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ABSTRACT
In recent years, using the idea of analytic and bi-univalent func-
tions, many ideas have been developed by different well-known
authors, but the using Gegenbauer polynomials along with certain
bi-univalent functions is very rare in the literature. We are essentially
motivatedby this recent researchgoingon, here in our present inves-
tigation, we make use of certain q-derivative operator and Gegen-
bauer polynomials and define a new subclass of analytic and bi-
univalent functions. We then obtain certain coefficient bounds, the
Fekete–Szegö inequalities and upper bounds for the second-order
Hankel determinant for the defined functions class.
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1. Introduction and preliminaries

Geometric Functions Theory is a fascinating area of research in Complex Analysis,
with applications in a variety of mathematical areas, including Mathematical Physics.
Researchers in the field of Complex Analysis have been looking into holomorphic func-
tions because of their various applications in analytical solutions to problems like electro-
statics and fluid mechanics.

Analytic functions such as ϑ(z) can be stated in Taylor’s series expansion about the
origin z0 as

ϑ(z) = S0 + S1z + S2z2 + S3z3 + S4z4 + · · · , |z| < 1,
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which can be normalized in the following way:

f (z) = ϑ(z) − S0
S1

= z +
∞∑
j=2

bjzj, (1)

where S1 �= 0, bj = Sj/S1, z ∈ U = {z ∈ C : |z| < 1} and f (z) is convergent for |z| < 1.
Let A indicate a class of functions f (z) that are holomorphic in U , having form (1), and
normalized by the constraints f ′(0) − 1 = f (0) = 0.

It is well known that every function f ∈ S has an inverse f−1 defined by

f−1(f (z)) = z (z ∈ U)

and

f−1(f (w)) = w (|w| < r0(f ); r0(f ) ≥ 1
4 ),

where

f−1(w) = g(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w4 + · · · . (2)

A function is said to be bi-univalent in U if both f and f−1 are univalent in U .
Let� denote the class of bi-univalent function in U given by (2). Examples of functions

in the class � are

z
1 − z

, log
1

1 − z
and log

√
1 + z
1 − z

.

However, the familiar Koebe function is a member of class�. Other common examples of
functions in U such as

2z − z2

2
and

z
1 − z2

are also not members of �.
Lewin [1] investigated a bi-univalent functions class � and showed that |a2| < 1.51.

Subsequently, Brannan and Clunie [2] conjectured that |a2| <
√
2. Netanyahu [3], on the

other hand, showed thatmaxf∈� |a2| = 4
3 . The coefficient for each of theTaylor–Maclaurin

coefficients |a2| (n ≥ 3, n ∈ N) is presumably still an open problem.
Similar to the familiar subclass S∗(ζ ) and K(ζ ) of starlike and convex functions of

order ζ(0 ≤ ζ < 1), respectively. Brannan and Taha [?] introduced certain subclasses of
the bi-univalent function class�,S∗

�(ζ ) andK�(ζ ) of bi-starlike functions and bi-convex
functions of order ζ(0 ≤ ζ < 1), respectively. For each of the function classes S∗

�(ζ ) and
K�(ζ ) they found non-sharp bounds on the first two Taylor–Maclaurin coefficients |a2|
and |a3|.

Let s1(z) and s2(z) are analytic functions in open unit disc U , then the function s1 is
subordinated to s2 symbolically denoted as s1(z) ≺ s2(z), z ∈ U , if there occur an analytic
functionw(z)with properties thatw(0) = 0 and |w(z)| < 1, such that supposeω holomor-
phic in U , such that s1(z) = s2(w(z)). If the function s2(z) is univalent in U , then above
condition is equivalent to s1(z) ≺ s2(z) ⇔ s1(0) = s2(0) and s1(U) ⊂ s2(U).
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Jackson [5, 6] introduced and studied the q-derivative operator Dq of a function as
follows:

Dqf (z) = f (z) − f (qz)
z(1 − q)

= 1
z

⎧⎨
⎩z +

∞∑
j=2

[j]qajzj

⎫⎬
⎭ (3)

and (Dqf )(0) = f ′(0). In case f (z) = zj for j is a positive integer, the q-derivative of f (z) is
given by

Dqzj = zj − (zq)j

z(1 − q)
= [j]qzj−1, (4)

lim
q−→1−[j]q = lim

q−→1−
1 − qj

1 − q
= j, (5)

where (z �= 0, q �= 0), for more details on the concepts of q-derivative (see [7]).
The quantum (or q-) calculus is an essential tool for studying diverse families of analytic

functions, and its applications in mathematics and related fields have inspired researchers.
Srivastava [8] was the first person to apply it in the context of univalent functions.
Numerous scholars conducted substantial work on q-calculus and examined its various
applications due to the applicability of q-analysis inmathematics and other domains. More
importantly, the convolution theory enable us to investigate various properties of ana-
lytic functions. Due to the large range of applications of q-calculus and the importance of
q-operators instead of regular operators, many researchers have explored q-calculus in
depth. In addition, Srivastava [9] recently published survey-cum-expository review paper
which might be useful for researchers and scholars working on these subjects. Also, Sri-
vastava’s recent survey-cum-expository review article [9] further motivates the use of the
q-analysis in Geometric Function Theory, as well as commenting on the triviality of the
so-called (p, q)-analysis involving an insignificant and redundant parameter (p, q) (see
especially [9, p.340]). For some recent investigation about q-calculus, we may refer the
readers to [10–15]

The class of functions ϕ that is holomorphic in U and has the form

ϕ(z) = 1 + r1z + r2z2 + · · · , z ∈ U ,

with

ϕ(0) = 1 and �(ϕ(z)) > 0

is denoted by P .
The nth coefficient of a class S function is well known to be restricted by n, and

the coefficient limits give information about the functions’ geometric characteristics. The
famous problem solved by Fekete–Szegö [16] is to determine the greatest value of the
coefficient functional �σ (f ) := |b3 − σb22| over the class S for each σ ∈ [0, 1], which was
demonstrated using the Loewner technique.
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Noonan and Thomas [17] introduced and investigated themth Hankel determinant of
f form ≥ 1 and n ≥ 1 as

Hm(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bj bj+1 bj+2 . . . . . . bj+m−1
bj+1 bj+2 bj+3 . . . . . . bj+m
bj+2 bj+3 bj+4 . . . . . . bj+m+1
...

...
...

...
...

...
...

...
...

...
...

...
bj+m−1 bj+m bj+m+1 . . . . . . bj+2(m−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m, j ∈ N ). (6)

Several writers, notably Noor [18], have investigated this determinant, with topics ranging
from the rate of development of Hm(j) (as j −→ ∞) to the determinant of exact limits
for particular subclasses of analytic functions on the unit disk U with specified values of
j and m. When m = 2, j = 1, and b1 = 1, the Hankel determinant is H2(1) = |b3 − b22|.
The Hankel determinant simplifies to H2(2) = |b2b4 − b23| when j = m = 2. Fekete and
Szegö [19] consider theHankel determinantH2(1) and refer toH2(2) as the secondHankel
determinant. If f is univalent inU , then the sharp upper inequalityH2(1) = |b3 − b22| ≤ 1
is known (see [16]). Janteng et al. [20] obtained sharp bounds for the functional H2(2)
for the function f in the subclass RT of S , which was introduced by Mac Gregor [21]
and consists of functions whose derivative has a positive real part. They demonstrated
that H2(2) = |b2b4 − b23| ≤ 4/9 for each f ∈ RT . They also discovered the sharp sec-
ond Hankel determinant for the classical subclass of S , namely the S∗ and K which are
the class of starlike and convex functions (see [20]). These two classes have bounds of
|b2b4 − b23| ≤ 1/8 and |b2b4 − b23| ≤ 1. The Hankel determinants for starlike and convex
functions with respect to symmetric points were recently discovered by Ready and Krishna
[22]. For functions belonging to subclasses of Ma–Minda starlike and convex functions,
Lee et al. [23] found the secondHankel determinant.Mishra andGochhayat [24] found the
sharp bound to the nonlinear functional |b2b4 − b23| for the subclass of analytic functions.

Deniz et al. [25] discussed the upper bounds of H2(2) for the classes S∗ and K lately.
Later, Altinkaya and Yalcin [26], Caglar et al. [27], Kanas et al. [28], and Orhan et al. [29]
determined the upper bounds ofH2(2) for several subclasses of �.

Gegenbauer polynomials, also known as ultraspherical polynomialsG(υ)
j (t), are orthog-

onal polynomials with regard to the weight function (1 − t2)υ−1/2 on the interval [1, 1].
They are particular instances of Jacobi polynomials and generalize Legendre and Cheby-
shev polynomials. They were given the name Leopold Gegenbauer. The following gener-
ating function of polynomials can be used to define them.

H(t, z) = 1
(1 − 2tz + z2)υ

=
∞∑
j=0

G(υ)
j (t)zj. (7)

The recurrence relation is satisfied by the polynomials.

G(υ)
0 (t) = 1,

G(υ)
1 (t) = 2υt,

jG(υ)
j (t) = 2t(j + υ − 1)G(υ)

j−1(t) − (j + 2υ − 2)G(υ)
j−2(t).
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Gegenbauer polynomials are specific solutions to

(1 + t2)y′′ − (2υ + 1)ty′ + j(j + 2υ)y = 0

differential equation. The equation becomes the Legendre equation when υ = 1/2, and
the Gegenbauer polynomials become Legendre polynomials. When υ = 1, the equation
becomes a Chebyshev differential equation and the Gegenbauer polynomials become
second-order Chebyshev polynomials.

The Gegenbauer polynomials naturally emerge as extensions of Legendre polynomi-
als in the context of potential theory and harmonic analysis. The Gegenbauer polynomial
looks to be fascinating and significant in the subject of mathematical physics. Gegenbauer
polynomials have lately been studied in the setting of mathematical physics by a number
of authors (see [30–35]).

Many scholars have recently started investigating bi-univalent functions related to
orthogonal polynomials, with a few to name [36–38]. As far as we know, there is minimal
work-related to bi-univalent functions in the literatures for the Gegenbauer polynomial.
The major objective of this work is to begin an investigation into the characteristics of
bi-univalent functions linked with Gegenbauer polynomials.

Definition 1.1: Let H(t, z) be defined as follows:

H(t, z) = 1 +
∞∑
j=1

G(υ)
j (t)zj.

A function f ∈ � given by (1) is said to be in the class N�
q (β , γ , t) if the following

subordination conditions are fulfilled:

1 + 1
γ
[Dqf (z) + βzDq(Dqf (z)) − 1] ≺ H(z, t) (8)

and

1 + 1
γ
[Dqg(ω) + βωDq(Dqg(ω)) − 1] ≺ H(ω, t), (9)

where γ ∈ R \ {0}, 0 ≤ β ≤ 1, 0<q<1 and the function g is given by (2).

We use the Gegenbauer polynomials expansions to determine the initial coefficient esti-
mates, Fekete Szegö problem and estimate of |H2(2)|Hankel determinant for a subclass of
analytic and bi-univalent functions in this work.

Lemma 1.1 ([19]): Let ϕ(z) ∈ P , then

|pj| ≤ 2 (j ∈ N ).

Lemma 1.2 ([39]): Let ϕ(z) ∈ P , then

2p2 = p21 + x(4 − p21),

4p3 = p31 + 2p1(4 − p21)x − p1(4 − p21)x
2 + 2(4 − p21)(1 − |x|2)z

for some complex number satisfying x, z, |x| ≤ 1 and |z| ≤ 1.
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2. Coefficient estimates for the classN�
q (β, γ , t)

Theorem 2.1: Let f ∈ N�
q (β , γ , t), γ ∈ R \ {0}, 0 ≤ β ≤ 1, 0<q<1, t ∈ (1/2, 1]. Then

|b2| ≤
√

8υ3t3γ 3

|4υ2t2γ 2[3]q(1 + β[2]q) + [2]2q(1 + β)2(2υt − 2υt2(1 + υ) + υ)| , (10)

|a3| ≤ 4υ2t2γ 2

[2]2q(1 + β)2
+ 2υtγ

[3]q(1 + β[2]q)
, (11)

|b4| ≤ 10[4]qυ2t2(1 + β[3]q)γ 2

[2]q[3]q[4]q(1 + β[2]q)(1 + β[3]q)(1 + β)

+ 2(2υt2(1 + υ) − υ − 2υt)γ
(1 + β[3]q)[4]q

+ 2υtγ
(1 + β[3]q)[4]q

+ [6υ(1 + t) − 12υt2(1 + υ) + 2tυ(2 + υ)(2t2(1 + υ) − 1) − 2υt(1 + 2υ)]γ
3(1 + λ[2]q)[4]q

(12)

and for some δ ∈ R,

|b3 − δb22| ≤

⎧⎪⎪⎨
⎪⎪⎩
2|1 − δ|�1t(q, v, t)

(
|1 − δ|�1t(q, v, t) ≥ 2υt

(1 + β[2]q)[3]q

)
,

4υt
(1 + β[2]q)[3]q

(
|1 − δ|�1t(q, v, t) ≤ 2υt

(1 + β[2]q)[3]q

)
,

where

�1t(q, v, t) = 8γ 3υ3t3

|4 · [3]qυ2t2γ 2(1 + β[2]q) + [2]2qγ (1 + β)2(2υt − 2υt2(1 + υ) + υ)| .
(13)

Proof: Let f ∈ Σ given by (1) be in the classN�
q (β , γ , t). Then

1 + 1
γ
[Dqf (z) + βzDq(Dqf (z)) − 1] = H(ω(z), t) (14)

and

1 + 1
γ
[Dqg(ω) + βωDq(Dqg(ω)) − 1] = H(�(ω), t), (15)

where p, y ∈ P and let p, y ∈ P be define as

p(z) = 1 + ω(z)
1 − ω(z)

= 1 + p1(z) + p2z2 + p3z3 + · · · ⇒ ω(z) = p(z) − 1
p(z) + 1

, (z ∈ U)

(16)
and

y(ω) = 1 + �(ω)

1 − �(ω)
= 1 + y1(ω) + y2ω2 + y3ω3 + · · · ⇒ �(ω) = y(ω) − 1

y(ω) + 1
, (ω ∈ U).

(17)
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It follows from (16) and (17) that

ω(z) = 1
2

[
p1z +

(
p2 − p21

2

)
z2 +

(
p3 − p1p2 + p31

4

)
z3 + · · ·

]
(18)

and

�(ω) = 1
2

[
y1ω +

(
y2 − y21

2

)
ω2 +

(
y3 − y1y2 + y31

4

)
ω3 + · · ·

]
. (19)

From (18) and (19), applying H(t, z) as given in (7), we see that

H(ω(z), t) = 1 + G(υ)
1 (t)
2

p1z +
[
G(υ)
1 (t)
2

(
p2 − p21

2

)
+ G(υ)

2 (t)
4

p21

]
z2

+
[
G(υ)
1 (t)
2

(
p3 − p1p2 + p31

4

)

+ G(υ)
2 (t)
2

p1
(
p2 − p21

2

)
+ G(υ)

3 (t)
8

p31

]
z3 + · · ·

and

H(�(ω), t) = 1 + G(υ)
1 (t)
2

y1ω +
[
G(υ)
1 (t)
2

(
y2 − y21

2

)
+ G(υ)

2 (t)
4

y21

]
ω2

+
[
G(υ)
1 (t)
2

(
y3 − y1y2 + y31

4

)

+ +G(υ)
2 (t)
2

y1
(
y2 − y21

2

)
+ G(υ)

3 (t)
8

y31

]
ω3 + · · · . (20)

It the following follows from (14), (20) and (15) that

(1 + β)[2]q
γ

b2 = G(υ)
1 (t)
2

p1, (21)

(1 + β[2]q)[3]q
γ

b3 = G(υ)
1 (t)
2

(
p2 − p21

2

)
+ G(υ)

2 (t)
4

p21, (22)

(1 + β[3]q)[4]q
γ

b4 = G(υ)
1 (t)
2

(
p3 − p1p2 + p31

4

)

+ G(υ)
2 (t)
2

p1
(
p2 − p21

2

)
+ G(υ)

3 (t)
8

p31, (23)

− (1 + β)[2]q
γ

b2 = G(υ)
1 (t)
2

y1, (24)

[3]q(1 + β[2]q)(2a22 − a3)
γ

b3 = G(υ)
1 (t)
2

(
y2 − y21

2

)
+ G(υ)

2 (t)
4

y21, (25)
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− [4]q(1 + β[3]q)(5b32 − 5b2b3 + b4)
γ

b4 = G(υ)
1 (t)
2

(
y3 − y1y2 + y31

4

)

+ G(υ)
2 (t)
2

y1
(
y2 − y21

2

)
+ G(υ)

3 (t)
8

y31. (26)

Adding (21) and (24), we have

p1 = −y1, p21 = y21 and p31 = −y31 (27)

and

b22 = (G(υ)
1 (t))2(p21 + y21)γ
8[2]2q(1 + β)2

. (28)

Also, adding (22), (25) and applying (27) yields

4[3]q(1 + β[2]q)b22
γ

= G(υ)
1 (t)(p2 + y2) − y21(G

(υ)
1 (t) − G(υ)

2 (t)). (29)

Applying (27) in (28) gives

y21 = 4[2]2q(1 + β)2b22
(G(υ)

1 (t))2γ 2
. (30)

Putting (30) into (29) and with some calculations, we have

|b2|2 =
∣∣∣∣∣ (G(υ)

1 (t))3γ 3(p2 + y2)

4[3]q(G
(υ)
1 (t))2γ 2(1 + β[2]q) + 4[2]2qγ (1 + β)2(G(υ)

1 (t) − G(υ)
2 (t))

∣∣∣∣∣ .
Applying triangular inequality and Lemma 1.1, we have

|b2| ≤ √
�1t(q, v, t). (31)

Subtracting (25) from (22) and with some calculations, we have

b3 = b22 + G(υ)
1 (t)γ [p2 − y2]
4[3]q(1 + β[2]q)

(32)

and

b3 = (G(υ)
1 (t))2γ 2p21

4[2]2q(1 + β)2
+ G(υ)

1 (t)γ [p2 − y2]
4[3]q(1 + β[2]q)

. (33)

Applying triangular inequality, and Lemma 1.1, we have

|b3| ≤ 4υ2t2γ 2

[2]2q(1 + β)2
+ 2υtγ

[3]q(1 + β[2]q)
. (34)

Subtracting (26) from (23), we have

2[4]q(1 + β[3]q)
γ

b4 = 5[4]q(G
(υ)
1 (t))2(1 + β[3]q)γ 2p1(p2 − y2)

8[2]q[3]q(1 + β[2]q)(1 + β)γ
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+ G(υ)
1 (t)(p3 − y3)

2
+ [G(υ)

2 (t) − G(υ)
1 (t)]p1(p2 + y2)
2

+ (G(υ)
1 (t) − 2G(υ)

2 (t) + G(υ)
3 (t))p31

4
. (35)

Applying triangular inequality and Lemma 1.1, we have

|b4| ≤ 10[4]qυ2t2(1 + β[3]q)γ 2

[2]q[3]q[4]q(1 + β[2]q)(1 + β[3]q)(1 + β)
+ 2υtγ

(1 + β[3]q)[4]q

+ 2(2υt2(1 + υ) − υ − 2υt)γ
(1 + β[3]q)[4]q

+ [6υ(1 + t) − 12υt2(1 + υ) + 2tυ(2 + υ)(2t2(1 + υ) − 1) − 2υt(1 + 2υ)]γ
3(1 + λ[2]q)[4]q

.

From (32), we have

b3 − δb22 = b22 + G(υ)
1 (t)γ [p2 − y2]
4[3]q(1 + β[2]q)

− δb22

= υt(p2 − y2)
2(1 + β[2]q)[3]q

+ (1 − δ)

×
[

2γ 3(p2 + y2)υ3t3

4 · [3]qυ2t2γ 2(1 + β[2]q) + [2]2qγ (1 + β)2(2υt − 2υt2(1 + υ) + υ)

]
.

By triangular inequality, we have

|b3 − δb22| ≤ 2υt
(1 + β[2]q)[3]q

+ |1 − δ|�1t(q, v, t). (36)

Suppose

|1 − δ|�1t(q, v, t) ≥ 2υt
(1 + β[2]q)[3]q

then, we have

|b3 − δb22| ≤ 2|1 − δ|�1t(q, v, t), (37)

where

|1 − δ| ≥ �1t(q, v, t)

and suppose

|1 − δ|�1t(q, v, t) ≤ 2υt
(1 + β[2]q)[3]q

,

then, we have

|b3 − δb22| ≤ 4υt
(1 + β[2]q)[3]q

,
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where

|1 − δ| ≤ 2υt
(1 + β[2]q)[3]q�1t(q, v, t)

and �1(q, v, t) is given in (13). �

Remark 2.1: If we let limq→1− in the above result, we can get the samebounds for the func-
tion class N�(β , γ , t) of analytic and bi-univalent functions, involving the Gegenbauer
polynomials.

3. Second Hankel determinant for the classN�
q (β, γ , t)

Theorem 3.1: Let the function f (z) given by (1) be in the class N�
q (β , γ , t), γ ∈ R \ {0},

0 ≤ β ≤ 1, 0<q<1, t ∈ (1/2, 1]. Then

H2(2) = |b2b4 − b23| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(2, t) (B1 ≥ 0 and B2 ≥ 0),

max

{
4υ2t2γ 2

(1 + β[2]q)2[3]2q
,T(2, t)

}
(B1 > 0 and B2 < 0),

4υ2t2γ 2

(1 + β[2]q)2[3]2q
(B1 ≤ 0 and B2 ≤ 0),

max{T(m0, t),T(2, t)} (B1 < 0 and B2 > 0).

Where

T(2, t) = G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

[2]q[4]q(1 + β[2]q)(1 + β)
+ 2G(υ)

1 (t)[G(υ)
2 (t) + G(υ)

1 (t)]γ 2

[2]q[4]q(1 + β[3]q)(1 + β)

+ (G(υ)
1 (t))2γ 2

[2]q[4]q(1 + β[3]q)(1 + β)
+ (G(υ)

1 (t))4γ 4

16[2]4q(1 + β)4
,

T(m0, t) = (G(υ)
1 (t))2γ 2

(1 + β[2]q)2[3]q
+ B22

8[4]q[3]2q(1 + β[3]q)(1 + β[2]q)2B1

− B22
4[4]q[3]2q(1 + β[3]q)(1 + β[2]q)2B1

,

B1 = G(υ)
1 (t)[2[G(υ)

1 (t) − 2G(υ)
2 (t)

+ G(υ)
3 (t)]γ 2(1 + β[2]q)[2]3q(1 + β)3(1 + β[3]q)[3]3q

+ 2(G(υ)
1 (t))3(1 + β[2]q)2[4]q(1 + β[3]q)[3]3q

− 4G(υ)
1 (t)γ 2(1 + β[2]q)2[2]3q(1 + β)3[3]3q

+ 2G(υ)
1 (t)γ 2[2]4q[4]q(1 + β)4(1 + β[3]q)

− (G(υ)
1 (t))2(1 + β[2]q)2[2]2q[3]q(1 + β)2[4]q(1 + β[3]q)],

and

B2 = G(υ)
1 (t)[4[G(υ)

2 (t) − G(υ)
1 (t)]γ 2[2]q(1 + β)(1 + β[2]q)2[3]2q
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− 4G(υ)
1 (t)γ 2[2]2q(1 + β[3]q)[4]q + 6G(υ)

1 (t)γ 2[2]q[3]2q(1 + β)(1 + β[2]q)2

+ (G(υ)
1 (t))2[3]q(1 + β[2]q)(1 + β[3]q)[4]q].

Proof: From (21) and (35), we have

b2b4 = 5(G(υ)
1 (t))3γ 3[4]q(1 + β[3]q)(p2 − y2)

32[2]2q[3]q[4]q(1 + β[2]q)(1 + β[3]q)(1 + β)2
p21

+ (G(υ)
1 (t))2γ 2(p3 − y3)

8[2]q[4]q(1 + β[3]q)(1 + β)
p1

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2[4]q(p2 + y2)

8[2]q[4]q(1 + β[3]q)(1 + β)
p21

+ G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
p41.

With some calculations, we have

b2b4 − b23 = (G(υ)
1 (t))3γ 3(p2 − y2)

32[2]2q[3]q(1 + β[2]q)(1 + β)2
p21 + (G(υ)

1 (t))2γ 2(p3 − y3)
8[2]q[4]q(1 + β[3]q)(1 + β)

p1

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2(p2 + y2)

8[2]q[4]q(1 + β[3]q)(1 + β)
p21

+ G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
p41

− (G(υ)
1 (t))4γ 4

16[2]4q(1 + β)4
p41 − (G(υ)

1 (t))2γ 2(p2 − y2)2

16[3]2q(1 + β[2]q)2
. (38)

By using Lemma 1.2,

p2 − y2 = 4 − p21
2

(x − h), (39)

p2 + y2 = p21 + 4 − p21
2

(x + h), (40)

and

p3 − y3 = p31
2

+ 4 − p21
2

p1(x + h) − 4 − p21
4

p1(x2 + h2)

+ 4 − p21
2

[(1 − |x|2z) − (1 − |h|2)w] (41)

for some x, h, z, w with |x| ≤ 1, |h| ≤ 1, |z| ≤ 1, |w| ≤ 1, |p1| ∈ [0, 2] and substituting
(p2 + y2), (p2 − y2) and (p3 − y3), and after some straightforward simplifications, we have

b2b4 − b23 = (G(υ)
1 (t))3γ 3(4 − p21)(x − h)

64[2]2q[3]q(1 + β[2]q)(1 + β)2
p21
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+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

8[2]q[4]q(1 + β[3]q)(1 + β)
p41 + (G(υ)

1 (t))2γ 2

16[2]q[4]q(1 + β[3]q)(1 + β)
p41

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2(4 − p21)(x + h)

16[2]q[4]q(1 + β[3]q)(1 + β)
p21

+ (G(υ)
1 (t))2γ 2(4 − p21)(x + h)

16[2]q[4]q(1 + β[3]q)(1 + β)
p21 − (G(υ)

1 (t))2γ 2(4 − p21)(x
2 + h2)

32[2]q[4]q(1 + β[3]q)(1 + β)
p21

+ (G(υ)
1 (t))2γ 2(4 − p21)[(1 − |x|2)z − (1 − |h|2)w]

16[2]q[4]q(1 + β[3]q)(1 + β)
p1

− (G(υ)
1 (t))2γ 2(4 − p21)

2(x − h)2

64(1 + β[2]q)2[3]2q

− (G(υ)
1 (t))4γ 4

16[2]4q(1 + β)4
p41 + G(υ)

1 (t)[G(υ)
1 (t) − 2G(υ)

2 (t) + G(υ)
3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
p41.

Letm = p1, assumewithout any restriction thatm ∈ [0, 2], λ1 = |x| ≤ 1,λ2 = |h| ≤ 1 and
applying triangular inequality, we have

|b2b4 − b23| ≤
{
G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
m4

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

8[2]q[4]q(1 + β[3]q)(1 + β)
m4 + (G(υ)

1 (t))2γ 2

16[2]q[4]q(1 + β[3]q)(1 + β)
m4

+ (G(υ)
1 (t))2γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m + (G(υ)

1 (t))4γ 4

16[2]4q(1 + β)4
m4

}

+
{
G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m2

+ (G(υ)
1 (t))3γ 3(4 − m2)

64[2]2q[3]q(1 + β[2]q)(1 + β)2
m2

+ (G(υ)
1 (t))2γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m2

}
(λ1 + λ2)

+
{

(G(υ)
1 (t))2γ 2(4 − m2)

32[2]q[4]q(1 + β[3]q)(1 + β)
m2

− (G(υ)
1 (t))2γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m

}
(λ21 + λ22)

+ (G(υ)
1 (t))2γ 2(4 − m2)2(λ1 + λ2)

2

64(1 + β[2]q)2[3]2q
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and equivalently, we have

|b2b4 − b23| ≤ N1(t) + N2(t,m)(λ1 + λ2) + N3(t,m)(λ21 + λ22)

+ N4(t,m)(λ1 + λ2)
2 = Z(λ1, λ2), (42)

where

N1(t,m) =
{
G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
m4

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

8[2]q[4]q(1 + β[3]q)(1 + β)
m4

+ (G(υ)
1 (t))2γ 2

16[2]q[4]q(1 + β[3]q)(1 + β)
m4

+ (G(υ)
1 (t))2γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m + (G(υ)

1 (t))4γ 4

16[2]4q(1 + β)4
m4

}
≥ 0,

N2(t,m) =
{
G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m2

+ (G(υ)
1 (t))3γ 3(4 − m2)

64[2]2q[3]q(1 + β[2]q)(1 + β)2
m2

+ (G(υ)
1 (t))2γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m2

}
≥ 0,

N3(t,m) =
{

(G(υ)
1 (t))2γ 2(4 − m2)

32[2]q[4]q(1 + β[3]q)(1 + β)
m2

− (G(υ)
1 (t))2γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m

}
≤ 0,

N4(t,m) = (G(υ)
1 (t))2γ 2(4 − m2)2

64(1 + β[2]q)2[3]2q
≥ 0,

where 0 ≤ m ≤ 2. Now, we maximize the function Z(λ1, λ2) in the closed square

� = {(λ1, λ2) : λ1 ∈ [0, 1], λ2 ∈ [0, 1]} form ∈ [0, 2].

For a fixed value of t, the coefficients of the function Z(λ1, λ2) in (42) are dependent onm,
thus the maximum of Z(λ1, λ2)with regard tommust be investigated, taking into account
the cases whenm = 0, r = 2 andm ∈ (0, 2).

First Case:Whenm = 0,

Z(λ1, λ2) = N4(t, 0) = (G(υ)
1 (t))2γ 2

4(1 + β[2]q)2[3]2q
(λ1 + λ2)

2.
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It is obvious that the function Z(λ1, λ2) reaches its maximum at (λ1, λ2) and

max{Z(λ1, λ2) : λ1, λ2 ∈ [0, 1]} = Z(1, 1) = (G(υ)
1 (t))2γ 2

(1 + β[2]q)2[3]2q
. (43)

Second Case:Whenm = 2, Z(λ1, λ2) is expressed as a constant function with respect to
m, we have

Z(λ1, λ2) = N1(t, 2) =
{
G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

[2]q[4]q(1 + β[2]q)(1 + β)

+ 2G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

[2]q[4]q(1 + β[3]q)(1 + β)
+ (G(υ)

1 (t))2γ 2

[2]q[4]q(1 + β[3]q)(1 + β)

+ (G(υ)
1 (t))4γ 4

[2]4q(1 + β)4

}
.

Third Case:Whenm ∈ (0, 2), let λ1 + λ2 = s and λ1 · λ2 = l in this case, then (42) can
be of the form

Z(λ1, λ2) = N1(t,m) + N2(t,m)s + (N3(t,m) + N4(t,m))s2 − 2N3(t,m)l = V(s, l),
(44)

where s ∈ [0, 2] and l ∈ [0, 1]. Now, we need to investigate the maximum of

V(s, l) ∈ Λ = {(s, l) : s ∈ [0, 2], l ∈ [0, 1]}. (45)

By differentiating V(s, l) partially, we have

∂V
∂s

= N2(t,m) + 2(N3(t,m) + N4(t,m))s = 0,

∂V
∂ l

= −2N3(t,m) = 0.

These results reveal that V(s, l) does not have a critical point in �, and so Z(λ1, λ2) does
not have a critical point in the square �.

As a result, the function Z(λ1, λ2) cannot have its maximum value in the interior of �.
The maximum of Z(λ1, λ2) on the boundary of the square � will be investigated next.

For λ1 = 0, λ2 ∈ [0, 1] (also, for λ2 = 0, λ1 ∈ [0, 1]) and

Z(0, λ2) = N1(t,m) + N2β2 + (N3(t,m) + N4(t,m))λ22 = Q(λ2). (46)

Now, since N3(t,m) + N4(t,m) ≥ 0, then we have

Q′(λ2) = N2(t,m) + 2[N3(t,m) + N4(t,m)]λ2 > 0,

which implies that Q(β2) is an increasing function. Therefore, for a fixed m ∈ [0, 2) and
t ∈ (1/2, 1], the maximum occurs at λ2 = 1. Thus, from (46),

max{G(0, λ2) : λ2 ∈ [0, 1]} = Z(0, 1)
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= N1(t,m) + N2(t,m) + N3(t,m) + N4(t,m). (47)

For λ1 = 1, λ2 ∈ [0, 1] (also, for λ2 = 1, λ1 ∈ [0, 1]) and

Z(1, λ2) = N1(t,m) + N2(t,m) + N3(t,m) + N4(t,m) + [N2(t,m)

+ 2N4(t,m)]λ2 + [N3(t,m) + N4(t,m)]λ22 = D(λ2), (48)

D′(λ2) = [N2(t) + 2N4(t)] + 2[N3 + N4]λ2. (49)

We know that N3(t) + N4 ≥ 0, then

D′(λ2) = [N2(t) + 2N4(t)] + 2[N3 + N4]λ2 > 0.

Therefore, the function D(λ2) is an increasing function and the maximum occurs at λ2 =
1. From (48), we have

max{Z(1, λ2) : λ2 ∈ [0, 1]} = Z(1, 1)

= N1(t,m) + 2[N2(t,m) + N3(t,m)] + 4N4(t,m). (50)

Hence, for everym ∈ (0, 2), taking it from (47) and (50), we have

N1(t,m) + 2[N2(t,m) + N3(t,m)] + 4N4(t,m)

> N1(t,m) + N2(t,m) + N3(t,m) + N4(t,m).

Therefore,

max{Z(λ1, λ2) : λ1 ∈ [0, 1],βλ2 ∈ [0, 1]}
= N1(t,m) + 2[N2(t,m) + N3(t,m)] + 4N4(t,m).

Since,

Q(1) ≤ D(1) form ∈ [0, 2] and t ∈ [1, 1],

then

max{Z(λ1, λ2)} = Z(1, 1)

occurs on the boundary of square �.
Let T : (0, 2) → R defined by

T(m, t) = max{Z(λ1, λ2)} = Z(1, 1) = N1(t,m) + 2N2(t,m) + 2N3(t,m) + 4N4(t,m).
(51)

Now, inserting the values of N1(t,m),N2(t,m),N3(t,m) and N4(t,m) into (51) and with
some calculations, we have

T(m, t) =
{
G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

16[2]q[4]q(1 + β[2]q)(1 + β)
m4

+ G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

8[2]q[4]q(1 + β[3]q)(1 + β)
m4 + (G(υ)

1 (t))2γ 2

16[2]q[4]q(1 + β[3]q)(1 + β)
m4
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+ (G(υ)
1 (t))2γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m + (G(υ)

1 (t))4γ 4

16[2]4q(1 + β)4
m4

}

+
{
G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m2

+ (G(υ)
1 (t))3γ 3(4 − m2)

32[2]2q[3]q(1 + β[2]q)(1 + β)2
m2 + (G(υ)

1 (t))2γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m2

}

+
{

(G(υ)
1 (t))2γ 2(4 − m2)

16[2]q[4]q(1 + β[3]q)(1 + β)
m2

− (G(υ)
1 (t))2γ 2(4 − m2)

8[2]q[4]q(1 + β[3]q)(1 + β)
m

}
+ (G(υ)

1 (t))2γ 2(4 − m2)2

16(1 + β[2]q)2[3]2q
.

By simplifying, we have

T(m, t) = B1
32[2]4q[4]q[3]2q(1 + β[3]q)(1 + β)4(1 + β[2]q)2

m4 (52)

+ (G(υ)
1 (t))2γ 2

(1 + β[2]q)2[3]q
+ B2

8[2]2q[4]q[3]2q(1 + β[3]q)(1 + β)2(1 + β[2]q)2
m2,

(53)

where

B1 = G(υ)
1 (t)

[
2[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2(1 + β[2]q)[2]3q

· (1 + β)3(1 + β[3]q)[3]3q + 2(G(υ)
1 (t))3(1 + β[2]q)2[4]q(1 + β[3]q)[3]3q

− 4G(υ)
1 (t)γ 2(1 + β[2]q)2[2]3q(1 + β)3[3]3q + 2G(υ)

1 (t)γ 2

[2]4q[4]q(1 + β)4(1 + β[3]q)

− (G(υ)
1 (t))2(1 + β[2]q)2[2]2q[3]q(1 + β)2[4]q(1 + β[3]q)

]
,

B2 = G(υ)
1 (t)

[
4[G(υ)

2 (t) − G(υ)
1 (t)]γ 2[2]q(1 + β)(1 + β[2]q)2[3]2q

− 4G(υ)
1 (t)γ 2[2]2q(1 + β[3]q)[4]q + 6G(υ)

1 (t)γ 2[2]q[3]2q(1 + β)(1 + β[2]q)2

+(G(υ)
1 (t))2[3]q(1 + β[2]q)(1 + β[3]q)[4]q

]
.

If T(m, t) has a maximum value in the interior of m ∈ [0, 2] and by applying some
elementary calculus, we have

T′(m, t) = B1
8[2]4q[4]q[3]2q(1 + β[3]q)(1 + β)4(1 + β[2]q)2

m3

+ B2
4[2]2q[4]q[3]2q(1 + β[3]q)(1 + β)2(1 + β[2]q)2

m.
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Now, we need to examine the sign of the function T′(m, t) depending on the signs of B1
and B2 as follows:

First Result: Suppose B1 ≥ 0 and B2 ≥ 0 then,
T′(m, t) ≥ 0. This shows that T(m, t) is an increasing function on the boundary ofm ∈

[0, 2] that ism = 2. Therefore,

max{T(m, t) : m ∈ (0, 2)} = G(υ)
1 (t)[G(υ)

1 (t) − 2G(υ)
2 (t) + G(υ)

3 (t)]γ 2

[2]q[4]q(1 + β[2]q)(1 + β)

+ 2G(υ)
1 (t)[G(υ)

2 (t) + G(υ)
1 (t)]γ 2

[2]q[4]q(1 + β[3]q)(1 + β)

+ (G(υ)
1 (t))2γ 2

[2]q[4]q(1 + β[3]q)(1 + β)
+ (G(υ)

1 (t))4γ 4

16[2]4q(1 + β)4
.

Second Result: If B1 > 0 and B2 < 0, then

T′(m, t) = B1m3 + 2[2]2q(1 + β)2mB2
8[2]4q[4]q[3]2q(1 + β[3]q)(1 + β)4(1 + β[2]q)2

m3 = 0 (54)

at critical point

m0 =
√

−2[2]2q(1 + β)2B2
B2

(55)

is a critical point of the function T(m, t). Now,

T′′(m0) = −3B2
4[2]2q[4]q[3]2q(1 + β[3]q)(1 + β)2(1 + β[2]q)2

m3

+ B2
4[2]2q[4]q[3]q(1 + β[3]q)(1 + β)2(1 + β[2]q)2

m3.

Therefore, m0 is the minimum point of the function T(m, t). Hence, T(m, t) cannot have
a maximum.

Third Result: If B1 ≤ 0 and B2 ≤ 0, then

T′(m, t) ≤ 0.

Therefore, T(m, t) is a decreasing function on the interval (0, 2). Hence,

max {T(m, t) : m ∈ (0, 2)} = T(0) = (G(υ)
1 (t))2γ 2

(1 + β[2]q)2[3]2q
. (56)

Fourth Result: If B1 < 0 and B2 > 0

T′′(m0, t) = −3B2
4[2]2q[4]q[3]2q(1 + β[3]q)(1 + β)2(1 + β[2]q)2

m3

+ B2
4[2]2q[4]q[3]q(1 + β[3]q)(1 + β)2(1 + β[2]q)2

m3
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< 0.

Therefore, T′′(m, t) < 0. Hence,m0 is the maximum point of the function T(m, t) and the
maximum value occurs atm = m0. Thus,

max{T(m, t) : m ∈ (0, 2)} = T(m0, t),

T(m0, t) = (G(υ)
1 (t))2γ 2

(1 + β[2]q)2[3]q
+ B22

8[4]q[3]2q(1 + β[3]q)(1 + β[2]q)2B1

− B22
4[4]q[3]2q(1 + β[3]q)(1 + β[2]q)2B1

. �

4. Conclusion

Many researchers have recently started investigating bi-univalent functions related to
orthogonal polynomials as described in the introduction section. But as far as we know,
there is minimal work-related with bi-univalent functions in the literatures for the Gegen-
bauer polynomial. In our present study make used of certain q-derivative operator and
Gegenbauer polynomials, we have first defined a new subclass of analytic and bi-univalent
functions. We have then obtained certain coefficients bounds, the Fekete–Szegö inequali-
ties and upper bounds for the second-order Hankel determinant for our defined functions
class.
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