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Abstract

The aim of this paper is to use (U, V )-Lucas polynomials to introduce and study a new family
of holomorphic and bi-univalent functions defined in the open unit disk which involve q-derivative
operator. We investigate upper bounds for the Taylor-Maclaurin coefficients |d2| and |d3| and Fekete-
Szegö problem for functions belongs to this new family. Some interesting consequences of the initial
results established here are indicated.
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1. Introduction and definition

Lucas, Dickson, Chebyshev, Lucas-Lehmer, Fibonacci and Lucas-Lehmer polynomials all have a
lot of interest in current research. These polynomials are essential in mathematics and have a wide
range of applications in combinatorics, number theory, numerical analysis and other fields. As a
result, they’ve been thoroughly researched and many generalizations have been made (see, for more
details, [16, 21, 23, 28, 51, 53, 7, 18, 25, 29]). Within the discipline of classical mathematical analysis,
quantum calculus is a major topic of study. It is a broad subject of study with historical roots as
well as contemporary relevance. It is important to note that quantum calculus has a long history
that dates back to the work of Bernoulli and Euler. However, due to its wide range of application,
it has piqued the interest of modern mathematicians in recent decades. It entails sophisticated
calculations and computations, making it more challenging than the rest of the mathematics subjects.
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Due to the enormous demand for mathematics that simulates quantum computing, it has recently
sparked interest. Quantum calculus emerged as a link between physics and mathematics. Quantum
mechanics, analytic number theory, theory of relativity, mechanical engineering, heat conduction
theory, particles physics, nonlinear electric circuit theory, and physics are just some of the fields
where it is used. Quantum calculus, often known as q-calculus, replaces the usual derivative with
the difference operator, allowing for non-differentiable curves and multple formulas.

We let U = {z : z ∈ C, |z| < 1} be a unit disk and let A denote the class of analytic functions of
the form

f(z) = z +
∞∑
r=2

drz
r (z ∈ U) (1.1)

normalized by the condition f(0) = f ′(0) − 1 = 0. Let S ⊂ A be the class of holomorphic and
univalent function in U.

Lewin [22] presented the class of bi-univalent functions as a subclass of A and identified certain
coefficient bounds for the class. He showed that |n2| ≤ 1.15. Furthermore, the Koebe 1/4 theorem
(see [14]) states that the range of every function f ∈ S contains the disc dω = {ω : |ω| < 0.25},
hence, for all f ∈ S with its inverse f−1, such that

f−1(f(z)) = z (z ∈ U)

and
f(f−1(ω)) = ω, (ω : |ω| < r0(f); r0(f) ≥ 0.25)

where f−1(ω) is expressed as

G(ω) = ω − d2ω
2 + (2d22 − d3)ω

3 − (5d32 − 5d2d3 + d4)ω
4 + · · · . (1.2)

So, a function f ∈ A is said to be bi-univalent in U if both f(z) and G(z) are univalent in U. Let Σ
denote the class of holomorhic and bi-univalent functions in U.

We know that some familiar functions f ∈ S such as the Koebe function κ(z) = z/(1 − z)2, its
rotation function κς(z) = z/(1 − eiςz)2, f(z) = z − z2/2 and f(z) = z/(1 − z2) are not members of
Σ. Also some functions f ∈ (S ∩ Σ) includes f(z) = z, f(z) = 1/2 log[(1 − z)/(1 − z)], z/(1 − z).
For more details see [1, 2, 5, 6, 12, 13, 17, 32, 38, 46, 39, 44, 48, 50, 41, 36, 27, 37, 40, 42, 43, 45, 47,
49, 54, 25, 33, 34, 35].

From [14], let s(z), S(z) ∈ A, then s(z) ≺ S(z), z ∈ U, suppose ω holomorphic in U, such that
ω(0) = 0, |ω(z)| < 1 and s(z) = S(ω(z)). If the function S(z) is univalent in U then s(z) ≺ S(z) ⇒
s(0) = S(0) and s(U) ⊂ S(U). The principle of subordination is the name given to this conclusion.

Jackson [20, 19] pioneered the use of q-calculus, and investigations on quantum groups eventually
recognized the geometrical meaning of q-analysis. This has inspired many q-theory scholars to extend
all of the important conclusions utilizing classical analysis to their q-analogs. See [3, 4, 9, 11, 26, 30,
31] for recent work on q-calculus.

For function f ∈ A, the q-derivative of f can be defined by

Dqf(z) =
f(z)− f(qz)

(1− q)z
(z ̸= 0, 0 < q < 1) (1.3)

where Dqf(0) = f ′(z) and D2
qf(z) = Dq(Dqf(z)). Applying (1.1) and (1.3) we have

Dqf(z) = 1 +
∞∑
r=2

[r]qdrz
r−1
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and

D2
qf(z) =

∞∑
r=2

[r]q[r − 1]qdrz
r−2

where [r]q =
1−qr

1−q
, [r − 1]q =

1−qr−1

1−q
, lim

q↑1
[r]q = r and lim

q↑1
[r − 1]q = r − 1.

Let’s get started with some definitions.

Definition 1.1. [21] Let U(x) and V (x) be polynomials with real coefficients. The (U, V )-Lucas
polynomials LU,V,t(x) are defined by the recurrence relation

LU,V,t(x) = U(x)LU,V,t−1(x) + V (x)LU,V,t−2(x) (t ≥ 2). (1.4)

The first few Lucas polynomials can be found in the following way:

LU,V,0(x) = 2,

LU,V,1(x) = U(x),

LU,V,2(x) = U2(x) + 2V (x),

LU,V,3(x) = U3(x) + 3U(x)V (x). (1.5)

Definition 1.2. [21] Let M{Lt(x)}(z) be the generating function of the (U, V )-Lucas polynomial
sequence LU,V,t(x). Then

M{Lt(x)}(z) =
∞∑
t=0

LU,V,t(x)z
t =

2− U(x)z

1− U(x)z − V (x)z2
. (1.6)

This section begins with the definition of class VΣ,δ
q (s;x) and the estimation of coefficients |n2|

and |n3| for functions in this class.

Definition 1.3. For δ ≥ 0, |s| ≤ 1 but s ̸= 1, a function f ∈ Σ is called in the class VΣ,δ
q (s;x) if

the following subordination conditions are satisfied:[
(1− s)z

f(z)− f(sz)

]δ
(Dqf)(z) ≺ M{LU,V,t(x)}(z)− 1 (1.7)

and [
(1− s)ω

G(ω)−G(sω)

]δ
(DqG)(ω) ≺ M{LU,V,t(x)}(ω)− 1. (1.8)

By choosing special values for s and δ the class VΣ,δ
q (s;x) reduces some interesting new classes:

Remark 1.4. For s = 0, we have the new class

VΣ,δ
q (0;x) = VΣ,δ

q (x).

The class VΣ,δ
q (x) consists of the functions of f ∈ Σ satisfying[

z

f(z)

]δ
(Dqf)(z) ≺ M{LU,V,t(x)}(z)− 1 (1.9)

and [
ω

G(ω)

]δ
(DqG)(ω) ≺ M{LU,V,t(x)}(ω)− 1. (1.10)
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Remark 1.5. For δ = 0, we have the new class

VΣ,0
q (s;x) = VΣ

q (x).

The class VΣ
q (x) consists of the functions of f ∈ Σ satisfying

(Dqf)(z) ≺ M{LU,V,t(x)}(z)− 1 (1.11)

and
(DqG)(ω) ≺ M{LU,V,t(x)}(ω)− 1. (1.12)

Remark 1.6. For δ = 1, we have the new class

VΣ,1
q (s;x) = VΣ

q (s;x).

The class VΣ
q (s;x) consists of the functions of f ∈ Σ satisfying[

(1− s)z

f(z)− f(sz)

]
(Dqf)(z) ≺ M{LU,V,t(x)}(z)− 1 (1.13)

and [
(1− s)ω

G(ω)−G(sω)

]
(DqG)(ω) ≺ M{LU,V,t(x)}(ω)− 1. (1.14)

Remark 1.7. For δ = 1 and s = 0, we have the new class

VΣ,1
q (0;x) = VΣ

q (x).

The class VΣ
q (x) consists of the functions of f ∈ Σ satisfying[

z(Dqf)(z)

f(z)

]
≺ M{LU,V,t(x)}(z)− 1 (1.15)

and [
ω(DqG)(ω)

G(ω)

]
≺ M{LU,V,t(x)}(ω)− 1. (1.16)

Our first main result is given by Theorem 1.8 below.

Theorem 1.8. Let f(z) ∈ VΣ,δ
q (s;x), then

|d2| ≤
|U(x)|

√
|U(x)|√√√√√√√√√

∣∣∣∣∣
U2(x)

[
δ
[
1+δ
2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))

− ([2]q − δ(1 + s))2

]
− 2V (x)([2]q − δ(1 + s))2

∣∣∣∣∣
, (1.17)

and

|d3| ≤
U2(x)

[[2]q − δ(1 + s)]2
+

|U(x)|
|[3]q − δ(1 + s+ s2)|

. (1.18)
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Proof . Let f(z) ∈ VΣ,δ
q (s;x). Then, from Definition (1.2), for some holomorphic functions Υ, Φ

such that Υ(0) = Φ(0) = 0 and |Υ(z)| < 1, |Φ(z)| < 1, for all z, ω ∈ U, we can have[
(1− s)z

f(z)− f(sz)

]δ
(Dqf)(z) = M{LU,V,t(x)}(Φ(z))− 1

and [
(1− s)ω

G(ω)−G(sω)

]δ
(DqG)(ω) = M{LU,V,t(x)}(Υ(ω))− 1,

by equivalence[
(1− s)z

f(z)− f(sz)

]δ
(Dqf)(z) = −1 + LU,V,0(x) + LU,V,1(x)Φ(z) + LU,V,2(x)Φ

2(z) + · · · (1.19)

and[
(1− s)ω

G(ω)−G(sω)

]δ
(DqG)(ω) = −1 + LU,V,0(x) + LU,V,1(x)Υ(ω) + LU,V,2(x)Υ

2(ω) + · · · . (1.20)

From (1.19) and (1.20), yields[
(1− s)z

f(z)− f(sz)

]δ
(Dqf)(z) = 1 + LU,V,1(x)y1z +

[
LU,V,1(x)y2 + LU,V,2(x)y

2
1

]
z2 + · · · (1.21)

and[
(1− s)ω

G(ω)−G(sω)

]δ
(DqG)(ω) = 1 + LU,V,1(x)µ1ω +

[
LU,V,1(x)µ2 + LU,V,2(x)µ

2
1

]
ω2 + · · · . (1.22)

If for z, ω ∈ U, it is already known that

|Φ(z)| =

∣∣∣∣∣
∞∑
j=1

yjz
j

∣∣∣∣∣ < 1

and

|Υ(ω)| =

∣∣∣∣∣
∞∑
j=1

µjω
j

∣∣∣∣∣ < 1,

then
|yj| < 1 (1.23)

and
|µj| < 1 (1.24)

where j ∈ N. When the corresponding coefficients in (1.21) and (1.22) are compared, we get

[[2]q − δ(1 + s)]d2 = LU,V,1(x)y1, (1.25)

δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
d22 + ([3]q − δ(1 + s+ s2))d3 = LU,V,1(x)y2 + LU,V,2(x)y

2
1 (1.26)
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[δ(1 + s)− [2]q]d2 = LU,V,1(x)µ1, (1.27)

(
δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
+ 2([3]q − δ(1 + s+ s2))

)
d22

− ([3]q − δ(1 + s+ s2))d3 = LU,V,1(x)µ2 + LU,V,2(x)µ
2
1. (1.28)

From (1.25) and (1.27)
y1 = −µ1, (1.29)

2[[2]q − δ(1 + s)]2d22 = L2
U,V,1(x)(y

2
1 + µ2

1). (1.30)

Summation of (1.26) and (1.28) gives

2δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
d22 + 2([3]q − δ(1 + s+ s2))d22

= LU,V,1(x)(y2 + µ2) + LU,V,2(x)(y
2
1 + µ2

1) = LU,V,1(x)(y2 + µ2)

+ LU,V,2(x)

[
2[[2]q − δ(1 + s)]2d22

L2
U,V,1(x)

]
. (1.31)

Applying (1.30) in (1.31), yields[
2L2

U,V,1(x)

[
δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))

]

− 2LU,V,2(x)[[2]q − δ(1 + s)]2

]
d22 = L3

U,V,1(x)(y2 + µ2) (1.32)

[
U2(x)

[
2

[
δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))

]

− 2[[2]q − δ(1 + s)]2

]
− 4V (x)[[2]q − δ(1 + s)]2

]
d22 = U3(x)(y2 + µ2)

which gives

|d2| ≤
|U(x)|

√
|U(x)|√√√√√√√√√

∣∣∣∣∣
U2(x)

[
δ
[
1+δ
2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))

− ([2]q − δ(1 + s))2

]
− 2V (x)([2]q − δ(1 + s))2

∣∣∣∣∣
.

Hence, (1.26) minus (1.28) gives us

2[[3]q − δ(1 + s+ s2)]d3 − 2[[3]q − δ(1 + s+ s2)]d22 = LU,V,1(x)(y2 − µ2). (1.33)
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Then, by using (1.29) and (1.30) in (1.33), we get

d3 = d22 +
LU,V,1(x)(y2 − µ2)

2[[3]q − δ(1 + s+ s2)]
(1.34)

=
L2

U,V,1(x)(y
2
1 + µ2

1)

2[[2]q − δ(1 + s)]2
+

LU,V,1(x)(y2 − µ2)

2[[3]q − δ(1 + s+ s2)]
. (1.35)

Applying (1.5), we have

|d3| ≤
U2(x)

[[2]q − δ(1 + s)]2
+

|U(x)|
|[3]q − δ(1 + s+ s2)|

.

As a result, the proof of our primary theorem is complete. □

2. Corollaries

We get the following by specializing the parameters s, δ, in Theorem 1.8:

Corollary 2.1. Let f(z) ∈ VΣ,1
q (s;x) = VΣ

q (s;x), then

|d2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x) [s(1− [2]q)− [2]q + [3]q − ([2]q − (1 + s))2]

− V (x)[[2]q − (1 + s)]2

∣∣∣∣∣
, (2.1)

|d3| ≤
U2(x)

[[2]q − (1 + s)]2
+

|U(x)|
|[3]q − (1 + s+ s2)|

. (2.2)

Corollary 2.2. Let f(z) ∈ VΣ,δ
q (0;x) = VΣ,δ

q (x), then

|d2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x)

[
δ
[
1+δ
2

− [2]q
]
+ ([3]q − δ)− ([2]q − δ)2

]
− 2V (x)([2]q − δ)2

∣∣∣∣∣
, (2.3)

|d3| ≤
U2(x)

[[2]q − δ]2
+

|U(x)|
|[3]q − δ|

. (2.4)

Corollary 2.3. Let f(z) ∈ VΣ,0
q (s;x) = VΣ

q (s;x), then

|d2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x){[3]q − [2]2q}+ 2[2]2qV (x)

∣∣∣∣∣
,

|d3| ≤
U2(x)

[2]2q
+

|U(x)|
[3]q

.
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Corollary 2.4. [54] Let f(z) ∈ VΣ,0
q (s;x) = VΣ

q (s;x), then as q ↑ 1

|d2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x) + 8V (x)

∣∣∣∣∣
,

|d3| ≤
U2(x)

4
+

|U(x)|
3

.

Corollary 2.5. Let f(z) ∈ VΣ,1
q (0;x) = VΣ

q (x), then

|d2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x)

[
[3]q + [2]q − [2]2q − 1

]
− 2V (x)([2]q − 1)2

∣∣∣∣∣
, (2.5)

|d3| ≤
U2(x)

[[2]q − 1]2
+

|U(x)|
|[3]q − 1|

. (2.6)

Corollary 2.6. [24] Let f(z) ∈ VΣ,1
q (0;x) = VΣ

q (x), then as q ↑ 1

|d2| ≤ U(x)

√
|U(x)|√
2 |V (x)|

, (2.7)

|d3| ≤ U2(x) +
|U(x)|

2
. (2.8)

The Fekete-Szegö functional upper bound is given by the following theorem:

Theorem 2.7. For δ ≥ 0, |s| ≤ 1 but s ̸= 1, let f ∈ A be in the class VΣ,δ
q (s;x). Then

∣∣d3 − χd22
∣∣ ≤


|U(x)|

|[3]q−δ(1+s+s2)| , |χ− 1| ≦ H

|1−χ|·|U3(x)|
|U2(x)Λ−2V (x)[[2]q−δ(1+s)]2| , |χ− 1| ≧ H.

Where

H =
1

|[3]q − δ[1 + s+ s2]|

∣∣∣∣Λ− 2([2]q − δ(1 + s))2
V (x)

U2(x)

∣∣∣∣
Λ = δ

[
1 + δ

2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))− ([2]q − δ(1 + s))2.

Proof . From (1.32) and (1.33), we get

d3 − χd22 = LU,V,1(x)

[(
G(χ;x) +

1

2[[3]q − δ(1 + s+ s2)]

)
y2

+

(
G(χ;x)− 1

2[[3]q − δ(1 + s+ s2)]

)
µ2

]
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where

G(χ;x) =
L2

U,V,1(x)(1− χ)

2L2
U,V,1(x)

[
δ
[
1+δ
2
(1 + s)2 − [2]q(1 + s)

]
+ ([3]q − δ(1 + s+ s2))

]
− 2LU,V,2(x)[[2]q − δ(1 + s)]2

.

Thus, according to (1.5), we have

∣∣d3 − χd22
∣∣ ≤


U(x)

|[3]q−δ(1+s+s2)| , 0 ≦ |G(χ;x)| ≦ 1
2[[3]q−δ(1+s+s2)]

2|G(χ;x)| · |U(x)|, |G(χ;x)| ≧ 1
2[[3]q−δ(1+s+s2)]

hence, after some calculations, gives

∣∣d3 − χd22
∣∣ ≤


|U(x)|

|[3]q−δ(1+s+s2)| , |χ− 1| ≦ H

|1−χ|·|U3(x)|
|U2(x)Λ−2V (x)[[2]q−δ(1+s)]2| , |χ− 1| ≧ H.

□

Corollary 2.8. For s = 0, let f ∈ A be in the class VΣ,δ
q (0;x) = VΣ,δ

q (x). Then

∣∣d3 − χd22
∣∣ ≤


|U(x)|
|[3]q−δ| , |χ− 1| ≦ H1

|1−χ|·|U3(x)|
|U2(x)Λ1−2V (x)[[2]q−δ]2| , |χ− 1| ≧ H1.

Where

H1 =
1

|[3]q − δ|

∣∣∣∣Λ1 − 2([2]q − δ)2
V (x)

U2(x)

∣∣∣∣
Λ1 = δ

[
1 + δ

2
− [2]q

]
+ ([3]q − δ)− ([2]q − δ)2.

Corollary 2.9. For δ = 0, let f ∈ A be in the class VΣ,0
q (s;x) = VΣ

q (x). Then

∣∣d3 − χd22
∣∣ ≤


|U(x)|
[3]q

, |χ− 1| ≦ H2

|1−χ|·|U3(x)|
|U2(x)Λ2−2V (x)[2]2q |

, |χ− 1| ≧ H2.

Where

H2 =
1

[3]q

∣∣∣∣Λ2 − 2[2]2q
V (x)

U2(x)

∣∣∣∣
Λ2 = [3]q − [2]2q.

Corollary 2.10. [8] For δ = 0, let f ∈ A be in the class VΣ,0
q (s;x) = VΣ

q (x). Then as q ↑ 1

∣∣d3 − χd22
∣∣ ≤


|U(x)|

3
, |χ− 1| ≦ 1

3

∣∣∣1 + 8 V (x)
U2(x)

∣∣∣
|1−χ|·|U3(x)|
|U2(x)+8V (x)| , |χ− 1| ≧ 1

3

∣∣∣1 + 8 V (x)
U2(x)

∣∣∣ .
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Corollary 2.11. For δ = 1, let f ∈ A be in the class VΣ,1
q (s;x) = VΣ

q (s;x). Then

∣∣d3 − χd22
∣∣ ≤


|U(x)|

|[3]q−(1+s+s2)| , |χ− 1| ≦ H3

|1−χ|·|U3(x)|
|U2(x)Λ3−2V (x)[[2]q−(1+s)]2| , |χ− 1| ≧ H3.

Where

H3 =
1

|[3]q − [1 + s+ s2]|

∣∣∣∣Λ3 − 2([2]q − (1 + s))2
V (x)

U2(x)

∣∣∣∣
Λ3 = s(1− [2]q)− [2]q + [3]q − ([2]q − (1 + s))2.

Corollary 2.12. For δ = 1, s = 0, let f ∈ A be in the class VΣ,1
q (0;x) = VΣ

q (x). Then

∣∣d3 − χd22
∣∣ ≤


|U(x)|
|[3]q−1| , |χ− 1| ≦ H4

|1−χ|·|U3(x)|
|U2(x)Λ4−2V (x)[[2]q−1]2| , |χ− 1| ≧ H4.

Where

H4 =
1

|[3]q − 1|

∣∣∣∣Λ4 − 2([2]q − 1)2
V (x)

U2(x)

∣∣∣∣
Λ4 = [3]q + [2]q − [2]2q − 1.

Corollary 2.13. [52] For δ = 1, s = 0, let f ∈ A be in the class VΣ,1
q (0;x) = VΣ

q (x). Then as q ↑ 1

∣∣d3 − χd22
∣∣ ≤


|U(x)|

2
, |χ− 1| ≦ |V (x)|

U2(x)

|1−χ|·|U3(x)|
2|V (x)| , |χ− 1| ≧ |V (x)|

U2(x)
.
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subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10(4) (2016) 1063-–1092.

[51] P. Vellucci and A.M. Bersani, The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. 37 (2016) 43–62 .
[52] A.K. Wanas, Application of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions, Filomat

39(10) (2020) 3361–3368.
[53] T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull.

Math. Soc. Sci. Math. Roum. 55(1) (2012) 95–103.
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