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Abstract In this paper, we introduce two interesting subclasses of meromorphic bi-univalent
functions defined by Al-Oboudi differential operator. Estimates for the initial coefficients |c0|,
|c1| and |c2| are obtained for the functions in these new subclasses.

1 Introduction

Let A = {f : U → C : f is analytic in U , f(0) = 0 = f
′
(0)− 1} be the class of functions of the

form

f(z) = z +
∞∑
ν=2

bνz
ν (1.1)

and S be the subclass of A consisting of all functions f univalent in U = {z : z ∈ C, |z| < 1}.
Since univalent functions are one-to-one, they are invertible and the inverse functions need

not to be defined on the entire unit disk U . In fact, the Koebe one-quarter theorem [11] ensures
that the image of U under every univalent function f ∈ S contains a disk of radius 1

4 . Thus, every
function f ∈ A has an inverse f−1, which is defined by

f−1(f(z)) = z, (z ∈ U),

and
f(f−1(w)) = w,

(
|w| < r0(f); r0(f) ≥

1
4

)
.

In fact, the inverse function f−1 is given by

f−1(w) = w − b2w
2 + (2b2

2 − b3)w
3 − (5b3

3 − 5b2b3 + b4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U . Let Σ

denote the class of bi-univalent functions in U given by (1.1). For a short history and fascinating
examples of functions in the class Σ, see [38] (see also [7, 8]). In fact, the aforecited work of
Srivastava et al. [38] essentially revived the investigation of numerous subclasses of bi-univalent
function class Σ in recent years; it was followed by such works as those by Murugusundaramoor-
thy et al. [21], Çaglar et al. [10], Frasin and Aouf [12], and others (for more details see; [20],
[40], [6], [30], [2], [21], [22], [31], [41], [17], [37], [16], [34], [32], [25], [33]).

In this research, the concept of bi-univalency is extended to the class of meromorphic function
defined on

U∗ = {z : z ∈ C, 1 < |z| <∞}.
Let Σ′ denote the class of all meromorphic univalent functions h of the form:

h(z) = z + c0 +
∞∑
ν=1

cν
zν
, (1.3)
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defined on the domain U∗. Since h ∈ Σ′ is univalent, it has an inverse denoted by h−1 = l that
satisfies the following condition:

h−1(h(z)) = z, (z ∈ U∗)

and
h(h−1(w)) = w, (M < |w| <∞; M > 0).

Furthermore, the inverse function h−1 = l is of the form:

h−1(w) = l(w) = w +D0 +
∞∑
ν=1

Dν
wν

, (M < |w| <∞). (1.4)

A simple computation shows that

w = h(l(w)) = (c0 +D0) + w +
c1 +D1

w
+
D2 − c1D0 + c2

w2

+
D3 − c1D1 + c1D2

0 − 2c2D0 + c3

w3 + · · · . (1.5)

Comparing the initial coefficients in (1.5), we get

c0 +D0 = 0 =⇒ D0 = −c0

c1 +D1 = 0 =⇒ D1 = −c1

D2 − c1D0 + c2 = 0 =⇒ D2 = −(c2 + c0c1)

D3 − c1D1 + c1D2
0 − 2c2D0 + c3 = 0 =⇒ D3 = −(c3 + 2c0c2 + c2

0c1 + c2
1).

By inserting these values in (1.4), we have

h−1(w) = l(w) = w − c0 −
c1

w
− c2 + c0c1

w2 −
c3 + 2c0c2 + c2

0c1 + c2
1

w3 + · · · . (1.6)

The coefficient problem was studied for numerous interesting subclasses of the meromorphic
univalent functions (see, e.g., [1, 13, 14, 15, 9, 23, 3, 36, 24] ).

Analogous to the bi-univalent holomorphic functions, a function h ∈ Σ′ is said to be mero-
morphic bi-univalent if h−1 ∈ Σ′. We denote the family of all meromorphic bi-univalent func-
tions by WΣ′ . Estimates on the coefficients of meromorphic univalent functions were widely
worked on in the literature, for example, Schiffer [28] obtained the estimates |c2| ≤ 2

3 for mero-
morphic univalent functions h ∈ Σ′ with c0 = 0 and Duren [11] gave an elementary proof of the
inequality |cν | ≤ 2

ν+1 on the coefficient of meromorphic univalent functions h ∈ Σ′ with ck = 0
for 1 ≤ k < ν

2 . For the coefficient of the inverse of meromorphic univalent functions l ∈ WΣ′ ,
Springer [35] used variational methods to prove that

|D3 +
1
2
D2

1| ≤
1
2
and |D3| ≤ 1

and conjecture that

|D2ν−1| ≤
(2ν − 2)!
ν!(ν − 1)!

, (ν = 1, 2, · · · ).

In 1977, Kubota [19] has proved that Springer [35] conjecture is true for ν = 3, 4, 5 and sub-
sequently Schober [29] obtained a sharp bounds for the coefficients D2ν−1, 1 ≤ ν ≤ 7 of the
inverse of meromorphic univalent functions in U∗. Also recently, Kapoor and Mishra [18] (also
see [39]) found the coefficient estimates for a class consisting of inverses of meromorphic starlike
univalent functions of order α in U∗.

A function h in the classWΣ′ is said to be meromorphic bi-univalent starlike of order η where
0 ≤ η < 1, if it satisfies the following inequalities

<
(
zh′(z)

h(z)

)
> η and <

(
wl′(w)

l(w)

)
> η (z, w ∈ U∗),
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where l is the inverse of h given by (1.6). We denote by W∗
Σ′(η) the class of all meromorphic

bi-univalent starlike functions of order η. Similarly, a function h in the class WΣ′ is said to
be meromorphic bi-univalent strongly starlike of order ξ where 0 < ξ ≤ 1, if it satisfies the
following conditions∣∣∣∣arg

(
zh′(z)

h(z)

)∣∣∣∣ < ξπ

2
and

∣∣∣∣arg
(
wl′(w)

l(w)

)∣∣∣∣ < ξπ

2
(z, w ∈ U∗),

where l is the inverse of h given by (1.6). We denote byW∗
Σ′(ξ) the class of all meromorphic bi-

univalent strongly starlike functions of order ξ. The classesW∗
Σ′(η) andW∗

Σ′(ξ) were introduced
and studied by Halim et al. [14].

For f ∈ A, Al-Oboudi [4] introduced the following differential operator:

D0
ζf(z) = f(z),

D1
ζf(z) = (1− ζ)f(z) + ζzf ′(z) = Dζf(z); (ζ ≥ 0) (1.7)

Dn
ζ f(z) = Dζ(D

n−1
ζ f(z)); (n ∈ N = {1, 2, 3, · · · }). (1.8)

If f is given by (1.1), then from (1.7) and (1.8) we get,

Dn
ζ f(z) = z +

∞∑
ν=2

[1 + (ν − 1)ζ]nbνzν ; (n ∈ N0 = {0, 1, 2, 3, · · · }). (1.9)

Also, when ζ = 0 we have the Salagean differential operator [27].
Similarly, for h ∈ Σ′ as given in (1.3), Al-Oboudi differential operator can be defined as:

D0
ζh(z) = h(z),

D1
ζh(z) = (1− ζ)h(z) + ζzh′(z) = Dζh(z); (ζ ≥ 0) (1.10)

Dn
ζ h(z) = Dζ(D

n−1
ζ h(z)); (n ∈ N = {1, 2, 3, · · · }). (1.11)

Then from (1.10) and (1.11) we get,

Dn
ζ h(z) = z+(1− ζ)nc0 +

∞∑
ν=1

[1− (ν+ 1)ζ]ncνz−ν ; (n ∈ N0 = {0, 1, 2, 3, · · · }). (1.12)

Babalola [5] defined the class Lψ(ϑ) of ψ−pseudo-starlike functions of order ϑ as follows:

Definition 1.1. [5] Let f ∈ A and if 0 ≤ ϑ < 1 and ψ ≥ 1. Then f(z) ∈ Lψ(ϑ) of ψ-pseudo-
starlike functions of order ϑ in U if and only if

<
(
z[f ′(z)]ψ

f(z)

)
> ϑ, (z ∈ U ; 0 ≤ ϑ < 1; ψ ≥ 1). (1.13)

Especially, Babalola [5] proved that all ψ-pseudo-starlike functions are Bazilevic of type
1− 1

ψ and order ϑ
1
ψ and are univalent in U .

Recently, Srivastava et al. [36] introduced the following subclasses of the meromorphic bi-
univalent function and obtained non sharp estimates on the initial coefficient |c0| and |c1| as
follows.

Definition 1.2. [36] For ψ ≥ 1 and 0 < ξ ≤ 1; a function h(z) given by (1.3) is said to be in the
classWΣ′(ψ, ξ) if the following condition holds:∣∣∣∣arg

(
z[h′(z)]ψ

h(z)

)∣∣∣∣ < ξπ

2
, (1.14)
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and ∣∣∣∣arg
(
w[l′(w)]ψ

l(w)

)∣∣∣∣ < ξπ

2
, (1.15)

where z, w ∈ U∗ and h−1(w) = l(w) is given by (1.6).

Theorem 1.3. [36] Let h ∈ WΣ′(ψ, ξ). Then

|c0| ≤ 2ξ, |c1| ≤
2
√

5ξ2

1 + ψ
. (1.16)

Definition 1.4. [36] For ψ ≥ 1 and 0 ≤ η < 1; a function h(z) given by (1.3) is said to be in the
classWΣ′(ψ, η) if the following condition holds:

<
(
z[h′(z)]ψ

h(z)

)
> η (1.17)

and

<
(
w[l′(w)]ψ

l(w)

)
> η (1.18)

where z, w ∈ U∗ and h−1(w) = l(w) is given by (1.6).

Theorem 1.5. [36] Let h(z) ∈ WΣ′(ψ, η) . Then

|c0| ≤ 2(1− η), |c1| ≤
2(1− η)

√
4η2 − 8η + 5

1 + ψ
. (1.19)

Motivated by the aforecited works, In our current investigation, we introduce two new sub-
classes of the classWΣ′ of meromorphic bi-univalent functions defined by Al-Oboudi differential
operator and obtained the estimates for the initial coefficients |c0|, |c1| and |c2| of functions in
these subclasses.

In order to find out the main results, the following Lemma can be recalled here.

Lemma 1.6. [26] If r ∈ P , then |κτ | ≤ 2 for each τ , where P is the family of all functions r
analytic in U = {z : z ∈ C, |z| < 1}. for which Re(r(z)) > 0 where

r(z) = 1 + κ1z + κ2z
2 + κ3z

3 + · · · (z ∈ D).

2 Coefficient bounds for the function class Wζ,n
Σ′ (ψ, ξ)

Definition 2.1. For ζ ≥ 0, n ∈ N, ψ ≥ 1 and 0 < ξ ≤ 1; a function h(z) given by (1.3) is said to
be in the classWζ,n

Σ′ (ψ, ξ) if the following condition holds:∣∣∣∣∣arg

(
z[(Dn

ζ h(z))
′]ψ

Dn
ζ h(z)

)∣∣∣∣∣ < ξπ

2
(2.1)

and ∣∣∣∣∣arg

(
w[(Dn

ζ l(w))
′]ψ

Dn
ζ l(w)

)∣∣∣∣∣ < ξπ

2
(2.2)

where z, w ∈ U∗ and h−1(w) = l(w) is given by (1.6).

In the ensuring theorems, the initial coefficients |c0|, |c1| and |c2| for the functionWζ,n
Σ′ (ψ, ξ)

andWζ,n
Σ′ (ψ, η) are obtained.

Theorem 2.2. Let h ∈ Wζ,n
Σ′ (ψ, ξ). Then

|c0| ≤
2ξ

(1− ζ)n
, (2.3)
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|c1| ≤
2
√

5ξ2

(1− 2ζ)n(1 + ψ)
, (2.4)

|c2| ≤
2ξ

(1− 3ζ)n(1 + 2ψ)

[
2
{
(6(1− ζ)3n − 1)ξ2 + 3ξ − 2

3

}
+ 3− 2ξ

]
. (2.5)

Proof. Since h(z) ∈ Wζ,n
Σ′ (ψ, ξ), there exist two functions κ and t such that

z[(Dn
ζ h(z))

′]ψ

Dn
ζ h(z)

= (κ(z))ξ, (2.6)

and
w[(Dn

ζ l(w))
′]ψ

Dn
ζ l(w)

= (t(w))ξ, (2.7)

respectively, where κ(z) and t(w) satisfy the inequality <(κ(z)) > 0 and <(t(w)) > 0.
Furthermore, the functions κ(z) and t(w) have the forms:

κ(z) = 1 +
κ1

z
+
κ2

z2 +
κ3

z3 + · · · (z ∈ U∗)

and
t(w) = 1 +

t1
w

+
t2
w2 +

t3
w3 + · · · (w ∈ U∗).

By definition of h and l, we get

z[(Dn
ζ h(z))

′]ψ

Dn
ζ h(z)

= 1− (1− ζ)nc0

z
+

(1− ζ)2nc2
0 − (1− 2ζ)n(1 + ψ)c1

z2

−
(1− ζ)3nc3

0 − (1− ζ)n(1− 2ζ)nc0c1(2 + ψ) + (1− 3ζ)nc2(1 + 2ψ)
z3 + · · · (2.8)

and

w[(Dn
ζ l(w))

′]ψ

Dn
ζ l(w)

= 1 +
(1− ζ)nc0

w
+

(1− ζ)2nc2
0 + (1− 2ζ)n(1 + ψ)c1

w2

+

(1− ζ)3nc3
0 + (1− 3ζ)n(1 + 2ψ)c2 +

(
(1− 3ζ)n(1 + 2ψ)+

(1− ζ)n(1− 2ζ)n(2 + ψ)

)
c0c1

w3 + · · · . (2.9)

A simple calculation shows

(κ(z))ξ = 1 +
ξκ1

z
+

1
2ξ(ξ − 1)κ2

1 + ξκ2

z2

+
1
6ξ(ξ − 1)(ξ − 2)κ3

1 + ξ(ξ − 1)κ1κ2 + ξκ3

z3 + · · · (2.10)

and

(t(w))ξ = 1+
ξt1
w

+
1
2ξ(ξ − 1)t21 + ξt2

w2 +
1
6ξ(ξ − 1)(ξ − 2)t31 + ξ(ξ − 1)t1t2 + ξt3

w3 +· · · . (2.11)

Putting (2.8), (2.10) in (2.6) and (2.9), (2.11) in (2.7), we have

−(1− ζ)nc0 = ξκ1, (2.12)
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(1− ζ)2nc2
0 − (1− 2ζ)n(1 + ψ)c1 =

1
2
ξ(ξ − 1)κ2

1 + ξκ2, (2.13)

− [(1− ζ)3nc3
0 − (1− ζ)n(1− 2ζ)nc0c1(2 + ψ) + (1− 3ζ)nc2(1 + 2ψ)]

=
1
6
ξ(ξ − 1)(ξ − 2)κ3

1 + ξ(ξ − 1)κ1κ2 + ξκ3, (2.14)

(1− ζ)nc0 = ξt1, (2.15)

(1− ζ)2nc2
0 + (1− 2ζ)n(1 + ψ)c1 =

1
2
ξ(ξ − 1)t21 + ξt2, (2.16)

(1− ζ)3nc3
0 + (1− 3ζ)n(1 + 2ψ)c2 +

(
(1− 3ζ)n(1 + 2ψ) + (1− ζ)n(1− 2ζ)n

(2 + ψ)

)
c0c1 =

1
6
ξ(ξ − 1)(ξ − 2)t31 + ξ(ξ − 1)t1t2 + ξt3. (2.17)

From (2.12) and (2.15) , it follows that

c0 = −ξκ1 = ξt1 (κ1 = −t1) (2.18)

and

c2
0 =

ξ2(κ2
1 + t21)

2(1− ζ)2n . (2.19)

As <(κ(z)) > 0 in U∗, the function κ( 1
z ) ∈ P . Similarly t( 1

w ) ∈ P . So, the coefficients of κ(z)
and t(w) satisfy the inequality of Lemma 1.6. Applications of triangle inequality and followed
by Lemma 1.6 in (2.19) we get,

|c0| ≤
2ξ

(1− ζ)n
.

Furthermore, in order to find the bound on |c1| , by applying (2.13) and (2.16), we have

[(1− ζ)2nc2
0 − (1− 2ζ)n(1 + ψ)c1] · [(1− ζ)2nc2

0 + (1− 2ζ)n(1 + ψ)c1]

=

(
1
2
ξ(ξ − 1)κ2

1 + ξκ2

)
·
(

1
2
ξ(ξ − 1)t21 + ξt2

)

(1− 2ζ)2n(1 + ψ)2c2
1 = (1− ζ)4n(c2

0)
2 − 1

4
ξ2(ξ − 1)2κ2

1t
2
1

− 1
2
ξ2(ξ − 1)(κ2t

2
1 + κ2

1t2)− ξ2κ2t2

and

(1− 2ζ)2n(1 + ψ)2c2
1 = (1− ζ)4n

(
ξ2(κ2

1 + t21)

2(1− ζ)2n

)2

− 1
4
ξ2(ξ − 1)2κ2

1t
2
1

− 1
2
ξ2(ξ − 1)(κ2t

2
1 + κ2

1t2)− ξ2κ2t2.

Applying Lemma 1.6, we have

(1− 2ζ)2n(1 + ψ)2|c2
1| ≤ 16ξ4 + 4ξ2(ξ − 1)2 + 8ξ2(ξ − 1) + 4ξ2
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that is,

|c1| ≤
2
√

5ξ2

(1− 2ζ)n(1 + ψ)
,

Finally, to obtain the bounds on c2, consider the sum of (2.14) and (2.17) with κ1 = −t1, we get

c0c1 =
ξ(ξ − 1)κ1(κ2 − t2) + ξ(κ3 + t3)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
. (2.20)

Subtracting (2.17) from (2.14) with κ1 = −t1, we have

− 2(1− 3ζ)n(1 + 2ψ)c2 = 2(1− ζ)3nc3
0 + (1− 3ζ)n(1 + 2ψ)c0c1

+
1
3
ξ(ξ − 1)(ξ − 2)κ3

1 + ξ(ξ − 1)κ1(κ2 + t2) + ξ(κ3 − t3). (2.21)

Putting (2.18) and (2.20) in (2.21) gives

2(1− 3ζ)n(1 + 2ψ)c2

ξ
=

(6(1− ζ)3n − 1)ξ2 + 3ξ − 2
3

κ3
1

+

2(1− 3ζ)n(1 + 2ψ)(1− ξ) + 2(1− ξ)
(1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
κ1κ2

+
2(1− ξ)(1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
κ1t2

+
2(1− 3ζ)n(1 + 2ψ) + 2(1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
κ3

+
2(1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
t3.

By applying Lemma 1.6 for the above equation we have

|c2| ≤
2ξ

(1− 3ζ)n(1 + 2ψ)

[
2
{
(6(1− ζ)3n − 1)ξ2 + 3ξ − 2

3

}
+ 3− 2ξ

]
.

which is the desired estimates on c2 given by (2.5).
Taking n = 1 in Theorem 2.2, we get the following results.

Corollary 2.3. Let h ∈ WΣ′(ψ, ξ). Then

|c0| ≤ 2ξ,

|c1| ≤
2
√

5ξ2

1 + ψ
,

|c2| ≤
2ξ

1 + 2ψ

[
2
{

5ξ2 + 3ξ − 2
3

}
+ 3− 2ξ

]
.

3 Coefficient bounds for the function class Wζ,n
Σ′ (ψ, η)

Definition 3.1. For ζ ≥ 0, n ∈ N, ψ ≥ 1 and 0 ≤ η < 1; a function h(z) given by (1.3) is said to
be in the classWζ,n

Σ′ (ψ, η) if the following condition holds:

<

(
z[(Dn

ζ h(z))
′]ψ

Dn
ζ h(z)

)
> η (3.1)

and

<

(
w[(Dn

ζ l(w))
′]ψ

Dn
ζ l(w)

)
> η (3.2)

where z, w ∈ U∗ and h−1(w) = l(w) is given by (1.6).
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Theorem 3.2. Let h(z) ∈ Wζ,n
Σ′ (ψ, η) . Then

|c0| ≤
2(1− η)
(1− ζ)n

, (3.3)

|c1| ≤
2(1− η)

√
4η2 − 8η + 5

(1− 2ζ)n(1 + ψ)
(3.4)

and

|c2| ≤
2(1− η)

(1− 3ζ)n(1 + 2ψ)

[
1 + 4(1− η)2

]
. (3.5)

Proof. Let h ∈ Wζ,n
Σ′ (ψ, η). Then, by definition of the classWζ,n

Σ′ (ψ, η),

z[(Dn
ζ h(z))

′]ψ

Dn
ζ h(z)

= η + (1− η)κ(z) (3.6)

and
w[(Dn

ζ l(w))
′]ψ

Dn
ζ l(w)

= η + (1− η)t(w) (3.7)

where κ and t are as in Theorem 2.2.
Equating coefficients in (3.6) and (3.7) yields

−(1− ζ)nc0 = (1− η)κ1, (3.8)

(1− ζ)2nc2
0 − (1− 2ζ)n(1 + ψ)c1 = (1− η)κ2, (3.9)

−[(1− ζ)3nc3
0 − (1− ζ)n(1− 2ζ)nc0c1(2 + ψ) + (1− 3ζ)nc2(1 + 2ψ)] = (1− η)κ3, (3.10)

(1− ζ)nc0 = (1− η)t1, (3.11)

(1− ζ)2nc2
0 + (1− 2ζ)n(1 + ψ)c1 = (1− η)t2, (3.12)

(1− ζ)3nc3
0 + (1− 3ζ)n(1 + 2ψ)c2 + ((1− 3ζ)n(1 + 2ψ) + (1− ζ)n

(1− 2ζ)n(2 + ψ))c0c1 = (1− η)t3. (3.13)

From (3.8) and (3.11), we have
κ1 = −t1

and

c2
0 =

(1− η)2(κ2
1 + t21)

2(1− ζ)2n . (3.14)

An application of triangle inequality and lemma 1.6 in (3.14) we have

|c0| ≤
2(1− η)
(1− ζ)n

,

Furthermore, in order to find the bound on |c1| , by applying (3.9) and (3.12), we have

[
(1− ζ)2nc2

0 − (1− 2ζ)n(1 + ψ)c1

]
·

[
(1− ζ)2nc2

0 + (1− 2ζ)n(1 + ψ)c1

]
= ((1− η)κ2) · ((1− η)t2)
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(1− 2ζ)2n(1 + ψ)2c2
1 = (1− ζ)4n(c2

0)
2 − (1− η)2κ2t2

and

(1− 2ζ)2n(1 + ψ)2c2
1 = (1− ζ)4n

(
(1− η)2(κ2

1 + t21)

2(1− ζ)2n

)2

− (1− η)2κ2t2.

Applying Lemma 1.6, we have

(1− 2ζ)2n(1 + ψ)2|c2
1| ≤ 4(1− η)2(4η2 − 8η + 5)

that is,

|c1| ≤
2(1− η)

√
4η2 − 8η + 5

(1− 2ζ)n(1 + ψ)
.

Finally, in order to obtain the bound on c2, adding (3.10) and (3.13) yields

c0c1 =
(1− η)(κ3 + t3)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
. (3.15)

Subtracting (3.13) from (3.10), we have

−2(1− 3ζ)n(1 + 2ψ)c2 = 2(1− ζ)3nc3
0 + (1− 3ζ)n(1 + 2ψ)c0c1 + (1− η)(κ3 − t3). (3.16)

Putting (3.8) and (3.15) in (3.16) gives

c2 =
(1− η)

(1− 3ζ)n(1 + 2ψ)[
(1− η)2κ3

1 −
(1− 3ζ)n(1 + 2ψ) + (1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
κ3

+
(1− ζ)n(1− 2ζ)n(2 + ψ)

2(1− ζ)n(1− 2ζ)n(2 + ψ) + (1− 3ζ)n(1 + 2ψ)
t3

]
.

By applying Lemma 1.6 for the above equation we have

|c2| ≤
2(1− η)

(1− 3ζ)n(1 + 2ψ)

[
1 + 4(1− η)2

]
.

Choosing n = 1 in Theorem 3.2, yields:

Corollary 3.3. Let h ∈ WΣ′(ψ, η). Then

|c0| ≤ 2(1− η),

|c1| ≤
2(1− η)

√
4η2 − 8η + 5

(1 + ψ)

and

|c2| ≤
2(1− η)
(1 + 2ψ)

[
1 + 4(1− η)2

]
.

4 Conclusion

Here, in our present investigation, we have introduced and studied coefficient problems associ-
ated with each of the following two new subclasses:

Wζ,n
Σ′ (ψ, ξ) and Wζ,n

Σ′ (ψ, η)

of the class WΣ′ of meromorphic bi-univalent functions associated with Al-Oboudi differential
operator defined on U∗ = {z : z ∈ C, 1 < |z| < ∞}. These class WΣ′ of meromorphic bi-
univalent functions associated with Al-Oboudi differential operator are given by Definition 2.1
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and 3.1, respectively. For function in each of these two meromorphic bi-univalent functions
classes, we have obtained the estimates for the coefficients |c0|, |c1| and |c2|. The results pre-
sented in this research have been shown to considerably improve the earlier results of Srivastava
et al. [36] in terms of the bounds.
Using the Feber polynomial expansion for the two classesWζ,n

Σ′ (ψ, ξ) andWζ,n
Σ′ (ψ, η) is still an

interesting open problem, as well as for |cn| where n ≥ 3. Another investigation to consider,
Amol B. Patil and Uday H. Naik [24] obtained initial coefficient for certain subclass of mero-
morphic bi-univalent function class Σ′ of complex order γ ∈ C\{0}, using Al-Oboudi differential
operator. Obtaining complex order γ ∈ C\{0} for the two classes Wζ,n

Σ′ (ψ, ξ) and Wζ,n
Σ′ (ψ, η)

are issues to be investigated.
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