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A B S T R A C T   

Lassa fever is a severe hemorrhagic viral infection whose agents belong to Mastomys natelensis. Generally, 
humans contract Lassa virus through exposure to food or household products that have been contaminated with 
the excreta of the infected rodents. Lassa fever is endemic in some West African countries including Nigeria. A 
basic model is proposed to examine the transmission of the disease. The proposed model is subjected to quali-
tative study via the theory of differential equations and the threshold quantity that denotes the dominant 
eigenvalue was derived using next-generation matrix approach. The basic model is further extended to an 
optimal control model with four controls namely, the fumigation of the environment with pesticide, the use of 
condom to prevent human to human transmission during sexual activities, early treatment and the use of indoor 
residual spray. The theory of optimal control was explored to establish the necessary conditions for curtailing the 
transmission of Lassa fever. Numerical simulation was conducted and the results showed that if the Lassa fever 
transmission and spread were to be reduced significantly in the endemic region, all the control measures must be 
taken with all seriousness.   

1. Introduction 

Lassa fever is a rat-spreading, haemorrhagic disease. The disease 
originated in Nigeria [1]. Although Lassa fever has been in Nigeria in the 
1950s, it only became known in 1969 when it claimed the lives of two 
nurses at Lassa town, one of the towns in today’s Borno State [2]. Lassa 
fever is confined to West Africa and has become a serious health chal-
lenge in the region with significant morbidity and mortality recorded 
each year [3]. The eradication of Lassa fever from the West African 
sub-region has become challenging because recovery from the disease 
cannot be predicted with certainty as the virus can remain in the bodily 
fluids of humans (e.g. semen) after recovery [4]. 

Lassa fever cases are predominant in Nigeria, Liberia, Sierra-Leone 
and Guinea. Nevertheless, other neighbouring countries also stand the 
risk of contracting the disease as the agents of Lassa fever, Mastomys 
natelensis are distributed throughout the neighbouring countries. In 
certain regions in Liberia and Sierra- Leone, it is reported that about 

10%–16% of all hospitalization each year is due to Lassa fever, con-
firming the health implication of Lassa fever on the population of these 
countries [5]. Human-to-human transmission and laboratory spread of 
the disease may also emanate from the inadequate prevention and 
control strategies, particularly in the health care system [6]. The in-
cidences of Lassa fever are strongest in the dry season, despite the 
breeding of multimammate rodents’ reservoir during the rainy season 
[7–11]. 

The incubation period of Lassa fever ranges from 6 to 21 days. For 
most Lassa fever infection, (about 80%), symptoms are usually mild and 
undetectable. The mild signs include moderate fever, general pain and 
fatigue, and headache. Nevertheless, the disease can progress to severe 
symptoms in 20% of people infected with the disease. The infection can 
grow to acute symptoms, including respiratory disorder, incessant 
vomiting, severe pains in the back, chest and abdomen, facial dis-
figuration and shock [12]. 

Several mathematical models have been used to analyse physical, 

* Corresponding author. 
E-mail address: peterjames4real@gmail.com (O.J. Peter).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: http://www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2020.100419 
Received 9 July 2020; Received in revised form 25 August 2020; Accepted 25 August 2020   

mailto:peterjames4real@gmail.com
www.sciencedirect.com/science/journal/23529148
https://http://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2020.100419
https://doi.org/10.1016/j.imu.2020.100419
https://doi.org/10.1016/j.imu.2020.100419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2020.100419&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 20 (2020) 100419

2

biological and many other complex systems dynamics. Different studies 
have been conducted using the mathematical models applied to epide-
miology, which includes the following [13–19]. Given this, few studies 
have attempted to use the mathematical modelling techniques to study 
the dynamics of Lassa virus [20–29]. The application of optimal control 
theory to disease modelling offers useful knowledge about how control 
steps can be implemented. Numerous infectious diseases have been 
contained through vaccination, diagnosis, public education, and so on 
[30]. Since the implementation of optimal control theory in disease 
modelling, a considerable number of infectious disease studies have 
been conducted using the concept of optimal control theory [31–36]. 

We have identified that till now, only one study have attempted to 
study optimal control of Lassa fever disease dynamics using 

mathematical modelling approach. [37] developed a deterministic 
model of Lassa fever using SIR and SI approach for the human and rat 
populations respectively. Lassa fever can also be transmitted from per-
son to person through contact with an infected person’s blood, urine, 
saliva, throat secretion or semen [38]. This study bridges the gap by 
considering a deterministic model, incorporating exposed human 
compartment and exposed rat compartment. The following controls are 
considered. The use of condom during sex as control to prevent human 
to human transmission, fumigating the environment with pesticide, 
early treatment and the use of indoor residual spray which was not 
considered in their work. In view of the above, we developed a deter-
ministic mathematical model to analyse the dynamics of Lassa fever 
disease with optimal control strategies and the effects of such controls. 
The paper is organised as follows; section two deals with the formulation 
of the model and the mathematical analysis of the optimal control 
problem, section three presents the numerical simulation and the re-
sults. Sections four and five are the discussion of results and conclusion 
respectively. 

2. Materials and methods 

In this section, we propose a Lassa fever model which comprises two 
groups; the human population and rat population. The human popula-
tion is divided into four compartments; namely, the susceptible Sh, the 
exposed Eh, the infected Ih and the recovered Rh individuals. Similarly, 
the rat population is divided into the following compartments; Sr,Er, Ir 
which respectively represents the susceptible rat, the exposed rat pop-
ulation and the infected rat population. The human and rat population 
are function of time t, that is, Sh(t), Eh(t), Ih(t), Rh(t) and Sr(t), Er(t),
Ir(t) respectively. θh represents recruitment rate of humans which is by 
birth or immigration. θr is the rate of recruitment for the rat, αh repre-
sents the rate of progression of humans from the exposed class to the 
infected class. μh represents the natural death rate of humans. The 
disease-induced death rate by humans is represented by δh, τis the 
constant rate due to treatment. There is a natural recovery rate for in-
dividuals denoted by ϕ. We assume that the infected human may recover 
with limited immunity at the rate vby migrating to the recovery class 
whereas, the proportion of infected individuals with limited immunity 
become susceptible to Lassa fever at the rate(1 − v). θ is the constant 
rate of using indoor residual spray, β1 represents the probability of 
disease transmission per contact by an infectious rat, β2 is the rate of 
spread of the disease via sexual activity through asymptomatic infected 
human, β3 is the rate of spread of the disease via sexual activity through 
symptomatic infected human, β4 is the rate of spread of the disease per 
contact by an infectious human. The infected rat population is increased 
as a result of movement from exposed class at the rate βr but is reduced 
by the natural mortality rate at μr. From the above descriptions, we have 
the following system of differential equations in equation (1) while the 
pictorial representation of the model is displayed in Fig. 1. The associ-
ated model’s variables and parameters are described in Table 1. 

dSh

dt
= θh + (1 − v)ϕIh + φhRh −

(
β1ShIr + β2ShIr + β3ShIh

Nh

)

− μhSh,

dEh

dt
=

(
β1ShIr + β2ShIr + β3ShIh

Nh

)

− βhEh − μhEh,

dIh

dt
= βhEh − (μh + δh)Ih − φIh,

dRh

dt
= vϕIh − (φh + μh)R,

dSr

dt
= θr −

β4IhSr

Nh
− μrSr ,

dEr

dt
=

β4IhSr

Nh
− (βr + μr)Er ,

(1)  

Fig. 1. Pictorial representation of the model.  

Table 1 
Detailed defination of variables and parameters.  

Variable Description 

Sh(t) Susceptible human 
Eh(t) Exposed human 
Ih(t) Infected human 
Rh(t) Recovered human 
Sr(t) Susceptible rat 
Er(t) Exposed rat 
Ir(t) Infected rat 

Parameter Description 

θh  Recruitment rate of susceptible humans 
θr  Recruitment rate of susceptible rat 
αh  Rate of progression of human from the exposed class to the infected 

class. 
μh  Natural death rate of humans. 
δh  The disease-induced death rate for humans 
τ  Constant rate due to treatment. 
ϕ  Natural recovery rate for individuals 
v  Human recovery rate with limited immunity 
(1 − v) Proportion of infected human with Lassa fever with limited immunity 

becoming susceptible to Lassa fever. 
θ  Constant rate of using the indoor residual spray 
β1  Probability of disease transmission per contact by an infectious rat 
β2  Rate of spread of the disease via sexual activity through asymptomatic 

infected human 
β3  Rate of spread of the disease via sexual activity through symptomatic 

infected human 
β4  Rate of spread of the disease per contact by an infectious human. 
βr  Movement rate of exposed rat to infected rat 
μr  Natural mortality rate for rat.  
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2.1. The model analysis 

Normalizing system (1), we obtain, 

S’
h(t) = θh + (ϕ + τ)(1 − v)Ih + φhRh − β1ShIr − β2ShEh − β3ShIh − μhSh,

E’
h(t) = β1ShIr + β2ShEh + β3ShIh − βhEh − μhEh,

I’
h(t) = βhEh − (μh + δh)Ih − ϕI,

R’
h(t) = (ϕ + τ)Ihv − φhRh − μhRh,

S’
r(t) = θr − β4IhSr − μrSr − θSr ,

E’
r(t) = β4IhSr − (βr + μr)Er,

I’
r(t) = βrEr − μrIr.

(2) 

For the human population, 
Nh = Sh + Eh + Ih + Rh, the differential equation is given as 

dNh

dt
= θh − δhIh − μhNh.

Also, for the rat population, 
Nr = Sr + Er + Rr, and the corresponding differential equation is 

given as 

dNr

dt
= θr − μrNr 

Theorem 1. 
Let (Sh,Eh, Ih,Rh, Sr,Er, Ir)be the solution of (1) with the initial con-

ditions in a biologically feasible region. 
Γ = Γh × Γr with 

Γh =

{

Sh,Eh, Ih,Rh ∈R4
+ : Nh ≤

θh

μh

}

and  

Γr =

{

Sr,Er ,Rr ∈R3
+ : Nr ≤

θr

μr

}

Then Γis non-negative invariant. 
Proof. 
Following the approach of [22], we have that, 

0≤Nh(t) ≤ Nh(0)e− μh(t) +
θh

μh
(1 − e− μht), (3)  

also 

Nr(t)≤Nr(0)e− μr t +
θr

μr
(1 − e− μr t). (4) 

Hence, the set Γis positive invariant and for t. Thus for t→∞, 0 ≤

Nh(t) ≤ θh
μh 

and Nr(t) ≤ θr
μr

. Therefore, Γis an attracting set. 

2.2. Lassa fever free equilibrium state 

Setting the right-hand side of (2) to zero i.e.,  

S’
h =E’

h = I’
h = R’

h = S’
r = E’

r = I’
r = 0 

Thus, the Lassa free equilibrium state is given as 

P0 =(Sh,Eh, Ih,Rh, Sr ,Er, Ir)=

(
θh

μh
, 0, 0, 0,

θr

μr
, 0, 0

)

. (5)  

2.3. The basic reproduction number 

The tendency for Lassa fever to spread becomes higher if an indi-
vidual is infected with Lassa fever in the population. The threshold for 
disease transmissibility in epidemiology is called the basic reproduction 
number. This threshold shall be computed for our model to make pre-
dictions regarding the outbreak or otherwise of Lassa fever in the pop-
ulation. Following the approach of [25], we obtain, 

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β2θh

μh

β3θh

μh
0

β1θh

μh

0 0 0 0

0
β4θr

μr
0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

βh +μh 0 0 0

− βh μh +βh +φ 0 0

0 0 μr +βr 0

0 0 − βr μr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

V − 1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
a1

0 0 0

βh

a1a2

1
a2

0 0

0 0
1
a3

0

0 0
βr

a3μr

1
μr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where 

a1 = βh + μh
a2 = μh + βh + ϕ
a3 = μr + βr 

Thus, the basic reproduction number is given as, 

R0 = ρFV − 1 =
βhθh

μrμha1a2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β1β2β3θh + βrθrβ4

μha1a2a3

√

. (6)  

2.4. Extension of the model into optimal control 

We further extend the model in (1) by incorporating four control 
variables namely; fumigating the environment with pesticide, the use of 
condom, early treatment and the use of indoor residual spray u1(t), u2(t),

Table 2 
Parameters of the model and values. 
Sh = 100,Eh = 20, Ih = 10,Rh = 5, Sr = 1000, Er = 10, Ir = 20   

Parameter Value Source Parameter Value Source 

βh  0.01 Assumed β4  0.025 [12] 
μr  0.0038 [26] ϕ  0.05 Assumed 
μh  0.003465 [26] τ  0.2 Assumed 
θr  0.00001 [12] v  0.23 Assumed 
θh  1.2 Assumed θ  0.75 Assumed 
β1  0.0182 [25] δh  0.00019231 [13] 
β2  0.083 [25] φh  0.00385 [25] 
β3  0.024 [25]     
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Fig. 2. Simulation showing the effect of fumigating the environment on exposed human, infected human, exposed rat and infected rat population.  
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Fig. 3. Effect of the use of condom on exposed human, infected human, exposed rat and infected rat population.  
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Fig. 4. Effect of early treatment on exposed human, infected human, exposed rat and infected rat population.  
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Fig. 5. Effect of the use of indoor residual spray on exposed human, infected human, exposed rat and infected rat population.  
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u3(t), u4(t)respectively. The number of susceptible humans is reduced 
by 

β1ShIr(1 − u1) − β2ShEh(1 − u2) − β3ShIh(1 − u2)

Due to contact with the infected rat and as a result of sexual contact 
with asymptomatic and symptomatic infected human. The infected 
human recover through drug administration at a rate τu3. The 

susceptible rat population is risen by the daily recruitment rate θrand 
reduces by 

β4IhSr(1 − u1)

Upon contact with the infected human. θu4(t) represent the control 
measure by indoor residual spray. By incorporating the above descrip-
tion into (2) we obtain the following differential equations 

Fig. 6. Effect of the application of all the controls on exposed human, infected human, exposed rat and infected rat population.  
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The objective function is define as   

Hamiltonian, H is defined as   

Theorem 2. 
There exists an optimal control with the corresponding solution (Sh,

Eh, Ih, Rh, Sr,Er, Ir) corresponding to the state equations in (2) and the 
adjoint variables λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t)such that, 

− λ’
1=− [β1Ir(1− u1)+β2Eh(1− u2)+β3Ih(1− u2)](λ1 − λ2)+λ1μh,

− λ’
2=β2Sh(1− u2)(λ1 − λ2)+βh(λ1 − λ2)+μhλ2 − B1,

− λ’
3=(ϕ+τu3)[(1− v)λ1+v(λ3 − λ4)]+β3Sh(1− u2)(λ1 − λ2)+(μh+δh)λ3 − B2,

− λ’
4=φ4(λ1 − λ4)+μhλ4,

− λ’
5=β4Ih(1− u1)(λ5 − λ6)+(μr+θu4)λ5 − B3,

− λ’
6=βr(λ6 − λ7)+(μr+θu4)λ6 − B3,

− λ’
7=β1Sh(1− u1)(λ1 − λ2)+(μr+θu4)λ7 − B3 

Such that, 

u*
1 =max

{

0, min
(

1,
β1ShIh(λ2 − λ1) + β4IhSr(λ6 − λ5)

K1

)}

,

u*
2 =max

{

0, min
(

1,
β2ShEh(λ2 − λ1) + β3IhSh(λ2 − λ1)

K2

)}

,

u*
3 =max

{

0, min
(

1,
v(ϕ + τ)(λ3 − λ4)Ih + (v − 1)(ϕ + τ)Ihλ1

K3

)}

,

u*
4 =max

{

0, min
(

1,
θ(Srλ5 + Erλ6 − Irλ7)

K4

)}

,

3. Results 

We perform the numerical simulations by using the values in the 
Table 2. We solve the optimal control system which is made up of the 
state and adjoint equations. The optimality system is solved numerically 
via forward-backwards sweep method. We also use the following values 
for the weight factors. 

B1 = 1, B2 = 1.5, B3 = 1.5, K1 = 0.2, K2 = 0.2, K3 = 0.15, K4 = 0.5 

To examine the effect of the control interventions, we considered the 

H(u1, u2, u3, u4) =

(

B1Eh + B2Ih + B3Nr + K1
u2

1

2
+ K2

u2
2

2
+ K3

u2
3

2
+ K4

u2
4

2

)

+ λ1(θh + τu3(1 − v)Ih + φhRh − β1ShIr(1 − u1) − β2ShEh(1 − u2) − β3ShIh(1 − u2)

− μhSh) + λ2(β1ShIr(1 − u1) + β2ShEh(1 − u2) + β3ShIh(1 − u2) − βhEh − μhEh) + λ3(βhEh − (ϕ + τu3)Ih − μhIh − δhIh) + λ4(τvu3Ih − (φh + μh)Rh)

+λ5(θr − β4IhSr(1 − u1) − μrSr − θu4Sr) + λ6(β4IhSr(1 − u1) − βrEr − μrEr − θu4Er) λ7(βrEr − μrIr − θu4Ir)

dSh

dt
= θh +(ϕ+ τu3)(1 − v)Ih +φhRh − β1ShIr(1 − u1) − β2ShEh(1 − u2) − β3ShIh(1 − u2) − μhSh,

dEh

dt
= β1ShIr(1 − u1)+β2ShEh(1 − u2)+β3ShIh(1 − u2) − (βh +μh)Eh,

dIh

dt
= βhEh − (ϕ+ τu3)Ih − (μh +δh)Ih,

dRh

dt
=(ϕ+ τu3)vIh − (φh +μh)Rh,

dSr

dt
= θr − β4IhSr(1 − u1) − μrSr − θu4Sr,

dEr

dt
= β4IhSr(1 − u1) − βrEr − μrEr − θu4Er,

dIr

dt
= βrEr − μrIr − θu4Ir.

J(u1, u2, u3, u4)=

∫tf

0

(

B1Eh(t)+B2Ih(t)+B3Nr(t) +K1
u2

1(t)
2

+K2
u2

2(t)
2

+K3
u2

3(t)
2

+K4
u2

4(t)
2

)

dt   
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following strategies to see the effect of the best control strategies on 
exposed rat, infected rat, exposed human and infected human 
population.  

1. Fumigating the environment with pesticide u1  
2. The use of condom u2  
3. Early treatment as control intervention u3  
4. The use of indoor residual spray u4 
5. Applying all the control strategies that is, fumigating the environ-

ment with pesticide, use of condom, early treatment and the use of 
indoor residual spray u1(t), u2(t), u3(t), u4(t)respectively. 

4. Discussion of results 

4.1. Effects of fumigating the environment with pesticide u1 

We use fumigation of the environment with pesticide as the only 
control strategy (u1 ∕= 0, u2, u3, u4 = 0)to minimise the objective func-
tional J, while the other controls u2, u3 and u4 are set to zero. In Fig. 2(a)- 
(e). It is observed that the strategy does not have any effect on the 
exposed and infected humans but has a greater impact on the exposed 
and infected rats. 

4.2. Effects of condom usage u2 

We apply the use of condom as the only control strategy that is, 
(u2 ∕= 0, u1,u3,u4 = 0)to minimise the spread of Lassa fever, while other 
controls u1, u3 and u4 are made to be zero. In Fig. 3, we observe that the 
strategy does not have any effect on the exposed and infected rats but 
has a significant effect on the exposed and infected humans as the use of 
condom can prevent human to human transmission during sexual ac-
tivities. The number of individuals in the exposed and infected classes 
reduces considerably in Fig. 3 (a)–(e). 

4.3. Effects of early treatment as control intervention u3 

We apply early treatment as the only control strategy (u3 ∕= 0, u1,u2,

u4 = 0)to check the transmission of Lassa fever, while the other in-
terventions u1, u2 and u4 are set to zero. In Fig. 4 (a)-(e). It is observed 
that the strategy does not influence the exposed and the infected rat 
populations but has a significant effect on the exposed and infected 
humans as their populations decrease significantly. 

4.4. Effects of the use of indoor residual spray u4 

We apply indoor residual spray as the only control strategy (u4 ∕= 0,
u1,u2,u3 = 0)to curtail the Lassa fever spread, while other controls u1, 
u2 and u4 are set to zero in Fig. 5 (a)-(e). The strategy does not have any 
effect on humans but has a significant effect on the exposed and infected 
rats. The indoor residual spray controls the rats but does not have a side 
effect on humans. 

4.5. The combination of all four controls 

Fumigation of the environment with pesticide, use of condom, early 
treatment and use of indoor residual spray u1(t), u2(t), u3(t),
u4(t)respectively. In Fig. 6 (a)-(e). It is clearly shown that the applica-
tion of all the four controls yields better results i.e. there is a drastic 
decrease in the number of exposed humans, infected humans, exposed 
rats and infected rats. Therefore, Lassa fever can be eradicated in any 
given population with time if all the suggested controls are adequately 
applied. 

5. Conclusion 

In this study, a model for the dynamics of Lassa fever was proposed. 

The solutions of the model were first of all tested for the basic properties 
of positivity and boundedness and were found to be positive and 
bounded at all time. A qualitative analysis was then carried out by 
deriving the equilibria points, computing the reproduction number and 
investigating the existence and stability of equilibria. By using the 
Pontryagin’s maximum principle, we formulated the optimal control 
problem by analysing the conditions for the optimal control of the dis-
ease spread. The optimized system was solved numerically and the nu-
merical simulations were carried out to illustrate the analytical results. 
The numerical simulation results showed that optimal level was attained 
in the control and containment of Lassa fever when fumigation of the 
environment with pesticide, use of condom, early treatment and use of 
indoor residual spray were combined. Therefore, the fight against the 
spread of Lassa fever disease requires a multifaceted approach. We have 
not considered the stability aspect in this work and other control mea-
sures like personal hygiene, this gives space for future research. The 
findings obtained in this work can be a valuable reference for the Lassa 
fever Local National Control Program and the basis for the preparation 
and design of the best intervention strategies to eradicate Lassa fever 
disease. 
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