + 𝑙(𝑙 + 1)  ,        (3.64)                                                                

𝛼10       = 1 + 2√𝜀𝐶 − 𝛿𝑜  ,                    (3.65)                                                                                                           

𝛼11  = 2(1 + √𝜀𝐶 − 𝛿𝑜  ) + √4𝜀(𝐴𝑒2𝛼𝑟𝑒 + 𝐵𝑒𝛼𝑟𝑒 + 𝐶) + (1 + 2𝑙)2,     (3.66)                          

𝛼12  = √𝜀𝐶 − 𝛿𝑜  ,                                           (3.67)                                                                                      

𝛼13 = − 
1

2
−
1

2
√4𝜀(𝐴𝑒2𝛼𝑟𝑒 + 𝐵𝑒𝛼𝑟𝑒 + 𝐶) + (1 + 2𝑙)2 −√𝜀𝐶 − 𝛿𝑜 .     (3.68)                               

Substitute equation (3.58) to equation (3.64) into equation (3.27) yields the equation’s energy 

and the corresponding wave equation which is expressed as; 

𝐸𝑛,ℓ = 𝐶𝐷𝑒 −
𝛼2ℎ2

2𝜇
[
𝜀(2𝐶+𝐵𝑒𝛼𝑟𝑒)+ℓ(ℓ+1)+𝑛(𝑛+1)+(𝑛+

1

2
)𝜗+

1

2

1+2𝑛+ϑ
]

2

 ,                  (3.69) 

𝑅𝑛,ℓ(𝑦) = 𝑦
𝜒(1 − 𝑦)

1

2
(1+𝜗) × 𝑃𝑛

(2𝜒,𝜗)(1 − 2𝑦) ,                      (3.70) 

                                                  
where 

 𝜒 = √𝜀𝐶 −
2𝜇𝐸𝑛,ℓ

𝛼2ℎ2
 ,                                  (3.71) 

                                                                 

𝜗 = √4𝜀(𝐴𝑒2𝛼𝑟𝑒 +𝐵𝑒𝛼𝑟𝑒 + 𝐶)+ (1 + 2ℓ)2.            (3.72)  

  

 

3.3 The Molecular Attractive Potential and Thermodynamic Properties 

Thermodynamics is the study of how heat and energy relate when mechanical work is produced 

from the system. The thermodynamics properties that will be considered in this thesis are as 
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follows: vibrational partition function, vibrational mean energy, vibrational specific heat 

capacity, vibrational entropy and vibrational free energy.  

The vibrational partition function serves as the starting point for the determination of other 

thermodynamic properties of a system. To get the vibrational partition function of a system, all 

the available vibrational energy levels of the system are added directly Okorie et al., (2018). It 

depicts the number of microstates that is accessible to a system in a given ensemble. 

The energy equation given in equation (3.27) is stated in a concise manner to determine the 

thermodynamic parameters for the molecular attractive potential.                                                  

𝐸𝑛 = −[𝑄2𝜌2 +
𝑄2𝑄3

2

𝜌2
] + 𝑄1 − 2𝑄1𝑄3,                                                                                           (3.73) 

 

𝑄1 = 𝐷𝑒,𝛿 =
1

2
+
1

2
√1 + 4𝜀(𝐴𝑒2𝛼𝑟𝑒 +𝐵𝑒𝛼𝑟𝑒 + 𝐶), 

𝑄2 =
𝛼2ℎ2

8𝜇
 ,                              (3.74) 

𝑄3 = −𝜀𝐴𝑒
2𝛼𝑟𝑒. 

 

                                                                                                                                             

After the energy equation is expressed in a compact form which allows thermodynamic 

properties to be calculated, the system partition function can be defined as: 

𝑧 = ∫ 𝑒−𝛽𝐸𝑛
𝜆

0
𝑑𝑛 .                  (3.75) 

  where 𝛽 = (𝑘𝐵𝑇)
−1   with   𝑘𝐵 being the Boltzmann constant.                                                                                                        

Now, defining  n    and substituting equation (3.73) into equation (3.75), the above-

mentioned partition function can be written as:  

𝑧 = 𝑒𝛽(2𝑄1𝑄3−𝑄1) ∫ 𝑒
𝛽(𝑄

2𝜌2
+
𝑄2𝑄3

2

𝜌2
)𝜆

0
𝑑𝜌                  (3.76) 
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 The partition function of equation (3.76) is used with Mathematical 10.0 version to have:                                                 

𝑍(𝛽) =
𝑒𝜒1[𝑒−𝜒2(1+𝜒4)+𝑒

𝜒3(−1+𝜒5)]

4√−𝛽𝑄2
 ,            (3.77)                                                                                           

where  

                       𝜒1 = 𝛽(−𝑄1 + 2𝑄1𝑄3), 

                       𝜒2 = 2√−𝛽𝑄2√−𝛽𝑄2𝑄3
2  , 

                        𝜒3 = −2√−𝛽𝑄2√−𝛽𝑄2𝑄3
2  ,                      

                        𝜒4 = 𝑒𝑟𝑓 [𝜆√−𝛽𝑄2 −
√−𝛽𝑄2𝑄3

2

𝜆
],       (3.78)       

    

                       𝜒5 =  𝑒𝑟𝑓 [𝜆√−𝛽𝑄2 +
√−𝛽𝑄2𝑄3

2

𝜆
]                                                                                                                                                   

where erf(x) denotes the error function which is a special function of the sigmoid shape. In 

Maple software the imaginary error function is given as erfi(x) and can be used in many 

numerical calculations.  

3.3.1 Vibrational mean energy.  
   

With the help of the vibrational partition function of equation (3.77), we can determine the 

thermodynamic properties for molecular attractive potential model. The vibrational mean 

energy is given as: 

  

 𝑈(𝛽) = −
𝜕𝑙𝑛𝑍(𝛽)

𝜕𝛽
   

= 𝑈(𝛽) = −

{
 
 

 
 [

1+𝜒4+𝑒
2𝜒2(−1+𝜒5)−2𝛽[1+𝜒4+𝑒

2𝜒2(−1+𝜒5)]∧0

+∧14√−𝛽𝑄2[√𝜋𝛽(−1−𝑒
2𝜒2−𝜒4+𝑒

2𝜒2𝜒5)𝑄2𝑄3
2−𝑒𝜒2+∧2  ]

] 

2𝛽[1+𝜒4+𝑒
2𝜒2(−1+𝜒5)]

}
 
 

 
 

,            (3.79)                                                                                                                                                                        

where  

∧0= (−𝑄1 + 2𝑄1𝑄3) ,  ∧1=
1

√−𝛽𝑄2𝑄3
2√𝜋

 ,  ∧2=
𝛽𝑄2(𝜆

4+𝑄3
2)

𝜆2
𝜆√−𝛽𝑄2𝑄3

2 .                (3.80)                                                                                                 
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3.3.2 Vibrational Specific heat capacity 

The heat capacity is the quantities that are measured to determine the heat necessary for a 

certain amount to change the body's temperature. It is measured in Joules per Kelvin. The heat 

capacity per unit mass of a material is a special heat capacity. For certain degree of freedom, 

there can be no availability or only partial storage of thermal energy in a given temperature for 

quantum mechanical reasons. As the temperature is approaching absolute zero, the quantum 

mechanical effect loses the degrees of freedom available. Quantum theory can be employed in 

simple systems for the quantitative prediction of certain heat capacity. 

       

𝐶(𝛽) = 𝐾𝛽2
𝜕2𝑙𝑛𝑍(𝛽)

𝜕𝛽2
=

∆0+∆1−8∆2+∆3

2𝜋𝜆(1−𝑒2𝜒2+𝜒4+𝑒
2𝜒2𝜒5)2∧3

   ,       (3.81) 

where 

∆0= 𝜋𝜆(1 − 𝑒
2𝜒2 + 𝜒4 + 𝑒

2𝜒2𝜒5)
2 ∧3+

2𝑒𝜒2+∧2  𝛽𝑄2𝜆
2 [

√𝜋 − 𝑒2𝜒2√𝜋 + √𝜋  𝜒4 +

𝑒2𝜒2√𝜋  𝜒5 + 4𝑒
𝜒2+∧2𝜆√−𝛽𝑄2

] ∧6 ,                                              (3.82) 

∆1= 4𝑒
𝜒2√𝜋 𝛽2𝑄2

2[−𝑒∧4𝜆4(1 − 𝑒2𝜒2 + 𝜒4 + 𝑒
2𝜒2𝜒5)] ∧6  

+𝑄3
2 (
4𝑒∧2 ∧5+ 4𝑒

2𝜒2+∧2 ∧5+

𝑒∧2 ∧6− 𝑒
2𝜒2+∧2 ∧6

) ,                                                                              (3.83) 

∆2= 𝑒
𝜒2√𝜋 𝜆 ∧3                                                (3.84) 

+∆4𝑒
𝜒2𝜒5 [8√𝜋 𝜆 ∧3+ 𝑒

𝜒2+∧2 (−4𝜆2√−𝛽𝑄2 +√−𝛽𝑄2𝑄3
2)] ,                              (3.85) 

∆3= 𝜒4[−8𝑒
𝜒2√𝜋 𝜆 ∧3+ 8𝑒

𝜒2√𝜋 𝜆 ∧3+ 𝑒
∧2(4𝜆2 ∧3)],                         (3.86) 

          

 ∧3= √−𝛽𝑄2√−𝛽𝑄2𝑄3
2 ,                                                                                        (3.87) 
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     ∧4=
𝛽𝑄2(𝜆

4+𝑄3
2)

𝜆2
 ,                                                                                                   (3.88) 

     ∧5= 𝜆2√−𝛽𝑄2 ,                                                                                                   (3.89) 

     ∧6= √−𝛽𝑄2𝑄3
2 ,                                                                                                   (3.90) 

       

3.3.3 Vibrational entropy 
 

Entropy is one of the predictors of a spontaneous reaction. The degree of disorder or 

unpredictability of a system is measured by entropy (S). The higher the level of a system 

disturbance, the larger the system entropy. Temperature influences entropy degree, noting 

that: 

S = 𝑘𝑙𝑛𝑍(𝛽) − 𝑘𝛽
𝑙𝑛𝑍(𝛽)

𝜕𝛽2
, 

= 𝑘 𝑙𝑛 [
𝑒−𝛽𝑄1+2𝛽𝑄1−𝜒2√𝜋[1+𝜒4+𝑒

2𝜒2(1+𝜒5)]

4√−𝛽𝑄2
] − 𝐾𝛽

{
 
 

 
 [

1+𝜒4+𝑒
2𝜒2(−1+𝜒5)−2𝛽[1+𝜒4+𝑒

2𝜒2(−1+𝜒5)]∧0

+[
4√−𝛽𝑄2(√𝜋𝛽(−1−𝑒

2𝜒2−𝜒4+𝑒
2𝜒2𝜒5)𝑄2𝑄3

2−𝑒𝜒2+  ∧6∧2 )

√𝜋  ∧6
]
]

2𝛽[1+𝜒4+𝑒
2𝜒2(−1+𝜒5)]

}
 
 

 
 

.     

               (3.91) 

   

3.3.4 Vibrational free energy 
 

Free energy is a measure of the energy for activity. It is used to determine the change in systems 

and the extent of their work. This is a large attribute, which means the size of the substance 

depends upon the amount of the thermodynamic substance.  

            𝐹(𝛽) = −
1

𝛽
𝑙𝑛𝑍(𝛽) = −

𝑒𝛽∧0𝑙𝑛√𝜋[𝑒𝜒3(1+𝜒4)+𝑒
𝜒2(𝜒5+1)]

4√−𝛽𝑄2
.     (3.92) 
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                                  CHAPTER FOUR 

RESULTS, DISCUSSION OF RESULTS AND FINDINGS  

The following are the results generated using MAPLE software which is used to solve issues  

involving linear and non - linear equations by modifying numerical methods and finding 

graphical solution  and mathematical 10.0 version software which  is  used to represent, 

evaluate, or compute quantitative symbols. 

4.1 Results 

The graphical representation of the results generated are as follows:  

   

Figure 4.1: The plot of Energy (J) against potential strength A using equation (3.69) 
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Figure 4.2: Variation of energy (J) against potential strength B using equation (3.69) 
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Figure 4.3: Variation of energy (J) against potential strength C using equation (3.69) 
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Figure 4.4: The graph of vibrational partition function versus the maximum quantum state 𝝀 

with varying 𝛽 using equation (3.77) 
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Figure 4.5: The graph of vibrational partition function versus the temperature parameter β 

with varying 𝜆 using equation (3.77) 
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  Figure 4.6: The behaviour of vibrational mean energy U (J) with the maximum quantum 

state λ with varying 𝛽 using equation (3.79) 
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Figure 4.7: The plot of vibrational mean energy U (J) against the temperature parameter β 

with varying  𝜆  using equation (3.79) 
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Figure 4.8: The behaviour of vibrational specific heat capacity (J𝒌𝒈−𝟏𝑲−𝟏) against the 

maximum quantum state λ with varying 𝛽 using equation (3.81) 
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Figure 4.9: The behaviour of vibrational specific heat capacity (J𝒌𝒈−𝟏𝑲−𝟏)    against 

temperature parameter β with varying 𝜆 using equation (3.81) 
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Figure 4.10: Plot of vibrational entropy (J𝑲−𝟏) against the maximum quantum state λ with 

varying 𝛽 using equation (3.83) 
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Figure 4.11: The plot of vibrational entropy (J𝑲−𝟏) against temperature parameter β with 

varying 𝜆 using equation (3.83) 
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Figure 4.12: The plot of vibrational free energy (J) against maximum quantum state λ with 

varying 𝛽 using equation (3.84) 
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Figure 4.13: The plot of vibrational free energy (J) against the temperature parameter β with 

varying 𝜆 using equation (3.84). 

 

 



43 
 

 

Table 4.1: Energy spectrum ,( )nE for different n and ℓ states with four various values of the 

dissociation energy with 𝜇 = ℎ = 1, 𝛼 = 0.25 Å_1, re = 0.20 Å , A= 
𝜆𝜊

2
, B = 2 (1- 𝜆𝜊), C = A+B+C 

and 𝜆𝜊 = 2. 

                 
𝑛  ℓ De = 5 De = 10 De = 15 De = 20 

0 0 3.977598 6.798288 9.109638 11.11615 

 1 

0 4.809524 9.108668 13.05829 16.74890 

1 4.960983 9.609369 13.95089 18.03931 

2 

0 4.976040 9.723415 14.24875 18.59454 

1 4.999968 9.896182 14.59865 19.13354 

2 4.975467 9.985643 14.84931 19.57862 

3 

0 4.998604 9.936060 14.72396 19.38474 

1 4.973068 9.989806 14.87376 19.63950 

2 4.914077 9.996149 14.97331 19.85286 

3 4.829183 9.955367 14.99985 19.96640 

4 

0 4.963711 9.997845 14.92583 19.76044 

1 4.910165 9.993944 14.98133 19.88121 

2 4.826913 9.952550 14.99944 19.97229 

3 4.721396 9.876708 14.96871 19.99997 

4 4.596529 9.772933 14.89798 19.97316 

5 

0 4.895582 9.984638 14.99534 19.93525 

1 4.821832 9.946315 14.99782 19.98214 

2 4.718669 9.872484 14.96506 19.99961 

3 4.594756 9.769884 14.89453 19.97053 

4 4.452478 9.643210 14.79210 19.90024 

5 4.292898 9.495313 14.66266 19.79563 

6 

0 4.803143 9.925703 14.98878 19.99679 

1 4.712578 9.863310 14.95702 19.99765 

2 4.591609 9.764530 14.88850 19.96582 

3 4.450480 9.639598 14.78754 19.89565 

4 4.291478 9.492659 14.65910 19.79163 

5 4.115506 9.325890 14.50671 19.65851 

6 3.923026 9.140586 14.33274 19.49987 

7 

0 4.690304 9.834264 14.93217 19.98641 

1 4.584588 9.752979 14.87571 19.95556 

2 4.446934 9.633267 14.77961 19.88766 

3 4.289261 9.488538 14.65360 19.78546 

4 4.113949 9.322928 14.50261 19.65363 

5 3.921850 9.138317 14.32953 19.49591 
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6 3.713375 8.935753 14.13619 19.31497 

7 3.488754 8.715886 13.92380 19.11270 

8 

0 4.559001 9.717008 14.83890 19.92568 

1 4.439029 9.619654 14.76300 19.87108 

2 4.285328 9.481320 14.64407 19.77484 

3 4.111518 9.318331 14.49627 19.64613 

4 3.920157 9.135061 14.32493 19.49026 

5 3.712105 8.933285 14.13264 19.31052 

6 3.487753 8.713926 13.92095 19.10908 

7 3.247313 8.477537 13.69085 18.88742 

8 2.990915 8.224476 13.44300 18.64662 

 

Table 4.2: Energy spectrum ,( )nE for various states with four different values of the equilibrium bond 

length re  (Å)  with 𝜇 = ℎ = 1 , 𝐷𝑒 = 10 , A= 
𝜆𝜊

2
, B = 2 (1- 𝜆𝜊), C = A+B+C and 𝜆𝜊 = 2. 

 

            
State  𝛼 re = 0.2  re = 0.4  re  = 0.8  re =1.0 

1s 

0.05 8.822496 7.275723 5.246217 4.594310 

0.10 8.897665 7.388209 5.388441 4.743468 

0.15 8.970422 7.498611 5.529455 4.891884 

0.20 9.040758 7.606916 5.669226 5.039520 

0.25 9.108668 7.713107 5.807721 5.186332 

0.30 9.174145 7.817167 5.944906 5.332275 

2s 

0.05 9.441602 8.457590 6.777027 6.137691 

0.10 9.521127 8.594572 6.975023 6.352754 

0.15 9.594616 8.725541 7.167985 6.563434 

0.20 9.662051 8.850447 7.355807 6.769599 

0.25 9.723415 8.969242 7.538380 6.971111 

0.30 9.778689 9.081873 7.715589 7.167827 

2p 

0.05 9.643226 8.779637 7.064966 6.386061 

0.10 9.720650 8.919916 7.268475 6.606230 

0.15 9.788618 9.051703 7.465305 6.820566 

0.20 9.847129 9.174987 7.655407 7.029000 

0.25 9.896182 9.289757 7.838729 7.231458 

0.30 9.935776 9.395999 8.015214 7.427857 

3s 

0.05 9.696619 9.041944 7.712396 7.144368 

0.10 9.773022 9.187291 7.944278 7.403687 

0.15 9.838417 9.321038 8.165158 7.652694 

0.20 9.892774 9.443093 8.374818 7.891113 

0.25 9.936060 9.553358 8.573029 8.118653 
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0.30 9.968245 9.651733 8.759556 8.335015 

3p 

0.05 9.796131 9.219469 7.897085 7.312206 

0.10 9.867573 9.364290 8.131821 7.574682 

0.15 9.923672 9.494396 8.353551 7.825115 

0.20 9.964420 9.609741 8.562130 8.063307 

0.25 9.989806 9.710281 8.757405 8.289049 

0.30 9.999824 9.795964 8.939212 8.502118 

3d 

0.05 9.873836 9.422222 8.187451 7.594783 

0.10 9.937062 9.564706 8.427501 7.863644 

0.15 9.978520 9.687037 8.650695 8.117081 

0.20 9.998215 9.789223 8.857010 8.355043 

0.25 9.996149 9.871273 9.046417 8.577464 

0.30 9.972324 9.933191 9.218880 8.784263 

4s 

0.05 9.824426 9.371662 8.324309 7.836124 

0.10 9.893731 9.516564 8.575011 8.123503 

0.15 9.945766 9.642809 8.806825 8.392553 

0.20 9.980486 9.750250 9.019384 8.642799 

0.25 9.997845 9.838734 9.212304 8.873750 

0.30 9.997797 9.908108 9.385192 9.084891 

4p 

0.05 9.879775 9.479154 8.449494 7.954597 

0.10 9.942095 9.621074 8.700983 8.243447 

0.15 9.981907 9.740609 8.931230 8.511953 

0.20 9.999196 9.837676 9.139956 8.759739 

0.25 9.993944 9.912183 9.326868 8.986409 

0.30 9.966133 9.964040 9.491660 9.191543 

4d 

0.05 9.925646 9.607029 8.649581 8.156289 

0.10 9.977483 9.743106 8.902396 8.448052 

0.15 9.999248 9.850394 9.129451 8.715544 

0.20 9.990937 9.928874 9.330616 8.958561 

0.25 9.952550 9.978519 9.505748 9.176880 

0.30 9.884082 9.999303 9.654687 9.370251 

4f 

0.05 9.956451 9.714053 8.868976 8.395042 

0.10 9.995277 9.841178 9.122506 8.690411 

0.15 9.994926 9.931178 9.343848 8.955828 

0.20 9.955401 9.984077 9.533043 9.191308 

0.25 9.876708 9.999901 9.690121 9.396847 

0.30 9.758852 9.978673 9.815103 9.572422 

 

Table 4.3: Energy spectrum ,( )nE for different  𝑛 and ℓ states with four various values of the screening 

parameter, 𝜇 = ℎ = 1, re = 0.20 Å , 𝐷𝑒 = 10, A= 
𝜆𝜊

2
, B = 2 (1- 𝜆𝜊), C = A+B+C and 𝜆𝜊 = 2. 
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𝑛  ℓ  𝛼 = 0.05  𝛼 = 2.5  𝛼 = 5.0  𝛼 = 7.0 

0 0 6.607311 8.567361 9.720312 9.999578 

1 

s0 8.822496 9.531990 3.192581 -8.15051 

1 9.324380 7.531311 -5.767980 -24.4169 

2 

0 9.441602 5.857724 -15.81960 -49.5725 

1 9.643226 2.268525 -29.33370 -73.4512 

2 9.785762 -3.847690 -53.11610 -117.376 

3 

0 9.696619 -0.17753 -42.9711 -107.067 

1 9.796131 -4.97132 -60.2859 -137.318 

2 9.873836 -12.5903 -89.4150 -190.881 

3 9.923901 -22.2238 -127.140 -262.314 

4 

0 9.824426 -8.07204 -77.1356 -178.482 

1 9.879775 -13.9508 -97.9959 -214.648 

2 9.925646 -22.9920 -132.262 -277.402 

3 9.956451 -34.1305 -175.687 -359.450 

4 9.976389 -47.0594 -226.692 -457.320 

5 

0 9.896196 -17.6642 -117.916 -262.990 

1 9.929253 -24.5810 -142.217 -304.871 

2 9.957539 -35.0090 -181.524 -376.607 

3 9.976783 -47.6320 -230.588 -469.122 

4 9.989012 -62.0803 -287.485 -578.153 

5 9.996123 -78.2236 -351.453 -701.775 

6 

0 9.939295 -28.8891 -165.145 -360.220 

1 9.959789 -36.8226 -192.835 -407.717 

2 9.977460 -48.6197 -237.135 -488.326 

3 9.989247 -62.7162 -291.806 -591.225 

4 9.996204 -78.6773 -354.573 -711.364 

5 9.999461 -96.3513 -424.543 -846.473 

6 9.999852 -115.673 -501.312 -995.448 

7 

0 9.966066 -41.7167 -218.739 -469.984 

1 9.978859 -50.6559 -249.792 -523.045 

2 9.989650 -63.8127 -299.059 -612.465 

3 9.996327 -79.3764 -359.318 -725.700 

4 9.999488 -96.8460 -427.942 -856.912 

5 9.999842 -116.048 -503.905 -1003.48 

6 9.997938 -136.909 -586.743 -1164.15 

7 9.994173 -159.392 -676.222 -1338.24 

8 

0 9.982739 -56.1313 -278.655 -592.180 

1 9.990478 -66.0701 -313.057 -650.774 

2 9.996537 -80.5811 -367.275 -748.968 

3 9.999529 -97.6082 -433.110 -872.510 

4 9.999828 -116.584 -507.583 -1014.77 

5 9.997905 -137.312 -589.533 -1172.79 

6 9.994135 -159.711 -678.436 -1345.14 
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7 9.988800 -183.737 -774.028 -1531.05 

8 9.982105 -209.370 -876.161 -1730.09 

 

 

Table 4.4: Comparison of RKR (𝑐𝑚_1) data with calculated energies of  𝐶𝑠2 molecule and 𝐿𝑖2 

molecule. 𝜎 is calculated by using equation 4.1. 

 

n 

Cs2 Li2 

RKR (Mesa et al., 

1998) 

Calculated 

values 

 

  
 

RKR (Linton et 

al.,  1999) 

Calculated 

values 

 

  
 

0 19,477.5507 

          

19,477.55890  -0.008200 31.8570 31.80133823 0.05566177 

1 19,506.2939 

          

19,506.29961  -0.005710 90.4530 90.39141775 0.06158225 

2 19,534.8916 

          

19,534.87673  0.014870 142.523 142.4158566 0.10714340 

3 19,563.3470 

          

19,563.29044  0.056560 188.240 188.1839027 0.05609730 

4 19,591.6634 

          

19,591.54092  0.012248 227.679 227.4610980 0.21790200 

5 19,619.8441 

          

19,619.62831  0.215790 260.837 260.5359641 0.30103590 

6 19,647.8922 

          

19,647.55284  0.339360 287.665 287.3994373 0.26556270 

7 19,675.8110 

          

19,675.31463  0.496370 308.098 307.9456174 0.15238260 

8 19,703.6037 

          

19,702.91391  0.689790 322.155 322.2954606 -0.14046040 

9 19,731.2736 

          

19,730.35084  0.922760 330.170 330.7598462 -0.58984620 

10 19,758.8239 

          

19,757.62551  1.198800 333.269 333.5574895 -0.02884895 
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4.2 Discussion of Results  

Figure 4.1 shows the computed result for variation in the principal quantum number (n) for the 

energy eigenvalues against potential strength A. Two things are noticed here, firstly, as the 

potential strength A is decreasing from -10 to negative infinity, the energy remains constant. 

Secondly, as the potential strength A is increasing from 0 to infinity, the energy also remains 

constant. It shows that the negative values of strength A increases as the energy eigenvalues 

also increases steadily while for the positive values of strength A, the energy eigenvalues also 

increase, however, two turning points are seen in the figure which are -6.5 and -4.5. Figure 4.2 

illustrates the graph of energy eigenvalues against potential strength B varying the principal 

quantum number. It is observed that as the energy of the system decreases the potential strength 

B increases. The energy eigenvalues increase as the negative values of strength B increase, but 

the energy eigenvalues decrease for the positive values of strength B, there is a turning point 

at potential strength B = -11.5. Also, the energy of the system rises to have a turning point at 

potential strength B = -9.5 which tends to negative infinity. 

Figure 4.3 illustrates the graph of energy eigenvalues against potential strength C, the graph is 

similar to figure 4.1 where the energy eigenvalues increase as the negative values of the 

strength C increase, however, for the positive values of the parameters, the energy eigenvalues 

decrease. Figure 4.4 shows the plot of vibrational partition function against the maximum 

quantum state. Various values of quantum state 𝜆 were plotted to show the effects of 

temperature parameter 𝛽 on the partition function, it is observed that the variation of the 

vibrational partition function with the temperature parameter 𝛽 has its highest value at 0.012. 

However, as the values of the vibrational partition diverge in a monotonic manner, they tend 
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to converge on the maximum quantum state 𝜆 at the value of 0.000100. These figures imply 

that only when system temperature rises will the partition function increases. 

Figure 4.5 displays the plot of vibrational partition function against the temperature 

parameter 𝛽. It is observed that the vibrational partition function of the system is decreasing in 

a monotonic manner when the quantum state and the temperature parameter increase, this 

reveals that as the system temperature rises, it leads to increase in the partition function of the 

system which is in line with what was done by Akanbi et al., (2021). Figure 4.6 shows the 

variation of the maximum quantum state 𝜆 versus vibrational mean energy U.  It is noticed that 

the vibrational mean energy of the temperature parameter of different values have the same 

values of the maximum quantum state and it is observed that the curve of the temperature 

parameter increases gradually to give a curve which has its maximum value at vibrational mean 

energy of 10 and maximum quantum state at 0.005, it shows that as the vibrational mean energy 

U (J) is increasing, the maximum quantum state is also increasing. 

Figure 4.7 demonstrates the plot of the variation of vibrational mean energy U against the 

temperature parameter  𝛽 respectively. It is observed that at different values of maximum 

quantum states, the vibrational mean energy tends to converge as the temperature of the system 

is rising slowly. It is noticed that when the maximum quantum state is having the lowest value 

that is when it has the highest vibrational mean energy. It is denoted that the higher the 

maximum quantum state  𝜆 , the lower the vibrational mean energy.  Also, when the system's 

temperature continues to rise, the vibrational mean energy seems to approach each other. 

Figure 4.8, displays the behaviour of the maximum quantum state and the vibrational specific 

heat capacity C are shown. It shows that as the vibrational specific heat capacity rises the 

maximum quantum state 𝜆 increases for some values which have a moment of turning point at 

the value of maximum quantum state 𝜆 = 4225 which results in a gradual decrease at 𝜆 > 4225 
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which implies that there is a limit at which the vibrational specific heat capacity cannot go 

beyond and at this point, the specific heat capacity starts diminishing. Figure 4.9 shows that 

the interaction between the temperature parameter 𝛽 and the vibrational specific heat capacity 

C. It is seen that, as the temperature parameter increases, the vibrational specific capacity for 

different maximum quantum state 𝜆 diverges as temperature parameter increases which agrees 

with Okorie et al., (2020). 

Figure 4.10 explains the behaviour between vibrational entropy S and the maximum quantum 

state 𝜆.  It is discovered from the graph that the maximum quantum state 𝜆 increases as the 

vibrational entropy S rise for the various values of temperature parameter that are studied and 

it portrays a linear graph which denotes that the vibrational entropy S is directly proportional 

to the maximum quantum state of the different temperature parameter that is studied.  Figure 

4.11 shows the behaviour of vibrational entropy S against the temperature parameter 𝛽, various 

values of vibrational entropy are variated with different temperature parameter. It is observed 

from the graph that the higher the maximum quantum state, the higher the vibrational entropy 

which implies that the turning point of vibrational entropy for different values of maximum 

quantum state 𝜆 varies from each other. Nevertheless, the different values of vibrational 

entropy converge as the temperature parameter 𝛽 increases which agrees with Akanbi et al., 

(2021). 

Figure 4.12 illustrates the effect of variation between the vibrational free energy F and the 

maximum quantum state 𝜆. There is a direct variation between the vibrational free energy and 

the maximum quantum state 𝜆. Figure 4.13, shows the plot of vibrational free energy F against 

temperature parameter 𝛽, the vibrational free energy shows a monotonic increase as the 

temperature parameter increase. A slight turning point is observed as the temperature parameter 

is increasing and tends to converge at 0.05. It is noticed from the graph that the higher the 

vibrational free energy, the lower the maximum quantum state 𝜆. It is deduced that vibrational 
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free energy has a turning point at higher values of temperature parameter 𝛽 which is in line 

with Akanbi et al., (2021). 

 

Table 4.1 gives the presentation of the energy spectrum for various values of dissociation energy 

at 5, 10, 15 and 20 respectively with equilibrium bond length of 0.20 with different values of 

principal quantum number and angular momentum quantum number.  The lower the energy of 

dissociation, the lower the energy of the system as seen from the table. It is also observed that 

there is a direct variation between the quantum number and the energy eigenvalue of the 

system. In other words, as the quantum numbers are increasing, the energy eigenvalue of the 

system are also increasing as stated by Onate et al., (2021). 

 

Table 4.2 illustrates the variation of different states with different screening parameter and 

various equilibrium bond length of 0.2, 0.4, 0.8 and 1.0 of the energy spectrum equation (3.27). 

It is observed that for 1s state, as the screening parameter is increasing for the four different 

equilibrium bond length, the energy eigenvalues are also increasing which shows that there is 

a direct variation between the screening parameter and the energy eigenvalues. From 1s to 3s 

state with equilibrium bond length of 0.2, as the screening parameter is increasing, the energy 

eigenvalues is also increasing, however, as it reaches 4p States and the screening parameter 

reaches 0.30, the energy eigenvalues starts decreasing from 0.30 at equilibrium bond length of 

0.2 which implies that starting from 4p states, the energy eigenvalues starts fluctuating at 

equilibrium bond length of 0.2 and 0.4. It is noticed from the table that initially, as the 

dissociation energy is increasing, the energy eigenvalues are increasing. But when the principal 

quantum number reaches 2 and the angular momentum quantum number increases. The energy 

eigenvalues are decreasing at dissociation energy of 5, but at dissociation energy of 10, on 
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reaching the radial quantum number of 3, it first increases and later decrease which implies that 

the eigenvalues are not stable again. It shows that when the energy of the system is low, the 

equilibrium bond separation is high, it also explains that as the screening parameter is 

increasing, the energy of the system is also increasing, and in other words, there is a direct 

variation between the screening parameter and the energy of the system which confirms the 

study by Dong et al., (2008). 

Table 4.3 represents the variation of different screening parameters with the dissociation energy 

of 10 and equilibrium bond length of 0.20, it is observed that when the principal quantum 

number and the azimuthal quantum number are increasing and the screening parameter is at 

0.05, the eigenvalues first increases and towards the later part it first increases but later to 

decrease. It shows that it is only when the principal and azimuthal quantum number is 0 that 

the eigenvalues are increasing as the screening parameters are increasing. But at others, the 

eigenvalues are decreasing as the screening parameter is increasing. 

Table 4.4 displays the comparison between the RKR data (cm-1) from Mesa et al., (1998) with 

the calculated energies of the cesium dimer molecule. The computed RKR vibration energy 

and the experimental results are reported for cesium dimer and lithium dimer using equations 

(3.58) to equation (3.64), and the experimental data taken from Nikiforov and Uvarov (1988) 

and Tezcan and Sever (2008). For cesium dimer, 𝐷𝑒 = 2722.28𝑐𝑚
−1 , 𝑟𝑒 = 5.3474208 Å, and 

𝜔𝑒 = 28.8918𝑐𝑚−1 for lithium dimer, 𝐷𝑒 = 2722.28𝑐𝑚−1, 𝑟𝑒 = 4.173Å, 𝑎𝑛𝑑 𝜔𝑒 =

65.130𝑐𝑚−1 . 

For both cesium dimer and lithium dimer, a deviation 𝜎 was calculated. For cesium dimer, 

deviation 𝜎 increases from the lowest degree of vibration to the highest level of vibration. The 

deviations from the lower levels of the lithium dimer rise to the first three lower levels of 

vibration, then the pattern shifts without any set format. Also, it is observed that as the 
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vibrational levels are increasing, the calculated energies for cesium dimer molecule are also 

increasing i.e., there is a direct variation. The same thing is noticed for lithium dimer molecule, 

it is also noticed that the deviation for cesium dimer is increasing as the vibrational levels are 

increasing which shows a similar behaviour with nitrogen molecule as reported by Onate et al., 

(2021). However, the deviation for lithium dimer molecule first increase and afterwards there 

is a change in the pattern of deviation. The average deviation for each molecule was computed 

using a method to establish the approximation of comparing estimated and experimental values 

in equation (4.1) below. 

0100
,RKR v

av
v

RKR

E E

N E



                                                   (4.1) 

where 𝐸𝑅𝐾𝑅 are the experimental values, 𝐸𝑣0 is the value calculated and the number of the RKR 

data points of the experiment. The calculation shows an average 0.4415 percent divergence 

from the cesium dimer and 0.0007 percent from the lithium dimer. It is seen from these average 

deviations that the result for lithium dimer molecule agrees better than the result for cesium 

dimer molecule. 

 

4.3 Findings 

The findings from this work are as follows: 

(1) The addition of potential parameters has effects on the system. Potential strength A and 

potential strength C has similar effects. This resulted in the energy approaching a steady 

state as the potential strength A and C declined from -10 as it increases by 0, energy 

comes even close to a steady state. But as potential strength B increases, the energy of 
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the system gets close to negative infinity. Where   A= 
𝜆𝜊

2
, B = 2 (1- 𝜆𝜊), C = A+B+C 

and 𝜆𝜊 is 2. 

(2) As the temperature of the system increases, the partition function of the system also 

increases. 

(3) The vibrational mean energy attains its stability as there was gradual increase in the 

temperature of the system. 

(4) There was a direct variation between vibrational specific heat capacity and temperature 

parameter, however there is a turning point when maximum quantum state is at the 

value 4225 after which the vibrational specific heat capacity starts deceasing. 

(5) Increase in temperature parameter of the system makes the vibrational entropy to attain 

its stability. 

(6) There is a direct variation between the vibrational free energy and the temperature 

parameter. 

(7) The variation of cesium dimer and lithium dimer was calculated and the deviation from 

the lowest vibration level and the lithium dimer was found to increase from the lowest 

vibration level and to increase the deviation from the least vibrational level to the first 

three different levels after which the deviation pattern was unsatisfactory. 
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                        CHAPTER FIVE  

 SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Summary 

Using a straight forward Nikiforov-Uvarov approach, the Schrödinger equation obtained an 

approximate solution for the improved molecular attractiveness potential. 

The equation energy and the matching functions of radial wave were achieved and the impact 

of the possible strength A, B and C on the attractive molecular potential were also observed on 

the energy eigenvalues and it was observed that potential strength A and C yielded the same 

result while potential strength B yielded a different result. The thermal properties such as 

vibrational partition function, vibrational mean energy, vibrational specific heat capacity, 

vibrational entropy, and vibrational free energy were studied using the molecular attractive 

potential.  The study showed that as the system’s temperature goes up, the vibrational partition 

function likewise goes up, for the vibrational mean free energy, it reduced when the 

temperature parameter rises and increased when the maximum quantum number increased. The 

specific capacity was also variated with the temperature parameter and it showed a direct 

variation. The vibrational entropy attains its stability as the temperature parameter was 

increased.  

The Rydberg-Klein–Rees (RKR) of cesium dimer and lithium dimer was compared with the 

experimental values with the usage of parameters molecular spectroscopy. The values of the 

RKR for cesium dimers are 0.4415%, and the RKR for lithium dimer  is 0.0007%. This suggests 

that the average deviation from the cesium dimer molecule is small. The result also shows that 

the average deviation computed agreed with the observed values.  
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5.2 Conclusion 

 A theoretical determination of Rydberg-Klein-Rees (RKR) values of some molecules with a 

four- parameter exponential-type molecular potential was considered in this study.  The 

numerical study was carried out using maple software. From the study, the following 

deductions were made: 

An approximate analytical solutions of molecular attractive potential energy models using 

parametric Nikiforov- Uvarov method was obtained; the thermodynamic properties of the 

molecular attractive potential were obtained mathematically. 

Numerical procedures were employed to generate the eigenvalues and its corresponding wave 

functions; the spectroscopic parameters were inputted into the energy equation to obtain the 

calculated Rydberg-Klein-Rees values which were compared with the experimental values.  

The experimental results qualitatively agreed with the theoretical results 

5.3 Recommendation   

Further extension of the study is recommended by considering the spectroscopic parameters 

of other molecules to generate the values of Rydberg-Klein-Rees whether it will agree with 

the experimental results. Also, other solution techniques of Schrödinger equation can be 

employed to obtain the energy equation which will be used to generate eigenvalues.  

5.4 Contributions to Knowledge 

Horchani et al., (2020) reported that till now, there has not been a principal method of using a 

potential energy function for modelling diatomic molecules, thereby making it difficult to find 

an appropriate potential that suits experimental data. However, this study has been able to 

contribute to the study of molecular physics by increasing the number of potentials numerically 

that can be used to verify experimental results.  
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