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Abstract—A few approaches have been proposed for hand segmentation in palmprint recognition. Skin-color information does not 

process sufficient information for discrimination in complex backgrounds and variable illumination. The use of guides has also been 

proposed, which restricts hand placement during capturing. Contour tracing algorithms have also been proposed in the literature. This 

worked in an even background scenario with no objects or patterns around the hand. In the case of uneven background with objects 

present, the traditional contour tracing algorithm cannot accurately segment the hand from the background. Hence, this paper proposes 

a modified Moore Neighbor Tracing (MNT) algorithm for hand detection and key-point extraction in complex backgrounds. The hand 

image is converted to grey, and the edges in the hand image are detected. The modified algorithm then transverses selected edges and 

returns the peak and valleys of each finger. This is then used to crop the palm. The modified algorithm improves the accuracy of hand 

detection in complex backgrounds with an F-Score of 0.8657. A mobile palmprint biometric system was also presented using Circular 

Local Binary Pattern (CLBP) and Convolutional Neural Network (CNN). The system showed an accuracy of 98.3% for hands captured 

with the mobile device and the CASIA online database. An accuracy of 99.0% was also recorded for GPDS and PolyU online databases. 

Keywords— Hand segmentation; improved contour tracing algorithm; feature extraction; complex background, convolutional neural 

network. 

Manuscript received 25 Aug. 2021; revised 12 Sep. 2022; accepted 22 Feb. 2023. Date of publication 30 Apr. 2023. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Mobile devices these days have become an essential part of 
our lives. This is due to the wide range of services available 
to them [1]. These services include SMS, E-mail, internet 
facility, banking transactions, contact management [2]. These 
devices could be used to access various information about the 
user’s digital life [3]. Hence, the need to secure these devices 
against unauthorized access. Available security measures on 
mobile devices include passwords and pattern recognition [4]. 
While these methods served security purposes, human 
limitations such as forgetfulness have plagued these methods. 
Biometrics was then introduced. Biometric verification uses 
an individual’s physical or behavioral trait for recognition [5], 
[6]. Face recognition is among the biometric recognition 
methods introduced, but challenges such as pose variation, 
easy access to face image (to trick the system), and 
illumination have limited its use [6]–[8].  

Palmprint recognition as a biometric trait uses an 
individual’s palm for recognition. It is a favorable 
authentication method on mobile devices because of its 
favorable traits like high acceptance, easy acquisition, 
discriminating features, difficulty in leakage, and so on [9], 
[10]. The fact that a mobile phone can be authenticated 
without the need to touch the phone could make 
authenticating the use of a phone by a friend easier. In a 
typical palmprint recognition system, there are four stages. 
These stages are acquisition, preprocessing, feature extraction, 
and matching. The acquisition stage is for capturing the hand, 
and the preprocessing stage prepares the image captured for 
feature extraction. Features are extracted at the features 
extraction stage, and matching is performed at the matching 
stage [11]–[15]. 

Palmprint can either be contact based or contactless (based 
on its acquisition). Contact-based devices that require contact 
with hands are used to acquire the hand. These devices 
include desktop scanners, Charge-coupled device (CCD) 
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scanners, and so on [16]–[18]. In contact-based palmprint, 
hand segmentation is a thresholding problem [14] [19] (with 
the background color different from the hand color). Although 
contact-based palmprints achieve high accuracy, infections 
and lack of flexibility in acquisition affect them [9]. 

Contactless palmprint recognition acquires hand images 
without contact with the acquisition device. The device is 
usually a camera [20], [21]. This acquisition mode makes its 
acceptance high as user’s hand is not restricted during 
acquisition. However, with this liberty comes the challenges 
of complex backgrounds, changing illumination, and so on 
[21]. The challenge is even more on mobile platforms due to 
limitations in processing power [21]. In a contactless system, 
an important preprocessing step is the region of interest 
extraction. This step extracts the palm. Certain hand key 
points must be detected [22]. The goal of hand detection in 
palmprint is to extract these key points. These points are the 
valley between the pinkie finger, the ring finger, the leading 
finger, and the middle finger. These points are used to crop 
out the palm [19], [23]. This paper proposes an algorithm for 
hand detection in a complex background using a Modified 
Moore Neighbour Tracing Algorithm, and it also presents a 
mobile palmprint recognition system using Circular Local 
Binary Pattern and Convolutional Neural Network. Several 
approaches have been proposed to do this. For cases where 
the hand was acquired with a contact-based device or a 
camera setup was used for acquisition, thresholding and 
binarization are usually employed for hand detection. 

A. Hand Segmentation Review 

An example is the system that Hussein et al. proposed [11]. 
The hand was captured using a CCD device, and hand 
detection was performed by thresholding and converting the 
image to its binary form. Verma and Chandran [24] used a 
document scanner for acquisition in their system. This made 
the background color different from the scanned hand, 
making segmentation easy. 

A similar approach is the use of a camera setup for hand 
acquisition [13], [18], [22]. In this case, the hand is captured 
in a controlled environment with an even background that is 
separated from the hand color. In most cases, the camera is 
placed on a stand at a distance from the background that the 
hand is placed [13]. Hand segmentation in this scenario is 
usually performed by using the Otsu thresholding method to 
segment the hand from the background and using convex hull 
or pixel scanning to obtain the key-points of the hand [18]. 

 Another notable approach is skin color thresholding. This 
technique uses the skin's color to segment the hand from the 
background [25]. In this case, the hand is captured with a 
complex background, and an attempt is made to detect the 
hand in the image using previous data on skin color. This 
usually entails using a different color model from RGB color 
model. Barra et al. [25] used the HSV color model; the mean 
hue was used for determining skin color. Bailadoar et al. [8] 
made use of flood segmentation, and they used the edge image 
and the image’s binary equivalent for hand detection. Skin 
color thresholding and region growth were also proposed by 
Saeed et al. [7]. Their system used the center of mass to obtain 
the skin threshold and expanded it to other pixels using the 
threshold for discrimination. Gao et al. [9] used grey 
information and shape information for coloring likelihood 

degree as an improvement to the traditional active shape 
modeling. 

Wu and Leng [21] proposed the use of a guide for hand 
capture. This technique is also another method used for hand 
acquisition in complex backgrounds. This method is usually 
used on a mobile platform to restrict hand placement while 
selecting predefined key-points on the guide. This method 
reduces the effort required by detecting the key-point from the 
guide. Wu and Leng [21] used a guide in the form of a hand 
for their system. Double-Line-Single-Point (DLSP) approach 
was proposed by Leng et al. [10]. DLSP uses two parallel 
lines as a guide for hand capture. These guides are usually 
drawn on the screen of the capturing device to allow for easy 
capturing. 

B. Palmprint Review 

A number of mobile and non-mobile palmprint systems 
have been proposed. A few from the current studies were 
examined. Poonia et al. [26] proposed a palmprint template 
that stores the minutiae points' geometric information. Then 
the Delaunay triangulation using internal angle matching is 
used for matching the templates, and the extracted geometric 
information acts as features used for matching. The method 
was tested, and it reported an accuracy of 95.4%. 

Xu et al. [27] examined a contactless palmprint image 
identification and verification system. Image alignment was 
applied together with a deep network (spatial transformation 
network) to increase the recognition accuracy of the system. 
A residual network was used in their system for classification. 
The system accuracy recorded 94.73 for the CASIA database 
and 98.50 GPDS database. 

Patil and Pawar [28] presented a Haar wavelet, DCT, and 
Fast ICA blend for palmprint recognition. Haar was used to 
decomposing the palmprint, DCT was applied, and Fast ICA 
was used for feature extraction. Euclidean distance was used 
for matching. The result on polyU palmprint database 
produces an accuracy of 98.5%. 

Zhou et al. [29] tried to extract translation and rotation 
invariant features from palmprint for recognition. They built 
an orientation edge detector to show the response of the edges 
in each direction. The detector combines a phase congruency-
based edge detector and a bipolar filter. After this step, a local 
spatial frequency detector obtains the horizontal shift map. 
The edge and frequency detectors repeat the process, 
producing the feature map. The system showed an accuracy 
of 95.58 and 94.91 on PolyU and CASIA databases, 
respectively. 

II. MATERIAL AND METHOD 

This section examines the proposed methodology. The 
stages in the proposed methodology include: hand capture, 
edge detection, and edge tracing using a modified Moore 
Neighbour Tracing algorithm, features extraction using CLBP, 
and classification using Convolutional Neural Network 
(based on Android MobileNet). The acquisition stage of the 
system captures the palm. The edge detection stage aims to 
detect as many edges as possible in the captured hand image. 
The modified Moore Neighbour algorithm scans the edges for 
the actual hand edge in the image and detects the key-points 
of the hand. The key-points detected are used to crop out the 
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palm. CLBP is applied to the palm for feature extraction, and 
MobileNet is used for classification. 

A. Hand Acquisition 

The hand was captured in real-time using a mobile device. 
A Tecno CX Air with 3GB of RAM and an internal storage 
of 16GB. It has 4 CPUs with a frequency 1.25GHz. The hands 
were captured using the camera at the back of the device. The 
hands were captured in an unconstrained environment in real-
time with no pegs or guides. An example of a hand being 
captured is shown in Fig. 1. Fig. 2 shows examples of a hand 
captured. 

 
Fig. 1  Image during capture using a mobile phone 

 

   
Fig. 2  Images captured with the mobile phone 

B. Edge Detection 

The captured image is converted to greyscale in Fig. 3. The 
edges of the greyscale image were obtained. The Canny edge 
detection method was used to obtain these edges. This step 
aims to detect as many edges as possible in the image. The 
algorithm is as follows [30], [31].  

1)  Image Filtering:  The first step in canny edge detection 
is filtering. This is done so as to remove noise from the 
original image. The Gaussian filtering method is used for 
filtering, and this is because a simple mask can be used to 
compute the Gaussian filter. Convolution is performed on the 
mask and the original image. The Canny Edge Detection 
algorithm usually uses a two-dimensional function, and it is 
shown in equation (1) [32]–[34]: 

 ���, ℎ; �� = 

��
�� ��������

��� � (1) 

where s is the horizontal distance, h is the vertical distance, 
and \sigma is the standard deviation. 

2)  The gradient of the Image: The magnitude and direction 
of the gradient of the image are computed in the second step. 
The Sobel operator is used for this. The Sobel operator uses a 
3X3 mask to estimate the gradient in the two possible 
directions (x and y). The masks are shown in Fig. 2 [32]: 

-1 0 +1 

-2 0 +2 

-1 0 +1 

�� 

 +1 +2 +1 

0 0 0 

-1 -2 -1 

�� 

Fig. 3 Masks for Sobel operator 

 
To obtain the edge strength (magnitude), (2) is applied. 

 |�| = |��| + |��| (2) 

After obtaining the magnitude, the edge direction is calculated 
using (3). 

 �ℎ��� = ���������/���  (3) 

3)  Non-Maximum Suppression: After obtaining the 
direction of the edges, maximum suppression is applied to rid 
the image of edges of wrong edges. This step performs the 
thinning of the edges [35]. 

4)  Hysteresis: Hysteresis is applied to eliminate disjointed 
edges caused by operator output fluctuating above and below 
the threshold. A double threshold is applied in hysteresis such 
that pixel value above the high threshold is seen as genuine 
edges, and pixel values below the low threshold are rejected. 
Values between the high and low threshold are accepted as a 
genuine edge if it is connected to an actual edge; otherwise, it 
is rejected [36]. Fig. 4 and Fig. 5 show sample images 
captured and the edges detected from the images. 

 

Fig. 4  Images captured with the mobile phone 

Fig. 5  Images captured with the mobile phone 

C. Hand Detection 

A segment with a width of one pixel and a length of one or 
more pixels is termed a contour [37]. To separate an object 
from its background, a contour is usually used. Contour 
tracing is a method that is used to extract an object’s boundary 
from its background in digital images [38]. Depending on 
whether an object shares an edge (or an edge and a vertex) 
with a white pixel, a boundary could either be four pixels or 

753



eight pixels [39], [40]. Mandee et al. [37] classified the 
contour tracing algorithm into three; the vertex-following 
algorithm, the run-data-following algorithm, and pixel 
following algorithm. 

1) Vertex following method:  traces the boundary using 
the vertices of the contour pixels. Though similar to the pixel 
following method, it saves the corner point of the contour 
pixel. 

2) Run-data-following method uses run data pairs 
obtained from scanning left to the right.  

3) Pixel following method follows a defined pattern to 
trace the contour pixels and stores the coordinates in the 
memory. Several methods, such as Simple Boundary 
Follower (SBF), modified SBF, and Moore-Neighbour 
Tracing (MNT) algorithms, are pixel-following boundary 
tracing types [38]. The MNT algorithm is shown below: 

 
Input: A square tessellation, T, containing a connected 
component P of black cells.  

Output: A sequence  (!1, !2, !3, … , !") of 
boundary pixel a.  

Let p denote the current boundary pixel.  
Let c denote the current pixel under consideration, 
i.e., c is in #($) 
Begin:  

• Set   to be empty.  
• From bottom to top and left to right, scan 
the cells of % until a black pixel, �, of & is 
found.  
• Insert s in  .  
• Set the current boundary point p to s, i.e., 
$=�.  
• Backtrack i.e., move to the pixel from 

which s was entered.  
• Set c to be the next clockwise pixel in 

#($).  
• While c not equal to � do  

If ' is black  
Insert ' in    
Set $='  
Backtrack (move the 
current pixel ' to the 
pixel from which $ was 
entered)  

else  
Advance the current 

pixel c to the next clockwise pixel 
in #($)  

• end while  
end 

D. Modified Moore Neighbour Tracing Algorithm (MMNT) 

The algorithm presented in this paper is also a pixel-
following method that uses prior knowledge of the shape of 
the hand to predict the direction of the boundary to follow. In 
hand-based biometrics, the hand key-points are divided into 
peaks and valleys. The peak points are the pixel at the tip of 
the fingers, and the valley point is the pixel at the base of each 
finger [21], [41]. Typical hand geometry biometric system 

uses these points for taking the length of the fingers (which is 
a geometric feature that is extracted from the hand) [37], [42]. 
The valleys between the leading and middle fingers and the 
valley between the ring and pinkie fingers are used in 
palmprint biometric systems for Region of Interest (ROI) 
extraction. 

The challenge of hand detection in a complex background 
is knowing which edge is the hand edge and which edge is the 
background edge. The pixel-following algorithm uses the 
previous knowledge of the shape of the hand to determine the 
direction to follow when an edge image is being scanned. At 
any edge junction, the algorithm follows the pattern of the 
hand in selecting the right edge to follow. Unlike other pixel-
following algorithms that start at any pixel [43], this algorithm 
starts a few pixels from the base of the hand image because 
there are edges in the image that are not the hand edges. Edge 
termination is also not based on traversing a boundary pixel 
twice but rather on the detection of the nine key-points of the 
hand. The MMNT algorithm is shown below: 
 
Input: An array of binary pixels of a hand image �&�, with 

& =  {0, 1}. Where 0 is background pixel, and 1 is 
an edge pixel. 
Let records be a 9 . 2 array, i.e., an array of 9 rows 

and 2 columns. 
Let ��0�_234 and ��0�_'35 be the dimension of the 

input array, respectively. 
Let �, !, ', 6, �, 7, 8, ℎ be the neighboring pixels of a 

particular pixel in consideration, i.e., &��, ��, 
where � and � represent the pixel’s row and 
column respectively. 

Let ' denote the current pixel, i.e., ' =  &��, ��. 
Start: 

1. Set ��0�_234 to be ��0�_234 − 3 
2. Set ; to be empty 
3. Set Boolean $2�� to be false 
4. Set Boolean $2��1 to be false 
5. For '3<���2_'35 =  2 ∶  ��0�_'35 

a. Set '<22���_'35 to '3<���2_'35 
b. While 2�'326 is not completely filled 

i. Obtain the neighboring pixels 
�, !, ', 6, �, , 7, 8, ℎ 

ii. If m is empty i.e. preparing for 
the first peak 

If � is set and $2�� is 7�5�� 
i.e. � ==  1  

Increment 
'3���2_'35 by 1 
Set ; to 2 
Set $2�� to 0 

Elseif any of !, ', 6 is set 
Adjust ��0�_234 
and (or) ��0�_'35 to 
point to new ' 
Set $2�� to false 

Elseif � is set i.e. � is 1 
Adjust ��0�_234 
and (or) ��0�_'35 to 
point to new ' 
Set $2�� to true 

Else 
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Empty 2�'326 
Set ; to 0 
Set $2�� to false 
Set '3<���2_'35 to 
'<22���_'35 
Reset ��0�_234 to 
��$<� �22�� 234 ��0� 
–  3 
Break out of while 
loop 

Endif 
iii. Elseif ; is set to 1 i.e. looking 

for finger valley 
If any of �, ℎ, 8, 7 is set i.e. is 
equal to 1 

Adjust ��0�_234 
and (or) ��0�_'35 to 
point to new ' 

Elseif b is set 
Add ��0�_234 and 
��0�_'35 to 2�'326 
Adjust ��0�_234 
and ��0�_'35 to 
point to new ' 
Set ; as 2 i.e. to 
look for finger peak 
next. 

Else 
Empty 2�'326 
Set ; to 0 
Set $2�� to false 
Set '3<���2_'35 to 
'<22���_'35 
Reset ��0�_234 to 
��$<� �22�� 234 ��0� 
–  3 
Break out of while 
loop 

endif 
iv. Elseif ; is set to 2 i.e. looking 

for finger peak 
If ℎ is set and $2��1 is 
7�5�� i.e. � ==  1  

Add ��0�_234 and 
��0�_'35 to 2�'326� 
Adjust ��0�_234 
and ��0�_'35 to 
point to new ' 

Elseif any of �, !, ' is set 
Adjust ��0�_234 
and (or) ��0�_'35 to 
point to new ' 
Set $2��1 to false 

Elseif 6 is set i.e. 6 is 1 
Adjust ��0�_234 
and ��0�_'35 to 
point to new ' 
Set $2��1 to true 

Else 
Empty 2�'326 

Set ; to 0 
Set $2�� to false 
Set '3<���2_'35 to 
'<22���_'35 
Reset ��0�_234 to 
��$<� �22�� 234 ��0� 
–  3 
Break out of while 
loop 

Endif 
v. Endif 

c. End while loop 
6. End for loop 

Output: An array �2�'326�� of 9 rows and 2 columns. With 
each row corresponding to the key-points of the fingers in the 
image and the columns corresponding to the coordinates. 

Fig. 6  Key-points detected after applying the MMNT 

E. Region of Interest Extraction 

After the hand's key-points are detected, the region of 
interest is extracted. The region of interest in palmprint is the 
palm of the hand. The key-points used for extracting the palm 
of the hand is the valley point between the leading finger and 
the middle finger (record (4, :)) and the valley point between 
the ring finger and the pinkie finger (record (8, :)). Fig. 7 
shows the identified keypoint, and Fig. 8 shows the cropped 
palm image. 
 

Fig. 7  Rectangular location of the palm using the key-points 

 

 

 

Fig. 8  Cropped palm image 
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F. Features Extraction 

The Circular Local Binary Pattern (CLBP) was used to 
extract features from the hand's palm. The CLBP was selected 
because of the need to reduce the effect of changes in intensity 
on the palm image. This is necessary because the mobile 
phone will capture images with different light intensities at 
different places. Given a pixel ��? , �?�  and its circular 
neighbor P and R, sample point at location ��@ , �@� can be 
obtained using (4). 

 ��@ , �@� = ��? + A'3��2B!/&�, �? − A'3��2B!/&�� (4) 

Where sampling points are denoted with 8C = D��@ , �@� 
with " ∈ {0, 1, . . . , & − 1}. 
This CLBP is then obtained with the traditional Local Binary 
pattern expression, as shown in equation (5). 

 CG &C,H��@ , �@� = ∑ J�8@ − 8?�2@C�

@KL  (5) 

Where 8Mand 8N are the grey value of the central pixel and its 
neighbors, respectively. The function for thresholding the 
pixel intensity J�<� is given in (6). 

 J�<� = O1,   < ≥ 0
0,   < 0  (6) 

 

 

 

Fig. 9  CLBP output images 

G. Classification 

MobileNet is a popular and efficient lightweight CNN 
model available on the mobile platform for classification. 
Google developed it for various uses ranging from object 
detection to image classification. It uses depth-wise separable 
filters to deepen the network through convolution, and it 
reduces parameters and computations [44]. The architecture 
of the mobileNet model used is shown in Table 1. 

TABLE I 
ARCHITECTURE OF THE SYSTEM 

Type/Stride Filter shape Input size 

Conv / s2 3 x 3 x 1 x 32 224 x 224 x 1 
Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 
Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 
Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64 
Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 256 28 x 28 x 128 
Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 512 14 x 14 x 256 
Conv dw / s1 
5x 
Conv / s1 

3 x 3 x 512 dw 
 
1 x 1 x 512 x 512 

14 x 14 x 512 
 
14 x 14 x 512 

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512 
Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 

Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 
Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 
FC / s1 1024 x 25 1 x 1 x 1024 
SoftMax / s1 classifier 1 x 1 x 25 

 
The Android Neural API (NNAPI) was used to implement the 
network. The NNAPI consists of Machine Learning libraries, 
frameworks, and tools that help train models off-device and 
deploy the trained network on an Android mobile platform 
[44] [45]. 

III. RESULT AND DISCUSSION 

The system evaluation was carried out using the method's 
performance, and the method's computational time was also 
stated. To evaluate the method, images captured in real time 
were used. The environmental condition was not constrained 
and varied at different times of the day and with different 
backgrounds. A comparison was also made with the global 
thresholding and skin color methods.  

The Otsu threshold method was used for the global 
thresholding method because it is a popular thresholding 
method [11], [18]. Its speed is also notable under a 
constrained environment. For skin thresholding, active shape 
modeling (ASM) was used for comparison, and this made use 
of grey information and shape information for segmentation 
[8], [9]. The algorithms were implemented on an Android 
device using OpenCV (C++), NNAPI. The Android device 
was a Tecno Camon 12 with Android 9 OS, 8 MediaTek Helio 
P22 processor cores, and 4 GB of RAM. 

A. Evaluation criteria 
The system was tested in two stages. The first stage aimed 

to test the hand detection algorithm (MMNT) performance in 
complex backgrounds. The evaluation criteria used for testing 
the hand detection include the F-score and the average time. 
The second stage of testing was performed on the biometric 
system as a whole, and the system's performance was tested 
in terms of the system's accuracy. 

1) Hand detection evaluation: The F-score metric was 
selected to evaluate the hand detection algorithm presented. 
F-score is the harmonic mean of precision & and recall A. 

The precision & is also known as the confidence or positive 

predictive value, and the recall A  is otherwise called the 
sensitivity or true positive rate. Precision (P) and recall (R) 
are both expressed mathematically, as shown in (7) and (8). 
The higher the F-score, the better the method. F-score is given 
in (9). 

 & =  RC
RCSTC (7) 

 A = RC
RCSTU (8) 

 V = 2 CH
CSH (9) 

where TP, FP and FN are true positive, false positive and false 
negative respectively. True positive are those pixels that are 
labelled as the key-point that match the actual points. False 
positive are those pixels labelled as key-points but are not the 
actual key-points of the hand and false negative are the pixels 
not selected as the key-points but are actually key-points of 
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the hand in the image. A higher F-score corresponds to better 
segmentation. 

B. Result 

The results obtained from testing the system are stated 
below. The stated results are two. The first is the f-score and 
average time of the hand detection algorithm. The second 
result states the FAR, FRR, and accuracy of the system. 

1) Hand detection result and comparison: 430 hand 
images were captured in real-time, and an attempt was made 
to segment the captured hands from their background. The 
performance of the modified Moore-Neighbour Tracing 
algorithm and other hand segmentation methods is shown in 
Table 2 and Table 3. 

TABLE II 
COMPARISON OF F-SCORE AND AVERAGE TIME FOR PROPOSED METHOD AND 

OTHER METHODS USING 640 BY 480 PIXELS 

Segmentation 

method 

Image 

size(pixel) 
F-Score 

Average 

time 

Modified MNT 640 x 480 0.8657 0.9763 
Skin-colour 640 x 480 0.7014 0.9685 
Thresholding 640 x 480 0.4632 0.2987 
Graph cuts 640 x 480 0.6854 12.5634 

TABLE III 
COMPARISON OF F-SCORE AND AVERAGE TIME FOR PROPOSED METHOD AND 

OTHER METHODS USING 3120 BY 4160 PIXELS 

Segmentation 

method 

Image 

size(pixel) 
F-Score 

Average 

time (s) 

Modified MNT 3120 x 4160 0.9104 2.2456 
Skin-colour  3120 x 4160 0.8218 2.1123 
Thresholding 3120 x 4160 0.5102 0.9054 
Graph cuts 3120 x 4160 0.6992 14.8743 

 
Capturing of images was performed at different times of 

the day with the camera flash used for capturing at night 
(since this is a standard trait available on most mobile devices). 
The greater the F-score, the better the performance of the 
method. As observed from the image, the image's resolution 
difference had little impact on the method's performance. 
However, this added quite a bit to the processing time of the 
algorithm. The performance of the f-score showed a better 
hand segmentation for the modified MNT algorithm when 
compared with the other methods. The table also showed that 
an image with higher resolution would improve the hand's 
segmentation, though this will be at the cost of time and more 
processing resources. 

2) Palmprint system result and comparison: To test the 
mobile palmprint recognition system, the mobile device’s 
back camera was used to capture the hand of the enrolled 
users. There were 30 classes, 300 hands were captured, and 
the training and validation were 70: 30. The processing was 
performed on the device, and the system recorded a validation 
accuracy of 98.33%. The result was compared with the 
googleNet, AlexNet, and SqueezeNet models. Table 4 shows 
a comparison of the model in terms of accuracy. 

TABLE IIV 
COMPARISON OF ARCHITECTURE MODELS’ PERFORMANCE 

Model Accuracy (%) 

mobileNet 98.33 
googleNet 97.33 

SqueezeNet 96.33 
alexNet 93.33 

3) Comparison of system with other similar systems: To 
create an even platform for the comparison of palmprint 
systems, the popular online database was used to test the 
system. However, it should be noted that these databases have 
their hand images captured on an even background; hence, 
palm extraction does not involve a detailed method. Three 
databases were used for testing the system: the CASIA 
palmprint image database, the GPDS palm database and the 
PolyU palmprint database.  

The CASIA database consists of 5502 palmprint images 
that were acquired from 312 people. Each individual has eight 
palmprint images (at least). Each palmprint image has a 
distinct position, scale, and posture because no pegs were 
used during capture. The background of the palm is uniform, 
and the illumination is distributed evenly [46]. The GPDS 
database has 1000 images from 100 subjects. 10 images of 
each recipient’s right hand were captured. The placement of 
the hand is guided by the mask on the screen [47]. PolyU 
palmprint database is a palmprint database collected from 250 
volunteers. It includes 195 males and 55 females. The 
database has 6000 palm images from 500 different palms [48]. 
Table 5,6,7, and 8 show the confusion matrix for the 
respective palm database. Table 9 shows a comparison of the 
accuracy of the system with other relevant systems. The 
accuracy in Table 9 was computed using equation (10). 

 W''<2�'� =  RCSRU
RCSRUSTCSTU (10) 

TABLE V 
CONFUSION MATRIX FOR CASIA DATABASE 

No = 5000 Predicted No 
Predicted 

Yes 
 

Actual No 2474 26 2500 
Actual Yes 74 2426 2500 
 2548 2452 5000 

TABLE VI 
CONFUSION MATRIX FOR GPDS DATABASE 

No = 1000 Predicted No 
Predicted 

Yes 
 

Actual No 498 2 500 
Actual Yes 8 492 500 

 506 494 1000 

TABLE VII 
CONFUSION MATRIX FOR POLYU DATABASE 

No = 5000 Predicted No 
Predicted 

Yes 
 

Actual No 2488 12 2500 

Actual Yes 38 2462 2500 
 2526 2474 5000 

TABLE VIII 
CONFUSION MATRIX FOR OUR CUSTOM DATABASE 

No = 1000 Predicted No 
Predicted 

Yes 
 

Actual No 394 6 400 
Actual Yes 11 589 600 
 405 595 1000 
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TABLE IIIX 
COMPARISON OF THE PERFORMANCE WITH SIMILAR SYSTEMS 

Paper 

Accuracy of Palmprint Databases (%) 

CASIA GPDS PolyU 
Custom 

Dataset 

[49] - - - 95.4 
[27] 94.73 98.50 - - 
[28] - - 98.5  
[29] 94.91 - 95.88 - 
Our Method 98.0 99.0 99.0 98.3 

IV. CONCLUSION 

This research work presented a palmprint recognition 
system for mobile devices (Android). A hand segmentation 
method for hand detection in complex background and 
uneven lighting scenarios was examined. The proposed 
method achieved a good performance in hand segmentation 
and biometric authentication in a completely unconstrained 
hand-capturing environment. To evaluate the hand 
segmentation method, hand images where captured in real-
time using a mobile device at different times of the day and 
with different backgrounds. The system's performance is 
compared with other hand segmentation methods in Table 1, 
and the result showed an improved performance.  

Also, the method's time cost is less than the other methods. 
The performance of the hand detection algorithm showed its 
ability to detect the key-points of hand images in complex 
background. This makes it suitable for hand-based (unimodal 
and multimodal) biometric systems on mobile and non-
mobile platforms. Hence, this segmentation method suits 
hand-based biometrics on mobile and non-mobile platforms. 
The palmprint authentication system also produced a 
validation accuracy of 98.3%, with 30 users enrolled in the 
system. The best accuracy of 99.0% was obtained for the 
publicly available GPDS and PolyU palmprint database. This 
is an encouraging result as typical enrolment on mobile 
platforms will usually be two (both palms of the mobile 
device’s owner). 
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