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Abstract. The ongoing study and the well-known idea of coefficient estimates for the classes of analytic
and bi-univalent functions serve as our inspirations for this paper. We begin by outlining a brand-new
subclass FDΣ of analytical and bi-univalent functions connected to the four leaf domain. The Fekete-Szego
issue is then solved for functions in class FDΣ related to a four leaf domain, and bound estimates for the
coefficients are provided. The upper bound estimate for the second hankel determinant is also calculated.
We also demonstrate the sharpness of these boundaries.
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1. Introduction and Definitions

In the region h := {z ∈ C : |z| < 1}, letH represent the family of analytic functions. A collection of
functions f ∈ H in the Taylor series form

f(z)− z =
∞∑
λ=2

nλz
λ (z ∈ h) (1.1)

is denoted by the notation A.
Analytic functions σ1(z) and σ2(z) shall exist. If there is an analytic function ω(z) (ω(0) = 0 and

|ω(z)| < 1) such that σ1(z) = σ2(ω(z)), then σ1(z) is said to be subordinate to σ2(z), denoted as
σ1(z) ≺ σ2(z). We say

σ1 ≺ σ2 ⇐⇒ σ1(0) = σ2(0) and σ1(h) ⊆ σ2(h)

suppose σ2(z) is univalent in h.
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Despite the fact that the univalent function theory was founded in 1851, the coefficient conjecture,
given by Bieberbach [1] in 1916 and subsequently verified by De-Branges [2] in 1985, elevated the
theory to one of the growing areas of possible research. Several academics sought to verify or refute
this conjecture between 1916 and 1985, resulting in the establishment of several subclasses of the class
S that are based on the geometry of picture domains. S∗ and K are the most researched and essential
subclasses of S, containing starlike and convex functions, respectively.

In 1992, Ma and Minda [3] proposed the following generic form of the class

S∗(β) =

[
f ∈ A :

zf ′(z)

f(z)
≺ β(z)

]
,

β being an analytic function with <(β(z)) > 0 and z ∈ h. Furthermore, the function f is symmetric
about the real axis and maps h onto a star-shaped domain with relation to β(0) = 1.

Every function f(z) ∈ S given by (1.1) has an inverse function f−1(z) defined as follows:

f−1(f(z)) = z, z ∈ h, f(f−1(η)) = η, η ∈ ht0 = {η ∈ C : |η| < t0(f)}, 1/4 ≤ t0(f)

and

f−1(η) = η +D2η
2 +D3η

3 +D4η
4 + · · · , , η ∈ ht0 , (1.2)

where

D2 = −n2, D3 = 2n2
2 − n3, D4 = −5n3

2 + 5n2n3 − n4

which is a well-known fact.
Additionally, it is widely known that a function f ∈ A is referred to as a bi-univalent function

in h if both f and f−1 are, respectively, univalent in h and ht0 . Let (1.1) be the collection of bi-
univalent functions inhdenoted byΣ. See [4] for a brief history and examples of functions in the classΣ.

To proceed, Lewin [5] defined the class of bi-univalent functions and estimated |n2| ≤ 1.51. After that,
Brannan and Clunie [6] expanded Lewin’s findings to |n2| ≤

√
2 for f ∈ Σ. As a result, Netanyahu [7]

shown that |n2| ≤ 4
3 . Brannan and Taha [8] previously introduced some subclasses of the bi-univalent

function class Σ, specifically the bi-starlike function of order ξ denoted S∗Σ(ξ) and the bi-convex function
of order ξ denoted KΣ(ξ), which correspond to the function classes S∗(ξ) and K(ξ). In [6, 8], nonsharp
estimates on the first two Taylor-Maclaurin coefficients were found for each of the function classes
S∗Σ(ξ) and KΣ(ξ). Many researchers (see [9,10]) have developed and investigated various intriguing
subclasses of the bi-univalent function class, and they have discovered nonsharp estimates on the
first two Taylor-Maclaurin coefficients. However, the sharp estimates for each of the Taylor-Maclaurin
coefficients |nk|, k = 2, 3, 4, · · · remain an unsolved problem (see [4,7, 8] for additional information).
Recently, Deniz et al. [11] achieved the upper bounds of |H2(2)| = |n2n4− n2

3| for the classes S∗Σ(ξ) and
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KΣ(ξ). Soon after, Orhan et al. [12] revisited the study of bounds for the second Hankel determinant
of the bi-univalent function subclassM ξ

Σ(β), and Mustafa et al. [13] enhanced the [11] results.

Definition 1.1. [14] Let f ∈ A has given in (1.1). We denote by BT 4l the class of analytic functions
meeting the condition

f ′(z) ≺ 1 +
5

6
z +

1

6
z5 z ∈ h.

Gandhi developed a family of starlike functions associated with a four-leaf function defined by

S∗4l =

[
f ∈ S :

zf ′(z)

f(z)
≺ 1 +

6

5
z +

1

6
z5, (z ∈ h)

]
and characterized it with several main attributes in [15].
Inspired by the aforementioned works, we define the subclass of bi-univalent functions represented

by Σ.

Definition 1.2. f ∈ FDΣ, suppose the following conditions are met:

f ′(z) ≺ Ω(z) = 1 +
5

6
z +

1

6
z4

and
(f−1(η))′ ≺ Ω(η) = 1 +

5

6
η +

1

6
η4

where z, η ∈ Φ and f−1(η) is given in (1.2).

In this research, motivated by the work of Mustafa and Murugusundaramoorthy [16], we solve the
Fekete-Szegö problem for the functions in the class FDΣ related to a four leaf domain and provide
bound estimates for the coefficients.

We also calculate the upper bound estimate for the second Hankel determinant.

The following lemma is required to prove our main findings.

Lemma 1.3. [17, 18] Suppose that P is the set of all analytic functions a of the form

a(z) = 1 +

∞∑
λ=1

aλz
λ (1.3)

satisfying <(a(z)) > 0, z ∈ h and a(0) = 1. Then,

|aλ| ≤ 2, λ = 1, 2, 3, · · · .

For any value of λ = 1, 2, 3, · · · , this inequality is sharp. For example, the function

a(z) =
1 + z

1− z

is equal for all λ.
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Lemma 1.4. [17, 18] Suppose that P is the set of all analytic functions a of the form

a(z) = 1 +
∞∑
λ=1

aλz
λ (1.4)

satisfying <(a(z)) > 0, z ∈ h and a(0) = 1. Then,

2a2 = a2
1 + (4− a2

1)n

4a3 = a3
1 + 2(4− a2

1)a1n− (4− a2
1)a1n

2 + 2(4− a2
1)(1− |n|2)z,

for some n, z with |n| ≤ 1, |z| ≤ 1.

Lemma 1.5. [18] If and only if the Toeplitz determinants

Hj =

∣∣∣∣∣∣∣∣∣∣∣∣

2 a1 a2 . . . aj

a−1 2 a1 . . . aj−1

...
...

... . . .
...

a−j a−j+1 a−j+2 . . . 2

∣∣∣∣∣∣∣∣∣∣∣∣
, j = 1, 2, 3, · · · (1.5)

and a−j = āj are all nonnegative, the power series given in (1.3) converges in h to the function a ∈ P . Except

for

a(z) =

j∑
j=1

ρja0(aixnz), ρj > 0, xj real

and xj 6= xk for j 6= k in this example, they are all strictly positive. Hj > 0 for j < n− 1 andHj = 0 for j ≥ n.

Notation 1.6. Since a ∈ P , Hj ≥ 0 and a−1 = ā1 ≥ 0 are true, as stated by Lemma 1.5. This results in

Hj =

∣∣∣∣∣∣ 2 a1

a1 2

∣∣∣∣∣∣ ≥ 0 and a1 = ā1 = a−1 ≥ 0. As a result, 4− a2
1 ≥ 0 and a1 ≥ 0 are equal to a1 ∈ [0, 2].

For these reasons, we will assume throughout our investigation that |4− a2
1| = |4− |a1|2| = 4− |a1|2

for a1, the first coefficient in (1.3).

Proposition 1.7. [19] If the function

a(z) = 1 +
∑
j≥1

ajz
j , v(z) = 1 +

∑
j≥1

vjz
j

which are in the class of P and a1 = −v1, then

a2 − v2 =
(4− a2

1)(n− y)

2
(1.6)

a2 + v2 = h2
1 +

(4− a2
1)(n+ y)

2
(1.7)
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and

a3 − v3 =
a3

1

2
+

(4− a2
1)(n+ y)

2
a1 −

(4− a2
1)(n2 + y2)

4
a1

+
(4− a2

1)[(1− |n|2)z − (1− |y|2)w]

2
(1.8)

for some |a1|, |v1| ∈ [0, 2], z, n, w, y with |z|, |n|, |w|, |y| ≤ 1.

2. Coefficients bound estimates

In this section, we show the following theorem regarding upper bound estimates for the few initial
coefficients of the functions belonging within the class FDΣ.

Theorem 2.1. Let f ∈ FDΣ. Then:

|n2| ≤
5

12
,

|n3| ≤ max

{
5

18
,

25

144

}
,

|n4| ≤ max

{
5

24
,

25

216

}
.

The result obtained here are sharp for

fn(z) =

∫ z

0

(
1 +

5

6
tn +

1

6
t5n
)
· dt = z +

5

6(n+ 1)
zn+1 +

1

6(5n+ 1)
z5n+1.

Proof. Let f ∈ FDΣ. Then, there are holomorphic functions ρ : h −→ h, % : hto −→ hto with
ρ(0) = 0 = %(0), |ρ(z)| ≤ 1, |%($)| < 1 fulfilling the following conditions

f ′(z) = Ω(ρ(z)) = 1 +
5

6
ρ(z) +

1

6
(ρ(z))4, z ∈ h (2.1)

and
(f−1(η))′ = Ω(%(η)) = 1 +

5

6
%(η) +

1

6
(%(η))4, η ∈ h. (2.2)

The functions a, v ∈ P are defined as follows:

a(z) =
1 + ρ(z)

1− ρ(z)
= 1 +

∞∑
λ=1

aλz
λ, z ∈ h

and
v(η) =

1 + %(η)

1− %(η)
= 1 +

∞∑
λ=1

vλη
λ, η ∈ hto .

As a result,

ρ(z) =
a(z)− 1

a(z) + 1
=

1

2

[
a1z +

(
a2 −

a2
1

2

)
z2 +

(
a3 + a1a2 +

a3
1

4

)
z3 + · · ·

]
, z ∈ h (2.3)

and

%(η) =
v(η)− 1

v(η) + 1
=

1

2

[
v1η +

(
v2 −

v2
1

2

)
η2 +

(
v3 + v1v2 +

v3
1

4

)
η3 + · · ·

]
, η ∈ ht0 . (2.4)
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We obtain by substituting the expressions for the functions ρ(z) and %(η) in (2.1) and (2.2) with those
in (2.3) and (2.4):

f ′(z) = 1 +
5

12
a1z +

[
5

12
a2 −

5

24
a2

1

]
z2 +

[
5

12
a3 −

5

12
a1a2 +

5

48
a3

1

]
z3 + · · · (2.5)

and

(f−1(η))′ = 1 +
5

12
v1η +

[
5

12
v2 −

5

24
v2

1

]
η2 +

[
5

12
v3 −

5

12
v1v2 +

5

48
v3

1

]
η3 + · · · . (2.6)

The following equations are derived for n2, n3, and n4 if the operations and simplifications on the left
side of (2.5) and (2.6) are made and the coefficients of the terms of the same degree are equalized.

2n2 =
5

12
a1 (2.7)

3n3 =
5

12
a2 −

5

24
a2

1 (2.8)

4n4 =
5

12
a3 −

5

12
a1a2 +

5

48
a3

1 (2.9)

and

−2n2 =
5

12
v1 (2.10)

−n3 + 6n2
2 =

5

12
v2 −

5

24
v2

1 (2.11)

−4n4 + 20n2n3 − 20n3
2 =

5

12
v3 −

5

12
v1v2 +

5

48
v3

1. (2.12)

On the basis of equations (2.7) and (2.10), we write
5a1

24
= n2 =

−5v1

25
⇒ n1 = −v1, n

2
1 = n2

1, n
3
1 = −v3

1. (2.13)

The first result of the theorem is evident based on this and Lemma 1.3.
By deducting (2.11) from (2.8) and taking into account the equivalence in (2.13), we obtain

n3 = n2
2 +

5[a2 − v2]

72
;

Hence,
n3 =

25a2
1

576
+

5[a2 − v2]

72
. (2.14)

Additionally, by reducing (2.12) by (2.9), taking into account the equalities (2.13) and (2.14), we have

n4 =
5

432
a3

1 +
125

3456
a1(a2 − v2) +

5

96
(a3 − v3)− 5

96
a1(a2 + v2). (2.15)

The first equivalence in Preposition 1.7 is substituted into (2.14), and the resulting expression for the
coefficient n3 is as follows:

n3 =
25a2

1

576
+

5

144
(4− a2

1)(n− y).
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Take note that |4− a2
1| = |4− |a1|2| = 4− |a1|2 = |4− k2| = 4− k2 can be written if we take |a1| = k.

(see, also Notation (1.6)). That is, we may assume without restriction that a ∈ [0, 2]. In that instance,
we can express the inequality for |n3| by using a triangle inequality and setting |n| = α and |y| = δ.

|n3| ≤
25k2

576
+

5(4− k2)

144
(α+ δ), (α, δ) ∈ [0, 1]2.

Let’s now define the function J : R2 −→ R as follows:

J(α, δ) =
25k2

576
+

5(4− k2)

144
(α+ δ), (α, δ) ∈ [0, 1]2.

The function J on the closed square ∆ = {(α, δ) : (α, δ) ∈ [0, 1]2} needs to be maximized.
It is evident that the function J reaches its highest value at the closed square’s ∆ boundary. When

we differentiate the function J(α, δ) with regard to parameter α, we get:

Jα(α, δ) =
5(4− k2)

144
.

Since the function J(α, δ) has a maximum value at α = 1 and Jα(α, δ) ≥ 0, it is an increasing function
with regard to α. Hence,

max{J(α, δ) : α ∈ [0, 1]} = J(1, δ) =
25k2

576
+

5(4− k2)

144
(1 + δ),

for each δ ∈ [0, 1] and k ∈ [0, 2].
With the function J(1, δ) now differentiable, we have

J ′(1, δ) =
5(4− k2)

144
.

The function J(1, ς) is an increasing function because J ′(1, δ) ≥ 0, and maximum occurs at δ = 1,
therefore

max{J(1, δ) : δ ∈ [0, 1]} = J(1, 1) =
25k2

576
+

5(4− k2)

72
, k ∈ [0, 2].

Thus, we get

J(α, δ) ≤ max{J(α, δ) : (α, δ) ∈ ∆} = J(1, 1) =
25k2

576
+

5(4− k2)

72
.

Since |n3| ≤ J(α, δ), we have
|n3| ≤ c× k2 +

5

18

where
c =

5

72

[
5− 8

8

]
.

Now, let calculate the maximum of the function λ : R −→ R define as follows

λ(k) = c× k2 +
5

18

in the range of [0, 2].
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Differentiating the function λ(k), we have λ′(k) = 2ck, k ∈ [0, 2]. Since λ′(k) ≤ 0 when c ≤ 0, the
function λ(k) is a decreasing function and maximum occurs at k = 0, therefore

max{λ(k) : k ∈ [0, 2]} = λ(0) =
5

18

and λ′(k) ≥ 0 when c ≥ 0, the function λ(k) is an increasing function and maximum occurs at k = 2,
which gives

max{λ(k) : k ∈ [0, 2]} = λ(2) =
25

144
.

As a result, we arrive at the upper bound estimate for |n3| that is provided below:

|n3| ≤ max

{
5

18
,

25

144

}
.

The following inequality for |n4| is obtained from (2.15), using (1.6), (1.7), (1.8), and triangle inequality.

|n4| ≤ t1(k) + t2(k)(α+ δ) + t3(k)(α2 + δ2) := G(α, δ)

where

t1(k) =
25

1728
k3 +

5(4− k2)

96
,

t2(k) =
125(4− k2)

6912
k,

t3(k) =
5(4− k2)(k − 2)

384
.

The function G for each k ∈ [0, 2] must now be maximized.
We must examine the maximum of the function G for various values of the parameter k since the

coefficients t1(k), t2(k), and t3(k) of the function G depend on the parameter k.
Let k = 0, since t2(0) = 0,

t1(0) =
5

24
and

t3(0) = − 5

48
.

We then have
G(α, δ) =

5

24
− 5

48
(α2 + δ2), (α, δ) ∈ [0, 1]2.

Hence, we get
G(α, δ) ≤ max{Q(α, δ) : (α, δ) ∈ ∆} = G(0, 0) =

5

24
.

Let k = 2. Then, since t2(2) = t3(2) = 0 and

t1(2) =
25

216
.

The following function G is a constant.

G(α, δ) = t1(2) =
25

216
.
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We can quickly demonstrate that the functionG cannot have a maximum on the ∆ in the case k ∈ (0, 2).
Thus, we attain

|B4| ≤ max

{
5

24
,

25

216

}
.

The following extremal functions can be used to calculate the best possible bounds:

f1(z) =

∫ z

0

(
1 +

5

6
t+

1

6
t5
)
· dt = z +

5

12
z2 +

1

36
z6 + · · · ,

f2(z) =

∫ z

0

(
1 +

5

6
t2 +

1

6
t10

)
· dt = z +

5

18
z3 +

1

66
z11 + · · · ,

f3(z) ==

∫ z

0

(
1 +

5

6
t3 +

1

6
t15

)
· dt = z +

5

24
z4 +

1

96
z16 + · · · ,

f4(z) ==

∫ z

0

(
1 +

5

6
t4 +

1

6
t20

)
· dt = z +

1

6
z5 +

1

126
z21 + · · · .

�

3. The second Hankel determinant and Fekete-Szegö inequality

For the function belonging to the class FDΣ described by Definition 1.2, we provide an upper limit
estimate for the second Hankel determinant and Fekete-Szegö inequality in this section.

First, we establish the following theorem on the second Hankel determinant’s upper bound estimate.

Theorem 3.1. Let f(z) ∈ FDΣ. Then:

|n2n4 − n2
3| ≤ max

{
25

324
,

1625

20736

}
.

The result obtained here are sharp for

f2(z) =

∫ z

0

(
1 +

5

6
t2 +

1

6
t10

)
· dt = z +

5

18
z3 +

1

66
z11 + · · · .

Proof. Let f ∈ FDΣ. The following equality for n2n4 − n2
3 is therefore written from equations (2.13),

(2.14), and (2.15):

n2n4 − n2
3 =

25

10368
a4

1 +
625a2

1(a2 − v2)

82944
+

25a1(a3 − v3)

2304
− 25a2

1(a2 + v2)

2304

− 625a4
1

331776
− 125a2

1(a2 − v2)

20736
− 25(a2 − v2)2

5184
.

We obtain the following estimate for |n2n4 − n2
3| by using equalities (1.6), (1.7) and (1.8), followed by

triangle inequality and setting |n1| = k, |n| = α, and |y| = δ.

|n2n4 − n2
3| ≤ T1(k) + T2(k)(α+ δ) + T3(k)(α2 + δ2) + T4(k)(α+ δ)2 (3.1)
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where

T1(k) =
1625

331776
k4 +

25(4− k2)

2304
k ≥ 0,

T2(k) =
125(4− k2)

165888
k2 ≥ 0,

T3(k) =
25(4− k2)(k − 2)

9216
k ≤ 0

T4(k) =
25(4− k2)2

20736
≥ 0.

Let’s now define the function Ψ : R2 −→ R as follows:

Ψ(α, δ) = T1(d) + T2(k)(α+ δ) + T3(k)(α2 + δ2) + T4(k)(α+ δ)2. (α, δ) ∈ [0, 1]2

for each k ∈ [0, 2].
The function Ψ on ∆ for each k ∈ [0, 2] must now be maximized.
We must examine the maximum of the function Ψ for various values of the parameter k since the

coefficients t1(k), T2(k), T3(k) and T4(k) of the function Ψ depend on the parameter k.

(1) Let k = 0. Since T1(0) = T2(0) = T3(0) = 0 and

T4(0) =
25

1296

the function Ψ(α, δ) written as follows:

Ψ(α, δ) =
25

1296
(α+ δ)2, (α, δ) ∈ ∆.

It is obvious that the function Ψ reaches its maximum near the closed-square boundary ∆.
Now, applying some differentiation on the function Ψ(α, δ) with respect to α, we have

Ψα(α, δ) =
25

648
(α+ δ)

for each δ ∈ [0, 1].
The function Ψ(α, δ) is an increasing function with regard to α and reaches its maximum at
α = 1 since Ψα(α, δ) ≥ 0. So

max{Ψ(α, δ) : σ ∈ [0, 1]} = Ψ(1, δ) =
25(1 + δ)2

1296
, δ ∈ [0, 1].

Taking the differentiation of the function Ψ(1, δ), we get

Ψ′(1, δ) =
25(1 + δ)

648
> 0, δ ∈ [0, 1].

Since Ψ′(1, δ) > 0, the function Ψ(1, δ) is an increasing function and maximum occurs at δ = 1.
Hence,

max{Ψ(1, δ) : δ ∈ [0, 1]} = Ψ(1, 1) =
25

324
.
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Thus, in the instance of d = 0, we get

Ψ(α, δ) ≤ max{Ψ(α, δ) : (α, δ) ∈ [0, 1]2} = Ψ(1, 1) =
25

324
.

We know that |n2n4 − n2
3| ≤ Ψ(α, δ), we can have

|n2n4 − n2
3| ≤

25

324
.

(2) Now, taking k = 2. Since T2(2) = T3(2) = T4(2) = 0 and

T1(2) =
1625

20736

the function Ψ(α, δ) is a constant as follows

Ψ(α, δ) = T1(2) =
1625

20736
.

Thus, we get

|n2n4 − n2
3| ≤

1625

20736
.

in the case k = 2.
(3) Let’s say k ∈ (0, 2). In this instance, we must look into the maximum of the function Ψ while

accounting for the sign of Ξ(Ψ) = Ψαα(α, δ)Ψδδ(α, δ)− (Ψαδ(α, δ))
2.

The equation Ξ(Ψ) = 4T3(k)[T3(k) + 2T4(k)] is clear to see. We will look into two instances of
the sign Ξ(Ψ).
(a) Let T3(k) + 2T4(k) ≤ 0 for same k ∈ (0, 2). In this case, since Ψα,δ(α, δ) = Ψδ,α(α, δ) =

2T4(k) ≥ 0 and Ξ(Ψ) ≥ 0, the function Ψ (having a minimum) cannot have a maximum
on the square ∆ according to basic calculus.

(b) Now, let T3(k) + 2T4(k) ≥ 0 for some k ∈ (0, 2). In this case, since Ξ(Ψ) ≤ 0, the function
Ψ cannot have a maximum on the square ∆.

Consequently, in light of all three instances, we write

|n2n4 − n2
3| ≤ max

{
25

324
,

1625

20736

}
.

Theorem 3.1 has now been successfully proved. �

We now provide the subsequent theorem on the Fekete-Szegö inequality.

Theorem 3.2. Let f(z) ∈ FDΣ, χ ∈ C. Then:

∣∣n3 − χn2
2

∣∣ ≤


5
18 |1− χ| ≤ 5

72

25|1−χ|
144 |1− χ| ≥ 5

72 .
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The result obtained here are sharp for

f2(z) =

∫ z

0

(
1 +

5

6
t2 +

1

6
t10

)
· dt = z +

5

18
z3 +

1

66
z11 + · · · .

Proof. Let f(z) ∈ FDΣ and χ ∈ C. Then, from (2.13), (2.14), (1.6) and (1.7), we have the expression
n3 − χn2

2 to be:
n3 − χn2

2 = (1− χ)
25a2

1

576
+

5(4− a2
1)

144
(n− y) (3.2)

for some y, nwith |y| ≤ 1 and |n| ≤ 1.
With |n| = α, |y| = δ, |a1| = k and the triangle inequality to the equality (3.2), we can estimate the

upper bound of |n3 − χn2
2| as follows:

|n3 − χn2
2| ≤

25|1− χ|
576

k2 +
5(4− k2)

144
(α+ δ), (α, δ) ∈ ∆, (3.3)

for each k ∈ [0, 2].
Let’s now define the function Λ : R2 −→ R as follows:

Λ(α, δ) =
25|1− χ|

576
k2 +

5(4− k2)

144
(α+ δ), (α, δ) ∈ ∆,

for each k ∈ [0, 2]. The function Λ on ∆ for each k ∈ [0, 2] must now be maximized.
The function Λ clearly reaches its maximum value along the boundary of the closed square ∆.
Applying the concept of differentiation on the function Λ(α, δ) with respect to α, we have

Λα(α, δ) =
5(4− k2)

144
(3.4)

for each k ∈ [0, 2].
Since Λα(α, δ) > 0, the function Λ(α, δ) is an increasing function with respect to α and maximum

occurs at δ = 1. Hence,

max{Λ(α, δ) : δ ∈ [0, 1]} = Λ(1, δ) =
|251− χ|

576
k2 +

5(4− k2)

144
(1 + δ)

for each δ ∈ [0, 1] and k ∈ [0, 2].
Now, differentiating the function Λ(1, δ), we get

Λ′(1, δ) =
5(4− k2)

144

for each k ∈ [0, 2].
Since Λ′(1, δ) > 0, the function Λ(1, δ) is an increasing function and maximum occurs at δ = 1.

Hence,
max{Λ(1, δ) : δ ∈ [0, 1]} = Λ(1, 1) =

25|1− χ|
576

k2 +
5(4− k2)

72
, δ ∈ [0, 2].

Thus, we have

Λ(α, δ) ≤ max{Λ(α, δ) : χ ∈ [0, 1]} = Λ(1, 1) =
25|1− χ|

576
k2 +

5(4− k2)

72
.
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Since |n3 − χn2
2| ≤ Λ(α, δ), we have the following estimate

|n3 − χn2
2| ≤

25

576

[
|1− χ| − 576

25
L

]
k2 + 4L,

where

L =
5

72
.

In such instance, finding the maximum of the following function, ϑ : [0, 2] −→ R, would be appropriate.
Differenting the function ϑ(k), we have

ϑ′(k) =
25
[
|1− χ| − 576

25 L
]

288
k, k ∈ [0, 2].

If |1 − χ| ≤ L and maximum occur at k = 0, then the function ϑ(k) is a decreasing function since
ϑ′(k) ≤ 0,

max{ϑ(k) : ς ∈ [0, 2]} = ϑ(0) = 4L

and ϑ′(k) ≥ 0, the function ϑ(k) is an increasing function. If |1− χ| ≥ L and maximum occurs at d = 2,
so

max{ϑ(k) : ς ∈ [0, 2]} = ϑ(2) =
25|1− χ|

144
.

Consequently, we achieve

∣∣n3 − χn2
2

∣∣ ≤


4L |1− χ| ≤ L

25|1−χ|
144 |1− χ| ≥ L.

The result reached in this instance is sharp for |1− χ| ≥ 5
72 .

If we set the function f(z) as follows:

f2(z) =

∫ z

0

(
1 +

5

6
t2 +

1

6
t10

)
· dt = z +

5

18
z3 +

1

66
z11 + · · · .

�

Theorem 3.2 is presented in the following manner for the case χ ∈ R.

Theorem 3.3. Let f(z) ∈ FDΣ, χ ∈ R. Then:

|n3 − χn2
2| ≤



25(1−χ)
144 if χ ≤ 67

72

5
18 if 67

72 ≤ χ ≤
77
72

25(χ−1)
144 if 77

72 ≤ χ.

(3.5)
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Proof. Let f(z) ∈ FDΣ and χ ∈ R. Since in the case χ ∈ R, the inequalities |1− χ| ≥ L and |1− χ| ≤ L
are equivalent to:

χ ≤ 1− L or χ ≥ 1 + L

and
1− L ≤ χ ≤ 1 + L,

respectively. The conclusion of the theorem is derived from Theorem 3.2. �

Furthermore, we get the following conclusions for χ = 1 from Theorem 3.3.

Corollary 3.4. Let f(z) ∈ FDΣ. Then:

|n3 − n2
2| ≤

5

18
.

4. Conclusion

Recently, well-known mathematicians have been drawn to special domains and polynomials in
Geometric Functions Theory due to their usefulness in various fields of mathematics and other sciences.
In our paper, we addressed the Fekete-Szegö problem and provided solutions for functions belonging
to the class f ∈ FDΣ, which consists of analytic and bi-univalent functions that involve the four leaf
domain. We also derived estimates for the coefficients and an upper bound estimate for the second
Hankel determinant. The conclusions mentioned above, supported by references [20–39], can be
expanded to include a specific class of analytic and bi-univalent functions.
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