
Vol.13 (2023) No. 2

ISSN: 2088-5334

A Mobile Palmprint Authentication System Using a Modified MNT
Algorithm, Circular Local Binary Pattern, and CNN (mobileNet)

Jide Kehinde Adeniyi a,*, Tinuke Omolewa Oladele b, Ayodele Adebiyi a, Marion Adebiyi a,
Tunde Taiwo Adeniyi b

a Department of Computer Science, Landmark University, Omu-aran, Nigeria
b Department of Computer Science, University of Ilorin, Ilorin, Nigeria

Corresponding author: *adeniyi.jide@lmu.edu.ng

Abstract—A few approaches have been proposed for hand segmentation in palmprint recognition. Skin-color information does not

process sufficient information for discrimination in complex backgrounds and variable illumination. The use of guides has also been

proposed, which restricts hand placement during capturing. Contour tracing algorithms have also been proposed in the literature. This

worked in an even background scenario with no objects or patterns around the hand. In the case of uneven background with objects

present, the traditional contour tracing algorithm cannot accurately segment the hand from the background. Hence, this paper proposes

a modified Moore Neighbor Tracing (MNT) algorithm for hand detection and key-point extraction in complex backgrounds. The hand

image is converted to grey, and the edges in the hand image are detected. The modified algorithm then transverses selected edges and

returns the peak and valleys of each finger. This is then used to crop the palm. The modified algorithm improves the accuracy of hand

detection in complex backgrounds with an F-Score of 0.8657. A mobile palmprint biometric system was also presented using Circular

Local Binary Pattern (CLBP) and Convolutional Neural Network (CNN). The system showed an accuracy of 98.3% for hands captured

with the mobile device and the CASIA online database. An accuracy of 99.0% was also recorded for GPDS and PolyU online databases.

Keywords— Hand segmentation; improved contour tracing algorithm; feature extraction; complex background, convolutional neural

network.

Manuscript received 25 Aug. 2021; revised 12 Sep. 2022; accepted 22 Feb. 2023. Date of publication 30 Apr. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Mobile devices these days have become an essential part of
our lives. This is due to the wide range of services available
to them [1]. These services include SMS, E-mail, internet
facility, banking transactions, contact management [2]. These
devices could be used to access various information about the
user’s digital life [3]. Hence, the need to secure these devices
against unauthorized access. Available security measures on
mobile devices include passwords and pattern recognition [4].
While these methods served security purposes, human
limitations such as forgetfulness have plagued these methods.
Biometrics was then introduced. Biometric verification uses
an individual’s physical or behavioral trait for recognition [5],
[6]. Face recognition is among the biometric recognition
methods introduced, but challenges such as pose variation,
easy access to face image (to trick the system), and
illumination have limited its use [6]–[8].

Palmprint recognition as a biometric trait uses an
individual’s palm for recognition. It is a favorable
authentication method on mobile devices because of its
favorable traits like high acceptance, easy acquisition,
discriminating features, difficulty in leakage, and so on [9],
[10]. The fact that a mobile phone can be authenticated
without the need to touch the phone could make
authenticating the use of a phone by a friend easier. In a
typical palmprint recognition system, there are four stages.
These stages are acquisition, preprocessing, feature extraction,
and matching. The acquisition stage is for capturing the hand,
and the preprocessing stage prepares the image captured for
feature extraction. Features are extracted at the features
extraction stage, and matching is performed at the matching
stage [11]–[15].

Palmprint can either be contact based or contactless (based
on its acquisition). Contact-based devices that require contact
with hands are used to acquire the hand. These devices
include desktop scanners, Charge-coupled device (CCD)

751

scanners, and so on [16]–[18]. In contact-based palmprint,
hand segmentation is a thresholding problem [14] [19] (with
the background color different from the hand color). Although
contact-based palmprints achieve high accuracy, infections
and lack of flexibility in acquisition affect them [9].

Contactless palmprint recognition acquires hand images
without contact with the acquisition device. The device is
usually a camera [20], [21]. This acquisition mode makes its
acceptance high as user’s hand is not restricted during
acquisition. However, with this liberty comes the challenges
of complex backgrounds, changing illumination, and so on
[21]. The challenge is even more on mobile platforms due to
limitations in processing power [21]. In a contactless system,
an important preprocessing step is the region of interest
extraction. This step extracts the palm. Certain hand key
points must be detected [22]. The goal of hand detection in
palmprint is to extract these key points. These points are the
valley between the pinkie finger, the ring finger, the leading
finger, and the middle finger. These points are used to crop
out the palm [19], [23]. This paper proposes an algorithm for
hand detection in a complex background using a Modified
Moore Neighbour Tracing Algorithm, and it also presents a
mobile palmprint recognition system using Circular Local
Binary Pattern and Convolutional Neural Network. Several
approaches have been proposed to do this. For cases where
the hand was acquired with a contact-based device or a
camera setup was used for acquisition, thresholding and
binarization are usually employed for hand detection.

A. Hand Segmentation Review

An example is the system that Hussein et al. proposed [11].
The hand was captured using a CCD device, and hand
detection was performed by thresholding and converting the
image to its binary form. Verma and Chandran [24] used a
document scanner for acquisition in their system. This made
the background color different from the scanned hand,
making segmentation easy.

A similar approach is the use of a camera setup for hand
acquisition [13], [18], [22]. In this case, the hand is captured
in a controlled environment with an even background that is
separated from the hand color. In most cases, the camera is
placed on a stand at a distance from the background that the
hand is placed [13]. Hand segmentation in this scenario is
usually performed by using the Otsu thresholding method to
segment the hand from the background and using convex hull
or pixel scanning to obtain the key-points of the hand [18].

 Another notable approach is skin color thresholding. This
technique uses the skin's color to segment the hand from the
background [25]. In this case, the hand is captured with a
complex background, and an attempt is made to detect the
hand in the image using previous data on skin color. This
usually entails using a different color model from RGB color
model. Barra et al. [25] used the HSV color model; the mean
hue was used for determining skin color. Bailadoar et al. [8]
made use of flood segmentation, and they used the edge image
and the image’s binary equivalent for hand detection. Skin
color thresholding and region growth were also proposed by
Saeed et al. [7]. Their system used the center of mass to obtain
the skin threshold and expanded it to other pixels using the
threshold for discrimination. Gao et al. [9] used grey
information and shape information for coloring likelihood

degree as an improvement to the traditional active shape
modeling.

Wu and Leng [21] proposed the use of a guide for hand
capture. This technique is also another method used for hand
acquisition in complex backgrounds. This method is usually
used on a mobile platform to restrict hand placement while
selecting predefined key-points on the guide. This method
reduces the effort required by detecting the key-point from the
guide. Wu and Leng [21] used a guide in the form of a hand
for their system. Double-Line-Single-Point (DLSP) approach
was proposed by Leng et al. [10]. DLSP uses two parallel
lines as a guide for hand capture. These guides are usually
drawn on the screen of the capturing device to allow for easy
capturing.

B. Palmprint Review

A number of mobile and non-mobile palmprint systems
have been proposed. A few from the current studies were
examined. Poonia et al. [26] proposed a palmprint template
that stores the minutiae points' geometric information. Then
the Delaunay triangulation using internal angle matching is
used for matching the templates, and the extracted geometric
information acts as features used for matching. The method
was tested, and it reported an accuracy of 95.4%.

Xu et al. [27] examined a contactless palmprint image
identification and verification system. Image alignment was
applied together with a deep network (spatial transformation
network) to increase the recognition accuracy of the system.
A residual network was used in their system for classification.
The system accuracy recorded 94.73 for the CASIA database
and 98.50 GPDS database.

Patil and Pawar [28] presented a Haar wavelet, DCT, and
Fast ICA blend for palmprint recognition. Haar was used to
decomposing the palmprint, DCT was applied, and Fast ICA
was used for feature extraction. Euclidean distance was used
for matching. The result on polyU palmprint database
produces an accuracy of 98.5%.

Zhou et al. [29] tried to extract translation and rotation
invariant features from palmprint for recognition. They built
an orientation edge detector to show the response of the edges
in each direction. The detector combines a phase congruency-
based edge detector and a bipolar filter. After this step, a local
spatial frequency detector obtains the horizontal shift map.
The edge and frequency detectors repeat the process,
producing the feature map. The system showed an accuracy
of 95.58 and 94.91 on PolyU and CASIA databases,
respectively.

II. MATERIAL AND METHOD

This section examines the proposed methodology. The
stages in the proposed methodology include: hand capture,
edge detection, and edge tracing using a modified Moore
Neighbour Tracing algorithm, features extraction using CLBP,
and classification using Convolutional Neural Network
(based on Android MobileNet). The acquisition stage of the
system captures the palm. The edge detection stage aims to
detect as many edges as possible in the captured hand image.
The modified Moore Neighbour algorithm scans the edges for
the actual hand edge in the image and detects the key-points
of the hand. The key-points detected are used to crop out the

752

palm. CLBP is applied to the palm for feature extraction, and
MobileNet is used for classification.

A. Hand Acquisition

The hand was captured in real-time using a mobile device.
A Tecno CX Air with 3GB of RAM and an internal storage
of 16GB. It has 4 CPUs with a frequency 1.25GHz. The hands
were captured using the camera at the back of the device. The
hands were captured in an unconstrained environment in real-
time with no pegs or guides. An example of a hand being
captured is shown in Fig. 1. Fig. 2 shows examples of a hand
captured.

Fig. 1 Image during capture using a mobile phone

Fig. 2 Images captured with the mobile phone

B. Edge Detection

The captured image is converted to greyscale in Fig. 3. The
edges of the greyscale image were obtained. The Canny edge
detection method was used to obtain these edges. This step
aims to detect as many edges as possible in the image. The
algorithm is as follows [30], [31].

1) Image Filtering: The first step in canny edge detection
is filtering. This is done so as to remove noise from the
original image. The Gaussian filtering method is used for
filtering, and this is because a simple mask can be used to
compute the Gaussian filter. Convolution is performed on the
mask and the original image. The Canny Edge Detection
algorithm usually uses a two-dimensional function, and it is
shown in equation (1) [32]–[34]:

 ���, ℎ; �� =

��
�� ��������

��� � (1)

where s is the horizontal distance, h is the vertical distance,
and \sigma is the standard deviation.

2) The gradient of the Image: The magnitude and direction
of the gradient of the image are computed in the second step.
The Sobel operator is used for this. The Sobel operator uses a
3X3 mask to estimate the gradient in the two possible
directions (x and y). The masks are shown in Fig. 2 [32]:

-1 0 +1

-2 0 +2

-1 0 +1

��

 +1 +2 +1

0 0 0

-1 -2 -1

��

Fig. 3 Masks for Sobel operator

To obtain the edge strength (magnitude), (2) is applied.

 |�| = |��| + |��| (2)

After obtaining the magnitude, the edge direction is calculated
using (3).

 �ℎ��� = ���������/��� (3)

3) Non-Maximum Suppression: After obtaining the
direction of the edges, maximum suppression is applied to rid
the image of edges of wrong edges. This step performs the
thinning of the edges [35].

4) Hysteresis: Hysteresis is applied to eliminate disjointed
edges caused by operator output fluctuating above and below
the threshold. A double threshold is applied in hysteresis such
that pixel value above the high threshold is seen as genuine
edges, and pixel values below the low threshold are rejected.
Values between the high and low threshold are accepted as a
genuine edge if it is connected to an actual edge; otherwise, it
is rejected [36]. Fig. 4 and Fig. 5 show sample images
captured and the edges detected from the images.

Fig. 4 Images captured with the mobile phone

Fig. 5 Images captured with the mobile phone

C. Hand Detection

A segment with a width of one pixel and a length of one or
more pixels is termed a contour [37]. To separate an object
from its background, a contour is usually used. Contour
tracing is a method that is used to extract an object’s boundary
from its background in digital images [38]. Depending on
whether an object shares an edge (or an edge and a vertex)
with a white pixel, a boundary could either be four pixels or

753

eight pixels [39], [40]. Mandee et al. [37] classified the
contour tracing algorithm into three; the vertex-following
algorithm, the run-data-following algorithm, and pixel
following algorithm.

1) Vertex following method: traces the boundary using
the vertices of the contour pixels. Though similar to the pixel
following method, it saves the corner point of the contour
pixel.

2) Run-data-following method uses run data pairs
obtained from scanning left to the right.

3) Pixel following method follows a defined pattern to
trace the contour pixels and stores the coordinates in the
memory. Several methods, such as Simple Boundary
Follower (SBF), modified SBF, and Moore-Neighbour
Tracing (MNT) algorithms, are pixel-following boundary
tracing types [38]. The MNT algorithm is shown below:

Input: A square tessellation, T, containing a connected
component P of black cells.

Output: A sequence (!1, !2, !3, … , !") of
boundary pixel a.

Let p denote the current boundary pixel.
Let c denote the current pixel under consideration,
i.e., c is in #($)
Begin:

• Set to be empty.
• From bottom to top and left to right, scan
the cells of % until a black pixel, �, of & is
found.
• Insert s in .
• Set the current boundary point p to s, i.e.,
$=�.
• Backtrack i.e., move to the pixel from

which s was entered.
• Set c to be the next clockwise pixel in

#($).
• While c not equal to � do

If ' is black
Insert ' in
Set $='
Backtrack (move the
current pixel ' to the
pixel from which $ was
entered)

else
Advance the current

pixel c to the next clockwise pixel
in #($)

• end while
end

D. Modified Moore Neighbour Tracing Algorithm (MMNT)

The algorithm presented in this paper is also a pixel-
following method that uses prior knowledge of the shape of
the hand to predict the direction of the boundary to follow. In
hand-based biometrics, the hand key-points are divided into
peaks and valleys. The peak points are the pixel at the tip of
the fingers, and the valley point is the pixel at the base of each
finger [21], [41]. Typical hand geometry biometric system

uses these points for taking the length of the fingers (which is
a geometric feature that is extracted from the hand) [37], [42].
The valleys between the leading and middle fingers and the
valley between the ring and pinkie fingers are used in
palmprint biometric systems for Region of Interest (ROI)
extraction.

The challenge of hand detection in a complex background
is knowing which edge is the hand edge and which edge is the
background edge. The pixel-following algorithm uses the
previous knowledge of the shape of the hand to determine the
direction to follow when an edge image is being scanned. At
any edge junction, the algorithm follows the pattern of the
hand in selecting the right edge to follow. Unlike other pixel-
following algorithms that start at any pixel [43], this algorithm
starts a few pixels from the base of the hand image because
there are edges in the image that are not the hand edges. Edge
termination is also not based on traversing a boundary pixel
twice but rather on the detection of the nine key-points of the
hand. The MMNT algorithm is shown below:

Input: An array of binary pixels of a hand image �&�, with

& = {0, 1}. Where 0 is background pixel, and 1 is
an edge pixel.
Let records be a 9 . 2 array, i.e., an array of 9 rows

and 2 columns.
Let ��0�_234 and ��0�_'35 be the dimension of the

input array, respectively.
Let �, !, ', 6, �, 7, 8, ℎ be the neighboring pixels of a

particular pixel in consideration, i.e., &��, ��,
where � and � represent the pixel’s row and
column respectively.

Let ' denote the current pixel, i.e., ' = &��, ��.
Start:

1. Set ��0�_234 to be ��0�_234 − 3
2. Set ; to be empty
3. Set Boolean $2�� to be false
4. Set Boolean $2��1 to be false
5. For '3<���2_'35 = 2 ∶ ��0�_'35

a. Set '<22���_'35 to '3<���2_'35
b. While 2�'326 is not completely filled

i. Obtain the neighboring pixels
�, !, ', 6, �, , 7, 8, ℎ

ii. If m is empty i.e. preparing for
the first peak

If � is set and $2�� is 7�5��
i.e. � == 1

Increment
'3���2_'35 by 1
Set ; to 2
Set $2�� to 0

Elseif any of !, ', 6 is set
Adjust ��0�_234
and (or) ��0�_'35 to
point to new '
Set $2�� to false

Elseif � is set i.e. � is 1
Adjust ��0�_234
and (or) ��0�_'35 to
point to new '
Set $2�� to true

Else

754

Empty 2�'326
Set ; to 0
Set $2�� to false
Set '3<���2_'35 to
'<22���_'35
Reset ��0�_234 to
��$<� �22�� 234 ��0�
– 3
Break out of while
loop

Endif
iii. Elseif ; is set to 1 i.e. looking

for finger valley
If any of �, ℎ, 8, 7 is set i.e. is
equal to 1

Adjust ��0�_234
and (or) ��0�_'35 to
point to new '

Elseif b is set
Add ��0�_234 and
��0�_'35 to 2�'326
Adjust ��0�_234
and ��0�_'35 to
point to new '
Set ; as 2 i.e. to
look for finger peak
next.

Else
Empty 2�'326
Set ; to 0
Set $2�� to false
Set '3<���2_'35 to
'<22���_'35
Reset ��0�_234 to
��$<� �22�� 234 ��0�
– 3
Break out of while
loop

endif
iv. Elseif ; is set to 2 i.e. looking

for finger peak
If ℎ is set and $2��1 is
7�5�� i.e. � == 1

Add ��0�_234 and
��0�_'35 to 2�'326�
Adjust ��0�_234
and ��0�_'35 to
point to new '

Elseif any of �, !, ' is set
Adjust ��0�_234
and (or) ��0�_'35 to
point to new '
Set $2��1 to false

Elseif 6 is set i.e. 6 is 1
Adjust ��0�_234
and ��0�_'35 to
point to new '
Set $2��1 to true

Else
Empty 2�'326

Set ; to 0
Set $2�� to false
Set '3<���2_'35 to
'<22���_'35
Reset ��0�_234 to
��$<� �22�� 234 ��0�
– 3
Break out of while
loop

Endif
v. Endif

c. End while loop
6. End for loop

Output: An array �2�'326�� of 9 rows and 2 columns. With
each row corresponding to the key-points of the fingers in the
image and the columns corresponding to the coordinates.

Fig. 6 Key-points detected after applying the MMNT

E. Region of Interest Extraction

After the hand's key-points are detected, the region of
interest is extracted. The region of interest in palmprint is the
palm of the hand. The key-points used for extracting the palm
of the hand is the valley point between the leading finger and
the middle finger (record (4, :)) and the valley point between
the ring finger and the pinkie finger (record (8, :)). Fig. 7
shows the identified keypoint, and Fig. 8 shows the cropped
palm image.

Fig. 7 Rectangular location of the palm using the key-points

Fig. 8 Cropped palm image

755

F. Features Extraction

The Circular Local Binary Pattern (CLBP) was used to
extract features from the hand's palm. The CLBP was selected
because of the need to reduce the effect of changes in intensity
on the palm image. This is necessary because the mobile
phone will capture images with different light intensities at
different places. Given a pixel ��? , �?� and its circular
neighbor P and R, sample point at location ��@ , �@� can be
obtained using (4).

 ��@ , �@� = ��? + A'3��2B!/&�, �? − A'3��2B!/&�� (4)

Where sampling points are denoted with 8C = D��@ , �@�
with " ∈ {0, 1, . . . , & − 1}.
This CLBP is then obtained with the traditional Local Binary
pattern expression, as shown in equation (5).

 CG &C,H��@ , �@� = ∑ J�8@ − 8?�2@C�

@KL (5)

Where 8Mand 8N are the grey value of the central pixel and its
neighbors, respectively. The function for thresholding the
pixel intensity J�<� is given in (6).

 J�<� = O1, < ≥ 0
0, < 0 (6)

Fig. 9 CLBP output images

G. Classification

MobileNet is a popular and efficient lightweight CNN
model available on the mobile platform for classification.
Google developed it for various uses ranging from object
detection to image classification. It uses depth-wise separable
filters to deepen the network through convolution, and it
reduces parameters and computations [44]. The architecture
of the mobileNet model used is shown in Table 1.

TABLE I
ARCHITECTURE OF THE SYSTEM

Type/Stride Filter shape Input size

Conv / s2 3 x 3 x 1 x 32 224 x 224 x 1
Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32
Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64
Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64
Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv / s1 1 x 1 x 128 x 256 28 x 28 x 128
Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 512 14 x 14 x 256
Conv dw / s1
5x
Conv / s1

3 x 3 x 512 dw

1 x 1 x 512 x 512

14 x 14 x 512

14 x 14 x 512

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512
Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024

Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024
Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024
FC / s1 1024 x 25 1 x 1 x 1024
SoftMax / s1 classifier 1 x 1 x 25

The Android Neural API (NNAPI) was used to implement the
network. The NNAPI consists of Machine Learning libraries,
frameworks, and tools that help train models off-device and
deploy the trained network on an Android mobile platform
[44] [45].

III. RESULT AND DISCUSSION

The system evaluation was carried out using the method's
performance, and the method's computational time was also
stated. To evaluate the method, images captured in real time
were used. The environmental condition was not constrained
and varied at different times of the day and with different
backgrounds. A comparison was also made with the global
thresholding and skin color methods.

The Otsu threshold method was used for the global
thresholding method because it is a popular thresholding
method [11], [18]. Its speed is also notable under a
constrained environment. For skin thresholding, active shape
modeling (ASM) was used for comparison, and this made use
of grey information and shape information for segmentation
[8], [9]. The algorithms were implemented on an Android
device using OpenCV (C++), NNAPI. The Android device
was a Tecno Camon 12 with Android 9 OS, 8 MediaTek Helio
P22 processor cores, and 4 GB of RAM.

A. Evaluation criteria
The system was tested in two stages. The first stage aimed

to test the hand detection algorithm (MMNT) performance in
complex backgrounds. The evaluation criteria used for testing
the hand detection include the F-score and the average time.
The second stage of testing was performed on the biometric
system as a whole, and the system's performance was tested
in terms of the system's accuracy.

1) Hand detection evaluation: The F-score metric was
selected to evaluate the hand detection algorithm presented.
F-score is the harmonic mean of precision & and recall A.

The precision & is also known as the confidence or positive

predictive value, and the recall A is otherwise called the
sensitivity or true positive rate. Precision (P) and recall (R)
are both expressed mathematically, as shown in (7) and (8).
The higher the F-score, the better the method. F-score is given
in (9).

 & = RC
RCSTC (7)

 A = RC
RCSTU (8)

 V = 2 CH
CSH (9)

where TP, FP and FN are true positive, false positive and false
negative respectively. True positive are those pixels that are
labelled as the key-point that match the actual points. False
positive are those pixels labelled as key-points but are not the
actual key-points of the hand and false negative are the pixels
not selected as the key-points but are actually key-points of

756

the hand in the image. A higher F-score corresponds to better
segmentation.

B. Result

The results obtained from testing the system are stated
below. The stated results are two. The first is the f-score and
average time of the hand detection algorithm. The second
result states the FAR, FRR, and accuracy of the system.

1) Hand detection result and comparison: 430 hand
images were captured in real-time, and an attempt was made
to segment the captured hands from their background. The
performance of the modified Moore-Neighbour Tracing
algorithm and other hand segmentation methods is shown in
Table 2 and Table 3.

TABLE II
COMPARISON OF F-SCORE AND AVERAGE TIME FOR PROPOSED METHOD AND

OTHER METHODS USING 640 BY 480 PIXELS

Segmentation

method

Image

size(pixel)
F-Score

Average

time

Modified MNT 640 x 480 0.8657 0.9763
Skin-colour 640 x 480 0.7014 0.9685
Thresholding 640 x 480 0.4632 0.2987
Graph cuts 640 x 480 0.6854 12.5634

TABLE III
COMPARISON OF F-SCORE AND AVERAGE TIME FOR PROPOSED METHOD AND

OTHER METHODS USING 3120 BY 4160 PIXELS

Segmentation

method

Image

size(pixel)
F-Score

Average

time (s)

Modified MNT 3120 x 4160 0.9104 2.2456
Skin-colour 3120 x 4160 0.8218 2.1123
Thresholding 3120 x 4160 0.5102 0.9054
Graph cuts 3120 x 4160 0.6992 14.8743

Capturing of images was performed at different times of

the day with the camera flash used for capturing at night
(since this is a standard trait available on most mobile devices).
The greater the F-score, the better the performance of the
method. As observed from the image, the image's resolution
difference had little impact on the method's performance.
However, this added quite a bit to the processing time of the
algorithm. The performance of the f-score showed a better
hand segmentation for the modified MNT algorithm when
compared with the other methods. The table also showed that
an image with higher resolution would improve the hand's
segmentation, though this will be at the cost of time and more
processing resources.

2) Palmprint system result and comparison: To test the
mobile palmprint recognition system, the mobile device’s
back camera was used to capture the hand of the enrolled
users. There were 30 classes, 300 hands were captured, and
the training and validation were 70: 30. The processing was
performed on the device, and the system recorded a validation
accuracy of 98.33%. The result was compared with the
googleNet, AlexNet, and SqueezeNet models. Table 4 shows
a comparison of the model in terms of accuracy.

TABLE IIV
COMPARISON OF ARCHITECTURE MODELS’ PERFORMANCE

Model Accuracy (%)

mobileNet 98.33
googleNet 97.33

SqueezeNet 96.33
alexNet 93.33

3) Comparison of system with other similar systems: To
create an even platform for the comparison of palmprint
systems, the popular online database was used to test the
system. However, it should be noted that these databases have
their hand images captured on an even background; hence,
palm extraction does not involve a detailed method. Three
databases were used for testing the system: the CASIA
palmprint image database, the GPDS palm database and the
PolyU palmprint database.

The CASIA database consists of 5502 palmprint images
that were acquired from 312 people. Each individual has eight
palmprint images (at least). Each palmprint image has a
distinct position, scale, and posture because no pegs were
used during capture. The background of the palm is uniform,
and the illumination is distributed evenly [46]. The GPDS
database has 1000 images from 100 subjects. 10 images of
each recipient’s right hand were captured. The placement of
the hand is guided by the mask on the screen [47]. PolyU
palmprint database is a palmprint database collected from 250
volunteers. It includes 195 males and 55 females. The
database has 6000 palm images from 500 different palms [48].
Table 5,6,7, and 8 show the confusion matrix for the
respective palm database. Table 9 shows a comparison of the
accuracy of the system with other relevant systems. The
accuracy in Table 9 was computed using equation (10).

 W''<2�'� = RCSRU
RCSRUSTCSTU (10)

TABLE V
CONFUSION MATRIX FOR CASIA DATABASE

No = 5000 Predicted No
Predicted

Yes

Actual No 2474 26 2500
Actual Yes 74 2426 2500
 2548 2452 5000

TABLE VI
CONFUSION MATRIX FOR GPDS DATABASE

No = 1000 Predicted No
Predicted

Yes

Actual No 498 2 500
Actual Yes 8 492 500

 506 494 1000

TABLE VII
CONFUSION MATRIX FOR POLYU DATABASE

No = 5000 Predicted No
Predicted

Yes

Actual No 2488 12 2500

Actual Yes 38 2462 2500
 2526 2474 5000

TABLE VIII
CONFUSION MATRIX FOR OUR CUSTOM DATABASE

No = 1000 Predicted No
Predicted

Yes

Actual No 394 6 400
Actual Yes 11 589 600
 405 595 1000

757

TABLE IIIX
COMPARISON OF THE PERFORMANCE WITH SIMILAR SYSTEMS

Paper

Accuracy of Palmprint Databases (%)

CASIA GPDS PolyU
Custom

Dataset

[49] - - - 95.4
[27] 94.73 98.50 - -
[28] - - 98.5
[29] 94.91 - 95.88 -
Our Method 98.0 99.0 99.0 98.3

IV. CONCLUSION

This research work presented a palmprint recognition
system for mobile devices (Android). A hand segmentation
method for hand detection in complex background and
uneven lighting scenarios was examined. The proposed
method achieved a good performance in hand segmentation
and biometric authentication in a completely unconstrained
hand-capturing environment. To evaluate the hand
segmentation method, hand images where captured in real-
time using a mobile device at different times of the day and
with different backgrounds. The system's performance is
compared with other hand segmentation methods in Table 1,
and the result showed an improved performance.

Also, the method's time cost is less than the other methods.
The performance of the hand detection algorithm showed its
ability to detect the key-points of hand images in complex
background. This makes it suitable for hand-based (unimodal
and multimodal) biometric systems on mobile and non-
mobile platforms. Hence, this segmentation method suits
hand-based biometrics on mobile and non-mobile platforms.
The palmprint authentication system also produced a
validation accuracy of 98.3%, with 30 users enrolled in the
system. The best accuracy of 99.0% was obtained for the
publicly available GPDS and PolyU palmprint database. This
is an encouraging result as typical enrolment on mobile
platforms will usually be two (both palms of the mobile
device’s owner).

ACKNOWLEDGMENT

Authors appreciate Landmark University Centre for
Research and Development, Landmark University, Omu-aran,
Nigeria for fully sponsoring the publication of this research
article.

REFERENCES
[1] D. Izergin and M. Eremeev, “Risk assessment model of compromising

personal data on mobile devices,” E3S Web Conf., vol. 270, 2021, doi:
10.1051/e3sconf/202127001013.

[2] S. Sharma, R. Kumar, and C. R. Krishna, “A survey on analysis and
detection of Android ransomware,” Concurr. Comput. Pract. Exp., doi:
10.1002/cpe.6272.

[3] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based
biometric identification,” in IEEE 4th Int. Conf. Biometrics Theory,

Appl. Syst. BTAS 2010, 2010, pp. 1–7.
[4] L. Long, “Biometrics : The Future of Mobile Phones,” End User

Comput. Serv.,” End User Comput. Serv., pp. 1–5, 2013.
[5] R. Ryu, S. Yeom, S.-H. Kim, and D. Herbert, “Continuous Multimodal

Biometric Authentication Schemes: A Systematic Review,” IEEE

Access, vol. 9, pp. 34541–34557, 2021, doi:
10.1109/ACCESS.2021.3061589.

[6] A. Giełczyk, M. Choras, and R. Kozik, “Lightweight verification
schema for image-based palmprint biometric systems,” Mob. Inf. Syst.,
vol. 2019, 2019, doi: 10.1155/2019/2325891.

[7] U. Saeed, K. Masood, and H. Dawood, “Illumination normalization
techniques for makeup-invariant face recognition,” Comput. Electr.

Eng., vol. 89, 2021, doi: 10.1016/j.compeleceng.2020.106921.
[8] G. Bailadoar, B. Ríos-Sánchez, R. Sánchez-Reillo, H. Ishikawa, and

C. Sánchez-Ávila, “Flooding-based segmentation for contactless hand
biometrics oriented to mobile devices,” IET Biometrics, vol. 7, no. 5,
pp. 431–438, 2018, doi: 10.1049/iet-bmt.2017.0166.

[9] F. Gao, K. Cao, L. Leng, and Y. Yuan, “Mobile Palmprint
Segmentation Based on Improved Active Shape Model,” J. Multimed.

Inf. Syst., vol. 5, no. 4, pp. 221–228, 2018.
[10] L. Leng, F. Gao, Q. Chen, and C. Kim, “Palmprint recognition system

on mobile devices with double-line-single-point assistance,” Pers.

Ubiquitous Comput., vol. 22, no. 1, pp. 93–104, 2018, doi:
10.1007/s00779-017-1105-2.

[11] N. M. S. Hussein, S. M. Hammed, B. Ergen, and P. G. Student,
“Biometric Identification System based on Hand Geometry,” Int. J.

Innov. Res. Sci., vol. 6, no. 3, pp. 3159–3166, 2017, doi:
10.15680/IJIRSET.2017.0603005.

[12] M. Akmal-Jahan, B. Jasmine, and V. Chandran, “Minutiae-Triangle-
Graph : An invariant feature representation for fingerprints and
palmprints in hand biometrics,” Springer, 2020.

[13] G. Jaswal, A. Kaul, and R. Nath, Multimodal Biometric Recognition

System Using Hand Shape , Palm Print , and Hand Geometry, vol. II.
Springer Singapore, 2019.

[14] W. M. Matkowski, T. Chai, and A. W. K. Kong, “Palmprint
Recognition in Uncontrolled and Uncooperative Environment,” IEEE

Trans. Inf. Forensics Secur., vol. 15, pp. 1601–1615, 2020, doi:
10.1109/TIFS.2019.2945183.

[15] A. Ungureanu, S. Salahuddin, and A. Member, “Toward
Unconstrained Palmprint Recognition on Consumer Devices : A
Literature Review,” IEEE Access, vol. 8, pp. 86130–86148, 2020, doi:
10.1109/ACCESS.2020.2992219.

[16] M. M. H. Ali, V. H. Mahale, P. L. Yannawar, and A. T. Gaikwad, “A
Review: Palmprint Recognition Process and Techniques,” Int. J. Appl.

Eng. Res., vol. 13, no. 10, pp. 7499–7507, 2018.
[17] C. Naveena, R. Shreyas, and K. Chethan, “Texture Features in

Palmprint Recognition System,” Int. J. Nat. Comput. Res., vol. 10, pp.
41–57, doi: 10.4018/IJNCR.2021010104.

[18] M. Aguado-Martínez, J. Hernández-Palancar, K. Castillo-Rosado, and
E. Al., “Document scanners for minutiae-based palmprint recognition:
a feasibility study,” Pattern Anal. Appl., vol. 24, pp. 459–472, 2021,
doi: 10.1007/s10044-020-00923-3.

[19] M. P.Dale, M. A. Joshi, and H. J. Galiyawala, “A Single Sensor Hand
Geometry and Palm Texture Fusion for Person Identification,” Int. J.

Comput. Appl., vol. 42, no. 7, pp. 11–16, 2012, doi: 10.5120/5703-
7726.

[20] S. Aoyama, K. Ito, and T. Aoki, “A Contactless Palmprint Recognition
Algorithm for Mobile Phones,” Int. Work. Adv. Image Technol., pp.
409–413, 2013.

[21] T. Wu and L. Leng, “Video Palmprint Recognition System Based on
Modified Double-line-single-point Assisted Placement,” J. Multimed.

Inf. Syst., vol. 8, no. 1, pp. 20–30, 2021.
[22] T. O. Oladele, K. Adeniyi, and T. O. Aro, “Framework for User

Authentication at a Distance for Mobile Phones Using Contactless
Hand-based Multimodal Biometric System,” J. Comput. Sci. Control

Syst., vol. 12, no. 1, pp. 24–27, 2019.
[23] L. Fei, G. Lu, W. Jia, S. Teng, and D. Zhang, “Feature Extraction

Methods for Palmprint Recognition: A Survey and Evaluation,” IEEE

Trans. Syst. Man, Cybern. Syst., vol. 49, no. 2, pp. 346–363, 2019, doi:
10.1109/TSMC.2018.2795609.

[24] S. Verma and S. Chandran, “Contactless Palmprint Verification
System using 2-D Gabor Filter and Principal Component Analysis,”
Int. Arab J. Inf. Technol., vol. 16, no. 1, 2019.

[25] S. Barra, M. De Marsico, M. Nappi, F. Narducci, and D. Riccio, “A
hand-based biometric system in visible light for mobile environments,”
Inf. Sci. (Ny)., vol. 479, pp. 472–485, 2019, doi:
10.1016/j.ins.2018.01.010.

[26] P. Poonia, P. K. Ajmera, and V. Shende, “ScienceDirect ScienceDirect
Palmprint Recognition using Robust Template Matching Palmprint
Recognition using Robust Template Matching,” Procedia Comput.

Sci., vol. 167, no. 2019, pp. 727–736, 2020, doi:
10.1016/j.procs.2020.03.338.

[27] N. Xu, Q. Zhu, X. Xu, and D. Zhang, “An effective recognition
approach for contactless palmprint,” Vis. Comput., 2020, doi:
10.1007/s00371-020-01962-x.

[28] J. P. Patil and C. S. Pawar, “Palmprint based Pattern Recognition
Using Fast ICA,” IEE Xplore, no. ICICCS, pp. 566–569, 2020.

758

[29] X. Zhou, K. Zhou, and L. Shen, “Rotation and Translation Invariant
Palmprint Recognition With Biologically Inspired Transform,” IEEE

Access, vol. 8, pp. 80097–80119, 2020, doi:
10.1109/ACCESS.2020.2990736.

[30] P. Kavipriya, M. R. Ebenezar-Jebarani, T. Vino, and G. Jegan, “Ear
biometric for personal identification using canny edge detection
algorithm and contour tracking method,” 2021, doi:
10.1016/j.matpr.2021.03.351.

[31] S. Kumar, A. K. Upadhyay, P. Dubey, and S. Varshney, “Comparative
analysis for Edge Detection Techniques,” in 2021 International

Conference on Computing, Communication, and Intelligent Systems

(ICCCIS), 2021, pp. 675–681, doi:
10.1109/ICCCIS51004.2021.9397225.

[32] S. D. Lokmanwar and A. S. Bhalchandra, “Contour detection based on
gaussian filter,” doi: 10.1109/iceca.2019.8822189.

[33] D. N. Lohare, R. R. Manza, and N. Tiwari, “Comparative Study of
Prewitt and Canny Edge Detector Using Image Processing
Techniques,” 2021, doi: 10.1007/978-981-15-6014-9_86.

[34] A. Kumar and S. S. Sodhi, “Comparative Analysis of Gaussian Filter,
Median Filter and Denoise Autoenocoder,” in 2020 7th International

Conference on Computing for Sustainable Global Development

(INDIACom), 2020, pp. 45–51, doi:
10.23919/INDIACom49435.2020.9083712.

[35] S. Vijayarani and A. Sakila, “Face Recognition based Student
Attendance System,” Int. J. Res. Publ. Rev., vol. 2, no. 4, pp. 289–299,
2020.

[36] A. S. Ahmed, “Comparative Study Among Sobel, Prewitt and Canny
Edge Detection Operators used in Image Processing,” J. Theor. Appl.

Inf. Technol., vol. 96, no. 19, 2018.
[37] T. H. Mandee, M. I. Ahmad, and M. N. M. Isa, “Palmprint Region of

Interest Cropping Based on Moore-Neighbor Tracing Algorithm,”
Sens. Imaging, vol. 19, p. 15, 2018, doi: 10.1007/s11220-018-0199-6.

[38] R. Priyadharsini and T. S. Sharmila, “Object Detection In Underwater
Acoustic Images Using Edge Based Segmentation Method,” Procedia

Comput. Sci., vol. 165, pp. 759–765, 2019, doi:
10.1016/j.procs.2020.01.015.

[39] I. Ullah, M. S. Azmi, M. I. Desa, and Y. M. Alomari, “Segmentation
of Touching Arabic Characters in Handwritten Documents by
Overlapping Set Theory and Contour Tracing,” Int. J. Adv. Comput.

Sci. Appl., vol. 10, no. 5, 2019.
[40] S. S. Mansouri, M. Castaño, C. Kanellakis, and G. Nikolakopoulos,

“Autonomous MAV Navigation in Underground Mines Using
Darkness Contours Detection,” in In: Tzovaras D., Giakoumis D.,

Vincze M., Argyros A. (eds) Computer Vision Systems. ICVS 2019.

Lecture Notes in Computer Science, 2019, vol. 11754, doi:
10.1007/978-3-030-34995-0_16.

[41] S. Sadhukhan, N. Upadhyay, and P. Chakraborty, “Breast Cancer
Diagnosis Using Image Processing and Machine Learning,” 2020, doi:
10.1007/978-981-13-7403-6_12.

[42] T. Matić, I. Aleksi, Ž. Hocenski, and D. Kraus, “Real-time biscuit tile
image segmentation method based on edge detection,” ISA Trans., vol.
76, pp. 246–254, 2018.

[43] W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, “A Novel
Image Classification Approach via Dense-MobileNet Models,” Mob.

Inf. Syst., 2020, doi: https://doi.org/10.1155/2020/7602384.
[44] P. Liu, X. Li, H. Cui, S. Li, and Y. Yuan, “Hand Gesture Recognition

Based on Single-Shot Multibox Detector Deep Learning,” vol. 2019,
pp. 25–28, 2019.

[45] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications Andrew,” arXiv, 2017.

[46] “CASIA Palmprint Database.” [Online]. Available:
http://www.cbsr.ia.ac.cn/english/Palmprint%20Databases.asp.
[Accessed: 22-Feb-2023].

[47] “GPDS Hand Database.” [Online]. Available: .
https://gpds.ulpgc.es/downloadnew/download.htm. [Accessed: 22-
Feb-2023].

[48] “PolyU Multispectral Palmprint Database.” [Online]. Available: .
http://www4.comp.polyu.edu.hk/~csajaykr/database.php. [Accessed:
22-Feb-2023].

[49] P. Poonia, P. K. Ajmera, and V. Shende, “Palmprint Recognition using
Robust Template Matching Palmprint Recognition using Robust
Template Matching,” Procedia Comput. Sci., vol. 167, no. 2019, pp.
727–736, 2020, doi: 10.1016/j.procs.2020.03.338.

759

