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Abstract: In this current study, we introduced and investigated two new subclasses of the bi-univalent
functions associated with g-derivative operator; both f and f~! are m-fold symmetric holomorphic functions
in the open unit disk. Among other results, upper bounds for the coefficients |p,,+1| and |p2,+1| are found in
this study. Also certain special cases are indicated.
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1. Introduction

L et A be the family of holomorphic functions, normalized by the conditions f(0) = f'(0) — 1 = 0 which
is of the form

f(z) =z+ 222 +p3z° + - (1)

in the open unit disk 2 = {z;z € C and |z| < 1}. We denote by G the subclass of functions in .4 which are
univalent in 2 (for more details see [1]).

The Keobe-One Quarter Theorem [1] state that the image of (2 under all univalent function f € A contains
a disk of radius ;. Hence all univalent function f € A has an inverse f ! satisfy f ~1(f(z)) and f(f 1(v)) = v
(Io] < rolf), ro(f) > 1), where

g(v) = f1(v) = v — p2v* + (205 — p3)v° — (505 — 5p203 + pa)v* + - - 2

A function f € A denoted by X is said to be bi-univalent in Q if both f~!(z) ans f(z) are univalent in
(see for details [2-11]).

A domain ¥ is said to be m-fold symmetric if a rotation of ¥ about the origin through an angle 27t/m
carries ¥ on itself. Therefore, a function f(z) holomorphic in 2 is said to be m-fold symmetric if

27i

f (e%z) =em f(z).

A function is said to be m-fold symmetric if it has the following normalized form

flz)=z+ i Pmp1Z™T (zeQ, me N ={1,2,3,---}). €)
p=1

Let &, the class of m-fold symmetric univalent functions in (2, that are normalized by (3), in which, the
functions in the class & are one-fold symmetric. Similar to the concept of m-fold symmetric univalent functions,
we introduced the concept of m-fold symmetric bi-univalent functions which is denoted by X,,. Each of the
function f € X produces m-fold symmetric bi-univalent function for each integer m € N.
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The normalized form of f(z) is given as in (3) and the series expansion for f~!(z), which has been
investigated by Srivastava et al., [12], is given below:

g(v) =f"(v)
=0 = 10"+ [ (m 4+ 1)p, g — pama | VP

1

E(m +1)(3m + 2)pf,1+1 — (Bm+2)ppmi102m+1 + p3m+1] . 4)

Some of the examples of m-fold symmetric bi-univalent functions are

1
z™M "
1—zm |

[ log(1 —z")] 7,

1, (142" 0
2% \1-m) [

For more details on m-fold symmetric analytic bi-univalent functions (see [5,12-17]).
Jackson [18,19] introduced the g-derivative operator D, of a function as follows;

flgz) - f(2)

and

Dyf(z) = CEE ®)
and D, f(0) = f'(0). In case of g(z) = z* for k is a positive integer, the g-derivative of f(z) is given by
Pt = G - e
Asg— 1" and k € N/, we get
[k]q—ll__’f,k—1+q+---+qk—>k, ©)

where (z # 0, q # 0). For more details on the concepts of g-derivative (see [5,20-27]).
Definition 1. [28] Let f(z) € A, 0 < x < 1and ¢ > lisreal. Then f(z) € L,(x) of o-pseodu-starlike function

of order x in 2 if and only if
o (@I
() > x )

Babalola [28] verified that, all pseodu-starlike function are Bazilevic of type (1 — %) , order )(% and univalent
in 0.

Lemma 1. [1] Let the function w € P be given by the following series w(z) = 1+ w1z + wyz? + -+ (z € Q). The
sharp estimate given by |wy| <2 (n € N') holds true.

In [29] Girgaonkar et al., introduced a new subclasses of holomorphic and bi-univalent functions as
follows:

Definition 2. A function f(z) given by (1) is said to be in the class Mx(x) (0 < x < 1,(z,v) € Q)if f € £,
|arg(f'(2))7] < & and |arg(g’(v))7| < &%, where g(v) is given by (2).
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Definition 3. A function f(z) given by (1) is said to be in the class Mz () (0 < ¢ < 1,(z,v) € Q)if ¥ € Z,
R[(f'(z))7] > ¢ and R[(g'(v))?] > 1, where g(v) is given by (2).

In this current research, we introduced two new subclasses denoted by ./\/lz:(;l( x) and qu‘fn(tp) of the
function class X, and obtain estimates coefficient |p,,+1| and |p2y,+1| for functions in these two new subclasses.

2. Main 4esults

Definition 4. A function f(z) given by (3) is said to be in the class M;’:in (x) meN,0<g<1l0c>10<
x<1,(zv) € Q)if

feX and |arg(Dyf(2))| < AX, ®)
and .
|arg(Dgg(v))°] < 2%, ©

where g(v) is given by (2).

Remark 1. We have the class lim,__,; -1+ M$; (x) = M$(x) which was introduced and studied by Girgaonkar
et al., [29].

Remark 2. We have the class lim,__; 1 M}:,l (x) = Mx(x) which was introduced and studied by Srivastava
etal., [11].

Theorem 1. Let f(z) € quin()(), (meN,0<g<1,0>1,0<x<1,(z,v) € Q) begiven (3). Then

lomst] < 2 , (10)
\/(m +1)ox[2m +1]; — (x — o)o[m + 1]%

and

2x 2(m +1)x*
< .
loam+1| < U[Zm—l—l]q 02[m+1]5 ()]
Proof. Using inequalities (1) and (9), we get
(Dyf(2))° = K@), 12)
and
(Dyg(v))” = [g(v) )X (13)
respectively, where 7(z) and ¢(v) in P are given by the following series
T(2) = 14 2™ + Touz?™ + T3z 4 -+, (14)
and
¢(v) = 14 gnv™ + gou0™ + 30" + -+ . (15)
Clearly,
-1
[T(Z)}X =1 +XTmZm + (Xsz + X(X2>Trzn) Z2m 4o
and ( )
[c(V)]X =1+ xcmv™ + (ngm + szgfn) oMy
Also

oloc—1
(Daf 2))7 = 1+ ol -+ gpriz+ (2 + Ugpani + =
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and

(Dyg(v))” =1 —o[m+1gpm1v" — o2m + 1]qP2m+1172m
(-1

(o
+ (U(m +1)[2m +1]40% 1 + T[m + 1]§p§1+1> -

Comparing the coefficients in (12) and (13), we have

o[m+1]40m11 = XTm,

olo
o2m +1]400m41 + %[m + 1]§pi+1 = XTm + =——=T5,

—o[m+1]goms1 = X6m,

olc—1)

amHuWMH+@w+nmwuw2m+uﬁﬁﬂzmm+zz

From (16) and (18), we obtain

Tmn = —GCm,

and
20(m + 11307, 11 = X (T + G-

Further from (17), (19) and (21), we obtain that

U(U - 1)7([7” + 1]$p3n+1 + (m + 1)0’7([2111 + 1]ﬂp$ﬂ+1 - (X - 1)0’2[771 + 1]593,1“ = XZ(TZm + QZm)-

Therefore, we have
2= X (Tam + Gom)
" o4+ 12(0 — x) + (m+ Dox2m + 1],

By applying Lemma 1 for the coefficients 1, and ga,,;, then we have

o] < ® .
\/(m +Dox[2m +1]; — (x — o)o[m +1]3

Also, to find the bound on |p2,+1/, using the relation (19) and (17), we obtain

20[2m + 1]g02m41 — (m + 1)o[2m + 1]qp3nJrl = xX(Tom — Com) + 3

It follows from (20), (21) and (23),

_ (m + 1))(277%1 X(TZm - me)
P2l = D2 +12 © 202m+1),

2
q
Applying Lemma 1 for the coefficients Ty, 24, G, G2m, then we have

2x 2(m +1)x?
2m+1lg  2m+1]3°

lp2m+1| < o
O
Choosing ¢ — 17! in Theorem 1, we get the following result:
Corollary 1. Let f(z) € M§  (x), (m € N,o>1,0< x <1,(z,v) € Q) be given (3). Then

2
V(m+1)[oxm + o2m + 02

x(x—l)( 2_ 2y

(16)
17)
(18)

(19)

(20)

21

(22)

(23)

(24)

(25)
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and ) )2
lo2m+1| < U(ZmX+ 0 + Uz(ﬂ/ic-l- I (26)
Choosing m = 1 (One-fold case) in Theorem 1, we get the following result:
Corollary 2. Let f(z) € MY (x), (0<g<1,06>1,0< x <1,(zv) € Q) be given (1). Then
o2l < % : @)
V2ox Bl — (x — 0)al2]3
and ) 2
los| < ﬁ + 02)[62]5, (28)
Choosing ¢ — 17! in Corollary 2, we get the following result:
Corollary 3. [29] Let f(z) € M$(x), (¢ > 1,0 < x < 1,(z,v) € Q) be given (1). Then
2
lo2| < \/ﬁ (29)
and
o] < X230 (30)

Remark 3. For one-fold case, we have lim,__,; 1 qull (x) = Mx(x), and we can get the results of Srivastava
etal., [11].

Definition 5. A function f(z) given by (3) is said to be in the class qufn(l/z) (meN,0<g<1l0>10<
P <1,(z,v) e Q)if
FeX and R(Dyf(2)] >y, G1)

and

R[(Dgg(0))7] > ¢, (32)
where g(v) is given by (2).

Remark 4. We have the class lim,__,; -1 M$, () = M (x) which was introduced and studied by Girgaonkar
etal., [29].

Remark 5. We have the class lim,__; 1 M3 (p) = Mx(x) which was introduced and studied by Srivastava
etal, [11].

Theorem 2. Let f(z) € Mgffm(gl)), (meN,0<g<1,0>1,0<yp<1,(z,0) € Q) be given (3). Then

2(1-¢) 1-y

[P < min{ olm+1],’ \/(T(U’ = Dm+1z + (m+1)o2m+1]q }' (33)

and
2m+1)(1—¢) 2(1-¢)
oo —1)[m+ 17+ (m+1)o2m + 1], + o2m+4-1], (34

|P2m+1 | <

Proof. Using inequalities (31) and (32), we get

(Daf(2))" =9+ (1= ¢)t(2), (35)
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and
(Dgg(v))” =9+ (1= ¢)g(v),

2here 7(z) and ¢(v) in P are given by the following series

T(2) = 1+ 2" + Tomz®™ + T3z + - - -,

and
¢(0) =1+ GuV™ + Gom0™™ + GV + - - - .

Clearly,

P+ (1 =9)(2) =14+ (1= )" + (1 - )1z +-- -,
and

P4+ (1 =9)g(v) =1+ (1= P)gm0™ + (1 — §)gamv™™ + - -
Also

oloc—1
(Dyf(2))” =1+ 0[m+1]g0,112" + ((T[Zm + 1]g02m+1 + %[m + 1]§pfn+1> LR

and

(Dag(©))” =1 = ol +1)goms10™ — o{2m + g0 10"

~1
+ (U(m +1)[2m 4 1gpd 41 + %[m + 1]§p$,l+l> L

Now comparing the coefficients in (35) and (36), we get

olm+1]gpm+1 = (1 —9)Tm,
—1
o[2m +1]gpomi1 + %[

—olm+ 1]17Pm+1 =1 =9¢)om,

m+ 1]39%1“ =(1-9)tm

clc—1)

—of2m +1goomi1 + <a(m +)2m+ 1y + ———[m+ 1]5) Pt = (1= ¥)Gam.

From (37) and (39), we obtain
Tm = —GCmy,

and
20[m + 1051 = (1= 9)* (5, + G-
Also, from (38) and (40), we get

o (o = Dxlm + 150511 + (m+Dol2m + g, 1 = (1= 1) (T2 + G2m)-

Applying the Lemma 1 for the coefficients Ty, T2, Gm, Gom, we find that

(1-9)
il < 2\/0(0 = D[m+ 17+ (m+)o2m+ 1],

Also, to find the bound on |p2,,+1/, using the relation (40) and (38), we obtain

— (m+1)o2m + 14051 +202m + 1gpomir = (1= ) (Tam — G2m),

(36)

(37)
(38)
(39)

(40)

(41)

(42)

(43)

(44)
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or equivalently

_ (O=9)(m—com) | (m+1) ,
P2m+1 = 20’[2771 + 1]Li + 2 pm—i—l' (45)
By substituting the value of p2, 41 from (42), we have
— _ )2 (12 2
Ooms1 = (1 l/J)(sz QZm) + (m + 1)(1 1/’) (Tm + gm) (46)

20[2m + 1], 402[m + 13
Applying the Lemma 1 for the coefficients T, Tom, G, Gom, We get

2(1A4,¢) Z(ﬂl%*l)(l *’¢)2
lo2m 11| < o[2m + 1], + 202[m+1]% '

Also, by using (43) and (45), and applying Lemma 1 we obtain

2m+1)(1—¢) 2(1-¢)
oclo—=Dm+13+ (m+1Noe2m+1];  o2m+1];

lo2m41] <

This complete the proof. [

Choosing ¢ — 17! in Theorem 2, we get the following result:

Corollary 4. Let f(z) € M$ (), (m e N,c > 1,0 < ¢ < 1,(z,v) € Q) be given (3). Then

(1— m
2\/0(0—1)[m+1]2+(m+1)(7[2m+1] 0<9¢ = 1m0

|Pm+l‘§
2(1— m
a([mﬁﬁ om S ¥ <1
nd 2(m +1)(1 - ) 2(1 - p)
m—+ — —
lo2m+1] < L4 + L4

clo—1)[m+12+ (m+1)e2m+1]  oc2m+1]
For one fold case, Corollary 4, yields the following Corollary:

Corollary 5. Let f(z) € M$(¢), (0> 1,0 < ¢ <1,(z,v) € Q) be given (1). Then

2(1—¢) 1
|p2| < o(2041) O<yp=< 37
P <1

and

(1= )20 —3p+3)

los| <

Remark 6. Corollary 5 gives above is the improvement of the estimates for coefficients on |pz| and |p3]
investigated by Girgaonkar et al., [29].

Corollary 6. [29] Let f(z) € MS(¢), (0 > 1,0 < ¢ < 1,(z,v) € Q) be given (1). Then

2(1—v9)
W2|S ECZ7135’

and
(1—y)(20c—3¢p+3)

302

loa| <

Taking o = 1 in Corollary 7, we get the following result:
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Corollary 7. [11] Let f(z) € MS(¢), (0 > 1,0 < ¢ < 1,(z,v) € Q) be given (1). Then

and

ool < /208,
(1-9)(5-39)
ool < 2220,

3. Conclusion

In this present paper, two new subclasses indicated by qufn (x) and Mq}:‘:ﬂ (1) of function class of £, was

obtained and worked on. Also, the estimates coefficients for |p, 11| and |p2,,+1| of functions in these classes
are determined.
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