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Abstract: In mathematics, physics, and engineering, orthogonal polynomials and special functions
play a vital role in the development of numerical and analytical approaches. This field of study has
received a lot of attention in recent decades, and it is gaining traction in current fields, including
computational fluid dynamics, computational probability, data assimilation, statistics, numerical
analysis, and image and signal processing. In this paper, using q-Hermite polynomials, we define a
new subclass of bi-univalent functions. We then obtain a number of important results such as bonds
for the initial coefficients of |a2|, |a3|, and |a4|, results related to Fekete–Szegö functional, and the
upper bounds of the second Hankel determinant for our defined functions class.

Keywords: Fekete–Szegö functional; coefficients bounds; orthogonal polynomials; q-Hermite polynomials;
bi-univalent functions; q-derivatives

1. Introduction and Background Review

LetH(U) denote the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Let the subclass of functions H(U) be denoted by A, which fulfills the following
normalization condition

f (0) = f ′(0)− 1 = 0,

In other words, a function having the following series form

f (z) = z +
∞

∑
k=2

akzk (z ∈ U). (1)

Additionally, let S be the class of functions in A, which are univalent in U.
It is well known that every function f ∈ S has an inverse f−1 defined by

f−1( f (z)) = z (z ∈ U),
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and

f−1( f (ω)) = ω

(
|ω| < r0( f ); r0( f ) ≥ 1

4

)
where

f−1(ω) = g(ω) = ω− a2ω2 +
(

2a2
2 − a3

)
ω3 −

(
5a3

2 − 5a2a3 + a4

)
ω4 + · · · . (2)

A function is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ
denote the class of bi-univalent function in U given by (2).

Moreover, a bi-univalent functions class Σ was studied by Lewin [1]. He showed
that |b2| < 1.51. Subsequently, Brannan and Clunie [2] conjectured that |b2| <

√
2. Ne-

tanyahu [3], on the other hand, showed that

max
f∈Σ
|b2| =

4
3

.

Similar to the subclasses K(ζ) and S∗(ζ) of convex and starlike functions, certain sub-
classes of the bi-univalent function class Σ were given by Brannan and Taha [4]. They called
it S∗Σ(ζ) and KΣ(ζ) of bi-starlike functions and bi-convex functions of order ζ(0 ≤ ζ < 1),
respectively. In each of the functions classes S∗Σ(ζ) and KΣ(ζ), it was shown that the first
two Taylor–Maclaurin coefficients |b2| and |b3| are non-sharp.

Moreover, for two analytic functions s1 and s2, the function s1 is called subordinated
to the function s2 denoted as

s1(z) ≺ s2(z) (z ∈ U),

if for a function w with the properties

w(0) = 0 and |w(z)| < 1

exist, such that
s1(z) = s2(w(z)).

If the function s2 is univalent in U, then

s1(z) ≺ s2(z)⇔ s1(0) = s2(0) and s1(U) ⊂ s2(U).

The q-derivative operator Dq was for the first time given by Jackson [5] as follows:

Dq f (z) =
f (z)− f (qz)

z(1− q)
=

1
z

{
z +

∞

∑
k=2

[k]qakzk

}
(3)

and Dq f (0) = f ′(0). In case f (z) = zk for k is a positive integer, the q-derivative of f (z) is
given by

Dqzk =
zk − (zq)k

z(1− q)
= [k]qzk−1, (4)

where

[k]q = 1 + q + q2 + · · ·+ qk+1 =
qk − 1
q− 1

. (5)

We see that

lim
q−→1−

[k]q = lim
q−→1−

1− qk

1− q
= k, (z 6= 0, q 6= 0). (6)

For the usage of the q-derivatives in geometric function theory of complex analysis,
we may refer the readers to [6].
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In recent years, the quantum (or q-) calculus has been used as a powerful tool in
many different areas of sciences. In analytic function theory, its usage is quite significant.
Historically speaking, it was Srivastava [7] who used the basic (or q-) calculus in the context
of univalent functions first. Due to certain applications in many diverse disciplines, a
substantial number of authors have inspired this and they studied a number of applica-
tions. For example, some subclasses of multivalent q-starlike functions were studied and
investigated by Khan et al. [8]. In [6], using certain q-Poisson distribution, some new
subclasses of analytic functions were developed, and for each of the defined functions
classes, the authors derived some useful results, such as necessary and sufficient conditions.
Additionally, Shi et al. [9] utilized the q-derivative operator to construct an innovative
subclass of Janowski-type multivalent q-starlike functions. Moreover, in both papers [8,9]
the authors derived many sufficient conditions and some of their consequences.

The q-calculus has been studied by many different authors and a variety of its applica-
tions have been investigated. Furthermore, Srivastava’s [10] recently released survey-cum-
expository review study is valuable for researchers and scholars working on these subjects
(see, for example, [11]).

The q-Hermite polynomial was first introduced by Rogers [12] (see also [13,14]) and is
usually defined by means of their generating function as follows:

Nk(s|q) =
∞

∑
k=0

Hk(x; q)
tk

(q; q)k
=

∞

∏
k=0

1
1− 2xtqk + t2q2k (0 < q < 1).

We have the q-derivative of q-Hermite polynomial as follows:

Dq{Nk+1(s|q)} = [k]qNk(s|q). (7)

Additionally, Ismail et al. [12] were able to define the recursion relation as

tNk(s|q) = Nk+1(s|q) + [k]qNk−1(s|q) (8)

with
N0(s|q) = 1 and N−1(s|q) = 0.

Remark 1. It is clear that
Nk(s|q = 1) = Nek (s)

is the Hermite polynomials. Additionally, when

Nk(s|q = 0) = Uk(s/2),

we have Chebyshev polynomials of the first kind and they are defined by the recursion relation

2sUk(s) = Uk−1(s) + Uk+1(s) (9)

with
U0(s) = 1 and U−1(s) = 0.

Definition 1. Let Q(z, s, q) be defined as follows:

Q(z, s, q) =
∞

∑
k=2

Nk(s|q)zk. (10)

A function f ∈ Σ given by (1) is said to be in the class Λq
Σ(s), if the following conditions

are satisfied:

(
Dq f

)
(z) ≺ Q(z, s, q)

(
s ∈

(
1
2

, 1
)

, 0 < q < 1, z ∈ U
)

(11)
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and (
Dqg

)
(ω) ≺ Q(ω, s, q)

(
s ∈

(
1
2

, 1
)

, 0 < q < 1, ω ∈ U
)

. (12)

We can say that

Q(z, s, q) = 1 + N1(s|q)z + N2(s|q)z2 + N3(s|q)z3 + · · · (13)

where z ∈ U and −1 < s < 1.

Additionally from (8), we have

N1(s|q) = s

N2(s|q) = s2 − 1

N3(s|q) = s3 − (2 + q)s

N4(s|q) = s4 − (3 + 2q + q2)s2 + (1 + q + q2).

According to Pommerenke [15], the Hankel determinant of f (z) for m ≥ 1 and n ≥ 1
is defined as

Hm,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+m−1

an+1 an+2 · · · an+m
...

... · · ·
...

an+m−1 an+m · · · an+2m−2

∣∣∣∣∣∣∣∣∣, (a1 = 1). (14)

Clearly, H1,1( f ) becomes the Fekete–Szegö functional a3 − ρa2
2 with ρ = 1 [16]. Addi-

tionally, for m = 2 and n = 2 functional,

H2,2( f ) =
∣∣∣∣a2 a3
a3 a4

∣∣∣∣ = |a2a4 − a2
3|, (15)

is known as the second Hankel determinant, obtained for various subclasses of univalent
and multivalent holomorphic functions.

In particular, sharp bonds for the functional H2,2( f ) for each of the class of starlike func-
tions (S∗) and the class of convex functions (C) were investigated by Janteng et al. [17,18].
Additionally, Krishna et al. [19] obtained the sharp estimates of |H2,2( f )| for the set of
Bazilevic functions.

As far as we know, there is no study linked with bi-univalent functions in the literature
for the q-Hermite polynomials. The major purpose of this study is to begin an investigation
into the properties of bi-univalent functions linked with q-Hermite polynomials. We use
the q-Hermite polynomials expansions to determine the Fekete–Szegö problem, initial
coefficient estimates, and estimate of |H2(2)| the class Λq

Σ(s).

2. A Set of Lemmas

Lemma 1 ([20]). Let ϕ(z) ∈ P , then

|pj| ≤ 2 (j ∈ N ).

Lemma 2 ([21]). Let ϕ(z) ∈ P , then

2p2 = p2
1 + x

(
4− p2

1

)
4p3 = p3

1 + 2p1(4− p2
1)x− p1(4− p2

1)x2 + 2(4− p2
1)(1− |x|2)z

for some complex number satisfying x, z, |x| ≤ 1 and |z| ≤ 1.
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3. Coefficient Estimates for the Class Λ
q
Σ(s)

Theorem 1. Let f ∈ Λq
Σ(s). Then

|a2| ≤
√

Ω1(s, q), (16)

|a3| ≤
s2

[2]2q
+

s
[3]q

, (17)

and

|a4| ≤
5s2

2[2]q[3]q
+

s
[4]q

+
2(s2 − s− 1)

[4]q
+

s3 − 2x2 − x− 2qs− 2
[4]q

,

where

Ω1(s, q) =
s3

|[3]qs2 − [2]q(s2 − s− 1)| . (18)

Proof. Let f ∈ Σ given by (1) be in the class Λq
Σ(s). Then

Dq f (z) = Q(d(z), s, q) (19)

and
Dqg(ω) = Q(v(ω), s, q), (20)

where p, y ∈ P and defined by

p(z) =
1 + d(z)
1− d(z)

= 1 + p1(z) + p2z2 + p3z3 + · · · ⇒ d(z) =
p(z)− 1
p(z) + 1

, (z ∈ U) (21)

and

y(ω) =
1 + v(ω)

1−v(ω)
= 1 + y1(ω) + y2ω2 + y3ω3 + · · · ⇒ v(ω) =

y(ω)− 1
y(ω) + 1

, (ω ∈ U). (22)

It follows that from (21) and (22) that

d(z) =
1
2

[
p1z +

(
p2 −

p2
1

2

)
z2 +

(
p3 − p1 p2 +

p3
1

4

)
z3 + · · ·

]
(23)

and

v(ω) =
1
2

[
y1ω +

(
y2 −

y2
1

2

)
ω2 +

(
y3 − y1y2 +

y3
1

4

)
ω3 + · · ·

]
. (24)

From (23) and (24), applying Q(z, s, q) as given in (10), we see that

Q(d(z), s, q) = 1 +
N1(s|q)

2
p1z +

[
N1(s|q)

2

(
p2 −

p2
1

2

)
+

N2(s|q)
4

p2
1

]
z2

+

[
N1(s|q)

2

(
p3 − p1 p2 +

p3
1

4

)
+

N2(s|q)
2

p1

(
p2 −

p2
1

2

)
+

N3(s|q)
8

p3
1

]
z3 + · · ·

and

Q(v(ω), s, q) = 1 +
N1(s|q)

2
y1ω +

[
N1(s|q)

2

(
y2 −

y2
1

2

)
+

N2(s|q)
4

y2
1

]
ω2

+

[
N1(s|q)

2

(
y3 − y1y2 +

y3
1

4

)
+

N2(s|q)
2

y1

(
y2 −

y2
1

2

)
+

N3(s|q)
8

y3
1

]
ω3 + · · · . (25)
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It follows from (19), (20), and(25) that we have

[2]qa2 =
N1(s|q)

2
p1, (26)

[3]qa3 =
N1(s|q)

2

(
p2 −

p2
1

2

)
+

N2(s|q)
4

p2
1, (27)

[4]qa4 =
N1(s|q)

2

(
p3 − p1 p2 +

p3
1

4

)

+
N2(s|q)

2
p1

(
p2 −

p2
1

2

)
+

N3(s|q)
8

p3
1, (28)

− [2]qa2 =
N1(s|q)

2
y1, (29)

[3]q(2a2
2 − a3) =

N1(s|q)
2

(
y2 −

y2
1

2

)
+

N2(s|q)
4

y2
1, (30)

−[4]q(5a3
2 − 5a2a3 + a4) =

N1(s|q)
2

(
y3 − y1y2 +

y3
1

4

)

+
N2(s|q)

2
y1

(
y2 −

y2
1

2

)
+

N3(s|q)
8

y3
1. (31)

Adding (26) and (29), we have

p1 = −y1, p2
1 = y2

1 and p3
1 = −y3

1 (32)

and

a2
2 =

(N1(s|q))2(p2
1 + y2

1)

8[2]2q
. (33)

Additionally, adding (27), (30), and applying (32) yields

4[3]qa2
2 = N1(s|q)(p2 + y2)− y2

1(N1(s|q)− N2(s|q)). (34)

Applying (32) in (33) gives

y2
1 =

4[2]2qa2
2

(N1(s|q))2 . (35)

Inputting (35) into (34), and with some calculations, we have

|a2|2 =

∣∣∣∣∣ (N1(s|q))3(p2 + y2)

4[3]q(N1(s|q))2 + 4[2]2q(N1(s|q)− N2(s|q))

∣∣∣∣∣.
Now, by using the trigonometric inequalities in conjunction with Lemma 1, we have

|a2| ≤
√

Ω1(s, q). (36)

Subtracting (30) from (27) and with some calculations, we have

a3 = a2
2 +

N1(s|q)[p2 − y2]

4[3]q
(37)



Fractal Fract. 2022, 6, 420 7 of 15

a3 =
(N1(s|q))2 p2

1
4[2]2q

+
N1(s|q)[p2 − y2]

4[3]q
. (38)

Applying triangular inequality and Lemma 1, we have

|a3| ≤
s2

[2]2q
+

s
[3]q

. (39)

Subtracting (31) from (28), we have

2[4]qa4 =
5[4]q(N1(s|q))2 p1(p2 − y2)

8[2]q[3]q

+
N1(s|q)(p3 − y3)

2
+

[N2(s|q)− N1(s|q)]p1(p2 + y2)

2

+
(N1(s|q)− 2N2(s|q) + N3(s|q))p3

1
4

. (40)

By using the trigonometric inequalities in conjunction with Lemma 1, we have

|a4| ≤
5s2

2[2]q[3]q
+

s
[4]q

+
2(s2 − s− 1)

[4]q
+

s3 − 2x2 − x− 2qs− 2
[4]q

.

4. Fekete–Szegö Inequalities for the Function Class Λ
q
Σ(s)

In this section, we aim to determine the upper bonds of the coefficient functional
|a3 − δa2

2| for the function class Λq
Σ(s).

Theorem 2. Let f ∈ Λq
Σ(s). Then, and for some δ ∈ R,

∣∣∣a3 − δa2
2

∣∣∣ ≤


2|1− δ|Ω1(s, q)
(
|1− δ|Ω1(s, q) ≥ s

[3]q

)
2s
[3]q

(
|1− δ|Ω1(s, q) ≤ s

[3]q

)
,

where

Ω1(s, q) =
s3

|[3]qs2 − [2]q(s2 − s− 1)| . (41)

Proof. From (37), we have

a3 − δa2
2 = a2

2 +
N1(s|q)[p2 − y2]

4[3]q
− δa2

2

=
s(p2 − y2)

4[3]q
+ (1− δ)

[
s3(p2 + y2)

4s2[3]q − 4[2]2q(s2 − s− 1)

]
.

By triangular inequality, we have

|a3 − δa2
2| ≤

s
[3]q

+ |1− δ|Ω1(s, q). (42)

Suppose

|1− δ|Ω1(s, q) ≥ s
[3]q

then, we have
|a3 − δa2

2| ≤ 2|1− δ|Ω1(s, q) (43)
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where
|1− δ| ≥ s

[3]qΩ1(s, q)

and suppose

|1− δ|Ω1(s, q) ≤ s
[3]q

,

then, we have

|a3 − δa2
2| ≤

2s
[3]q

where
|1− δ| ≤ s

[3]qΩ1(s, q)

and Ω1(s, q) is given in (41).

5. H2(2) of Λ
q
Σ(s)

In this section, we aim to determine the upper bonds of the second Hankel determinant
for the function class Λq

Σ(s).

Theorem 3. Let the function f ∈ Λq
Σ(s). Then

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤



T(2, s) (R1 ≥ 0 and R2 ≥ 0)

max
{

s2

[3]2q
, T(2, s)

}
(R1 > 0 and R2 < 0)

s2

[3]2q
(R1 ≤ 0 and R2 ≤ 0)

max{T(m0, s), T(2, s)} (R1 < 0 and R2 > 0).

where

T(2, t) =
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

[2]q[4]q
+

2N1(s|q)[N2(s|q) + N1(s|q)]
[2]q[4]q

+
(N1(s|q))2

[2]q[4]q
+

(N1(s|q))4

[2]4q
− (N1(s|q))2

[3]2q
,

T(m0, t) =
(N1(s|q))2

[3]2q
+

R4
2[2]

4
q

2[4]q[3]2qR3
1
−

[2]2qR3
2

2[4]q[3]2qR2
1

,

R1 = N1(s|q)
[

2[2]3q[3]
3
q[N1(s|q)− 2N2(s|q) + N3(s|q)] + 2(N1(s|q))3[4]q[3]3q

− 4N1(s|q)[2]3q[3]3q + 2N1(s|q)2]4q[4]q − (N1(s|q))2[2]2q[3]q[4]q

]

and

R2 = N1(s|q)
[

4[N2(s|q)− N1(s|q)][2]q[3]2q − 4N1(s|q)[2]2q[4]q

+ 6N1(s|q)[2]q[3]2q + (N1(s|q))2[3]q[4]q

]
.
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Proof. From (26) and (40), we have

a2a4 =
5(N1(s|q))3(p2 − y2)

32[2]2q[3]q
p2

1 +
(N1(s|q))2(p3 − y3)

8[2]q[4]q
p1

+
N1(s|q)[N2(s|q) + N1(s|q)](p2 + y2)

8[2]q[4]q
p2

1

+
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
p4

1.

With some calculations, we have

a2a4 − a2
3 =

5(N1(s|q))3(p2 − y2)

32[2]2q[3]q
p2

1 +
(N1(s|q))2(p3 − y3)

8[2]q[4]q
p1

+
N1(s|q)[N2(s|q) + N1(s|q)](p2 + y2)

8[2]q[4]q
p2

1

+
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
p4

1

− (N1(s|q))4

16[2]4q
p4

1 −
(N1(s|q))3(p2 − y2)

8[2]2q[3]q
p2

1 −
(N1(s|q))2(p2 − y2)

2

16[3]2q
. (44)

By using Lemma 2,

p2 − y2 =
4− p2

1
2

(x− h) (45)

p2 + y2 = p2
1 +

4− p2
1

2
(x + h) (46)

and

p3 − y3 =
p3

1
2

+
4− p2

1
2

p1(x + h)−
4− p2

1
4

p1(x2 + h2)

+
4− p2

1
2

[
(1− |x|2z)− (1− |h|2)w

]
(47)

for some x, h, z, w with |x| ≤ 1, |h| ≤ 1, |z| ≤ 1, |w| ≤ 1, |p1| ∈ [0, 2] and substituting
(p2 + y2), (p2− y2), and (p3− y3), and after some straightforward simplifications, we have

a2a4 − a2
3 =

(N1(s|q))3(4− p2
1)(x− h)

64[2]2q[3]q
p2

1

+
N1(s|q)[N2(s|q) + N1(s|q)]

8[2]q[4]q
p4

1 +
(N1(s|q))2

16[2]q[4]q
p4

1

+
N1(s|q)[N2(s|q) + N1(s|q)](4− p2

1)(x + h)
16[2]q[4]q

p2
1

+
(N1(s|q))2(4− p2

1)(x + h)
16[2]q[4]q

p2
1 −

(N1(s|q))2(4− p2
1)(x2 + h2)

32[2]q[4]q
p2

1

+
(N1(s|q))2(4− p2

1)[(1− |x|2)z− (1− |h|2)w]

16[2]q[4]q
p1

−
(N1(s|q))2(4− p2

1)
2(x− h)2

64[3]2q

− (N1(s|q))4

16[2]4q
p4

1 +
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
p4

1.
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Let m = p1, assume that m ∈ [0, 2], λ1 = |x| ≤ 1, λ2 = |h| ≤ 1 and applying
triangular inequality, we have

|a2a4 − a2
3| ≤

{
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
m4

+
N1(s|q)[N2(s|q) + N1(s|q)]

8[2]q[4]q
m4 +

(N1(s|q))2

16[2]q[4]q
m4

+
(N1(s|q))2(4−m2)

8[2]q[4]q
m +

(N1(s|q))4

16[2]4q
m4

}

+

{
N1(s|q)[N2(s|q) + N1(s|q)](4−m2)

16[2]q[4]q
m2 +

(N1(s|q))3(4−m2)

64[2]2q[3]q
m2

+
(N1(s|q))2(4−m2)

16[2]q[4]q
m2

}
(λ1 + λ2) +

{
(N1(s|q))2(4−m2)

32[2]q[4]q
m2

− (N1(s|q))2(4−m2)

16[2]q[4]q
m

}
(λ2

1 + λ2
2) +

(N1(s|q))2(4−m2)2(λ1 + λ2)
2

64[3]2q

and equivalently, we have

|a2a4 − a2
3| ≤ L1(s, m) + L2(s, m)(λ1 + λ2) + L3(s, m)(λ2

1 + λ2
2)

+L4(s, m)(λ1 + λ2)
2 = Z(λ1, λ2) (48)

where

L1(s, m) =

{
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
m4

+
N1(s|q)[N2(s|q) + N1(s|q)]

8[2]q[4]q
m4 +

(N1(s|q))2

16[2]q[4]q
m4

+
(N1(s|q))2(4−m2)

8[2]q[4]q
m +

(N1(s|q))4

16[2]4q
m4

}
≥ 0

L2(s, m) =

{
N1(s|q)[N2(s|q) + N1(s|q)](4−m2)

16[2]q[4]q
m2 +

(N1(s|q))3(4−m2)

64[2]2q[3]q
m2

+
(N1(s|q))2(4−m2)

16[2]q[4]q
m2

}
≥ 0

L3(s, m) =

{
(N1(s|q))2(4−m2)

32[2]q[4]q
m2 − (N1(s|q))2(4−m2)

16[2]q[4]q
m

}
≤ 0

L4(s, m) =
(N1(s|q))2(4−m2)2

64[3]2q
≥ 0

where m ∈ [0, 2]. Now, we maximize the function Z(λ1, λ2) in the closed square

∆ = {(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1]} f or m ∈ [0, 2].

For a fixed value of s, the coefficients of the function Z(λ1, λ2) in (48) are dependent
on m; therefore, the maximum value of Z(λ1, λ2) needs to be investigated; for this, we take
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the cases when m = 0, m = 2, and m ∈ (0, 2).
First Case:

If m = 0,

Z(λ1, λ2) = L4(s, 0) =
(N1(s|q))2

4[3]2q
(λ1 + λ2)

2.

It is obvious that the function Z(λ1, λ2) reaches its maximum at (λ1, λ2) and

max{Z(λ1, λ2) : λ1, λ2 ∈ [0, 1]} = Z(1, 1) =
(N1(s|q))2

[3]2q
. (49)

Second Case:
When m = 2, the function Z(λ1, λ2) is constant with respect to m; therefore, we have

Z(λ1, λ2) = N1(s, 2) =

{
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

[2]q[4]q

+
2N1(s|q)[N2(s|q) + N1(s|q)]

[2]q[4]q
+

(N1(s|q))2

[2]q[4]q
+

(N1(s|q))4

[2]4q

}
.

Third Case:
When m ∈ (0, 2), let λ1 + λ2 = s and λ1 · λ2 = l, then (48) can be of the form

Z(λ1, λ2) = L1(s, m) + L2(s, m)c + (L3(s, m) + L4(s, m))c2 − 2L3(s, m)l = V(c, l) (50)

where c ∈ [0, 2] and l ∈ [0, 1]. Now, we need to investigate the maximum of

V(c, l) ∈ Λ = {(c, l) : c ∈ [0, 2], l ∈ [0, 1]}. (51)

By differentiating V(c, l) partially, we have

∂V
∂c

= L2(s, m) + 2(L3(s, m) + L4(s, m))c = 0

∂V
∂l

= −2L3(s, m) = 0.

The above results show that there is no critical point in Λ for V(c, l) and therefore
Z(λ1, λ2) does not have a critical point in the square ∆.

From the above observation, we see that Z(λ1, λ2) does not have the maximum value
in the interior of ∆. Therefore, we next investigate the maximum of Z(λ1, λ2) on the
boundary of the square ∆.

For λ1 = 0, λ2 ∈ [0, 1] (also, for λ2 = 0, λ1 ∈ [0, 1]) and

Z(0, λ2) = L1(s, m) + L2β2 + (L3(s, m) + L4(s, m))λ2
2 = Q(λ2). (52)

Now, since L3(s, m) + L4(s, m) ≥ 0, we have

Q′(λ2) = L2(s, m) + 2[L3(s, m) + L4(s, m)]λ2 > 0

showing that the function Q(λ2) is an increasing. Therefore, for m ∈ [0, 2) and s ∈ (1/2, 1],
the maximum occurs at λ2 = 1. Thus, from (52),

max{G(0, λ2) : λ2 ∈ [0, 1]} = Z(0, 1)

= L1(s, m) + L2(s, m) + L3(s, m) + L4(s, m). (53)
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For λ1 = 1, λ2 ∈ [0, 1] (also, for λ2 = 1 , λ1 ∈ [0, 1]) and

Z(1, λ2) = L1(s, m) + L2(s, m) + L3(s, m) + L4(s, m) + [L2(s, m)

+2L4(s, m)]λ2 + [L3(s, m) + L4(s, m)]λ2
2 = D(λ2) (54)

D′(λ2) = [L2(s) + 2L4(s)] + 2[L3(s) + L4(s)]λ2. (55)

We know that L3(s) + L4(s) ≥ 0, then

D′(λ2) = [L2(s) + 2L4(s)] + 2[L3(s) + L4(s)]λ2 > 0.

Therefore, the maximum occurs at λ2 = 1 because the function D(λ2) is increasing.
From (54), we have

max{Z(1, λ2) : λ2 ∈ [0, 1]} = Z(1, 1)

= L1(s, m) + 2[L2(s, m) + L3(s, m)] + 4L4(s, m). (56)

Now for m ∈ (0, 2) and from (53) and (56), we have

L1(s, m) + 2[L2(s, m) + L3(s, m)] + 4L4(s, m)

> L1(s, m) + L2(s, m) + L3(s, m) + L4(s, m).

Therefore,

max{Z(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1]}
= L1(s, m) + 2[L2(s, m) + L3(s, m)] + 4L4(s, m).

Since
Q(1) ≤ D(1) f or m ∈ [0, 2] and s ∈ [1, 1],

then
max{Z(λ1, λ2)} = Z(1, 1)

occurs on the boundary of square ∆.
Let T : (0, 2)→ R be defined by

T(m, s) = max{Z(λ1, λ2)} = Z(1, 1) = L1(s, m)+ 2L2(s, m)+ 2L3(s, m)+ 4L4(s, m). (57)

Now, inserting the values of L1(s, m), L2(s, m), L3(s, m), and L4(s, m) into (57) and
with some calculations, we have

T(m, s) =

{
N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]

16[2]q[4]q
m4

+
N1(s|q)[N2(s|q) + N1(s|q)]

8[2]q[4]q
m4 +

(N1(s|q))2

16[2]q[4]q
m4

+
(N1(s|q))2(4−m2)

8[2]q[4]q
m +

(N1(s|q))4γ4

16[2]4q
m4

}

+

{
N1(s|q)[N2(s|q) + N1(s|q)](4−m2)

8[2]q[4]q
m2 +

(N1(s|q))3(4−m2)

32[2]2q[3]q
m2

+
(N1(s|q))2(4−m2)

8[2]q[4]q
m2

}
+

{
(N1(s|q))2(4−m2)

16[2]q[4]q
m2

− (N1(s|q))2(4−m2)

8[2]q[4]q
m

}
+

(N1(s|q))2(4−m2)2

16[3]2q
.
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By simplifying, we have

T(m, s) =
(N1(s|q))2

[3]q
+

R1

32[2]4q[4]q[3]2q
m4 +

R2

8[2]2q[4]q[3]2q
m2,

where

R1 = N1(s|q)
[

2[2]3q[3]
3
q[N1(s|q)− 2N2(s|q) + N3(s|q)] + 2(N1(s|q))3[4]q[3]3q

− 4N1(s|q)[2]3q[3]3q + 2N1(s|q)2]4q[4]q − (N1(s|q))2[2]2q[3]q[4]q

]

R2 = N1(s|q)
[

4[N2(s|q)− N1(s|q)][2]q[3]2q − 4N1(s|q)[2]2q[4]q + 6N1(s|q)[2]q[3]2q

+ (N1(s|q))2[3]q[4]q

]
.

If the maximum value of T(m, s) is in the interior of m ∈ [0, 2], then we have

T′(m, s) =
R1

8[2]4q[4]q[3]2q
m3 +

R2

4[2]2q[4]q[3]2q
m.

Now, we need the following cases:
First Result:

Let R1 ≥ 0 and R2 ≥ 0, then T′(m, s) ≥ 0. This observation shows that the function
T(m, s) is increasing on the boundary of m ∈ [0, 2] that is m = 2. Therefore, we have

max{T(m, s) : m ∈ (0, 2)} = N1(s|q)[N1(s|q)− 2N2(s|q) + N3(s|q)]
[2]q[4]q

+
2N1(s|q)[N2(s|q) + N1(s|q)]

[2]q[4]q

+
(N1(s|q))2

[2]q[4]q
+

(N1(s|q))4

[2]4q
− (N1(s|q))2

[3]2q
.

Second Result:
If R1 > 0 and R2 < 0, then

T′(m, s) =
R1m3 + 2[2]2qmR2

8[2]4q[4]q[3]2q
m3 = 0 (58)

at critical point

m0 =

√
−2[2]2qR2

R1
(59)

is a critical point of the function T(m, t). Now,

T′′(m0) =
−3R2

4[2]2q[4]q[3]2q
+

R2

4[2]2q[4]q[3]2q
> 0.

Therefore, m0 is the minimum point of the function T(m, s). Hence, T(m, s) can not
have a maximum.
Third Result:
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If R1 ≤ 0 and R2 ≤ 0, then
T′(m, s) ≤ 0.

Therefore, the function T(m, s) is decreasing on the (0, 2) interval; hence,

max{T(m, s) : m ∈ (0, 2)} = T(0) =
(N1(s|q))2

[3]2q
. (60)

Fourth Result:
If R1 < 0 and R2 > 0

T′′(m0, s) =
−3R2

4[2]2q[4]q[3]2q
+

R2

4[2]2q[4]q[3]q
< 0.

Therefore, T′′(m, s) < 0. Hence, m0 is the maximum point of the function T(m, s) and
the maximum value occurs at m = m0. Thus,

max{T(m, s) : m ∈ (0, 2)} = T(m0, s)

T(m0, t) =
(N1(s|q))2

[3]2q
+

R4
2[2]

4
q

2[4]q[3]2qR3
1
−

[2]2qR3
2

2[4]q[3]2qR2
1

.

6. Conclusions

During the past decades, in mathematics, physics, engineering, and in other branches
of sciences the orthogonal polynomials and special functions have played an incredible
role, as highlighted in the Section 1. In our present investigation, we were essentially
motivated by the recent research occurring as cited in our first section. We used q-Hermite
polynomials and first defined a new subclass of bi-univalent functions systematically. We
then obtained a number of important results such as bonds for the initial coefficients of
|a2|, |a3|, and |a4|, results related to Fekete–Szegö functional, and the upper bounds of the
second Hankel determinant for our defined functions class.
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