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Abstract. This study investigates the relationship between climate, agroclimatic indices, and 

maize yield in Nigeria, focusing on diverse agroecological zones. Climate change is poised to 

significantly impact agricultural output.  Analysis of historical data reveals varying sensitivities 

to weather changes in Nigeria's agroecological regions. Regional climate impact assessments 

typically use annual statistical models, which may not capture sub-seasonal weather variations 

and often assume a constant relationship between crops and weather. Crop yield anomalies were 

created to remove non-weather-related influences from a time series dataset. Also, agroclimatic 

indices were incorporated into forecasting models as inputs to offer more relevant information 

for estimating crop output. The research demonstrates the critical role of climate factors such as 

rainfall in March and minimum temperatures in shaping maize yield in Nigeria. By expanding 

the scope to include a broader range of climate-related elements, this study has illustrated how 

incorporating agroclimatic indices into crop yield forecasting models can enhance forecast 

accuracy and reliability. The study reveals that different agroecological zones may face varied 

outcomes with regions in the south recording more negative maize yield anomalies as oppose to 

the north. The research underscores the complexity of the relationship between climate, 

agroclimatic indices, and crop yield in Nigeria. It provides essential insights for policymakers, 

farmers, and researchers to make informed decisions and develop strategies for ensuring food 

security and agricultural sustainability in the midst of a changing climate in Nigeria.  
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1. Introduction 

The yield of crops in agriculture is influenced by several factors such as soil properties, 

agronomic practices, water availability etc., however, weather poses as the single most 

important and uncontrollable factor influencing crop yield [1]. Crop’s performance and yield 

are sensitive to trend in climate, with responses to long–term trends in average rainfall and 

temperature differing among crop species throughout their life cycle [2]. Some crops are more 

tolerant than others to certain types of stresses, and at each phonological stage, different types 

of stresses affect each crop species in different ways. For example, the increase in average 

temperature during the growing season causes plants to use more energy for respiration for their 

maintenance and less to support their growth. [3] reported that with a 1°C increase in average 

temperatures, yields of the major food and cash crop species will decrease between 5 to 10 

percent. Similarly, [2] reported that at higher average temperature plants are precipitated to 

complete their growing cycle more rapidly, lowering yields. 

The relationship between specific weather parameters and crop yield varies depending on the 

crop type, location, and growth stage amongst other factors. Hence, an understanding of the 

relationship between weather information and how it affects crop yield is imperative to safe 

guarding agricultural productivity especially with the encroaching impacts of climate change. 

The impact of rainfall on crop yield for example depends on the timing, intensity, and duration 

of rainfall events. [4] reports that insufficient rainfall or drought stress, leads to reduced plant 

growth and yields. [5] estimates up to 37% reduction in maize yield as a result of drought in the 

United States as well as a 34% reduction due to excess rainfall. Similarly, optimal temperature 

is a crucial factor influencing crop growth and development, with [6] reporting that 

temperature-related extremes may better explain differences in some crop yield. Also, the 

relationship between ideal temperature range, and yield may be more complex, as other factors 

like such as soil moisture, humidity, wind and sunlight also come into play. 

The challenge in Africa’s food availability is complex as the crop yield per hectare is on an 

increase, but slower in comparison to the rate of population growth [7]. Also, the potential 

effects of climate change on crop performance for the continent have been projected to be both 

positive and negative, depending on the specific climate model, scenario, and crop modelling 

methodology used. Food security remains a high-priority development target for the region 

which many already deemed food insecure and concerted efforts towards food security may 

become easily derailed by the realities of climate change. Climate change is expected to have a 

broadly negative impact on crop yields, some studies suggest that certain areas may experience 

longer growing seasons and warmer temperatures due to climate change [8], [9]. [10]  reports 

between a 20 to 45% decrease for maize yields, 5 to 50% for wheat and 20 to 30% for rice 

yields. While some studies suggest that certain areas may experience longer growing seasons, 

and increased yield potentials. 

Among the countries in Africa, Nigeria is ranked the second largest producer of maize. Data 

released by the United States Department of Agriculture (USDA) reveals that maize production 



 

 

 

 

 

 

in the country has been steadily rising and reached its highest level in 2021 since gaining 

independence [11]. However, despite the substantial production volumes, Nigeria's maize yield 

per hectare remains relatively low, at less than 2 metric tonnes per hectare. This places the 

country among the lowest maize-yielding nations in Africa, trailing behind countries like Egypt 

and South Africa, where maize yields reach 7.7 metric tonnes per hectare and 5.3 metric tonnes 

per hectare, respectively. In the past, the majority of maize grain production in Nigeria was 

concentrated in the southwestern region.  

Nigeria’s agricultural system, similar to most countries in sub-Saharan Africa is highly 

vulnerable to change in climate as the farming system is comprised mainly of rainfed and non-

homogenous small holder farming [12], [13]. Evidences show that CC has already impacted 

maize yield and will continue to have a significant impact on agricultural planning, practice, 

technology and output for the country [14]. According to [15], it was predicted that the rise in 

temperature, under current CO2 levels, would have a more significant impact on maize 

productivity in the humid-forest and semi-arid agroecological zones. This effect is projected to 

result in reductions of approximately 18% and 13% in the respective zones. Also, the rising 

temperatures and altered rainfall patterns have led to changes in the length and timing of 

growing seasons, affecting the optimal timing for planting and harvesting crops in Nigeria. CC 

has been reported to have led to the spread of late onset and early cessation of precipitation 

phenomenon from only a few areas between the years of 1941 – 1970 to the most part of the 

country between the years of 1971-2000 [16]. However, it is important to recognize that the 

impact of climate change on crop yields and the adaptation strategies vary depending on the 

specific characteristics of local and regional resources. Therefore, the methodology employed 

in this study aligns with the FAO's notion that a complex landscape can be characterized as a 

series of uniform production areas, referred to here as agroecological zones [17]. 

Additionally, climate impact assessments conducted at the regional level often rely on annual 

statistical modelling approaches [3], [18]. However, these models may not fully capture sub-

seasonal weather fluctuations and typically assume a constant relationship between crops and 

weather. To provide the forecasting model with data more directly relevant to crop yield, we 

incorporated various agroclimatic indices into our analysis. In this study, we examined a total 

of 98 distinct agroclimatic indices. Within this context, the study had two primary objectives: 

(i) to evaluate the effects of climate change on maize yields in Nigeria and (ii) to assess the 

potentials if agroclimatic indices in improving maize yield forecasting. This was achieved by 

identifying the most significant agroclimatic indices for predicting crop yields, quantifying 

sensitivities of maize production of agroecological zones to weather variations. 

 

2. Materials and Methods  

The research from the methods of [1], [19] follows a three-phase approach: Data Input and 

Preprocessing, Evaluation of Agroclimatic Indicators and Time-Series Analysis, and Crop Yield 

Modelling and Forecast (Figure1.). The methodology is structured to address two main 

questions. First, it investigates the significance of extreme weather indices in agricultural yield 



 

 

 

 

 

 

forecasting and examines whether climate change will lead to positive or negative maize yield 

potentials in various regions. 

 

 

Figure 1. Development of Climate-driven Maize yield Forecasting Models 

2.1 Study Area 

This study was conducted over Nigeria, which has a total land mass area of 925, 796 km2 and 

located between latitudes 4 – 14˚N and longitudes 2 – 15˚E in West Africa. Agriculture is the 

backbone of Nigeria's economy, contributing over 45% of the GDP and employing more than 

half of the workforce [20]. Nigeria has a tropical climate with two distinct seasons: a rainy 

season and a dry season. The southern region receives abundant rainfall, typically spanning 

from March to October, with coastal areas like the Niger Delta receiving over 4,000mm of 

annual rainfall. The southern rainy season has a peak in June and is briefly interrupted by the 

August break, followed by another shorter rainy season from September to mid-October. The 

dry season lasts from late October to early March, with higher temperatures in the north from 

March to June and in the south from February to April, with daytime temperatures exceeding 

30°C [21].  



 

 

 

 

 

 

The study area is divided into seven broad agroecological zones patterned after [9] (Figure.2). 

Seven cities, one from each of Nigeria's agroecological zones, were selected for our analysis. 

These cities were chosen due to their strategic significance in their respective zones for 

agricultural practices, particularly cropping, and the availability of relevant references in the 

existing literature [22]–[24]. The seven cities included in this study are: Maiduguri representing 

the Sahel (11.50°N, 13.9°E), Birnin-Kebbi representing the Sudan (12.28°N, 04.13°E), Kaduna 

representing the Northern Guinea Savannah (10.3°N, 7.2°E), Bida representing the Southern 

Guinea Savannah (09.06°N, 06.01°E), Ilorin representing the Derived Guinea Savannah 

(10.5°N, 04.10°E), Jos representing the Mid-altitude (09.52°N, 08.45°E) and Ondo representing 

the Humid Forest (07.06°N, 04.50°E) agroecological zones. 

 

Figure 2:  Agroecological Zones of Nigeria (Adapted from [9])  

 

2.2 Meteorological Data  

This study utilizes two distinct sets of meteorological data: an observation dataset and a 

simulation dataset. The historical data is obtained from the high-resolution (0.5x0.5 degree) 

gridded time-series (TS) data of the Climatic Research Unit’s (CRU) version 4.05 (CRU TS 

v4.05), covering the period from 1901 to 2020. Monthly rainfall and temperature data from this 

CRU dataset were extracted using Google Earth Pro software [25]. Additionally, for future data, 

we used a simulation dataset derived from seven CMIP5 Global Climate Models (GCMs) that 

were dynamically downscaled by the Swedish Meteorological and Hydrological Institute's 

Rossby Centre regional atmospheric model (RCA4). These simulation data covered the 

historical period from 1951 to 2005 and extended into the future, from 2006 to 2100, 

considering two representative concentration pathways (RCPs) scenarios: RCP 4.5 and RCP 

8.5. The spatial resolution of the SMHI-RCA4 regional climate model output is approximately 



 

 

 

 

 

 

0.44° (about 50 km). For more details on the GCMs used in this study, including their names, 

resolution, and characteristics, please refer to Table 1. The SMHI-RCA4 regional climate 

model's reliability and ability to simulate seasonal and annual climate patterns have been 

extensively described and assessed in various studies [26]–[29]. These studies generally found 

that the model performed satisfactorily in replicating these climate patterns, with only a few 

exceptions. 

Table 1: List of GCM model simulations downscaled by RCA4 used in this study 

S/N Modeling Center or Institute Resolution 

of GCM 

GCM Output 

Name 

1 Canadian Centre for Climate Modelling and 

Analysis (CCCMA) 

2.8o x 2.8o CCCCMA-

CanESM2 

2 Centre National de Recherches 

Météorologiques (CNRM) 

1.4o x 1.4o CNRM-

CERFACS-

CNRM-CM5 

3 NOAA Geophysical Fluid Dynamics 

Laboratory 

(NOAA-GDFL) 

2.5o x 2.0o 

 

 

NOAA-

GDFL-GDFL-

ESM2M 

4 EC-EARTH consortium (ICHEC-EC) 

 

1.9o x 1.3o 

 

ICHEC-EC-

EARTH 

5 Atmosphere and Ocean Research Institute 

(The University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency 

for Marine-Earth Science and Technology  

1.4o x 1.4o MIROC-

MIROC5 

6 Max-Planck-Institut für Meteorologie (Max 

Planck Institute for Meteorology) 

1.9o x 1.9o 

 

 

MPI-M-MPI-

ESM-LR 

7 Norwegian Climate Centre 2.5o x 1.9o 

 

NCC-

NorESM1-M 

2.2.1 Multiple Model Ensemble of Monthly Precipitation and Temperature   

Many impact studies have traditionally relied on single or sets of General Circulation Models 

(GCMs), but there is a recent trend toward using ensembles of multiple GCMs to enhance model 

accuracy. In this study, the outputs of the RCM models were employed to develop ensembles 

using an Artificial Neural Network (ANN). The RCM's simulated climatic variables were 

initially compared to observations in determination across the country using the Pearson 

correlation coefficient. Subsequently, an ANN model was developed with highly correlated 

RCMs as independent variables, and the ensemble climate data generated by the ANN model 

was compared to observational data for accuracy assessment. The ANN procedure employed in 

this study was a feedforward network with input, hidden, and output layers, implementing 

supervised learning and backpropagation algorithms. 

2.3 Maize yield and maize yield anomaly 

The annual maize yield dataset at the state level, spanning from 1995 to 2015, was procured 

from the National Agricultural Extension and Research Liaison Services (NAERLS) for 



 

 

 

 

 

 

subsequent analysis. Maize yield is expressed in metric tonnes per hectare. The initial phase of 

the weather impact analysis involved detrending, a statistical procedure employed to eliminate 

non-weather-related influences. Detrending serves to extract the long-term trend or seasonality 

from a time series dataset, thereby facilitating the examination of inherent patterns and 

fluctuations [30]. The result of the detrending process is referred to as the maize yield anomaly. 

To correlate the maize yield anomaly with agroclimatic indices, equations 1 and 2 were utilized 

to calculate the anomaly in maize yield. Subsequently, the Maize Yield Anomaly Index (MYAI) 

was computed from the maize yield data. MYAI enables the assessment of the frequency and 

intensity of low and high yield years. This equation was adapted from the Rainfall Anomaly 

Index (RAI), initially developed by Rooy in 1965 and later employed by [31]. 

𝐴𝑌𝐴𝐼 = 3 [
𝑁 − 𝑁̅

𝑀̅ −  𝑁̅
] , 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠                                                          1 

𝐴𝑌𝐴𝐼 = −3 [
𝑁 −  𝑁̅

𝑋̅ −  𝑁̅
] , 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠                                                     2 

2.4 Agroclimatic Indices  

Agroclimatic Indices, which represent agriculturally relevant climate parameters, act as 

indicators of the climate factors influencing agriculture. Many studies have demonstrated the 

significance of meteorological data in explaining agricultural productivity. selected agroclimatic 

indices, have been integrated as inputs in forecasting models to provide more directly pertinent 

information for crop output estimation. These indices are derived from raw weather data, aiming 

to enhance the understanding of the interplay between weather conditions and crop growth, 

ultimately assisting in agricultural decision-making. Considering the diverse range of crops and 

regions, a single index or indicator cannot comprehensively capture this relationship. 

Consequently, this study outlines a framework for selecting the most suitable agroclimatic 

indices in maize production for Nigeria. In the initial phase of selection, the indices were chosen 

based on their ease of application, ensuring that readily available codes or programs can be used 

to compute them, and they do not necessitate daily data inputs. Furthermore, the inputs for these 

agroclimatic indices were limited to maximum temperature, minimum temperature, and 

precipitation. 

 

2.5 Simple and Multiple Linear Regression Models  

This paper employs several regression models, including both simple linear regression and 

multiple linear regression techniques. Multiple linear regression, also known as multiple 

regression, is a statistical approach that leverages multiple explanatory variables to predict the 

outcome of a response variable. The process incorporates forward selection and stepwise 

regression methods. Specifically, stepwise multiple regression, a combination of forward 



 

 

 

 

 

 

selection and backward elimination, was chosen for its efficacy. The multiple linear regression 

is mathematically expressed in Equation 2. 

y = β0 + β1x1 + β2x2 + . . . + βkxk       (2) 

Where: 

y is the dependent variable,  

 xi (i = 1, . . ., k) is the independent variable,  

β0 is the intercept of y, and 

β1 (i = 1, . . ., k) is the regression coefficient, 

To determine the inputs for the regression models, we utilized five different configurations. 

"Input configuration (W)" focuses on direct annual weather indicators, such as annual minimum 

temperature (w1), maximum temperature (w2), mean temperature (w3), and precipitation (w4), 

along with the combination of these direct weather indicators (wn). Conversely, "Input 

configuration (I)" involves agroclimatic indices in addition to the direct weather indicators. The 

selection of inputs for this second model was carried out using the stepwise regression method, 

which involves multiple rounds of regression, iteratively eliminating the variables with the 

weakest correlation. The final selection is based on specific Stepwise-Regression Criteria, 

including a probability threshold for inclusion and removal (probability of F to enter <= 0.050, 

Probability of F to-remove >= 0.100. Variables are added to the model if their p-value is less 

than or equal to 0.05 and are removed from the model if their p-value is greater than or equal 

to 0.1). 

From the regression output, we can derive valuable insights from various statistical measures, 

including Pearson coefficient, multiple coefficients of determination (R²), and multiple 

correlation coefficient (R). The development of these models relied on data from the years 1995-

2010, while the subsequent testing phase used data from 2011-2019. 

3. Results and Discussions 

3.1 Summary of Metrological and Maize Yield Datasets 

The box and whisker plot are employed in the descriptive statistical analysis of the maize yield 

across the agroecological zones as it offers a pictorial summary of important dataset 

characteristics including the central tendency, dispersion, asymmetry, and extremes, arrived at 

through percentile rank. As stated in the methodology section, the initial phase of a weather-

impact analysis involves identifying trends to eliminate non-weather influences in the maize 

yield dataset. Figure 3a. displays the maize yield range across different agroecological zones 

while Figure 3b shows the detrended maize yield anomaly.  

Figure 3a. demonstrates that the states located in the mid-altitude zone consistently achieved 

the highest maize yields per hectare, with an Interquartile Range (IQR) spanning from 1.9 to 



 

 

 

 

 

 

2.35 metric tonnes per hectare. Following closely were the states in the Southern Guinea zone, 

where the IQR ranged from 1.2 to 2.2 metric tonnes per hectare, and the states in the Humid-

Forest zone, with an IQR of 1.5 to 2.1 metric tonnes per hectare. States in the Northern Guinea 

Savannah zone had an IQR from 1.3 to 2.0 metric tonnes per hectare, while states in the Derived 

Guinea Savannah zone showed an IQR ranging from 1.5 to 1.9 metric tonnes per hectare. States 

in the Sudan zone recorded an IQR between 1.09 and 1.56 metric tonnes per hectare. Lastly, 

states in the Sahel zone displayed an IQR spanning from 1.02 to 1.59 metric tonnes per hectare. 

Notably, the Sudan showed a lower median yield value of 1.2 metric tonnes per hectare, while 

the Sahel showed a median yield of 1.45 metric tonnes per hectare. This is in spite of the Sahel 

having a lower IQR range than the Sudan. 

Historically, the majority of maize grain production in Nigeria was concentrated in the southern 

region, particularly states like Oyo, Ogun, and Osun. [32],  reported that approximately 50% of 

Nigeria's maize came from western Nigeria, with the remaining 50% divided between the North 

and the East. However, reports have shown that there has been a significant shift in dry grain 

production towards the savanna regions, particularly the Middle Belt region. States such as 

Benue, Nasarawa, Plateau, and Niger in the Middle Belt are renowned for their fertile soils and 

favourable climate for maize cultivation, leading to impressive yields. This area is now 

considered the primary maize belt of Nigeria. This trend could be attributed to factors such as 

the availability of streak-resistant varieties suitable for all ecological zones in Nigeria, the 

presence of high-yielding hybrid varieties, rising demand for maize, and the federal 

government's ban on rice, maize, and wheat imports.  

Utilizing maize yield per unit area provides a valuable means of comparing productivity levels 

across diverse regions and agricultural practices. Standardizing measurements to a per-hectare 

basis allows for a consistent assessment of maize production efficiency and performance. 

Nevertheless, the superior approach for comparing crop production areas involves detrending 

the crop yield data. This detrending method helps in isolating the influence of weather and 

climate variables, eliminating non-weather-related factors, ensuring data consistency, and 

enabling more accurate trend detection and regional comparisons. The MYAI was employed to 

detrend the data, removing long-term trends and seasonality from the time series maize yield 

data. This process enables us to eliminate the overall yield increase resulting from recent 

technological advancements, attributing the residual impact primarily to climate disruptions 

[30], [33]. In contrast, Figure 4.2b illustrates the natural dispersion and variability of yield 

anomalies within different agroecological zones. Notably, the Mid-altitude agroecological zone 

exhibits lower dispersion, indicating reduced sensitivity to weather or lower inter-annual 

variability. It, however, displays more positive extreme values, suggesting enhanced yield 

performance in the region. Conversely, the Humid Monsoon Zone (HMZ) and the Sahel 

Agroecological Zone (SAZ) exhibit the greatest inter-annual variability, implying heightened 

sensitivity to weather fluctuations and higher year-to-year yield variations. On the contrary, the 

Southern Guinea Zone (SGZ), Derived Savannah Zone (DRZ), and Northern Guinea Savannah 



 

 

 

 

 

 

Zone (NGZ) present comparable natural variability, indicating similar sensitivity to weather 

changes and consistent year-to-year yield fluctuations in these regions 

 

(a) 

(b) 

Figure 3 Boxplots of (a) maize yield and (b) maize yield anomalies of states located in 

the seven agroecological zones 

3.2 Best predictors classification, depending on the production areas  

The database for this study comprises a total of ninety-eight potential weather predictors. This 

section of the report is dedicated to assessing and quantifying the relationships between these 

various weather indicators and yield anomalies, categorized by specific agroecological zones. 



 

 

 

 

 

 

Within each zone, the weather indicators exhibiting the strongest correlations are ranked, 

underscoring their significance. These correlations are visually represented on the heat map in 

Figure 4, with blue denoting positive correlations and red indicating negative correlations. 

In the mid-altitude zone, the correlations unveil that yield anomalies in this region exhibit 

comparatively lower sensitivity to weather variations when juxtaposed with other zones. 

Examining the complex influence of climate change on crop yield in high latitudes reveals a 

dynamic and multifaceted scenario. While it is a widely acknowledged fact that high latitudes 

are undergoing accelerated warming in comparison to other regions, the specific impacts on 

maize yield manifest variability. Likewise, in the Sahel region, the correlation analysis 

underscores the pivotal importance of climatic data, especially the rainfall occurring in the 

month of March. This time aligns with the maize planting season, making it a critical juncture 

in the crop's growth cycle. The successful establishment of a robust and healthy crop during 

March serves as a foundational element for potentially achieving higher maize yields. 

Favourable meteorological conditions during this crucial phase contribute to improved crop 

establishment, increased plant populations, and overall enhanced plant health, collectively 

contributing to greater maize yields at harvest time. 

Empirical observations reveal that SPI(March) accounts for as much as 62% of the variability 

in maize yield anomalies within the Sahel region. Similarly, in the Humid Forest zone, the 

maximum temperature in March plays a crucial role in explaining up to 54% of the variability 

in maize yield. Notably, a noticeable negative correlation is observed for SPI(September), 

signifying the potential adverse effects of excessive rainfall on maize yield, particularly during 

the harvest period. This aligns with the findings of [5], who reported substantial yield losses in 

various states in the Midwest of the USA, such as Iowa, Minnesota, and Missouri, due to 

excessive rainfall, emphasizing the significant impact of flooding on maize yield loss, which 

can rival the impact of drought in specific regions. 

Additionally, it is discernible that correlations of minimum temperature generally exhibit 

slightly higher values in comparison to other indices. While maximum temperature also 

influences maize yield by affecting factors such as photosynthesis, water stress, and heat stress, 

the influence of minimum temperature on critical growth stages and physiological processes 

makes it especially vital for determining overall yield. Maize, as a warm-season crop, thrives 

under relatively warm conditions, and a minimum daily temperature of 10°C is essential for 

seed germination. Optimal maize performance typically necessitates moderate temperatures 

ranging from 26°C to 29°C.  

Monthly rainfall inputs predominantly yield varied correlation coefficients, ranging from 

negative 0.531 to 0.469. In the Humid Forest zone, the potential for excessive rainfall leading 

to negative anomalies during critical periods, especially in July, August, and September, is 

clearly demonstrated. In contrast, the Sahel exhibits a positive correlation with rainfall. 

Correlations related to minimum temperature are more positive, ranging from -negative 0.3499 



 

 

 

 

 

 

to 0.5750, implying that increasing minimum temperatures may lead to more positive yield 

anomalies. Elevating minimum temperatures within the optimal range, typically between 25°C 

and 35°C, fosters maize development by extending the growing season, potentially boosting 

yields by enabling maize to complete its growth cycle and produce more grain. Notably, while 

an increase in maximum temperature in the Humid Forest zone results in a positive correlation, 

it gives rise to negative correlations in the Sahel. The Sahel region is more vulnerable to heat 

stress and water scarcity, potentially leading to reduced yields, whereas in the Humid Forest 

region, an increase in maximum temperatures can create conditions more favourable for certain 

diseases and pests that can harm maize crops and may also extend the growing season. In 

summary, rain-based indices are often less reliable predictors, while temperature-based indices 

prove to be more effective in the southern zones, as opposed to rainfall, which prevails as the 

dominant predictor in the northern zone 

 
(a) 

 
(b) 

 
(c) 



 

 

 

 

 

 

 
(d) 

 
(e) 

 
(f) 

Figure 4 Correlation Heat Map within the zones for (a) rain (b)Tmin (c) average 

temperature (d) Seasonal climate (e) SPEI (f) PET 

 

3.3 Yield forecast improvement using agroclimatic indices 

The dataset at our disposal spans twenty-five years of critical agricultural data (See 

Appendices). To construct a robust learning set, we randomly select twenty years, constituting 

80% of the available data, while the remaining five years are allocated for the test set. Table 2; 

shows the selected regression inputs for the multiple linear regressions based on the stepwise-

Regression Criteria as discussed in section 2.5 above. Our objective is to assess and compare 

the forecasting capabilities of different configurations, denoted as (W1-5) and (I), within each 

distinct agroecological zone. Table 3, a crucial source of insight, offers a comprehensive view 

of our findings. It presents the coefficient of determination (R²), correlation, and Mean Absolute 

Error (MAE) during the test period. Notably, as we delve into these configurations, we observe 



 

 

 

 

 

 

a noteworthy increase in the percentage of yield variance that can be explained by weather 

inputs. For example, in the Sahel region, where the R² climbs from a modest 0.2 to a 

significantly improved 0.8 when transitioning from the (W) to (I) configuration. This shift 

underscores the substantial impact of incorporating agroclimatic indices alongside direct 

weather data. It is important to note that these outcomes are not merely theoretical. Studies such 

as the work of [34], has indicated that, on a global scale, climate variations contribute to a third 

of the variability in crop yields.  Our results align with these real-world observations, 

demonstrating the potential of well-selected agroclimatic indices to approach this level of 

explanatory power. By moving beyond simple weather data and embracing a more holistic 

approach, we take a significant stride toward enhancing the precision and reliability of crop 

yield forecasts. 

Table 2 Input selection based on Stepwise- regression 

Model Summary Stepwise Training 

Model R R2 Predictors 

Sahel 0.832 0.692 ACI. 65, ACI. 75, ACI. 61, ACI. 80 

Sudan 0.947 0.896 ACI. 71, ACI. 36, ACI. 29, ACI. 73, ACI. 4 

Northern Guinea 

Savannah 

0.955 0.913 ACI. 38, ACI. 88, ACI. 48, ACI. 96, ACI. 21, 

ACI. 26 

Southern Guinea 

Savannah 

0.979 0.958 ACI. 1, ACI. 70, ACI. 21, ACI. 16, ACI. 80, 

ACI. 44, ACI. 36, ACI. 92, ACI. 40 

Derived Guinea 

Savannah 

0.686 0.470 ACI. 44, ACI. 96 

Mid-Altitude 0.764 0.583 ACI. 81, ACI. 70, ACI. 67, ACI. 5 

Humid Forest 0.678 0.459 ACI. 3, ACI. 44 

 

 

Table 3: Testing MYAI predictors selected for different input configurations 

Confi

gurati

ons 

I W1 W2 W3 W4 Wn 

Error

metric 

MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 MAE R2 

SAZ 1.5 0.8 2.6 0.1 2.7 0.0 2.7 0.1 2.5 0.2 1.9 0.2 

SUZ 1.1 0.5 2.9 0.0 2.6 0.1 2.6 0.0 2.5 0.1 2.3 0.2 

NGZ 1.0 0.7 2.6 0.1 2.4 0.1 2.6 0.0 2.3 0.2 2.2 0.2 

SGZ 0.6 0.8 2.8 0.0 2.7 0.2 2.6 0.1 2.7 0.2 2.7 0.2 

DRZ 2.1 0.4 2.6 0.0 2.3 0.3 2.4 0.2 2.3 0.4 2.2 0.3 

ALZ 1.8 0.6 3.0 0.0 3.1 0.0 3.2 0.0 3.1 0.1 2.7 0.2 

HMZ 3.7 0.3 9.4 0.0 2.5 0.1 2.6 0.0 2.6 0.1 2.6 0.1 

 



 

 

 

 

 

 

3.4 Forecast Impact of climate change on maize yield in Nigeria 

MYAI quantifies the deviation from the anticipated year-to-year performance of maize yield. 

While crop yield represents the actual quantity of crops harvested, the crop yield anomaly 

quantifies the extent to which the actual yield differs from what was expected or considered 

typical. This anomaly can manifest as either positive, signifying a yield surpassing expectations, 

or negative, suggesting a yield that falls short of expectations. It is influenced by a multitude of 

factors, including weather conditions like droughts, floods, or extreme temperature events, as 

well as various environmental variables such as soil quality and nutrient availability. In this 

section, forecast of the MYAI for the years 2020-2050 under RCP4.5 and RCp8.5 is made, we 

explore the influence of the shifting climate patterns on maize yield anomalies using the 

multiple linear regression approach with the specified Configuration I, as detailed in the 

preceding section. 

Historically, the MYAI in the Sahel has predominantly exhibited negative anomalies, with an 

average value of -1.12 (Figure 5a). The regression models reveals that these negative anomalies 

can primarily be attributed to two key factors: insufficient rainfall and elevated PET levels in 

the month of March. The forecast for maize yield anomalies in the Sahel region paints a 

promising picture for the future. Considering RCP scenarios, it becomes evident that the 

region's agricultural outlook for production of maize is set to improve. Under RCP4.5, 

specifically, there is a notable reduction in the PET levels during the critical month of March. 

This decrease in PET translates to a higher potential for maize production in the area, hinting 

at a positive anomaly. Conversely, under the RCP8.5 scenario, the forecast also displays a 

positive anomaly. It suggests that the region will experience more favourable conditions for 

maize cultivation. The relationship between temperature and maize yield in the Sahel region is 

complex and influenced by various factors. While a higher minimum temperature can have 

some positive effects on maize yield, it is not the sole determining factor. According to [35], 

warmer temperatures can have both positive and negative impacts on maize yield, depending 

on the availability of soil moisture. Therefore, if temperatures in the Sahel region increase and 

there is adequate water availability, it has the potential to positively affect maize yield. 

Additionally, research conducted by [36] also reveals that both the direct and overall effects of 

temperature and precipitation have notably positive outcomes. An increase in temperature or 

precipitation is projected to significantly enhance maize. 

During the training period, a negative anomaly of -1.38 was documented in Sudan. This adverse 

anomaly can predominantly be attributed to the minimum temperature in September and the 

amount of rainfall in August. Reduced levels of minimum temperatures in September during 

maize growing season, negatively affect maize yields by disrupting crucial growth stages, 

causing delayed germination, and uneven plant development. Interestingly, in the context of 

climate change, the increased warming conditions observed in Sudan hold the potential for a 

positive impact on maize production. Consequently, under the Representative Concentration 

Pathway (RCP) 8.5 scenario, maize yield potential is projected to be positive, with an average 

value of 5.31. The higher temperatures anticipated under RCP8.5 are expected to create more 



 

 

 

 

 

 

favourable conditions for maize cultivation in the region. Conversely, under the RCP4.5 

scenario, where temperatures are projected to be less warm, the maize potential turns negative, 

with an average value of -28.45. This calls for adaptation strategies in the region, particularly a 

shift in the planting date to align with the changing temperature conditions and maximize maize 

yields.  

The northern Guinea savannah region has experienced a somewhat mild negative anomaly in 

maize yield, with an average value of -0.0581. Regression analysis show that the principal 

influencing factors of maize yield anomalies in this agroecological zone are the average 

temperature and the SPEI in the month of October. The regression models employed in this 

analysis have highlighted that, on the one hand, an increase in average temperatures 

significantly impacts maize yield. This is particularly noteworthy, as elevated temperatures can 

disrupt the growth and development of maize plants. However, the models also indicate that, 

on the other hand, a slight increase in rainfall, as indicated by higher SPEI values, can contribute 

positively to maize production. In the future, the potential for maize production in this region 

shows promise, under the tow RCP scenarios. Under these scenarios, the projections suggest an 

increased maize yield potential, with an average of 19 for RCP4.5 and 22 for RCP8.5. This 

reflects the positive impact of both temperature and precipitation changes anticipated under 

these climate scenarios. Nevertheless, it is crucial to exercise caution when interpreting these 

results. The region's elevated average temperatures, especially beyond a certain threshold, could 

pose risks to maize cultivation. These risks include heat stress, reduced water availability, and 

potential damage to maize plants. It's important to note that the regression model employed in 

this analysis may not account for these extreme temperature conditions, and additional factors 

like heat stress tolerance in maize varieties and adaptive farming practices must be considered 

to ensure the sustainability of maize production in the face of changing climatic conditions. 

The historical maize yield anomaly in the southern Guinea savannah region showed a relatively 

minor negative potential, with an average value of -0.95. However, under RCP4.5 and RCP8.5, 

the anticipated future maize yield anomalies are significantly more negative, with values of -

8.82 for RCP4.5 and -8.85 for RCP8.5. The regression models used to investigate these trends 

shed light on the key drivers of maize yield anomalies in the southern Guinea savannah. It is 

evident that rainfall in August, as indicated by the SPI and SPEI values for that month, exerts a 

significant influence on maize anomalies in this region. Additionally, the minimum temperature 

values in April play a substantial role in determining maize yield outcomes. Notably, the zone's 

susceptibility to excessive rainfall becomes apparent, as high rainfall values for the months of 

June, August, and September are associated with reduced maize yield potential. These 

excessive rainfalls can lead to waterlogged soil conditions, and increased disease pressure, all 

of which can have a detrimental impact on maize production. Conversely, higher temperature 

values in the month of April are correlated with an increase in maize yield. This positive 

relationship underscores the importance of temperature conditions during the early stages of 

maize growth and development. 

In the derived savannah region, the regression models shows that certain climatic factors stand 

out as key drivers behind maize yield anomalies. Notably, higher minimum temperatures 



 

 

 

 

 

 

recorded in the month of November, along with SPEI values in December, emerge as the 

primary influencers of maize yield variations. The SPEI value in December, calculated over a 

three-month period encompassing October, November, and December, holds particular 

significance. This value is closely tied to the presence of adequate precipitation during the 

preceding months, ensuring sufficient soil moisture and water availability crucial for the 

development and maturation stages of maize crops. This period aligns with the typical growth 

cycle of maize in the region and plays a pivotal role in determining maize performance. 

However, under climate forecasts indicate a reduction in rainfall, which, in the context of the 

maize crop, translates to decreased potential. As the region faces a scenario of diminished 

rainfall, the capacity for maize production is significantly compromised. Quantitatively, the 

maize yield anomaly forecasts for the derived savannah region historically, experienced an 

average anomaly of -1.23. However, under the climate change scenarios the forecasts indicate 

a shift towards significantly more negative values, with an average anomaly of -4.92 under 

RCP4.5 and -5.4 under RCP8.5. Underscoring the pressing need for adaptation strategies to 

mitigate the impact of changing climatic conditions on maize production in this region. 

In the mid-altitude zone of Nigeria, rainfall is generally available during the growing season 

for maize. The most significant threat to crop performance in these areas is often associated 

with excessive rainfall. This challenging scenario is effectively captured by our regression 

model, which highlights that the overabundance of rainfall during the crucial growing season, 

particularly as indicated by the SPI values in September, is closely correlated with a reduction 

in maize yield potential for the region. Also, our analysis reveals that lower PET values for the 

months of July and October are closely linked to reduced maize yield anomalies. Lower PET 

implies that there is diminished atmospheric demand for moisture, leading to decreased 

transpiration – the process by which maize plants absorb water from the soil and release it into 

the atmosphere. This disruption in transpiration hinders the uptake of essential nutrients and 

moisture by maize plants, resulting in stunted growth and a reduction in their overall yield 

potential. Under climate change the regression models forecasts a significant alteration in maize 

yield anomalies. Historically, the region has maintained an average yield anomaly of 0.12. The 

forecasts indicate a transition from this mildly positive anomaly to a distinctly negative one. 

Specifically, under RCP4.5, the maize yield anomaly is projected to plummet to -17.17, while 

under RCP8.5, it is anticipated to decrease to -6.32. This shift can be attributed to the increasing 

prevalence of high rainfall values resulting from climate change, which poses a formidable 

challenge to the region's maize production. 
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(g) 

Figure 5. Forecast of MYAI for historical (1995-2019) and Future (2020-2050) under 

RCP4.5 and RCP8.5 in the (a) Sahel (b) Sudan (c) Northern Guinea Savannah (d) 

Southern Guinea Savannah (e) Derived Guinea Svannah (f) Mid-altitude and (g) 

Humid Forest Agroecological zones 

 

4.0 Conclusions  

In conclusion, this study has provided valuable insights into the complex relationship between 

climate, agroclimatic indices, and maize yield in Nigeria, with a particular focus on different 

agroecological zones. Climate change and its potential impact on crop production have been a 

central concern, as shifts in weather patterns and temperature variations are expected to 

significantly influence agricultural productivity. The findings of this research underscore the 

importance of understanding the specific factors affecting crop yield, as these factors can vary 

across regions. 

The analysis of historical data revealed that different agroecological zones in Nigeria exhibit 

varying levels of sensitivity to weather variations. For instance, the Sahel region showed a 

strong correlation between rainfall in March and maize yield, suggesting the critical role of 

climate in determining crop outcomes. In contrast, the mid-altitude zone was more affected by 

excessive rainfall during the growing season. The study also highlighted the significance of 

minimum temperature and its impact on crop development, particularly in areas with moderate 

temperature ranges. Moreover, the incorporation of agroclimatic indices into crop yield 

forecasting models proved to enhance the accuracy and reliability of predictions. By moving 

beyond simple weather data and considering a broader range of climate-related factors, the 

study demonstrated the potential for more precise crop yield forecasts, which can assist in 

planning and decision-making for agricultural practices. 
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APPENDIX 

Table 1. List of Agroclimatic Indices used in this study  

ACI PERIOD NAME 

1 JAN  Sum of RAIN 

2 JAN Average of TMEAN 

3 JAN Average of TMAX 

4 JAN Average of TMIN 

5 FEB Sum of RAIN 

6 FEB Average of TMEAN 

7 FEB Average of TMAX 

8 FEB Average of TMIN 

9 MAR Sum of RAIN 

10 MAR Average of TMEAN 

11 MAR Average of TMAX 

12 MAR Average of TMIN 

13 APR Sum of RAIN 

14 APR Average of TMEAN 

15 APR Average of TMAX 

16 APR Average of TMIN 

17 MAY Sum of RAIN 

18 MAY Average of TMEAN 

19 MAY Average of TMAX 

20 MAY Average of TMIN 

21 JUN Sum of RAIN 

22 JUN Average of TMEAN 

23 JUN Average of TMAX 

24 JUN Average of TMIN 

25 JUL Sum of RAIN 

26 JUL Average of TMEAN 

27 JUL Average of TMAX 

28 JUL Average of TMIN 

29 AUG Sum of RAIN 



 

 

 

 

 

 

30 AUG Average of TMEAN 

31 AUG Average of TMAX 

32 AUG Average of TMIN 

33 SEP Sum of RAIN 

34 SEP Average of TMEAN 

35 SEP Average of TMAX 

36 SEP Average of TMIN 

37 OCT Sum of RAIN 

38 OCT Average of TMEAN 

39 OCT Average of TMAX 

40 OCT Average of TMIN 

41 NOV Sum of RAIN 

42 NOV Average of TMEAN 

43 NOV Average of TMAX 

44 NOV Average of TMIN 

45 DEC Sum of RAIN 

46 DEC Average of TMEAN 

47 DEC Average of TMAX 

48 DEC Average of TMIN 

49 ANNUAL Total Sum of RAIN 

50 ANNUAL Total Average of TMEAN 

51 ANNUAL Total Average of TMAX 

52 ANNUAL Total Average of TMIN 

53 (Mar-Aug) Maize crop season  Rainfall (south) 

54 (Mar-Aug) Maize crop season  Tmax (south) 

55 (Mar-Aug) Maize crop season  Tmin (south) 

56 (Mar-Aug) Maize crop season  Tmean (south) 

57 (May-Sept) Maize crop season  Rainfall (north) 

58 (May-Sept) Maize crop season  Tmax (north) 

59 (May-Sept) Maize crop season  Tmin(north) 

60 (Mar-Aug) Maize crop season  Tmean (north) 

61 Jan PET 

62 Feb PET 

63 Mar PET 

64 Apr PET 

65 May PET 

66 Jun PET 

67 Jul PET 

68 Aug PET 

69 Sep PET 

70 Oct PET 

71 Nov PET 



 

 

 

 

 

 

72 Dec PET 

73 Jan SPI 

74 Feb SPI 

75 Mar SPI 

76 Apr SPI 

77 May SPI 

78 Jun SPI 

79 Jul SPI 

80 Aug SPI 

81 Sep SPI 

82 Oct SPI 

83 Nov SPI 

84 Dec SPI 

85 Jan SPEI 

86 Feb SPEI 

87 Mar SPEI 

88 Apr SPEI 

89 May SPEI 

90 Jun SPEI 

91 Jul SPEI 

92 Aug SPEI 

93 Sep SPEI 

94 Oct SPEI 

95 Nov SPEI 

96 Dec SPEI 

97 ANNUAL SEASONALITY INDEX 

98 ANNUAL HYDROLOGIC RATIO 

 

 


