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Abstract: The q-derivative and Hohlov operators have seen much use in recent years. First, numerous
well-known principles of the q-derivative operator are highlighted and explained in this research.
We then build a novel subclass of analytic and bi-univalent functions using the Hohlov operator
and certain q-Chebyshev polynomials. A number of coefficient bounds, as well as the Fekete–Szegö
inequalities and the second Hankel determinant are provided for these newly specified function classes.
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1. Introduction and Definitions

Quantum (or q-) calculus is a vital instrument for understanding a wide range of
analytic functions, and its applications in mathematics and related fields have sparked
interest among scholars. Srivastava [1] was the first to use it in a univalent function
context. Because of the relevance of q-analysis in mathematics and other disciplines, a large
number of researchers have worked on q-calculus and studied its numerous applications.
Shi et al. [2] also employed the q-differential operator to develop a novel subclass of
multivalent Janowski-type q-starlike functions. A variety of adequate requirements, as well
as several other intriguing aspects were investigated in both publications [2,3]. Convolution
theory, moreover, allows us to examine many characteristics of analytic functions. Many
scholars have studied q-calculus in depth due to its wide range of applications and the
prominence of q-operators over conventional operators. Khan et al. [3], for example, created
and investigated a number of subclasses of q-starlike functions with the help of certain
higher-order q-derivative operators.

Furthermore, Srivastava [4] just published a survey-cum-expository review piece that
may be of interest to academics and scholars working on these topics. Srivastava’s recent
survey-cum-expository review paper [4] further motivates the usage of the q-analysis
in geometric function theory, while also commenting on the triviality of the so-called
(p, q)-analysis, which involves an inconsequential and redundant parameter (p, q) (see
specifically [4], p. 340).

Let the open unit disk be represented by U = {z : z ∈ C, |z| < 1}. Functions that are
analytic and satisfy the standard normalization condition:

f (0) = f ′(0)− 1 = 0,

are called analytic functions, which can be denoted byW(U ). Furthermore, let J represent
the subclass ofW(U ) that encloses functions of the form:

f (z) = z +
∞

∑
m=2

nmzm (z ∈ U ). (1)
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which are univalent in the unit disk U .
It is well known that every function f ∈ S has an inverse f−1 defined by:

f−1( f (z)) = z (z ∈ U ),

and:

f−1( f (w)) = w
(
|w| < r0( f ); r0( f ) ≥ 1

4

)
,

where:

f−1(w) = g(w) = w− n2w2 +
(

2n2
2 − n3

)
w3 −

(
5n3

2 − 5n2n3 + n4

)
w4 + · · · . (2)

A function is said to be bi-univalent in U if both f and f−1 are univalent in U .
Let Σ denote the class of bi-univalent functions in U given by (1). The following

functions are members of the class Σ,

z(1− z)−1, − log(1− z) and
1
2

log
[

1 + z
1− z

]
.

However, the functions:

z− z2

2
and

z
1− z2

are not members of Σ.
Lewin [5] investigated a bi-univalent functions class Σ and showed that |b2| < 1.51.

Subsequently, Brannan and Clunie [6] conjectured that |b2| <
√

2.
Netanyahu [7], on the other hand, showed that:

max
f∈Σ
|b2| = 1.333333.

The coefficient for each of the Taylor–Maclaurin coefficients |bn| (n ≥ 3, n ∈ N) is
presumably still an open problem.

Similar to the familiar subclass S∗(ζ) and K(ζ) of starlike and convex functions of
order ζ(0 ≤ ζ < 1), respectively, Brannan and Taha [8] introduced certain subclasses of
the bi-univalent function class Σ, namely S∗Σ(ζ) and KΣ(ζ) of bi-starlike functions and bi-
convex functions of order ζ(0 ≤ ζ < 1), respectively. For each of the function classes S∗Σ(ζ)
and KΣ(ζ), they found non-sharp bounds on the first two Taylor–Maclaurin coefficients
|b2| and |b3|.

Furthermore, let g1 and g2 be two analytic functions in the open unit disc U . Then, the
function g1 is subordinated to g2, symbolically denoted by:

g1(z) ≺ g2(z) (z ∈ U ),

if there is an analytic function w(z) with properties that:

w(0) = 0 and |w(z)| < 1,

with w holomorphic in U , such that:

g1(z) = g2(w(z)).

If the function g2(z) is univalent in U , using the subordination principle, the above
condition is equivalent to:

g1(z) ≺ g2(z)⇔ g1(0) = g2(0) and g1(U ) ⊂ g2(U ).
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Jackson [9] introduced and studied the q-derivative operator Dq of a function as follows:

Dq f (z) =
f (z)− f (qz)

z(1− q)
=

1
z

{
z +

∞

∑
m=2

(
(1− qm)(1− q)−1

)
amzm

}
(3)

and Dq f (0) = f ′(0). In case f (z) = zm for m is a positive integer, the q-derivative of f (z) is
given by:

Dqzm =
(zq)m − zm

z(q− 1)
=

(
(1− qm)(1− q)−1)zm

z
, (4)

lim
q−→1−

[m]q = lim
q−→1−

(1− qm)(1− q)−1 = m, (5)

where (z 6= 0, q 6= 0); for more details on the concepts of the q-derivative, see [3,10].
In geometric function theory, studies of convolution are crucial. Various new and

interesting subclasses of holomorphic and univalent functions have been introduced and
investigated through the use of the Hadamard product (or convolution) in the direction of
well-known ideas such as integral mean, Hankel determinant, subordination, partial sums,
superordination inequalities, and so on. The Hadamard product (or convolution) of f and
g, represented by f ∗ g, is defined by:

( f ∗ g)(z) = z +
∞

∑
j=2

bjajzj = (g ∗ f )(z) z ∈ U .

If f and g are functions in A and are given by the power series:

f (z) = z +
∞

∑
j=2

bjzj g(z) = z +
∞

∑
j=2

ajzj z ∈ U .

The Gauss hypergeometric function 2F1(u, v, w; z) is defined as:

2F1(u, v, w; z) =
∞

∑
j=0

(u)j(v)j

(w)j

zj

(δ)j
z ∈ U ,

where (δ)j signifies the Pochhammer symbol (or shifted factorial) provided in terms of the
Gamma function Γ, by:

(δ)j =
Γ(δ + j)

Γ(δ)
=


1; if j = 0,

δ(δ + 1)(δ + 2)(δ + 3) · · · (δ + j− 1); if j 6= 0.

Hohlov (cf. [11,12]) proposed and investigated a linear operator denoted by Lw
u,v and

defined by Lw
u,v f : A −→ A, with:

Lw
u,v f (z) := z2F1(u, v, w; z) ∗ f (z) = z +

∞

∑
j=2

(u)j−1(v)j−1

(w)j−1(1)j−1
bjzj, z ∈ U . (6)

The above-specified three-parameter family of operators unifies several other linear
operators that have been introduced and explored previously when the parameters are
appropriately chosen. The following citations [13–20] provide special examples of this
operator. For more details, see [21,22].

In 2017, Altinkaya and Yalcin [23] studied the Chebyshev polynomial expansions
to provide estimates for the initial coefficients of some subclasses of bi-univalent func-
tions defined by the symmetric q-derivative operator. They also established Fekete–Szegö
inequalities for the class H̃q

Σ(t). After some time, other researchers started introducing dif-
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ferent subclasses of bi-univalent functions linked with Chebyshev polynomials. Ayinla and
Opoola [24] introduced the class defined by the Sălăgean differential operator as follows:

<
(

eiγ
(

1− e−2iγβ2z2 Dn+1 f (z)
z

))
> 0

and obtained the Fekete–Szegö inequality and the second Hankel determinant. Further-
more, in 2018, Orhan et al. [25] obtained an upper bound estimate for the second Hankel
determinant of a subclass N µ

σ (λ, t) of analytic bi-univalent function class Σ, which is
associated with Chebyshev polynomials in the open unit disk.

Al Salam and Ismail [26] found a set of polynomials known as q-analogues of second-
order bivariate Chebyshev polynomials. Johann Cigler first introduced and studied the
q-Chebyshev polynomials in 2012, as shown below.

Definition 1 ([27]). The polynomials:

Gn(t, x, q) = Pn+1(t,−1, x, q)(−q; q)n

=
[ k

2 ]

∑
m=0

qm2
[

n−m
m

]
(1 + qm+1) · · · (1 + qn−m)xmtn−2m (7)

are called q-Chebyshev polynomials of the second kind.

Theorem 1 ([27]). The q-Chebyshev polynomials of the second kind satisfy:

Gn(t, x, q) = (1 + qn)tGn−1(t, x, q) + qn−1xGn−2(t, x, q) (8)

with initial values
G0(t, x, q) = 1 and G1(t, x, q) = (1 + q)t.

Remark 1. It is obvious that:
Gn(t,−1, 1) = Gn(t),

where Gn(t) is the classical Chebyshev polynomial of the second kind.

Furthermore, from (8), we have the following:

G1(t, x, q) = t + tq

G2(t, x, q) = qx + (1 + q)(1 + q2)t2

G3(t, x, q) = qxt(1 + q)(1 + q2) + t3(1 + q)(1 + q2)(1 + q3)

G4(t, x, q) = q4x + (1 + q)(1 + q2)(1 + q3)(1 + q4)t4

+ qx2t(1 + q)(1 + q2)(1 + q4 + q2).

We shall discuss the following intriguing points in light of these recurrence relations:

1. The Chebyshev polynomials of the second kind denoted by Gn(t) are obtained when
x = −1 and q = 1;

2. The Fibonacci polynomials denoted by Fn+1(t) are obtained when t = 1
2 , x = 1, and

q = 1;
3. The Fibonacci numbers denoted by Fn+1 are obtained when t = 1

2 , x = 1, and q = 1;
4. The Pell polynomials denoted by Pn+1(t) are obtained when x = 1 and q = 1;
5. The Pell numbers denoted by Pn+1 are obtained when t = 1, x = 1, and q = 1;
6. The Jacobsthal polynomials denoted by Jn+1(y) are obtained when t = 1

2 , x = 2y, and
q = 1;

7. The Jacobsthal numbers denoted by Jn+1 are obtained when t = 1
2 , x = 2, and q = 1.
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Let D be the q-differentiation operator defined by:

D f (t) =
f (t)− f (qt)

t− qt
.

The q-Chebyshev polynomials satisfy the q-differential equation.

(t2 + qx)D2Tn(t, q2x, q) + qn−1tDTn(t, x, q) = [n]2Tn(t, x, q) (9)

and:
(t2 + qx)D2Gn(t, q2x, q) + qn−1[3]tDGn(t, x, q) = [n][n + 2]Gn(t, x, q). (10)

Equations (9) and (10) are applications of q-Chebyshev polynomials in the field of
differential equations. For more details, see [27].

Now making, use q-Chebyshev polynomials, we define the following.

Definition 2. Let Λx,q
z,t be defined as follows:

Λx,q
z,t =

∞

∑
n=0

Gn(t, x, q)zn. (11)

By using the principle of subordination and the Hohlov operator, we define the
following subclasses of analytic and bi-univalent functions.

Definition 3. A function f ∈ Σ given by (1) is said to be in the class Υq,x,φ
Σ,u,v,w(t, µ), if the following

conditions are satisfied:
Lw

u,v f (z)
z

(
1− e−2iφµ2z2

)
≺ Λx,q

z,t (12)

and:
Lw

u,v f−1(w)

z

(
1− e−2iφµ2w2

)
≺ Λx,q

w,t, (13)

where −1 ≤ x ≤ 2, 1
2 < t < 1, 0 < q < 1, z, w ∈ U , 0 ≤ µ ≤ 1, and φ ∈

(−π
2 , π

2
)
.

From (11), we have:

Λx,q
z,t = 1 + G1(t, x, q)z + G2(t, x, q)z2 + G3(t, x, q)z3 + · · ·

where z ∈ U and t ∈ (−1, 1).
As far as we know, there are no studies in the literature of q-Chebyshev polynomials

that are linked to bi-univalent functions. The main goal of this research was to start looking
at the properties of bi-univalent functions that are linked to q-Chebyshev polynomials
and are defined by the Hohlov operator. In this paper, the initial coefficient estimates, the
Fekete–Szegö problem, and the|H2(2)| Hankel determinant for a subclass Υq,x,φ

Σ,u,v,w(t, µ) of
analytic and bi-univalent functions are determined using the q-Chebyshev polynomial
expansion. With this idea, the authors focused on the bound of coefficient functionals for a
new subclass of analytic and bi-univalent functions using the Hohlov operator and certain
q-Chebyshev polynomials.

Lemma 1 ([28]). Let ϕ(z) ∈ P , then:

2h2 = p2
1 + b

(
4− h2

1

)
4h3 = h3

1 + 2h1(4− h2
1)b− h1(4− h2

1)b
2 + 2(4− h2

1)(1− |b|2)z

for some complex number satisfying b, z, |b| ≤ 1, and |z| ≤ 1.
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Lemma 2 (see [29]). Let the function p given by:

p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part. Then:

|pn| ≤ 2 (n ∈ N).

This last inequality is sharp.

2. Coefficients’ Bounds for the Functions Class Υ
q,x,φ
Σ,u,v,w(t, µ)

Theorem 2. Let f ∈ Υq,x,φ
Σ,u,v,w(t, µ). Then:

|n2| ≤
√

Φ1(u, v, w, t, q, µ),

|n3| ≤
(w)2

1(1 + q)2t2

(u)2
1(v)

2
1

+
2(c)2(1 + q)t
(u)2(v)2

and:

|n4| ≤
5(w)2(w)1(1 + q)2t2

(u)2(v)2(u)1(v)1
+

6(w)3(1 + q)t
(u)3(v)3

+
12(w)3[t(1 + q)[t(1 + q2)− 1]− qx]

(u)3(v)3

+
6(w)3[(1 + q)t[1 + q(1 + q2)x− 2t(1 + q2) + (1 + q2)(1 + q3)t2]− 2qx]

(u)3(v)3

+
6µ2(1 + q)t(w)3

(u)3(v)3
.

where:

Φ1(u, v, w, t, q, µ) =
2(w)2(w)2

1(1 + q)3t3 + 2(w)2(w)2
1µ2(1 + q)2t2∣∣∣∣∣ (1 + q)t2[(u)2(v)2(w)2

1(1 + q)− 2(w)2(u)2
1(v)

2
1(1 + q2)]

− 2(w)2(u)2
1(v)

2
1(qx− (1 + q)t)

∣∣∣∣∣
Proof. Let f ∈ Σ given by (1) be in the class Υq,x,φ

Σ,u,v,w(t, µ). Then:

Lw
u,v f (z)

z

(
1− e−2iφµ2z2

)
= Λx,q

ω(z),t (14)

and:
Lw

u,v f−1(w)

z

(
1− e−2iφµ2w2

)
= Λx,q

v(w),t. (15)

let h, l ∈ P be defined as:

h(z) =
1 + ω(z)
1−ω(z)

= 1 + h1z + h2z2 + h3z3 + · · ·

⇒ ω(z) =
h(z)− 1
h(z) + 1

(z ∈ D) (16)
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and:

l(w) =
1 + v(w)

1−v(w)
= 1 + l1w + l2w2 + l3w3 + · · ·

⇒ v(w) =
l(w)− 1
l(w) + 1

(w ∈ D). (17)

It follows from (16) and (17) that:

ω(z) =
1
2

[
h1z +

(
h2 −

h2
1

2

)
z2 +

(
h3 − h1h2 +

h3
1

4

)
z3 + · · ·

]
(18)

and:

v(w) =
1
2

[
l1w +

(
l2 −

l2
1
2

)
w2 +

(
l3 − l1l2 +

l3
1
4

)
w3 + · · ·

]
(19)

From (18) and (19), applying Λx,q
z,t as given in (11), we see that:

Λx,q
ω(z),t = 1 +

G1(t, x, q)
2

h1z

+

[
G1(t, x, q)

2

(
h2 −

h2
1

2

)
+

G2(t, x, q)
4

h2
1

]
z2

+

[
G1(t, x, q)

2
·
(

h3 − h1h2 +
h3

1
4

)

+
G2(t, x, q)

2
h1

(
h2 −

h2
1

2

)
+

G3(t, x, q)
8

h3
1

]
z3 + · · · (20)

and:

Λx,q
v(w),t = 1 +

G1(t, x, q)
2

l1w+[
G1(t, x, q)

2

(
l2 −

l2
1
2

)
+

G2(t, x, q)
4

l2
1

]
w2

+

[
G1(t, x, q)

2

(
l3 − l1l2 +

l3
1
4

)

+
G2(t, x, q)

2
l1

(
l2 −

l2
1
2

)
+

G3(t, x, q)
8

l3
1

]
w3 + · · · (21)

It follows from (14), (15), (20), and (21) that we have:

(u)1(v)1

(w)1
n2 =

G1(t, x, q)
2

h1 (22)

(u)2(v)2

2(w)2
n3 − e−2iφµ2 =

G1(t, x, q)
2

(
h2 −

h2
1

2

)
+

G2(t, x, q)
4

h2
1 (23)

(u)3(v)3

6(w)3
n4 − e−2iφ (u)1(v)1

(w)1
µ2n2 =

G1(t, x, q)
2

(
h3 − h1h2 +

h3
1

4

)

+
G2(t, x, q)

2
h1

(
h2 −

h2
1

2

)
+

G3(t, x, q)
8

h3
1 (24)
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− (u)1(v)1

(w)1
n2 =

G1(t, x, q)
2

l1 (25)

(u)2(v)2

2(w)2
(2n2

2 − n3)− e−2iφµ2 =
G1(t, x, q)

2

(
l2 −

l2
1
2

)
+

G2(t, x, q)
4

l2
1 (26)

− (u)3(v)3

6(w)3
(5n3

2 − 5n2n3 + n4) +
(u)1(v)1

(w)1
e−2iφµ2n2 =

G1(t, x, q)
2

(
l3 − l1l2 +

l3
1
4

)

+
G2(t, x, q)

2
l1

(
l2 −

l2
1
2

)

+
G3(t, x, q)

8
l3
1 . (27)

Adding (22) and (25), we have:

h1 = −l1, h2
1 = l2

1 and h3
1 = −l3

1 (28)

and:

n2
2 =

(w)2
1G2

1(t, x, q)(h2
1 + l2

1)

8(u)2
1(v)

2
1

(29)

Furthermore, adding (23) and (26) and applying (28) yield:

2(u)2(v)2

(w)2
n2

2 − 4e−2iφµ2 = G1(t, x, q)(h2 + l2)− l2
1(G1(t, x, q)− G2(t, x, q)) (30)

Applying (28) in (29) gives:

l2
1 =

4(u)2
1(v)

2
1n2

2
(w)2

1G2
1(t, x, q)

(31)

Putting (31) into (30) and with some calculations, we have:

|n2|2 =

∣∣∣∣∣∣∣∣∣∣∣
(w)2(w)2

1G3
1(t, x, q)(h2 + l2) + 4(w)2(w)2

1e−2iφµ2G2
1(t, x, q)

2

[
(u)2(v)2(w)2

1G2
1(t, x, q)− 2(w)2(u)2

1(v)
2
1(G2(t, x, q)− G1(t, x, q))

]
∣∣∣∣∣∣∣∣∣∣∣

Applying the triangular inequality and Lemma 2, we have:

|n2| ≤
√

Φ1(u, v, w, t, q, µ).

Subtracting (26) from (23) and with some calculations, we have:

n3 = n2
2 +

(w)2G1(t, x, q)[h2 − l2]
2(u)2(v)2

(32)

n3 =
(w)2

1G2
1(t, x, q)p2

1
4(u)2

1(v)
2
1

+
(w)2G1(t, x, q)[h2 − l2]

2(u)2(v)2
. (33)

Applying the triangular inequality and Lemma 2, we have:

|n3| ≤
(w)2

1(1 + q)2t2

(u)2
1(v)

2
1

+
2(c)2(1 + q)t
(u)2(v)2

. (34)
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Subtracting (27) from (24), we have:

(u)3(v)3

3(w)3
n4 =

5(u)3(v)3(w)2(w)1G2
1(t, t, q)h1(h2 − l2)

24(w)3(u)2(v)2(u)1(v)1
+

G1(t, x, q)(h3 − l3)
2

+
[G2(t, x, q)− G1(t, x, q)]h1(h2 + l2)

2

+
(G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q))h3

1
4

+ e−2iφµ2G1(t, x, q)h1. (35)

Applying the triangular inequality and Lemma 2, we have:

|n4| ≤
5(w)2(w)1(1 + q)2t2

(u)2(v)2(u)1(v)1
+

6(w)3(1 + q)t
(u)3(v)3

+
12(w)3[t(1 + q)[t(1 + q2)− 1]− qx]

(u)3(v)3

+
6(w)3[(1 + q)t[1 + q(1 + q2)x− 2t(1 + q2) + (1 + q2)(1 + q3)t2]− 2qx]

(u)3(v)3

+
6µ2(1 + q)t(w)3

(u)3(v)3
.

3. Fekete–Szegö Inequalities for The Function Class Υ
q,x,φ
Σ,u,v,w(t, µ)

The nth coefficient of a function class S is well known to be constrained by n, and
the coefficient limits provide information about the geometric properties of the functions.
The famous problem solved by Fekete–Szegö [30] is to determine the highest value of the
coefficient functional Ωδ( f ) := |n3 − δn2

2| over the class S for any δ ∈ [0, 1], which was
shown using the Loewner technique.

The upper bonds of the coefficient functional |n3 − δn2
2| for the function class

Υq,x,φ
Σ,u,v,w(t, µ) are determined in this section.

Theorem 3. Let f ∈ Υq,x,φ
Σ,u,v,w(t, µ). Then, for some δ ∈ R,

∣∣∣n3 − δn2
2

∣∣∣ ≤


2|1− δ|Φ1(u, v, w, t, q, µ)
(
|1− δ| ≥ 2(w)2(1+q)t

(u)2(v)2Φ1(u,v,w,t,q,µ)

)
2(w)2(1+q)t
(u)2(v)2

(
|1− δ| ≤ 2(w)2(1+q)t

(u)2(v)2Φ1(u,v,w,t,q,µ)

)
,

where Φ1(u, v, w, t, q, µ) is given in (2).

Proof. From (32), we have:

n3 − δn2
2 = n2

2 +
G1(t, x, q)[h2 − l2](w)2

2(u)2(v)2
− δn2

2

By the triangular inequality, we have:

|n3 − δn2
2| ≤

2(w)2(1 + q)t
(u)2(v)2

+ |1− δ|Φ1(u, v, w, t, q, µ).

Suppose:

|1− δ|Φ1(u, v, w, t, q, µ) ≥ 2(w)2(1 + q)t
(u)2(v)2

then we have:
|n3 − δn2

2| ≤ 2|1− δ|Φ1(u, v, w, t, q, µ)
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where:

|1− δ| ≥ 2(w)2(1 + q)t
(u)2(v)2Φ1(u, v, w, t, q, µ)

and suppose:

|1− δ|Φ1(u, v, w, t, q, µ) ≤ 2(w)2(1 + q)t
(u)2(v)2

,

then, we have:

|a3 − δa2
2| ≤

4(w)2(1 + q)t
(u)2(v)2

where:

|1− δ| ≤ 2(w)2(1 + q)t
(u)2(v)2Φ1(u, v, w, t, q, µ)

and Φ1(u, v, w, t, q, µ) is given in (2).

4. Second Hankel Determinant for the Class Υ
q,x,φ
Σ,u,v,w(t, µ)

Noonan and Thomas [31] introduced and investigated the mth Hankel determinant of
f for m ≥ 1 and n ≥ 1 as:

Hm(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bj bj+1 bj+2 . . . . . . bj+m−1
bj+1 bj+2 bj+3 . . . . . . bj+m
bj+2 bj+3 bj+4 . . . . . . bj+m+1

...
...

...
...

...
...

...
...

...
...

...
...

bj+m−1 bj+m bj+m+1 . . . . . . bj+2(m−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m, j ∈ N ).

Several writers, notably Noor [32], have investigated this determinant, with topics
ranging from the rate of development of Hm(j) (as j −→ ∞) to the determinant of exact
limits for particular subclasses of analytic functions on the unit disk U with specified values
of j and m. When m = 2, j = 1, and b1 = 1, the Hankel determinant is H2(1) = |b3 − b2

2|.
The Hankel determinant simplifies to H2(2) = |b2b4 − b2

3| when j = m = 2. Fekete
and Szegö [29] considered the Hankel determinant H2(1) and referred to H2(2) as the
second Hankel determinant. If f is univalent in U , then the sharp upper inequality H2(1) =
|b3− b2

2| ≤ 1 is known (see [30]). Janteng et al. [33] obtained sharp bounds for the functional
H2(2) for the function f in the subclassRT of S , which was introduced by MacGregor [34]
and consists of functions whose derivative has a positive real part. They demonstrated that
H2(2) = |b2b4− b2

3| ≤ 4/9 for each f ∈ RT . They also discovered the sharp second Hankel
determinant for the classical subclass of S , namely S∗ andK, which are the classes of starlike
and convex functions (see [33]). These two classes have bounds of |b2b4 − b2

3| ≤ 1/8 and
|b2b4 − b2

3| ≤ 1. The Hankel determinants for starlike and convex functions with respect
to symmetric points were recently discovered by Ready and Krishna [35]. For functions
belonging to subclasses of M-a-Minda starlike and convex functions, Lee et al. [36] found
the second Hankel determinant. Mishra and Gochhayat [14] found the sharp bound to the
nonlinear functional |b2b4 − b2

3| for the subclass of analytic functions.
Deniz et al. [37] discussed the upper bounds of H2(2) for the classes S∗ and K recently.

Later, Altinkaya and Yalcin [38], Caglar et al. [39], Kanas et al. [40], and Orhan et al. [41]
determined the upper bounds of H2(2) for several subclasses of Σ.
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Theorem 4. Let the function f (z) given by (1) be in the class Υq,x,φ
Σ,u,v,w(t, µ). Then:

H2(2) =
∣∣∣n2n4 − n2

3

∣∣∣ ≤



T(2, t) (D1 ≥ 0 and D2 ≥ 0)

max
{

4(w)2
2G2

1(t,x,q)
(u)2

2(v)
2
2

, T(2, t)
}

(D1 > 0 and D2 < 0)

4(w)2
2G2

1(t,x,q)
(u)2

2(v)
2
2

(D1 ≤ 0 and D2 ≤ 0)

max{T(m0, t), T(2, t)} (D1 < 0 and D2 > 0).

where:

T(2, t) =
6(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
(u)1(v)1(u)3(v)3

+
12(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

(u)1(v)1(u)3(v)3

−
15(w)1(w)3G2

1(t, x, q)
4(u)1(v)1(u)3(v)3

+
(w)4

1G4
1(t, x, q)

(u)4
1(v)

4
1

+
6µ2G2

1(t, x, q)(w)1(w)3

(u)1(v)1(u)3(v)3
−

4(w)2
2G2

1(t, x, q)
(u)2

2(v)
2
2

,

T(m0, t) =
4(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

+
(u)2

1(v)
2
1D4

2

(u)2
2(v)

2
2(u)3(v)3D3

1
+

(u)2
1(v)

2
1D3

2
(u)2

2(v)
2
2(u)3(v)3D2

1
,

and D1, D2 are given by (52) and (53).

Proof. From (22), (35), and (33) and with some calculations, we have:

n2n4 − n2
3 =

5(w)2
1(w)2G3

1(t, x, q)(h2 − l2)
16(u)2(v)2(u)2

1(v)
2
1

h2
1 +

3(w)1(w)3G2
1(t, x, q)(h3 − l3)

4(u)1(u)3(v)1(v)3
h1

+
3(w)3(w)2G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]h1(h2 + l2)

4(u)1(v)1(u)3(v)3

+
3(w)3(w)2G1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]

8(u)1(v)1(u)3(v)3
h4

1

−
(w)4

1G4
1(t, x, q)

16(u)4
1(v)

4
1

h4
1 −

(w)2
1(w)2G3

1(t, x, q)(h2 − l2)
4(u)2

1(v)
2
1(u)2(v)2

h2
1 (36)

−
(w)2

2G2
1(t, x, q)(h2 − l2)2

4(u)2
2(v)

2
2

+
3e−2iφµ2G2

1(t, x, q)(w)1(w)3

2(u)1(v)1(u)3(v)3
h2

1.

By using Lemma 1,

h2 − l2 =
4− h2

1
2

(b− c) (37)

h2 + l2 = h2
1 +

4− h2
1

2
(b + c) (38)

and:

h3 − l3 =
h3

1
2

+
4− h2

1
2

h1(b + c)−
4− h2

1
4

h1(b2 + c2)

+
4− h2

1
2

[
(1− |b|2z)− (1− |c|2)w

]
(39)
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for some b, c, z, w with |b| ≤ 1, |c| ≤ 1, |z| ≤ 1, |w| ≤ 1, |p1| ∈ [0, 2], substituting
(h2 + l2), (h2 − l2) and (h3 − l3), and after some straightforward simplifications, we have:

n2n4 − n2
3 =

(w)2
1(w)2G3

1(t, x, q)(4− h2
1)(b− c)

32(u)2(v)2(u)2
1(v)

2
1

h2
1

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

4(u)1(v)1(u)3(v)3
h4

1 +
3(w)1(w)3G2

1(t, x, q)
16(u)1(v)1(u)3(v)3

h4
1

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)](4− h2

1)(b + c)
8(u)1(v)1(u)3(v)3

h2
1

+
3(w)1(w)3G2

1(t, x, q)(4− h2
1)(b + c)

16(u)1(v)1(u)3(v)3
h2

1

−
3(w)1(w)3G2

1(t, x, q)(4− h2
1)(b

2 + c2)

32(u)1(v)1(u)3(v)3
h2

1 −
(w)4

1G4
1(t, x, q)

16(u)4
1(v)

4
1

h4
1

+
3(w)1(w)3G2

1(t, x, q)(4− h2
1)[(1− |b|2)z− (1− |c|2)w]

16(u)1(v)1(u)3(v)3
h1

−
(w)2

2G2
1(t, x, q)(4− h2

1)
2(b− c)2

16(u)2
2(v)

2
2

+
3e−2iφµ2G2

1(t, x, q)(w)1(w)3

2(u)1(v)1(u)3(v)3
h2

1

+
3(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
8(u)1(v)1(u)3(v)3

h4
1.

Let m = h1, and assume without any restriction that m ∈ [0, 2], λ1 = |b| ≤ 1 and
λ2 = |c| ≤ 1; by applying the triangular inequality, we have:

|n2n4 − n2
3| ≤

{
3(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
8(u)1(v)1(u)3(v)3

m4

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

4(u)1(v)1(u)3(v)3
m4 +

3(w)1(w)3G2
1(t, x, q)

16(u)1(v)1(u)3(v)3
m4

+
3(w)1(w)3G2

1(t, x, q)(4−m2)

8(u)1(v)1(u)3(v)3
m +

(w)4
1G4

1(t, x, q)
16(u)4

1(v)
4
1

m4

+
3µ2G2

1(t, x, q)(w)1(w)3

2(u)1(v)1(u)3(v)3
m2

}

+

{
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)](4−m2)

8(u)1(v)1(u)3(v)3
m2

+
3(w)1(w)3G2

1(t, x, q)(4−m2)

16(u)1(v)1(u)3(v)3
m2 +

(w)2
1(w)2G3

1(t, x, q)(4−m2)

32(u)2(v)2(u)2
1(v)

2
1

m2

}
(λ1 + λ2)

+

{
3(w)1(w)3G2

1(t, x, q)(4−m2)

32(u)1(v)1(u)3(v)3
m2 −

3(w)1(w)3G2
1(t, x, q)(4−m2)

16(u)1(v)1(u)3(v)3
m

}
(λ2

1 + λ2
2)

+
(w)2

2G2
1(t, x, q)(4−m2)2

16(u)2
2(v)

2
2

(λ1 + λ2)
2

and equivalently, we have:

|n2n4 − n2
3| ≤ L1(t, m) + L2(t, m)(λ1 + λ2) + L3(t, m)(λ2

1 + λ2
2)

+L4(t, m)(λ1 + λ2)
2 = Z(λ1, λ2) (40)
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where,

L1(t, m) =

{
3(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
8(u)1(v)1(u)3(v)3

m4

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

4(u)1(v)1(u)3(v)3
m4

+
3(w)1(w)3G2

1(t, x, q)
16(u)1(v)1(u)3(v)3

m4 +
3(w)1(w)3G2

1(t, x, q)(4−m2)

8(u)1(v)1(u)3(v)3
m

+
(w)4

1G4
1(t, x, q)

16(u)4
1(v)

4
1

m4 +
3µ2G2

1(t, x, q)(w)1(w)3

2(u)1(v)1(u)3(v)3
m2

}
≥ 0

L2(t, m) =

{
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)](4−m2)

8(u)1(v)1(u)3(v)3
m2

+
3(w)1(w)3G2

1(t, x, q)(4−m2)

16(u)1(v)1(u)3(v)3
m2 +

(w)2
1(w)2G3

1(t, x, q)(4−m2)

32(u)2(v)2(u)2
1(v)

2
1

m2

}
≥ 0

L3(t, m) =

{
3(w)1(w)3G2

1(t, x, q)(4−m2)

32(u)1(v)1(u)3(v)3
m2 −

3(w)1(w)3G2
1(t, x, q)(4−m2)

16(u)1(v)1(u)3(v)3
m

}
≤ 0

L4(t, m) =
(w)2

2G2
1(t, x, q)(4−m2)2

16(u)2
2(v)

2
2

≥ 0

where 0 ≤ m ≤ 2. Now, we maximize the function Z(λ1, λ2) in the closed square:

∆ = {(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1]} f or m ∈ [0, 2].

For a fixed value of s, the coefficients of the function Z(λ1, λ2) in (40) are dependent
on m; thus, the maximum of Z(λ1, λ2) with regard to m must be investigated, taking into
account the cases when m = 0, m = 2, and m ∈ (0, 2).
First case:
When m = 0,

Z(λ1, λ2) = L4(t, 0) =
(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

(λ1 + λ2)
2.

It is obvious that the function Z(λ1, λ2) reaches its maximum at (λ1, λ2) and:

max{Z(λ1, λ2) : λ1, λ2 ∈ [0, 1]} = Z(1, 1) =
4(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

. (41)

Second case:
When m = 2, Z(λ1, λ2) is expressed as a constant function with respect to m, we have:

Z(λ1, λ2) = N1(t, 2)

=

{
6(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
(u)1(v)1(u)3(v)3

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

4(u)1(v)1(u)3(v)3

+
3(w)1(w)3G2

1(t, x, q)
16(u)1(v)1(u)3(v)3

+
(w)4

1G4
1(t, x, q)

(u)4
1(v)

4
1

+
3µ2G2

1(t, x, q)(w)1(w)3

(u)1(v)1(u)3(v)3

}
.
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Third case:
When m ∈ (0, 2), let λ1 + λ2 = σ and λ1 · λ2 = ν in this case, then (40) can be of the form:

Z(λ1, λ2) = L1(t, m) + L2(t, m)σ + (L3(t, m) + L4(t, m))σ2 − 2L3(t, m)ν = V(σ, ν) (42)

where σ ∈ [0, 2] and ν ∈ [0, 1]. Now, we need to investigate the maximum of:

V(σ, ν) ∈ Λ = {(σ, ν) : σ ∈ [0, 2], ν ∈ [0, 1]}. (43)

By differentiating V(σ, ν) partially, we have:

∂V
∂σ

= L2(t, m) + 2(L3(t, m) + L4(t, m))σ = 0

∂V
∂ν

= −2L3(t, m) = 0.

These results reveal that V(σ, ν) does not have a critical point in Λ, and so, Z(λ1, λ2)
does not have a critical point in the square ∆.
As a result, the function Z(λ1, λ2) cannot have its maximum value in the interior of ∆. The
maximum of Z(λ1, λ2) on the boundary of the square ∆ is investigated next.

For λ1 = 0, λ2 ∈ [0, 1] (also, for λ2 = 0, λ1 ∈ [0, 1]) and:

Z(0, λ2) = L1(t, m) + L2λ2 + (L3(t, m) + L4(t, m))λ2
2 = Q(λ2). (44)

Now, since L3(t, m) + L4(t, m) ≥ 0, then we have:

Q′(λ2) = L2(t, m) + 2[L3(t, m) + L4(t, m)]λ2 > 0

which implies that Q(λ2) is an increasing function. Therefore, for a fixed m ∈ [0, 2) and
t ∈ (1/2, 1], the maximum occurs at λ2 = 1. Thus, from (44),

max{G(0, λ2) : λ2 ∈ [0, 1]} = Z(0, 1)

= L1(t, m) + L2(t, m) + L3(t, m) + L4(t, m). (45)

For λ1 = 1, λ2 ∈ [0, 1] (also for λ2 = 1, λ1 ∈ [0, 1]) and:

Z(1, λ2) = L1(t, m) + L2(t, m) + L3(t, m) + L4(t, m) + [L2(t, m)

+2L4(t, m)]λ2 + [L3(t, m) + L4(t, m)]λ2
2 = D(λ2) (46)

D′(λ2) = [L2(t) + 2L4(t)] + 2[L3(t) + L4(t)]λ2. (47)

We know that L3(t) + L4(t) ≥ 0, then:

D′(λ2) = [L2(t) + 2L4(t)] + 2[L3(t) + L4(t)]λ2 > 0.

Therefore, the function D(λ2) is an increasing function, and the maximum occurs at
λ2 = 1. From (46), we have:

max{Z(1, λ2) : λ2 ∈ [0, 1]} = Z(1, 1)

= L1(t, m) + 2[L2(t, m) + L3(t, m)] + 4L4(t, m). (48)

Hence, for every m ∈ (0, 2), taking it from (45) and (48), we have:

L1(t, m) + 2[L2(t, m) + L3(t, m)] + 4L4(t, m)

> L1(t, m) + L2(t, m) + L3(t, m) + L4(t, m).
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Therefore,

max{Z(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1]}
= L1(t, m) + 2[L2(t, m) + L3(t, m)] + 4L4(t, m).

Since,
Q(1) ≤ D(1) f or m ∈ [0, 2] and t ∈ [1, 1],

then:
max{Z(λ1, λ2)} = Z(1, 1)

occurs on the boundary of square ∆.

Let T : (0, 2)→ R be defined by:

T(m, t) = max{Z(λ1, λ2)} = Z(1, 1) = L1(t, m) + 2L2(t, m) + 2L3(t, m) + 4L4(t, m). (49)

Now, inserting the values of L1(t, m), L2(t, m), L3(t, m) and L4(t, m) into (49) and with
some calculations, we have:

T(m, t) =

{
3(w)1(w)3G2

1(t, x, q)|G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)|
8(u)1(v)1(u)3(v)3

m4

+
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

4(u)1(v)1(u)3(v)3
m4

+
3(w)1(w)3G2

1(t, x, q)
16(u)1(v)1(u)3(v)3

m4 +
3(w)1(w)3G2

1(t, x, q)(4−m2)

8(u)1(v)1(u)3(v)3
m

+
(w)4

1G4
1(t, x, q)

16(u)4
1(v)

4
1

m4 +
3µ2G2

1(t, x, q)(w)1(w)3

2(u)1(v)1(u)3(v)3
m2

}

+

{
3(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)](4−m2)

4(u)1(v)1(u)3(v)3
m2

+
3(w)1(w)3G2

1(t, x, q)(4−m2)

8(u)1(v)1(u)3(v)3
m2 +

(w)2
1(w)2G3

1(t, x, q)(4−m2)

16(u)2(v)2(u)2
1(v)

2
1

m2

}

+

{
3(w)1(w)3G2

1(t, x, q)(4−m2)

16(u)1(v)1(u)3(v)3
m2 −

3(w)1(w)3G2
1(t, x, q)(4−m2)

8(u)1(v)1(u)3(v)3
m

}

+
(w)2

2G2
1(t, x, q)(4−m2)2

4(u)2
2(v)

2
2

.

By simplifying, we have:

T(m, t) =
4(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

+
D1

16(u)4
1(v)

4
1(u)

2
2(v)

2
2(u)3(v)3

m4 (50)

+
D2

4(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

m2, (51)

where:
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D1 = G1(t, x, q)

[
6(u)3

1(v)
3
1(u)

2
2(v)

2
2(w)1(w)3[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]

+ (u)2
2(v)

2
2(u)3(v)3(w)4

1G3
1(t, x, q)− 6(u)3

1(v)
3
1(u)

2
2(v)

2
2(w)1(w)3G1(t, x, q)

+ 4(u)4
1(v)

4
1(u)3(v)3(w)2

2G1(t, x, q)− (u)2
1(v)

2
1(u)2(v)2(u)3(v)3(w)2

1(w)2G2
1(t, x, q)

]
m4 (52)

D2 = G1(t, x, q)

[
12(u)2

2(v)
2
2(w)3(w)1(u)1(v)1[G2(t, x, q)− G1(t, x, q)]

+ 9(u)2
2(v)

2
2(u)1(v)1(w)1(w)3G1(t, x, q)− 8(u)2

1(v)
2
1(u)3(v)3(w)2

2G1(t, x, q)

+ (u)2(v)2(u)3(v)3(w)2
1(w)2G2

1(t, x, q) + 6(u)1(v)1(u)2
2(v)

2
2µ2(w)1(w)3G1(t, x, q)

]
m2. (53)

If T(m, t) has a maximum value in the interior of m ∈ [0, 2] and by applying some
elementary calculus, we have:

T′(m, t) =
D1

4(u)4
1(v)

4
1(u)

2
2(v)

2
2(u)3(v)3

m3 +
D2

2(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

m.

Now, we need to examine the sign of the function T′(m, t) depending on the signs of
D1 and D2 as follows.
First result:
Suppose D1 ≥ 0 and D2 ≥ 0, then T′(m, t) ≥ 0. This shows that T(m, t) is an increasing
function on the boundary of m ∈ [0, 2], that is m = 2. Therefore,

max{T(m, t) : m ∈ (0, 2)} =
6(w)1(w)3G2

1(t, x, q)[G1(t, x, q)− 2G2(t, x, q) + G3(t, x, q)]
(u)1(v)1(u)3(v)3

+
12(w)3(w)1G1(t, x, q)[G2(t, x, q) + G1(t, x, q)]

(u)1(v)1(u)3(v)3

−
15(w)1(w)3G2

1(t, x, q)
4(u)1(v)1(u)3(v)3

+
(w)4

1G4
1(t, x, q)

(u)4
1(v)

4
1

+
6µ2G2

1(t, x, q)(w)1(w)3

(u)1(v)1(u)3(v)3
−

4(w)2
2G2

1(t, x, q)
(u)2

2(v)
2
2

.

Second result:
If D1 > 0 and D2 < 0 then,

T′(m, t) =
D1m3 + 2(u)2

1(v)
2
1D2m

4(u)4
1(v)

4
1(u)

2
2(v)

2
2(u)3(v)3

= 0 (54)

at critical point:

m0 =

√
−2(u)2

1(v)
2
1D2

D1
(55)

is a critical point of the function T(m, t). Now,

T′′(m0) =
−3D2

2(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

+
D2

2(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

> 0.
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Therefore, m0 is the minimum point of the function T(m, t). Hence, T(m, t) cannot
have a maximum.
Third result:
If D1 ≤ 0 and D2 ≤ 0, then:

T′(m, t) ≤ 0.

Therefore, T(m, t) is a decreasing function on the interval (0, 2). Hence,

max{T(m, t) : t ∈ (0, 2)} = T(0) =
4(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

. (56)

Fourth result:
If D1 < 0 and D2 > 0

T′′(m0, t) =
−3D2

2(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

+
D2

2(u)2
1(v)

2
1(u)

2
2(v)

2
2(u)3(v)3

< 0.

Therefore, T′′(m, t) < 0. Hence, m0 is the maximum point of the function T(m, t), and
the maximum value occurs at m = m0. Thus,

max{T(m, t) : m ∈ (0, 2)} = T(m0, 4)

T(m0, t) =
4(w)2

2G2
1(t, x, q)

(u)2
2(v)

2
2

+
(u)2

1(v)
2
1D4

2

(u)2
2(v)

2
2(u)3(v)3D3

1
+

(u)2
1(v)

2
1D3

2
(u)2

2(v)
2
2(u)3(v)3D2

1
.

5. Conclusions

The q-derivative operator has recently been found to be extremely useful in the
disciplines of mathematics and physics. To begin, numerous well-known notions of the
q-derivative operator were highlighted and explained in this study. We then developed a
novel subclass of analytic and bi-univalent functions using the Hohlov operator and certain
q-Chebyshev polynomials. A number of coefficient bonds, as well as the Fekete–Szegö
inequalities and the second Hankel determinant were provided for these newly specified
function classes.
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