General Mathematics Vol. 29, No. 1 (2021), 41-54
DOI:10.2478/gm-2021-0004

S sciendo

Coefficient estimates for a subclass of bi-univalent functions involving the q-derivatives operator ${ }^{1}$

Timilehin Gideon Shaba, Abbas Kareem Wanas

Abstract

In this current study, we introduce and investigate a new subclass of holormorphic and bi-univalent functions $\mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ in the unit disk λ associated with q-derivative operator. The coefficient estimates $\left|b_{2}\right|$ and $\left|b_{3}\right|$ on the new subclass are obtained and important results are indicated.

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
Key words and phrases: Analytic functions, q-Derivative, Bi-Univalent functions, Coefficient estimates.

1 Introduction

Let \mathfrak{A} be the class of all holomorphic functions of the form

$$
\begin{equation*}
\mathfrak{F}(z)=z+\sum_{\kappa=2}^{\infty} b_{\kappa} z^{\kappa} \tag{1}
\end{equation*}
$$

in the open unit disk $\lambda=\{z \in \mathfrak{C}:|z|<1\}$.

[^0]A function $\mathfrak{F}(z)$ which is analytic is said to be subordinate to an analytic function $\mathfrak{g}(z)$, denoted by $\mathfrak{F} \prec \mathfrak{g}$, provided there is an holomorphic (Schwarz) function \mathfrak{w} with $\mathfrak{w}(0)=0,|\mathfrak{w}|<1$, for all $z \in \mathfrak{U}$ satisfying $\mathfrak{F}=\mathfrak{g}(\mathfrak{w}(z))$ for all $z \in \mathfrak{U}$.

The famous Koebe one-quarter theorem [12] ensure that the image of \mathfrak{U} under every univalent function $\mathfrak{F} \in \mathfrak{A}$ contain a disk of radius $\frac{1}{4}$. Furthermore, all univalent function \mathfrak{F} has an inverse \mathfrak{F}^{-1} satisfying $\mathfrak{F}^{-1}(\mathfrak{F}(z))=z$ and

$$
\mathfrak{F}^{-1}(\mathfrak{F}(\mathfrak{w}))=\mathfrak{w}, \quad\left(|\mathfrak{w}|<r_{0}(\mathfrak{F}), r_{0}(\mathfrak{F}) \geq \frac{1}{4}\right)
$$

where

$$
\mathfrak{g}(\mathfrak{w})=\mathfrak{F}^{-1}(\mathfrak{w})=\mathfrak{w}-a_{2} \mathfrak{w}^{2}+\left(2 b_{2}^{2}-b_{3}\right) \mathfrak{w}^{3}-\left(5 b_{2}^{3}-5 b_{2} b_{3}+b_{4}\right) \mathfrak{w}^{4}+\cdots
$$

A function $\mathfrak{F} \in \mathfrak{A}$ denoted by \mathfrak{E} is said to be bi-univalent in \mathfrak{U} if both \mathfrak{F} and \mathfrak{F}^{-1} are univalent in \mathfrak{U}.

In [8], Ali et al introduced certain subclasses of the bi-univalent function class \mathfrak{E} using subordination which widen the results of Brannan and Taha [10], from then on, numerous researchers as introduced subclasses of the biunivalent function class \mathfrak{E} and investigated the first two coefficients $\left|b_{2}\right|$ and $\left|b_{3}\right|$ of series expansion (1). Such as $([4,15,14,11,24,21,13,22,32,20,19$, $23,1,29,30,31]$).

Jackson $[17,18]$ introduced the q-derivative operator \mathfrak{D}_{q} of a function as follows:

$$
\begin{equation*}
\mathfrak{D}_{q} \mathfrak{F}(z)=\frac{\mathfrak{F}(q z)-\mathfrak{F}(z)}{(q-1) z} \tag{2}
\end{equation*}
$$

and $\mathfrak{D}_{q} \mathfrak{F}(z)=\mathfrak{F}^{\prime}(0)$. In case $\mathfrak{F}(z)=z^{\kappa}$ for κ is a positive integer, the q derivative of $\mathfrak{F}(z)$ is given by

$$
\mathfrak{D}_{q} z^{\kappa}=\frac{z^{\kappa}-(z q)^{\kappa}}{(q-1) z}=[\kappa]_{q} z^{\kappa-1}
$$

As $q \longrightarrow 1^{-}$and $\kappa \in \mathfrak{N}$, we get

$$
\begin{equation*}
[\kappa]_{q}=\frac{1-q^{\kappa}}{1-q}=1+q+\cdots+q^{\kappa} \longrightarrow \kappa \tag{3}
\end{equation*}
$$

where $(z \neq 0, q \neq 0)$, for more details on the concepts of q-derivative (see $[16,3,5,6,7,26,27,9])$.

Let $\vartheta(z)$ be an holomorphic function with positive real part in \mathfrak{U} such that

$$
\vartheta(0)=1, \quad \vartheta^{\prime}(0)>0
$$

and $\vartheta(\mathfrak{U})$ is symmetric with respect to real axis, which is of the form:

$$
\begin{equation*}
\vartheta(z)=1+\mathfrak{B}_{1} z+\mathfrak{B}_{2} z^{2}+\mathfrak{B}_{3} z^{3}+\cdots \tag{4}
\end{equation*}
$$

where $\mathfrak{B}_{1}>0$.
Using the q-derivative we now introduce the following subclass of holomorphic and bi-univalent functions.

Definition 1 function $\mathfrak{F} \in \mathfrak{E}, 0 \leq \eta \leq 1, \phi \in \mathfrak{N}_{0}$ and $z, \mathfrak{w} \in \mathfrak{U}$ is said to be in the class $\mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ if each of the following subordination condition are fulfilled:

$$
\begin{equation*}
(1-\eta)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi}+\eta\left(z\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{F}(z)\right)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi-1} \prec \vartheta(z) \tag{5}
\end{equation*}
$$

and
(6) $\quad(1-\eta)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi}+\eta\left(\mathfrak{w}\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi-1} \prec \vartheta(\mathfrak{w})$, where $\mathfrak{g}(\mathfrak{w})=\mathfrak{F}^{-1}(\mathfrak{w})$.

Remark 1 Putting $q \longrightarrow 1^{-}, \eta=0, \phi=1$ and

$$
\vartheta(z)=\frac{1+(1-2 \varphi)}{1-z} \quad(0 \leq \varphi<1) \quad \text { and } \quad \vartheta(z)=\left(\frac{1+z}{1-z}\right)^{\rho} \quad(0<\rho \leq 1)
$$

the class $\mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ reduces to the classes $\mathfrak{H}_{\mathfrak{E}}^{\rho}$ and $\mathfrak{H}_{\mathfrak{E}}(\varphi)$ introduced by Srivastava et al. [28] which are subclasses of the functions $\mathfrak{F} \in \mathfrak{E}$ satisfying

$$
\left|\arg \left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)\right|<\frac{\rho \pi}{2}, \quad\left|\arg \left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\right|<\frac{\rho \pi}{2}
$$

and

$$
\Re\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)>\varphi, \quad \Re\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)>\varphi
$$

respectively.

Remark 2 Putting

$$
\vartheta(z)=\frac{1+(1-2 \varphi)}{1-z} \quad(0 \leq \varphi<1) \quad \text { and } \quad \vartheta(z)=\left(\frac{1+z}{1-z}\right)^{\rho} \quad(0<\rho \leq 1) \text {, }
$$

the class $\mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ reduces to the classes $\mathfrak{H}_{\mathbb{E}}^{\eta, \phi}(q ; \rho)$ and $\mathfrak{H}_{\mathfrak{E}}^{\eta, \phi}(q ; \varphi)$ introduced by Akgul [2] which are subclasses of the functions $\mathfrak{F} \in \mathfrak{E}$ satisfying

$$
\begin{aligned}
& \left|\arg \left((1-\eta)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi}+\eta\left(z\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{F}(z)\right)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi-1}\right)\right|<\frac{\rho \pi}{2}, \\
& \left.\quad \mid \arg \left((1-\eta)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi}+\eta\left(\mathfrak{w}\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi-1}\right)\right) \left\lvert\,<\frac{\rho \pi}{2}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \Re\left((1-\eta)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi}+\eta\left(z\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{F}(z)\right)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi-1}\right)>\varphi, \\
& \left.\Re\left((1-\eta)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi}+\eta\left(\mathfrak{w}\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi-1}\right)\right)>\varphi
\end{aligned}
$$

respectively.

We shall need the following Lemma in our investigation.

Lemma 1 [25] Let the function $\mathfrak{p} \in \mathfrak{P}$ be given by the following series:

$$
\mathfrak{p}(z)=1+\mathfrak{p}_{1} z+\mathfrak{p}_{2} z^{2}+\cdots \quad(z \in \mathfrak{U}) .
$$

The sharp estimate given by

$$
\left|\mathfrak{p}_{n}\right| \leq 2 \quad(n \in \mathfrak{N})
$$

holds true.

The aim of the current paper is to find estimates on the coefficients $\left|b_{2}\right|$ and $\left|b_{3}\right|$ for function in this new subclass $\mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ of the function class \mathfrak{E}.

2 A Set of Main Results

Theorem 1 Let $\mathfrak{F} \in \mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ be of the form (1). Then
(7) $\left|b_{2}\right| \leq \min \left\{\frac{\mathfrak{B}_{1}}{(\eta+\phi)[2]_{q}}\right.$,

$$
\left.\frac{\sqrt{2} \mathfrak{B}_{1}^{\frac{3}{2}}}{\sqrt{2 \mathfrak{B}_{1}^{2}(\phi+2 \eta)[3]_{q}+\mathfrak{B}_{1}^{2}(\phi+2 \eta)(\phi-1)[2]_{q}^{2}+2(\eta+\phi)^{2}[2]_{q}^{2}\left(\mathfrak{B}_{1}-\mathfrak{B}_{2}\right)}}\right\}
$$

and
(8) $\left|b_{3}\right| \leq \min \left\{\frac{32(\phi+2 \eta)(1-\phi)+8 \mathfrak{B}_{2}}{8(\phi+2 \eta)[3]_{q}}, \frac{\mathfrak{B}_{1}}{(\phi+2 \eta)[3]_{q}}+\frac{\mathfrak{B}_{1}^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}\right\}$,
where the coefficients \mathfrak{B}_{1} and \mathfrak{B}_{1} are given as in (4).
Proof. Let $\mathfrak{F} \in \mathfrak{E}_{q}^{\eta, \phi}(\vartheta)$ and $\mathfrak{g}=\mathfrak{F}^{-1}$. Then there are holomorphic functions $s, t: \mathfrak{U} \longrightarrow \mathfrak{U}$ with $s(0)=t(0)=0$, satisfying the following conditions:
$(1-\eta)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi}+\eta\left(z\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{F}(z)\right)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi-1}=\vartheta(s(z)), z \in \mathfrak{U}$ and
(10) $(1-\eta)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi}+\eta\left(\mathfrak{w}\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi-1}=\vartheta(t(\mathfrak{w})), \mathfrak{w} \in \mathfrak{U}$.

Define the functions x and y by

$$
\begin{equation*}
x(z)=\frac{1+s(z)}{1-s(z)}=1+x_{1} z+x_{2} z^{2}+\cdots \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
y(z)=\frac{1+t(z)}{1-t(z)}=1+y_{1} z+y_{2} z^{2}+\cdots \tag{12}
\end{equation*}
$$

Then x and y are analytic in \mathfrak{U} with $x(0)=y(0)=1$. Since we have s, t : $\mathfrak{U} \longrightarrow \mathfrak{U}$, each of the functions x and y has a positive real part in \mathfrak{U}. So, in view of the above Lemma 1, we have

$$
\begin{equation*}
\left|x_{n}\right| \leq 2 \quad \text { and } \quad\left|y_{n}\right| \leq 2 \quad(n \in \mathfrak{N}) \tag{13}
\end{equation*}
$$

Solving for $s(z)$ and $t(z)$, we have

$$
\begin{equation*}
s(z)=\frac{x(z)-1}{x(z)+1}=\frac{1}{2}\left[x_{1} z+\left(x_{2}-\frac{x_{1}^{2}}{2}\right) z^{2}\right]+\cdots \quad(z \in \mathfrak{U}) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
s(z)=\frac{y(z)-1}{y(z)+1}=\frac{1}{2}\left[y_{1} z+\left(y_{2}-\frac{y_{1}^{2}}{2}\right) z^{2}\right]+\cdots \quad(z \in \mathfrak{U}) \tag{15}
\end{equation*}
$$

By substituting (14) and (15) into (9) and (10) and applying (4), we get

$$
\begin{align*}
& (1-\eta)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi}+\eta\left(z\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{F}(z)\right)\left(\mathfrak{D}_{q} \mathfrak{F}(z)\right)^{\phi-1} \tag{16}\\
= & \vartheta\left(\frac{x(z)-1}{x(z)+1}\right)=1+\frac{1}{2} \mathfrak{B}_{1} x_{1} z+\left[\frac{1}{2} \mathfrak{B}_{1}\left(x_{2}-\frac{x_{1}^{2}}{2}\right)+\frac{1}{4} \mathfrak{B}_{2} x_{1}^{2}\right] z^{2}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
& (1-\eta)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi}+\eta\left(\mathfrak{w}\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\prime}+\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)\left(\mathfrak{D}_{q} \mathfrak{g}(\mathfrak{w})\right)^{\phi-1} \tag{17}\\
= & \vartheta\left(\frac{y(\mathfrak{w})-1}{y(\mathfrak{w})+1}\right)=1+\frac{1}{2} \mathfrak{B}_{1} y_{1} \mathfrak{w}+\left[\frac{1}{2} \mathfrak{B}_{1}\left(y_{2}-\frac{y_{1}^{2}}{2}\right)+\frac{1}{4} \mathfrak{B}_{2} y_{1}^{2}\right] \mathfrak{w}^{2}+\cdots
\end{align*}
$$

Equating the coefficients in (9) and (10), yields

$$
\begin{equation*}
(\eta+\phi)[2]_{q} b_{2}=\frac{1}{2} \mathfrak{B}_{1} x_{1} \tag{18}
\end{equation*}
$$

(19) $\quad(\phi+2 \eta)[3]_{q} b_{3}+\frac{(\phi+2 \eta)(\phi-1)[2]_{q}^{2}}{2} b_{2}^{2}=\frac{1}{2} \mathfrak{B}_{1}\left(x_{2}-\frac{x_{1}^{2}}{2}\right)+\frac{1}{4} \mathfrak{B}_{2} x_{1}^{2}$,

$$
\begin{equation*}
-(\eta+\phi)[2]_{q} b_{2}=\frac{1}{2} \mathfrak{B}_{1} y_{1} \tag{20}
\end{equation*}
$$

and
(21) $(\phi+2 \eta)[3]_{q}\left(2 b_{2}^{2}-b_{3}\right)+\frac{(\phi+2 \eta)(\phi-1)[2]_{q}^{2}}{2} b_{2}^{2}=\frac{1}{2} \mathfrak{B}_{1}\left(y_{2}-\frac{y_{1}^{2}}{2}\right)+\frac{1}{4} \mathfrak{B}_{2} y_{1}^{2}$.

From (18) and (20), we have

$$
\begin{equation*}
x_{1}=-y_{1} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\eta+\phi)^{2}[2]_{q}^{2} b_{2}^{2}=\frac{1}{4} \mathfrak{B}_{1}^{2}\left(x_{1}^{2}+y_{1}^{2}\right) \tag{23}
\end{equation*}
$$

Also from (19) and (21), we obtain

$$
\begin{align*}
2(\phi+2 \eta)[3]_{q} b_{2}^{2}+(\phi & +2 \eta)(\phi-1)[2]_{q}^{2} b_{2}^{2} \tag{24}\\
& =\frac{1}{2} \mathfrak{B}_{1}\left[x_{2}+y_{2}-\left(\frac{x_{1}^{2}+y_{1}^{2}}{2}\right)\right]+\frac{1}{4} \mathfrak{B}_{2}\left[x_{1}^{2}+y_{1}^{2}\right]
\end{align*}
$$

by applying (23), we have
(25) $\quad b_{2}^{2}=\frac{\mathfrak{B}_{1}^{3}\left(x_{2}+y_{2}\right)}{2\left[2 \mathfrak{B}_{1}^{2}(\phi+2 \eta)[3]_{q}+\mathfrak{B}_{1}^{2}(\phi+2 \eta)(\phi-1)[2]_{q}^{2}+2(\eta+\phi)^{2}[2]_{q}^{2}\left(\mathfrak{B}_{1}-\mathfrak{B}_{2}\right)\right]}$.

Applying Lemma 1 for the coefficients $x_{1}, x_{2}, y_{1}, y_{2}$ in (23) and (25), we get

$$
\begin{gather*}
\left|b_{2}\right| \leq \frac{\sqrt{2} \mathfrak{B}_{1}^{\frac{3}{2}}}{\sqrt{2 \mathfrak{B}_{1}^{2}(\phi+2 \eta)[3]_{q}+\mathfrak{B}_{1}^{2}(\phi+2 \eta)(\phi-1)[2]_{q}^{2}+2(\eta+\phi)^{2}[2]_{q}^{2}\left(\mathfrak{B}_{1}-\mathfrak{B}_{2}\right)}}, \tag{26}\\
\left|b_{2}\right| \leq \frac{\mathfrak{B}_{1}}{(\eta+\phi)[2]_{q}}, \tag{27}
\end{gather*}
$$

which gives the estimates of $\left|b_{2}\right|$.
Furthermore, in order to find the bound on $\left|b_{3}\right|$, we subtract (21) from (19) and also applying (22), we obtain $x_{1}^{2}=y_{1}^{2}$, hence

$$
\begin{equation*}
2(\phi+2 \eta)[3]_{q} b_{3}-2(\phi+2 \eta)[3]_{q} b_{2}^{2}=\frac{1}{2} \mathfrak{B}_{1}\left(x_{2}-y_{2}\right), \tag{28}
\end{equation*}
$$

then by substituting of the value of b_{2}^{2} from (23) into (28), gives

$$
b_{3}=\frac{\mathfrak{B}_{1}\left(x_{2}-y_{2}\right)}{4(\phi+2 \eta)[3]_{q}}+\frac{\mathfrak{B}_{1}^{2}\left(x_{1}^{2}+y_{1}^{2}\right)}{8(\eta+\phi)^{2}[2]_{q}^{2}}
$$

So we have

$$
\left|b_{3}\right| \leq \frac{\mathfrak{B}_{1}}{(\phi+2 \eta)[3]_{q}}+\frac{\mathfrak{B}_{1}^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}
$$

Also, substituting the value of b_{2}^{2} from (24) into (28), we get

$$
\left|b_{3}\right|=\frac{4(\phi+2 \eta) \mathfrak{B}_{1}^{2}\left(x_{1}^{2}+y_{1}^{2}\right)(1-\phi)+4 \mathfrak{B}_{1} x_{2}+\left(x_{1}^{2}+y_{1}^{2}\right)\left(\mathfrak{B}_{2}-\mathfrak{B}_{1}\right)}{8(\phi+2 \eta)[3]_{q}}
$$

and we have

$$
\left|b_{3}\right| \leq \frac{32(\phi+2 \eta)(1-\phi)+8 \mathfrak{B}_{2}}{8(\phi+2 \eta)[3]_{q}}
$$

which gives us the desired estimates on the coefficient $\left|b_{3}\right|$.

3 Corollaries and Consequences

Putting $q \longrightarrow 1^{-}$in Theorem 1, we have the following corollary.
Corollary 1 Let the function $\mathfrak{F}(z)$ given by (1) be in the class $\mathfrak{E}^{\eta, \phi}(\vartheta)$. Then

$$
\begin{aligned}
\left|b_{2}\right| \leq \min & \left\{\frac{\mathfrak{B}_{1}}{2(\eta+\phi)},\right. \\
& \left.\frac{\mathfrak{B}_{1} \sqrt{\mathfrak{B}_{1}}}{\sqrt{3 \mathfrak{B}_{1}^{2}(\phi+2 \eta)+2 \mathfrak{B}_{1}^{2}(\phi+2 \eta)(\phi-1)+2(\eta+\phi)^{2}\left(\mathfrak{B}_{1}-\mathfrak{B}_{2}\right)}}\right\}
\end{aligned}
$$

and

$$
\left|b_{3}\right| \leq \min \left\{\frac{32(\phi+2 \eta)(1-\phi)+8 \mathfrak{B}_{2}}{24(\phi+2 \eta)}, \frac{\mathfrak{B}_{1}}{3(\phi+2 \eta)}+\frac{\mathfrak{B}_{1}^{2}}{4(\eta+\phi)^{2}}\right\}
$$

Taking $\vartheta(z)=\left(\frac{1+z}{1-z}\right)^{\rho}=1+2 \rho z+2 \rho^{2} z^{2}+\cdots \quad(0<\rho \leq 1)$ in Theorem 1 , we have the following corollary.

Corollary 2 Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}^{\eta, \phi}(q ; \rho)$ where $(0<\rho \leq 1)$. Then

$$
\left|b_{2}\right| \leq \min \left\{\frac{2 \rho}{(\eta+\phi)[2]_{q}}, \frac{2 \rho}{\sqrt{2(\phi+2)[3]_{q} \rho+\left((\eta+\phi)^{2}-(\rho \eta(2+\eta)+\phi \rho)\right)[2]_{q}^{2}}}\right\}
$$

and

$$
\left|b_{3}\right| \leq \min \left\{\frac{2(1-\phi) \rho^{2}}{(\eta+\phi)^{2}[3]_{q}}+\frac{2 \rho^{2}}{(\phi+2 \eta)[3]_{q}}, \frac{2 \rho}{(\phi+2 \eta)[3]_{q}}+\frac{4 \rho^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}\right\} .
$$

Remark 3 Corollary 2 is an improvement of the following estimates investigated by Argul [2].

Corollary 3 [2] Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}^{\eta, \phi}(q ; \rho)$ where $(0<\rho \leq 1)$. Then

$$
\left|b_{2}\right| \leq \frac{2 \rho}{\sqrt{2(\phi+2)[3]_{q} \rho+\left((\eta+\phi)^{2}-(\rho \eta(2+\eta)+\phi \rho)\right)[2]_{q}^{2}}}
$$

and

$$
\left|b_{3}\right| \leq \frac{2 \rho}{(\phi+2 \eta)[3]_{q}}+\frac{4 \rho^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}
$$

Taking $q \longrightarrow 1^{-}, \eta=0$ and $\phi=1$ in Corollary 2, we have the following corollary.

Corollary 4 Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{E}(\rho)$, where $(0<\rho \leq 1)$. Then

$$
\left|b_{2}\right| \leq \min \left\{\rho, \rho \sqrt{\frac{2}{\rho+2}}\right\}
$$

and

$$
\left|b_{3}\right| \leq \min \left\{\frac{2 \rho^{2}}{3}, \frac{\rho(3 \rho+2)}{3}\right\}
$$

Remark 4 Corollary 4 is an improvement of the following estimates investigated by Srivastave et al. [28].

Corollary 5 [28] Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}(\rho)$, where $(0<\rho \leq 1)$. Then

$$
\left|b_{2}\right| \leq \rho \sqrt{\frac{2}{\rho+2}}
$$

and

$$
\left|b_{3}\right| \leq \frac{\rho(3 \rho+2)}{3}
$$

Taking $\vartheta(z)=\frac{1+(1-2 \varphi)}{1-z}=1+2(1-\varphi) z+2(1-\varphi) z^{2}+\cdots \quad(0 \leq \varphi<1)$ in Theorem 1, we have the following corollary.

Corollary 6 Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}^{\eta, \phi}(q ; \varphi)$ where $(0 \leq \varphi<1)$. Then

$$
\left|b_{2}\right| \leq \min \left\{\frac{2(1-\varphi)}{(\eta+\phi)[2]_{q}}, \sqrt{\frac{4(1-\varphi)}{2(\phi+2 \eta)[3]_{q}+(\eta+\phi)^{2}(\phi-1)[2]_{q}^{2}}}\right\}
$$

and

$$
\left|b_{3}\right| \leq \frac{4(1-\varphi)^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}+\frac{2(1-\varphi)}{(\phi+2 \eta)[3]_{q}}
$$

Remark 5 Corollary 6 is an improvement of the following estimates investigated by Argul [2].

Corollary 7 [2] Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}^{\eta, \phi}(q ; \varphi)$ where $(0 \leq \varphi<1)$. Then

$$
\left|b_{2}\right| \leq \sqrt{\frac{4(1-\varphi)}{2(\phi+2 \eta)[3]_{q}+(\eta+\phi)^{2}(\phi-1)[2]_{q}^{2}}}
$$

and

$$
\left|b_{3}\right| \leq \frac{4(1-\varphi)^{2}}{(\eta+\phi)^{2}[2]_{q}^{2}}+\frac{2(1-\varphi)}{(\phi+2 \eta)[3]_{q}}
$$

Taking $q \longrightarrow 1^{-}, \eta=0$ and $\phi=1$ in Corollary 6 , we have the following corollary.

Corollary 8 Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{E}(\varphi)$, where $(0 \leq \varphi<1)$. Then

$$
\left|b_{2}\right| \leq \min \left\{(1-\varphi), \sqrt{\frac{2(1-\varphi)}{3}}\right\}
$$

and

$$
\left|b_{3}\right| \leq \frac{2(1-\varphi)}{3}
$$

Remark 6 Corollary 8 is an improvement of the following estimates investigated by Srivastave et al. [28].

Corollary 9 [28] Let the function $\mathfrak{F}(z)$ given by (1) be in the function class $\mathfrak{H}_{\mathfrak{E}}(\varphi)$, where $(0 \leq \varphi<1)$. Then

$$
\left|b_{2}\right| \leq \sqrt{\frac{2(1-\varphi)}{3}}
$$

and

$$
\left|b_{3}\right| \leq \frac{(1-\varphi)(5-3 \varphi)}{3}
$$

References

[1] C. Abirami, N. Magesh, J. Yamini, Initial bounds for certain classes of biunivalent functions defined by Horadam polynomials, Abstr. Appl. Anal., Art. ID 7391058, 2020, 1-8.
[2] A. Akgul, Finding initial coefficients for a class of bi-univalent functions given by q-derivative, AIP Conference Proceedings, vol. 1926, no. 1, 2018, 020001.
[3] A. Aral, V. G. Ravi, P. Agarwal, Applications of q-Calculus in Operator Theory, New York, NY : Springer, vol. 46, 1908, 253-281.
[4] I. Aldawish, T. Al-Hawary, B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, vol. 8, no. 5, 2020, https://doi.org/10.3390/math8050783.
[5] H. Aldweby, M. Darus, Coefficient estimates of classes of Q-stalike and Q-convex functions, Advanced Studies in Contemporary Mathematics (Kyungshang), vol. 26, no. 1, 2016, 21-26.
[6] H. Aldweby, M. Darus, A subclass of harmonic \mathfrak{U} univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, Art. ID 382312, 2013, 1-6.
[7] H. Aldweby, M. Darus, Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator, Recent Trends in Pure and Applied Mathematics, vol. 2017, 2017, 1-9.
[8] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., vol. 25, no. 3, 2012, 344-351.
[9] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., vol. 66, no. 1, 2017, 108-114.
[10] D. A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., vol. 31, 1986, 70-77.
[11] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., vol. 2, no. 1, 2013, 49-60.
[12] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[13] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., vol. 43, no. 3, 2014, 383-389.
[14] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., vol. 24, 2011, 1569-1573.
[15] S. P. Goyal, P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., vol. 20, no. 3, 2012, 179-182.
[16] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK. 35, 1990.
[17] F. H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, vol. 41, 1910, 193-203.
[18] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, vol. 46, 1908, 253-281.
[19] M. Lewin, On a coefficients problem of bi-univalent functions, Proc. Amer. Math. Soc., vol. 18, 1967, 63-68.
[20] N. Magesh, T. Rosy, S. Varma, Coefficient estimate problem for a new subclass of bi-univalent functions, J. Complex Anal., 2013, 1-3.
[21] G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal., Art. ID 573017, 2013, 1-3.
[22] G. Murugusundaramoorthy, C. Selvaraj, O. S. Badu, Coefficient estimates for pascu-type subclasses of bi-univalent function based on subordination, Int. J. of Nonlinear Sci., vol. 19, 2015, 47-52.
[23] U. H. Naik, A. B. Patil, On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc., vol. 25, 2017, 291-293.
[24] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., vol. 21, no. 3, 2013, 190-193.
[25] C. H. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[26] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., Art. ID 846719, 2014, 1-7.
[27] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of qstarlike and q-convex functions of complex order, J. Math. Inequal., vol. 10, no. 1, 2016, 135-145.
[28] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., vol. 23, 2010, 11881192.
[29] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, Art. ID 172, vol. 8, 2020, 1-12.
[30] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., vol. 59, no. 3, 2019, 493-503.
[31] A. K. Wanas, A. L. Alina, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, Journal of Physics: Conf. Series, vol. 1294, 2019, 1-6.
[32] Q. H. Xu, Y.C. Gui, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 2012, 11461-11465.

Timilehin Gideon Shaba

University of Ilorin
Department of Mathematics
P. M. B. 1515, Ilorin, Nigeria
e-mail: shabatimilehin@gmail.com

Abbas Kareem Wanas

University of Al-Qadisiyah
College of Science
Department of Mathematics
Al Diwaniyah, Al-Qadisiyah, Iraq
e-mail: abbas.kareem.w@qu.edu.iq

[^0]: ${ }^{1}$ Received 14 January, 2021
 Accepted for publication (in revised form) 27 February, 2021

