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Abstract: The kinetics, mechanism, isotherm, and thermodynamics of adsorption of 
Pb2+ onto wood-activated carbon-supported zerovalent iron (WAC-nZVI) nanocom-
posite was successfully studied. WAC-nZVI was characterized by a combination of 
spectroscopic and analytical techniques (BET, PZC, FTIR, SEM, and EDX). BET surface 
area was 101.50 m2/g and BJH Adsorption average pore diameter 116.73 Å. The 
adsorption of Pb2+ studied in batch process depends on various operational param-
eters ranging from effect of pH to ionic strength. Kinetics data were best described 
by pseudo-second-order model based on high initial adsorption rate, h2 (166.67 
mgg−1 min−1) and correlation coefficient (R2 > 0.99). The mechanism was controlled 
by both external and intraparticle diffusion models confirmed by Bangham and 
Boyd models. Equilibrium data were fitted to seven isotherm models. The Langmuir 
monolayer adsorption capacity (77.52 m2/g) surpassed those previously investi-
gated for adsorption of Pb2+ onto nanoadsorbents. Validity of kinetics and isotherm 
models was studied using three statistical models. Post-adsorption characteriza-
tion by SEM, EDX, and FTIR confirmed the presence of Pb2+ on the loaded-WAC-nZVI. 
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Thermodynamic parameters (∆Ho, ∆So, ∆Go) confirmed the feasibility, spontaneity, 
and randomness of the adsorption process. This study revealed a great potential of 
novel WAC-nZVI in effective removal of Pb2+ from waste water.

Subjects: Environment & Agriculture; Bioscience; Earth Sciences; Environmental Studies 
& Management; Food Science & Technology; Physical Sciences; Engineering & Technology; 
Health and Social Care

Keywords: novel nanocomposite (WAC-nZVI); Pb2+ adsorption; kinetics and isotherm; 
statistical validity; thermodynamics

1. Introduction
The release of heavy metal ions into the environment via unguided and unguarded anthropogenic 
activities remains ubiquitous challenge for the past decade. Lead is a hazardous metal well known 
for environmental contamination and health problems in many parts of the world. It can be poten-
tially found in sources such as gold-leaded soil, hair dye, batteries, paints, pesticide, canned food, 
plants grown around industrial areas, cosmetics, tobacco smoke, ammunition (1). It is an accumula-
tive toxicant that adversely affects copious body system such as neurologic, hematologic, gastroin-
testinal, cardiovascular, and renal systems. Those highly vulnerable to this hazardous effect are 
children and there are recent reports of some outbreaks in some areas in West Africa such as seen 
in Niger and Zamfara States of Nigeria (2, 3). Report from WHO revealed that childhood lead expo-
sure is estimated to contribute to about 600 000 new cases of children developing intellectual dis-
abilities every year, and also account for 143 000 deaths per year with the highest burden in 
developing countries; 4% of the global burden of ischemic heart disease; 5% of the global burden of 
stroke and there is no known level of lead exposure that is considered safe. However, the dose–re-
sponse analyses conducted by the Joint Food and Agriculture Organization of the United Nations 
(FAO)/WHO Expert Committee concluded that permissible level of lead in drinking water and air are 
10 μg/l and 0.5 μg/m3 (4,5). Quite a number of conventional technologies such as ion exchange, 
solvent extraction, electrodialysis, reverse osmosis, ultrafiltration, cementation, chemical precipita-
tion (6) have been used, however, adsorption has proven to be efficient, simple, explicit, cost-effec-
tive, and readily available technique of immobilization of heavy metals and dyes from the 
environment.

Several bioadsorbents have been reported for adsorption of Pb2+ such as acid-modified rice husk 
(6); citric acid-modified clam shells (7), peat moss and peat moss-derived biochar (8); activated car-
bon made from sewage sludge (9), kaolin- and graphene-supported nZVI (10, 11), carbon-supported 
nanoscale zerovalent iron particles (12); granular activated carbon/zerovalent iron (13) but at the 
advent of nanoscience, researchers have been exploring the use of nanoadorbents due to their high 
surface area, effectiveness, and rapid adsorption than several bioadsorbents. The current trend in 
nanoscience research is the impregnation of nanoparticles into low-cost adsorbent in order to in-
crease its efficiency. This is one of the primary focuses of this research. Hence, the quest for efficient 
adsorbent for uptake of toxic Pb2+ propelled the research into the development of nanocomposite by 
impregnation and bottom-up approach. Activated carbon has been identified as effective adsor-
bents for pollutants removal. However, its application is still resisted because of some limitations 
such as availability, quality, and, most especially, its high cost in the developing countries. This has 
instigated us to explore the use of locally available material (Wood of Cholophoral Excelsa which is 
readily available in South-west Nigeria) for preparation of activated carbon and we further explored 
the opportunity of improving its adsorption capacity by impregnating it with iron nanoparticle via 
bottom-up approach by chemical reduction in a single-pot system. The two main approaches used 
in nanotechnology are “bottom–up” and “top–down.” In the “bottom-up” approach, materials, and 
devices are built from molecular components which assemble themselves chemically by principles 
of molecular recognition (14). It is a synthesis approach where the precursors or the building blocks 
are added onto the substrate to form the nanostructure substances.
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To the best of our knowledge, there has not been any report on nZVI impregnated on activated 
carbon from readily available low-cost wood of Cholophoral Excelsa abundant in Africa. Based on the 
literature report and to the best of our understanding, there has never been any report on the mate-
rial—raw wood dust of cholophoral excelsa. Other researchers used commercial activated, however, 
this present study produced activated carbon from neglected cholophoral excelsa and incorporated 
zerovalent iron nanoparticles into it forming activated carbon iron-coated zerovalent iron nanocom-
posite. Therefore, the objectives of this research are: (i) Bottom-up approach preparation of wood-
activated carbon (WAC)-supported nanoscale zerovalent iron (nZVI) and characterization using 
Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH); point of zero charge (PZC); Fourier 
transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray 
(EDX), and transmission electron microscope (TEM); (ii) investigation of the effect of adsorption func-
tional parameters—pH, ionic strength, adsorbent dose, contact time, initial concentration, and tem-
perature; (iii) determination of the kinetic and rate-controlling step (mechanism) using eight 
models—pseudo-first- and -second-order models, Elovich, fractional power, intraparticle diffusion, 
Spahn and Schlunder Model (external diffusion), Bangham and Boyd models, (iv) analyzing equilib-
rium data with seven isotherm models—Langmuir, Freundlich, Temkin, Dubinin–Raduskevich (D-R), 
Halsey, Harkin–Jura, and Jovanovic (v), and determination of randomness, spontaneity, and feasibil-
ity of the adsorption process using thermodynamic parameters—change in standard enthalpy (ΔH°), 
entropy (ΔS°), and Gibb’s free energy (ΔG°).

2. Materials and methods

2.1 Materials
All the reagents used were of analytical grade mostly purchased from Sigma-Aldrich, USA, namely: 
sodium borohydride (NaBH4) (for the chemical reduction), ferric chloride (FeCl3), HNO3, and NaOH. 
Absolute ethanol from BDH, while raw wood dust of Cholophoral excelsa, was obtained at sawmill 
workshop close to Landmark University campus.

2.2. Methods and characterization

2.2.1. WAC-nZVI nanocomposite preparation
Preparation of novel WAC-nZVI was carried out using two precursors: (A) nanoscale zerovalent iron, 
ZVI and (B) wood-activated carbon, WAC. The precursor B was prepared following the previously 
work by Dada et al. (15) and kept in the desiccator for further use. In a distinctive procedure for the 
preparation of WAC-nZVI, excess borohydride is important for better formation of iron nanoparticle. 
Therefore, a carefully weighed amount of precursor B was initially introduced into 0.023 M FeCl3 and 
homogenized for 3 h using a magnetic stirrer. Thereafter, 0.123 M NaBH4 was introduced to 0.023 M 
FeCl3 in ratio 5:1 under nitrogen-controlled glove box single-pot system giving WAC-nZVI (black) was 
obtained. The impregnation of wood-activated carbon-supported zerovalent iron nanocomposite 
(WAC-nZVI) was carried out modifying similar procedure reported in our previous studies (16–18) 
and equation of reaction is as stated in Equation (1):
 

WAC-nZVI was thereafter kept in a desiccator for further characterization and adsorption studies.

2.2.2. Characterization
BET surface area was determined using Micrometritics AutoChem II Chemisorption Analyzer. Point 
of zero charge (PZC) was determined by modifying the procedure reported by Srivastava et al. (19). 
Morphology and elemental constituents were determined using scanning electron microscopy (SEM) 
integrated with energy-dispersive X-ray (EDX) using a TESCAN Vega TS 5136LM typically at 20 kV at 
a working distance of 20 mm with samples coated in a Golden Balzers’ Spluttering device and func-
tional groups were determined by Fourier transform infrared spectroscopy (FTIR) using Schimadzu 
FTIR model IR 8400S.

(1)WAC + 4Fe3+ + 3BH−

4 + 9H2O→WAC − 4Fe ↓ +3H2BO
−

3 + 12H
+ + 6H2 ↑
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2.2.3. Adsorption experiment

2.2.3.1. Batch equilibrium studies:  Sorption experiment was done by agitating 100 mg of the WAC-
nZVI with 50 cm3 of different initial Pb2+ concentrations from 10 to 200 ppm in 60 cm3 of Teflon bot-
tle intermittently for 3 h. The combination was filtered and the filtrate was immediately analyzed in 
triplicate for residual Pb2+ ions concentrations using atomic absorption spectrophotometer (AAS). 
The mean value of the residual Pb2+ concentration for each set of the experiments was calculated 
and used. Adsorption operational parameters such as effect of pH, contact time, initial concentra-
tion, adsorbent dose, temperature, and ionic strength were investigated following a similar proce-
dure (18, 20–22).

2.3. Adsorption analysis

2.3.1. Quantity adsorbed and removal efficiency
Quantity of Pb2+ adsorbed (qe), removal efficiency, and error analysis were calculated using Equations 
(2)–(6). Adsorption capacities and the removal efficiency were obtained using Equations (2) and (3), 
respectively (22, 23):
 

 

2.3.2. Sum of Square Error (SSE), Chi-square test (χ2) and Normalized Standard Deviation 
(Δq) Statistical Validity
The best fit, suitability, and agreement of kinetic and isotherm models were validated using three 
statistical models: sum of square error (SSE), chi-square test (χ2), and normalized standard deviation 
(Δq).

The sum of square error (SSE) is mostly used by researchers with the mathematical expression 
given in Equation (4):

 

Better agreement between the experimental quantity adsorbed and the calculated quantity ad-
sorbed can be judged using this tool (24).

The chi-square test measures the difference between the experimental and calculated quantities 
adsorbed (qe,exp and qe,cal, respectively). Magnitude of the value of chi-square depends on the agree-
ment between the qe,exp and the qe,cal. If data evaluated from the model are similar to experimental 
data, χ2 would be small and if they differ, χ2 will be large (25).

 

The normalized standard deviation Δq (%) was evaluated using Equation (6).

 

(2)qe =
(Co − Ce)V

W

(3)% E =
Co − Ce
Co

× 100

(4)SSE =

n
∑

i=1

(

qe,cal − qe,exp

)2

(5)�
2 =

n
∑

i=1

(

qe,exp − qe,cal

)2

qe,cal

(6)
Δq(%) = 100

�

n
∑

i=1

�

qe,exp−qe,cal

qe,exp

�2

n − 1

D
ow

nl
oa

de
d 

by
 [

18
9.

21
9.

80
.1

67
] 

at
 0

4:
34

 0
4 

A
ug

us
t 2

01
7 



Page 6 of 20

Dada et al., Cogent Chemistry (2017), 3: 1351653
https://doi.org/10.1080/23312009.2017.1351653

where n is the number of data points and other parameters are the same as earlier defined. Lower 
value of Δq indicates good fit between experimental and calculated data (26).

3. Results and discussion

3.1. Characterization (BET, BJH, PZC, FTIR, SEM–EDX)
The following physicochemical properties of the WAC-nZVI nanocomposite vis-à-vis surface area, 
micropore area, BJH adsorption cumulative surface area of pores, pore volume, pore diameter, pore 
width, average particle size by Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH). 
The point of zero charge is of basic importance in surface science. The point of zero charges obtained 
for WAC-nZVI revealed that adsorption of Pb2+ would take place at a pH > pH(pzc) (19,27). The result 
presented in Table 1 showed that adsorption of Pb2+ was favorable at a pH above PZC (Figure S1).

The relatively higher values of the external surface area compared to the micropore surface area 
implies that WAC-nZVI utilized its external surfaces for adsorption than its micropore surfaces (21).

Figure 1(a) and (b) depict the FTIR spectra of wood dust-activated carbon-supported iron nano-
composite (WAC-nZVI) before and after adsorption of Pb2+. Stated in Table 2 are important FTIR 
bands of WAC-nZVI with their possible functional groups assigned before and after Pb2+ adsorption. 
The reduction in vibration band intensities after adsorption is a confirmation of participation of func-
tional group in adsorption process.

Revealed in Figure 2(a) is the scanning electron microscopy (SEM) image of WAC-nZVI nanocom-
posite before adsorption. The surface was fibrous, cellulosic fiber flat-like, straight lamina showing 
the evidence of pores of activated cell wall of plant of Chlorophora excelsa and indication of zerova-
lent iron nanoparticle with surface area of BET 101.5033 m²/g, pore volume 0.056673 cm³/g, pore 
width 22.3334 Å, pore diameter 116.727 Å. The lamina structural nature of WAC-nZVI enhanced the 
flow of Pb2+ into the pores of WAC-nZVI. These characteristics boosted the performance of WAC-
nZVI in the immobilization of Pb2+ as supported by the findings in previous work by Dada et al. (17) 
and Anees et al. (28). A change in morphology which is attributed by the robustness and swollen of 
WAC-nZVI after Pb2+ adsorption was confirmed by the SEM analysis in Figure 2(b)

Table 1. Physicochemical properties of WAC-nZVI nanocomposites
Physicochemical properties WAC-nZVI
pH 7.53

PZC 5.60

BET surface area 101.5033 m²/g

t-Plot micropore area 78.6414 m²/g

t-Plot external surface area 22.8619 m²/g

BJH adsorption cumulative surface area of pores between 17.000 and 3,000.000 Å diameter 8.389 m²/g

Pore volume

Single-point adsorption total pore volume of pores less than 1,094.743 Å diameter at P/
Po = 0.981990668

0.056673 cm³/g

t-Plot micropore volume 0.036247 cm³/g

BJH Adsorption cumulative volume of pores between 17.000 and 3,000.000 Å diameter 0.024482 cm³/g

Pore size

Adsorption average pore width (4 V/A by BET) 22.3334 Å

BJH Adsorption average pore diameter (4 V/A) 116.727 Å
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In order to further confirm Pb2+ adsorbed onto WAC-nZVI, energy-dispersive X-ray (EDX) studies of 
WAC-nZVI before and after adsorption was carried out. The EDX spectra give the characteristic peaks 
of the nanoparticles and the information on the surface atomic distribution. EDX spectra of (a) WAC-
nZVI before and (b) loaded Pb–WAC-nZVI after adsorption are revealed in Figure 3(a) and (b). The EDX 
spectrum in Figure 3(a) revealed the intense peaks of the core shell zerovalent iron and other elemen-
tal constituents before adsorption which was supported by the FTIR result. Other elements present 
could be traceable to the additives during the course of the analysis. In most metal adsorption studies, 
the residual concentration was determined by atomic adsorption spectroscopy (AAS). This could not 

Figure 1. FTIR spectra for (a) 
WAC-nZVI before adsorption 
and (b) Pb–WAC-nZVI after 
adsorption.

Table 2. Important FTIR bands of WAC-nZVI with their possible functional groups before and 
after Pb2+ adsorption
Functional group(s)/peaks Intensities
Functional group(s) Vibration bands/

peaks (cm−1)
WAC-nZVI before 

adsorption
Pb(II)-loaded WAC-

nZVI after adsorption 
O–H stretching 3,417.98 42.474 3

H–O–H bending 1,637.62 84.066 2.5

C=C 1,340.57–1,309.71 53.881 0

Si–O-Al 966.37 61.453 1.5

C–O 860.28 67.45 1

Fe0 688.61 68.624 1.02

574.81 56.232 0.5

414.71 82.49 1.5

Figure 2. SEM images of (a) 
WAC-nZVI before adsorption 
and (b) Pb–WAC-nZVI after 
adsorption.D
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prove the presence of the metal ions on the adsorbent. However, the presence of Pb2+ on WAC-nZVI as 
seen in the EDX spectrum in Figure 3(b) was an evidence of the adsorption of Pb2+ onto WAC-nZVI.

3.2. Influence of pH, adsorbent dose, and contact time
The pH of the solution in adsorption studies influences both the chemistry of solution and surface 
charge of the adsorbents (29, 30). Investigation of the effect of pH was carried out between the pH 
ranges 1–8. Pb2+ in solution exits as Pb2+, Pb(OH)+, Pb(OH)2 in acidic medium causing electrostatic 
competition between Pb2+, H+, and other cationic species as a result of protonation leading to low 
removal efficiency and quantity adsorbed as seen in Figure 4. However, as the pH increases tending 
toward pH 6, increase in quantity of Pb2+ adsorbed was evident due to the decrease in electrostatic 
repulsion, low competition among positive ions, and availability of active sites for adsorption. The 
optimum percentage of Pb2+ removed was attained at pH 6 which was corroborated by the findings 
of Xu et al. (31) and Pirouz et al. (32).

The interaction between the Pb2+ ions and WAC-nZVI was maximized by the investigation of the 
effect of adsorbent dose on the uptake of Pb2+. The percentage removal efficiency increases with the 
increase in adsorbent dose because of the increase in number of active sites as revealed in Figure 5. 
At 10 mg WAC-nZVI, 51.73% Pb2+ was adsorbed, while at 100 mg 97.3% was adsorbed until a satu-
rated point was reached when no significant increase in the removal efficiency was attained based 
on limited number of active sites. This performance confirmed the efficacy of the nanocomposite 
prepared being a blend of activated carbon (WAC) from neglected material and zerovalent iron na-
noparticles (nZVI). However, the quantity adsorbed on WAC-nZVI is a measure of the occupancy 
capacity of the adsorbent. Obviously, at 10 mg, 93.71 mg Pb2+ was attained and this decreased with 
decrease in the number of active sites. Other factors responsible for this are: interference between 
binding sites and higher adsorbed dose; insufficiency of Pb2+ ions in solution with respect to available 
binding sites; aggregation arising from high sorbent dose leading to decrease in total surface area of 
adsorbent and an increase in diffusional path length and unsaturation of the adsorption sites during 
the adsorption reaction. This finding is supported by the previous work of Gong et al. (33).

Figure 3. EDX analysis of (a) 
WAC-nZVI before adsorption 
and (b) Pb–WAC-nZVI after 
adsorption.

Figure 4. The effect of pH on 
Pb2+ adsorbed onto WAC-nZVI.

Notes: Experimental conditions: 
Pb2+ Concentration= 200 mg/L; 
WAC-nZVI dose = 100 mg ; 
Volume of Pb2+ solution = 50 
mL; Stirring speed = 200 rpm; 
Contact time = 30 min, and 
Temperature = 25± 2°C.
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The build-up of charges around the adsorbent in a solid–liquid system takes time. Therefore, effect 
of contact time was investigated as one of the factors affecting the immobilization of Pb2+ onto 
WAC-nZVI. The effect of contact time was studied at contact time of 10–120 min at optimum condi-
tions. Figure 6 showed a rapid increase in contact time at the first 10–30 min into the adsorption 
process. However, a steep and uninterrupted step was observed between 30 and 60 min, while the 
graph leveled off for 120 min without a significant change in the quantity adsorbed (18).

3.3. Batch kinetic studies and statistical validity
Data from kinetic experiment were subjected to eight kinetic and mechanism models.

3.3.1. Pseudo-first-order (Lagergren’s rate equation)
The Lagergren’s rate equation of pseudo-first order is given in Equation (7) (34, 35):
 

 

Equation (8) defines h1 the initial adsorption rate from pseudo-first-order rate equation, the plot of 
log(qe − qt) versus t gave a linear relationship (Figure 7), where k1 and qe were determined from the 
slope and intercept of the linear plot (Figure 7(a))

(7)log(qe − qt) = log qe −
k1t

2.303

(8)h1 = k1qe

Figure 7. (a–d): Linear plots 
of (a) Pseudo-first-order, (b) 
Pseudo-second-order, (c) 
Elovich, (d) Fractional power.

Figure 5. Effect of WAC-nZVI 
dose on Pb2+ adsorbed.

Notes: Experimental 
conditions: Pb2+ Concentration 
= 200 mg/L; Volume of Pb2+ 
solution = 50 mL; pH = 6, 
Stirring speed = 200 rpm; 
Contact time = 30 min, and 
Temperature = 25± 2°C.

Figure 6. Effect of contact time 
on Pb2+ adsorbed onto WAC-
nZVI .

Notes: Experimental conditions: 
Pb2+ Concentration= 200 mg/L; 
WAC-nZVI dose = 100 mg ; 
Volume of Pb2+ solution = 50 
mL; Stirring speed = 200 rpm; 
Temperature = 25± 2°C.

D
ow

nl
oa

de
d 

by
 [

18
9.

21
9.

80
.1

67
] 

at
 0

4:
34

 0
4 

A
ug

us
t 2

01
7 



Page 10 of 20

Dada et al., Cogent Chemistry (2017), 3: 1351653
https://doi.org/10.1080/23312009.2017.1351653

Solid–liquid interaction of WAC-nZVI and Pb2+ is suggesting that one Pb2+ is adsorbed on the sur-
face of one WAC-nZVI as demonstrated in Equation (9):

 

From evaluated parameters presented in Table 3, it is obvious that qe,exp = 89.2 mgg−1 and 
qe,cal = 5.572 mgg−1 coupled with regression coefficient, R2 < 0.95 and larger values of sum of square 
error (SSE), chi-square test (χ2), and normalized standard deviation (Δq). These results as well as 
lower value of h1 = 0.193 mgg−1 min−1 showed that kinetics of liquid-phase adsorption of Pb2+ onto 
WAC-nZVI did not fit well to pseudo-first order.

3.3.2. Pseudo-second order
This model adopts that one Pb2+ is sorbed onto two sorption sites on WAC-nZVI nanocomposites’ 
surface according to Equation (10):
 

Evidence of chemisorption mechanism is substantiated in the pseudo-second-order model 
(Equation (11)) (16, 30, 36):

 

 

Defined in Equation (12) is pseudo-second-order initial adsorption rate (mg2/g2 min). Linear plot of 
t/qt against t in Figure 7(b), gave a straight line and evaluated data obtained are presented in Table 
3. The linearity of the plot, close and good agreement between the calculated qe and qe, experimen-
tal values (89.2 and 90.90, respectively), higher value of h2 = 166.67 mg2/g2 min, correlation coeffi-
cients (R2 > 0.99), and lower values of the validity models are strong clues of the applicability of 
pseudo-second-order model. It is suggested that the kinetic of adsorption of Pb2+ onto WAC-nZVI 
was best described by pseudo-second-order model supporting chemisorption process.

3.3.3. Elovich model
Equation (13) described the Elovich model as:
 

(9)WAC + Pb2+aq
k2
�������→WAC ∙ Pbsolid phase

(10)2WAC + Pb2+aq
k2
�������→WAC2 ∙ Pbsolid phase

(11)
t

qt
=
1

h2
+
1

qe
t

(12)h2 = k2q
2
e

(13)qt =
1

�
�n(��) +

1

�
�n(t)

Table 3. Adsorption kinetic models’ parameters for the sorption of Pb2+ onto WAC-nZVI
Pseudo-
first-order

WAC-nZVI Pseudo-second-order Elovich  Fractional power

k1 (min−1) 0.035 k2 (g/mg/
min)

0.020 α (g.min2/
mg)

1.60 × 10+34 v (min−1) 0.012

h1 (mg/g/
min)

0.193 h2 (mg/g/
min)

166.667 β (g.min/mg) 0.933 k3 (mg/g) 83.946

R2 0.932 R2 1.000 R2 0.953 R2 0.954

SSE 6993.642 SSE 2.921 SSE 0.026 SSE 0.0842

χ2 1255.140 χ2 0.032 χ2 3 × 10−4 χ2 0.001

Δq 23.438 Δq 0.479 Δq 0.0448 Δq 0.081

qe,exp (mg/g) 89.200 qe,exp (mg/g) 89.200 qe,exp (mg/g) 89.200 qe,exp (mg/g) 89.200

qe,cal (mg/g) 5.572 qe,cal (mg/g) 90.909 qe,cal (mg/g) 89.040 qe,cal (mg/g) 88.909
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The slope of 1∕� and intercept 1∕��n(��) were determined from linear plot of qt vs. ln(t) (Figure 
7(c)). Regression coefficient, R2 > 0.95 is close to unity, Elovich’s constant, α = 1.60 × 10+34 g min2/mg 
defines the rate of reaction, 1/β value above unity reflects the number of sites available for adsorp-
tion, whereas the value of 1/β ln (αβ) = 86.82 mgg−1 indicates the adsorption quantity when ln(t) 
equals to zero (37). All these parameters revealed that Elovich model also better described the liq-
uid-phase adsorption (30).

3.3.4. Fractional power
Equation (14) portrayed the fractional power model given as (18):
 

where v is a positive constant less than unity (v = 0.012 min−1) displaying the time dependence of liquid-
phase adsorption of Pb2+ onto WAC-nZVI. The k = 83.9 mgg−1 was determined from slope and intercept of 
a linear plot of log (qt) vs. log (t) (Figure 7(d)) suggesting the strength of the site for Pb2+ immobilization. 
The lower values of SSE, χ2, and Δq evaluated as 0.0842, 0.001, and 0.081, respectively, validated the ap-
propriateness of fractional power in describing the time dependence of adsorption process (38).

3.4. Adsorption mechanism
The adsorption mechanisms, the rate-controlling steps were determined using intraparticle diffu-
sion, external diffusion, Bangham and Boyd models. Their mathematical expressions are given in 
Equations (15)–(20) (17, 39):

Intraparticle diffusion (Morris and Weber model) (40): 

 

External diffusion (Spahn and Schlünder model): 

 

A/V is external adsorption area to the total solution volume, and t is sorption time.

Bangham model: 

 

where α and Ko are the constants and t is the contact time (min).

Boyd model: 

 

 

where qt is the amount of the Pb2+ adsorbed at time t (mg/g) and qe is the amount of the Pb2+ ad-
sorbed at equilibrium (mg/g), F is the fraction of Pb2+ adsorbed at time t, and Bt is the mathematical 
function of F. Substituting Equation (19) in (15), Equation (18) simplifies to:

 

(14)log(qt) = log(k) + v log(t)

(15)
qt = kidt

0.5 + C

(16)
ln

[

Ct
Co

]

= −kext

(

A

V

)

t

(17)
log log

(

Co
Co − qtm

)

= log

(

kom

2.303V

)

+ � log (t)

(18)
F = 1 −

(

6
/

�
2

)

exp
(

−Bt
)

(19)
F =

qt
qe

(20)Bt = −0.4977 − ln(1 − F)
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The calculated Bt values were plotted against time t (min). Depicted in Figure 8(a)–(d) are the lin-
ear plots of (a) intraparticle diffusion, (b) external diffusion (Spahn and Schlünder model), (c) 
Bangham, (d) Boyd adsorption mechanism models for adsorption of Pb2+ onto WAC-nZVI. In this 
study, the intraparticle diffusion constant (kid) and the thickness of the surface (C) were determined 
from the slope and intercept of linear plot of qt vs. t0.5. The intercept (C = 19.397) which is the thick-
ness of the surface gives information about the contribution of the surface adsorption in the rate-
determining step. The larger the intercept, the greater the contribution of the pore to adsorption 
(17). The plot (Figure 8(a)) not passing through the origin indicating that intraparticle diffusion is not 
the only rate-determining step (26). However, it is suggested that other step like external diffusion 
maybe involved in the rate-determining steps. Parameters of Spahn and Schlunder model were eval-
uated from the linear plot of ln (Ct/Co) vs. t (Figure 8(b), Table 4)

More so, Bangham model was applied to confirm the intraparticle diffusion. The pore diffusion 
mechanism was further supported by double logarithm plot (Bangham model) since plot of 
log log

(

Co

Co−qtm

)

 against log (t) gave a straight line (Figure 8(c)) with high correlation coefficient, 

R2 > 0.95, the values of α and k less than unity (Table 4) and Boyd model with R2 < 0.95. All these 
values are suggesting that intraparticle diffusion or pore diffusion is one of the rate-determining 
steps (41, 42)

3.5. Equilibrium studies and isotherm models

3.5.1. Initial concentration
The initial Pb2+ concentration constitutes a significant driving force allowing the ionic mass transfer 
between the aqueous and the solid phases (43). Effect of initial concentration plays one of the major 
roles in the uptake of Pb2+. The concentration range of 10–200 mg/L was investigated at optimum 
conditions. Specifically, the increase in adsorption capacity with an increase in concentration is due 
to the concentration gradient developed at solid–solution interface. At higher concentration of Pb2+, 
the active sites of WAC-nZVI were bombarded by more of Pb2+ as the process continued until a satu-
rated point was reached. The quantity adsorbed increased with an increase in initial concentration 

Figure 8. (a–d) Linear plots of 
(a) Intraparticle Diffusion, (b) 
External Diffusion, (c) Bangham, 
and (d) Boyd mechanism 
models for adsorption of Pb2+ 
onto WAC-nZVI.

Table 4. Adsorption mechanism models for immobilization of Pb2+ onto WAC-nZVI
Intraparticle 
diffusion

WAC-nZVI External diffusion Bangham Boyd

kip (mg/g/min 0.5) 0.348 kfd 0.002 Ko 0.022 R2 0.933

C 85.440 Α 0.012

R2 0.987 R2 0.967 R2 0.954
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due to the availability of the active sites as revealed in Figure 9. However, the percentage removal 
efficiency decreased with an increase in concentration because of decrease in the rate of binding of 
Pb2+ to the active sites at the approach of equilibrium.

3.5.2. Adsorption isotherms and statistical validity
In order to understand the interaction between WAC-nZVI and Pb2+, the data obtained from equilib-
rium adsorption studies were analyzed using seven of two parameters isotherm models: Langmuir, 
Freundlich, Temkin, Dubinin–Raduskevich (D–R), Halsey, Harkin–Jura, and Jovanovic. Description of 
the interaction between WAC-nZVI and Pb2+, estimation of the adsorption capacity, information 
about adsorption mechanisms, surface properties, and affinity of the adsorbent can be equally ob-
tained from the evaluated parameters from these isotherm models. Based on the statistical model 
errors which are normally and independently distributed, all the isotherm models are subjected to 
three statistical errors analyses for validity test. Given in Table 5 are the isotherm models equations, 
their linear and nonlinear forms as seen in Equations (21)–(28) as well as the various parameters 
plotted. Presented in Figures 10 (a)–(g) are the corresponding linear plots for Langmuir, Freundlich, 
Temkin, Dubinin–Raduskevich (D–R), Halsey, Harkin–Jura, and Jovanovic isotherm models, respec-
tively. The evaluated parameters of the isotherm models are well presented in Table 6.

Langmuir isotherm model is a semi-empirical isotherm derived from a proposed kinetic mecha-
nism based on the assumptions that the surface is energetically homogeneous, and there is no in-
teraction between neighboring adsorbed specie (Pb2+), adsorption takes place only at specific 
localized sites on the surface and the saturation coverage corresponds to complete occupancy of 
these sites. Given in Table 5 are Langmuir equation and the expression for Langmuir separation fac-
tor as seen in Equations (22) and (23), respectively. The parameters qe and Ce are the quantity of 
metal ions adsorbed (mg/g) and concentration (mg/L) at equilibrium, respectively, qmax is the theo-
retical maximum monolayer sorption capacity (mg/g), and KL (L/g) represents the Langmuir iso-
therm constant. The essential features of the Langmuir isotherm may be expressed in terms of 
equilibrium parameter, RL, which is a dimensionless constant referred to as separation factor.

Figure 9. Percentage and 
quantity of Pb2+ adsorbed onto 
WAC-nZVI at various initial 
Pb2+concentrations.

Table 5. Different adsorption isotherm models (15, 21, 44–46)
S/N Isotherms Nonlinear form Linear form Equations Plots
1 Freundlich

qe = Kf C

1/
nf

e

log qe = logKf +
1
/

nf
log Ce 

(21) log qe vs. log Ce

2 Langmuir qe = qmax
KLCe
1+KLCe

Ce
qe

=
1

KLqmax
+

Ce
qmax

 RL =
1

1+KLCo
 (22) and (23) Ce

qe
 vs. Ce

3 Temkin qe =
RT

bT
ln
(

ATCe
)

qe =
RT

bT
lnAT +

(

RT

bT

)

ln Ce 
(24) qe vs. ln Ce

4 Dubinin–Radushkevich (D–R) qe = qd exp ( - ADKRɛ
2)

ln qe = ln qd − ADKRɛ
2 E = −

�

1
√

2AD−R

�

 
(25) ln qe vs. ɛ2

5 Halsey qe = Exp
(

ln kH−ln Ce

nH

)

�nqe =
[(

1

nH

)

�nK
]

−
(

1

nH

)

�nCe
(26) ln qe vs. ln Ce

6 Harkin–Jura
qe =

(

A

B2−logCe

)
1∕2 1

q
2
e

=
[

B

A

]

−
[

1

A

]

log Ce
(27) 1

q
2
e

 vs. log Ce

7 Jovanovic
qe = qmax

(

1 − exp

(

Kj Ce

)

)

ln qe = ln qmax − kjCe (28) ln qe vs. Ce
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The equilibrium data were also best described by the Langmuir isotherm model with R2 value of 
0.9723 (Figure 1(a)). The maximum monolayer (qmax) Pb2+ adsorption capacity obtained was 
77.07 mg/g. The essential features of the Langmuir isotherm may be expressed in terms of dimen-
sionless separation factor, RL, given as (30, 47):

 

RL value indicates the adsorption nature to either unfavorable or unfavorable. It is unfavorable if 
RL > 1, linear if RL = 1, favorable if 0 < RL < 1, and irreversible if RL = 0 (15). The value of RL which ranges 
between 7.44 × 10−2 and 3.77 × 10−3 (Figure 10(h)) indicated that the immobilization of Pb2+ onto WAC-
nZVI was favorable. From the comparison of the Langmuir monolayer adsorption capacities presented 
in Table 7, the WAC-nZVI performed effectively and distinctly than other existing nanoparticles and 
nanocomposites reported in the literature for the uptake of Pb2+. This performance enlisted WAC-nZVI 
among novel, effective, and efficient adsorbents for uptake of Pb2+. Based on the values of correlation 
coefficients (R2), the close agreement between qe,exp and qe,cal, and lower values of sum of square error 
(SSE), chi-square test (χ2), and normalized standard deviation (Δq) statistical validity models presented 
in Table 6, it is obvious that the equilibrium data were best described by Langmuir and D–R isotherm 
models and fairly described by Temkin isotherm models (Figure 10(a), (c), and (d), respectively).

Freundlich, Halsey, and Harkin–Jura are mainly describing heterogeneous and multilayer adsorp-
tion (21, 46, 56, 57). Generally, these isotherm parameters are mainly determined from the slope 
and intercepts of their linear plots indicated in Table 5. The Kf and nf are the Freundlich isotherm 
constants describing adsorption capacity and intensity, respectively, determined from the intercept 
and slope of the plot of log qe against log Ce (Figure 10 (b)) . Since the value of 1/nf (0.283 in Table 6) 
lies between 0 and 1 and nf (3.53, Table 6) being less than 10 are indication of a favorable adsorption. 
Adsorption of Pb2+ onto WAC-nZVI is poorly described by Freundlich, Halsey, Harkin–Jura, and 
Jovanovic (Figure 10 (b), (e), (f), and (g), respectively, and Table 6). Based on R2 and relatively low SEE, 
χ2, and Δq presented in Table 6, the isotherm models fit the equilibrium data well in the following 
order: Langmuir > Dubinin–Raduskevich (D–R) > Temkin > Freundlich > Halsey > Jovanovic > Harkin–
Jura. However, from the evaluated parameters of D–R isotherm models, the value of E being less 
than 8 kJ, revealed that electrostatic force played a substantial role in the adsorption process. This 
was supported by the research finding of Feng et al. (42) and Wang et al. (48).

(23)RL =
1

1 + KLCo

Figure 10. (a–e): Linear 
plots of (a) Freundlich, (b) 
Langmuir, (c) Temkin, (d) D-R, 
(e) Halsey (f) Harkin–Jura, (g) 
Jovanovic isotherm models 
for sorption of Pb2+ onto WAC-
nZVI, and (h) Plot of Langmuir 
dimensionless separation 
factor for adsorption of Pb2+ 
onto WAC-nZVI.
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3.6. Adsorption thermodynamic studies
Temperature is another important parameter in the adsorption studies because some important 
thermodynamic parameters such as enthalpy change (ΔH°), entropy change (ΔS°), and Gibbs free 
energy change (ΔG°) could be determined. The temperature investigated ranged from 298 to 338 K. 
Close observation of Figure 11 revealed that 97.2% of Pb2+ was adsorbed with an increase in tem-
perature due to increase in number of active sites and the decrease in the thickness of the boundary 
layer surrounding the adsorbent, as a result, the mass transfer resistance of Pb2+ in the boundary 
layer decreased (55)

The thermodynamic parameters were determined from the van’t Hoff’s equation (58):

Table 6. Isotherm models’ parameters and evaluated values for adsorption of Pb2+ onto WAC-nZVI

Note: nd = non-determinate.

Langmuir Values Freundlich Values Temkin Values D-R Values
qmax (mgg−1) 77.519 kf 32.885 bT (J mol −1) 277.892 qd 82.163

KL (Lmg−1) 1.344 1/nf 0.283 β (Lg−1) 8.916 ADKR 4 × 10−8

RL 7.44 × 10−2–
3.77 × 10−3

nf 3.53 AT (Lg−1) 180.925 E (J/mol) 3,535.5

R2 0.972 R2 0.64 R2 0.842 R2 0.969

SSE 131.231 SSE 259.091 SSE 112.375 SSE 342.532

χ2 1.748 χ2 3.251 χ2 1.514 χ2 4.204

Δq 4.502 Δq 6.326 Δq 4.166 Δq 7.306

Halsey Values Harkin–Jura values Jovanovic values

1/nH −0.283 A 133.33 qmax 18.5061

nH −3.53 B 1.0933 Kj −0.0482

KH 4.42 × 10−6 1/A 0.0075

R2 0.6402 R2 0.3417 R2 0.45

SSE 259.693 SSE nd SSE 78.7266

χ2 3.257 χ2 nd χ2 0.8537

Δq 6.333 Δq nd Δq 2.6616

Table 7. Comparison of the previously reported adsorbents used in Pb2+ uptake with the present 
ones under investigation
S/N Adsorbents Adsorption capacity (mg/g) Ref
1 Amino-functionalized Fe3O4-SiO2 magnetic nanoma-

terial
76.6 (48)

2 Copolymer 2-hydroxyethyl methacrylate with 
monomer methyl methacrylate

31.5 (49)

3 Silica-supported dithiocarbamate 70.4 (50)

4 Nanometer TiO2 22.5 (51)

5 Exfoliated Graphene Nanosheets 35.5 (52)

6 Modified nanometer SiO2 6 (53)

7 Amino-functionalized mesoporous 57.74 (54)

Nanomesoporous silica

8 Magnetic Chitosan/GO 76.94 (55)

9 WAC-nZVI 77.5194 Present study
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Evaluated parameters of ΔH°, ΔS°, and ΔG° determined from the slope and intercept of linear plot 
of log Kc against 1/T (Figure 12) are presented in Table 8.

It can therefore be ascertained from Table 8 that the reaction is endothermic because the value of 
ΔH is positive (ΔH = +4.761 kJ mol−1), the standard entropy change ∆So (38.169 J mol−1 K−1) indicating 
the degree of randomness at the solid–liquid interface during the sorption of Pb2+ onto WAC-nZVI and 
the negative values of the standard Gibbs free energy (∆Go) indicate the viability, feasibility, and spon-
taneity of the adsorption process. This finding is in support with the report of other researchers (55).

3.7. Salinity/ionic strength
In waste water, salt is present in different concentrations depending on the source and quality of the 
effluent released into it. The presence of these dissolved salt and co-existing ions could affect the 

(29)logKC =
ΔS

2.303R
−

ΔH

2.303RT

Figure 11. Effect of 
temperature on Pb2+ adsorbed 
onto WAC-nZVI.

Figure 12. Van’t Hoff plot for 
the adsorption of Pb2+ onto 
WAC-nZVI.

Table 8. Thermodynamic parameters for adsorption of Pb2+ onto WAC-nZVI
T (oC) T (K) ΔG (kJ mol−1) ΔH (kJ mol−1) ΔS (J mol−1 K−1) Kc

25 298 −6592 4.761 38.169 14.297

35 308 −7009 15.434

45 318 −7397 16.401

55 328 −7769 17.262

65 338 −8115 17.943

Figure 13. Ionic strength on 
Pb2+ adsorbed onto WAC-nZVI.

Notes: Experimental conditions: 
Pb2+ Concentration= 200 mg/L; 
Volume of Pb2+ Solution = 50 
mL; WAC-nZVI dose = 100 mg; 
pH =6, contact time = 30 min, 
Stirring speed = 200 rpm and 
temperature = 25± 2°C. 
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adsorption of Pb2+. Figure 13 depicts the result of effect of ionic strength on adsorption of Pb2+ onto 
WAC-nZVI. It was obvious that the percentage of Pb2+ removed reduced from 91.42 to 86.40%. This 
decrease in the amount of Pb2+ uptake was due to electrostatic attraction arising from compressed 
electrical diffuse double layer. Also, increase in the number of Pb2+, Na+, and other competing ions 
led to electrostatic competition between Pb2+ and Na+ on the available adsorption sites which re-
sulted to decrease in percentage of Pb2+ removed (21, 59).

However, critical survey of the ranges of decrease in percentage did not show a drastic effect on 
the efficiency of WAC-nZVI in immobilization of Pb2+ from the aqueous solution. Hence, WAC-nZVI 
nanocomposite could find relevance in adsorption of Pb2+ from saline and natural water since 86.4% 
efficiency was obtained.

4. Conclusion
The immobilization of Pb2+ onto WAC-nZVI vis-à-vis the kinetics, equilibrium, and thermodynamic 
studies was carried out successfully. The kinetic data were tested with eight kinetic and mechanism 
models. The kinetics was best described by pseudo-second-order, the adsorption mechanism was 
dominated by both intraparticle and external diffusions confirmed by Bangham and Boyd models. Of 
all the seven isotherm models investigated, equilibrium data analyzed fitted best to Langmuir iso-
therm models indicating that the interaction between Pb2+ and WAC-nZVI was predominately chem-
isorption in nature. This was confirmed by the shift in bands from the FTIR spectra. However, 
electrostatic force played a substantial role in the adsorption process based on the D–R energy val-
ue, E < 8 k J mol−1. Comparative investigation of the monolayer adsorption capacity of WAC-nZVI for 
Pb2+ revealed that WAC-nZVI is a better nanoadsorbent with better performance than those previ-
ously reported. The result from the thermodynamic studies showed that immobilization of Pb2+ was 
spontaneous, feasible, and endothermic in nature. Study of effect of ionic strength revealed that 
WAC-nZVI is a better candidate for industrial wastes in the presence of other competing ions. The 
immobilization of Pb2+ by WAC-nZVI proved that it is an efficient and an effective nanoadsorbent and 
it is therefore recommended for utilization on large scale for decontamination of water and indus-
trial treatment of effluent.
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