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Abstract This experimental study investigated the effect of Convex Hull on Node-
based Heuristics. This was motivated by the assertion in the literature that starting
some insertion tours with a convex hull theoretically degrades their worst case from
twice optimal to thrice optimal. The Node-based techniques considered were Nearest
Neighbour Heuristic (NNH) and Nearest Insertion Heuristic (NIH). The derived
heuristics with Convex Hull were referred to in this study as Convex Hull Nearest
Neighbour (CHNN) and Convex Hull Nearest Insertion (CHNI), respectively. The
techniques were experimented on eleven benchmark instances from TSPLIB using
Python Programming Language. Experimental results showed that the performances
of both the Nearest Neighbour and Nearest Insertion were enhanced in terms of
Computational speed and solution quality.
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1 Introduction

As is typical with Combinatorial Optimization Problems (COP), the Travelling
Salesman Problem (TSP) can either be approached using exact solutions or heuris-
tics. Although exact techniques will always guarantee optimal solutions, they are
however unsuitable for NP-hard problems with large solution space [1]. For instance,
the solution renowned as the best performing exact technique is based on dynamic
programming and has a complexity of 0(2”n2), thus making it impracticable to
solve TSP as the search space expands [2]. Heuristics on the other hand provides
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solutions within polynomial p time. Heuristics provide approximate solutions within
the constraint of polynomial time. Heuristic solutions are referred to as approximate
because they are less than optimal but good enough within the constraint of time.
Good heuristics are often simple to implement and flexible to accommodate complex
constraints.

Heuristics have been classified by researchers based on divergent criteria in
previous studies. For instance, authors [3-5] classified heuristics into three based
on the atomicity of solution procedure namely, Tour Construction, Improvement /
Local Search Heuristics, and Compound Heuristics. The Tour Construction heuris-
tics are stand-alone techniques that build solutions, step by step by following a
set of predefined procedures. These procedures describe the processes involved in
stages of Initialization, Selection, and Insertion. The construction heuristic tech-
niques have been used extensively in solving classic combinatorial optimization
problems. Common techniques include the Nearest Neighbour Heuristic (NNH), the
Nearest Insertion (NIH), Cheapest Insertion, Random Insertion, Addition heuristics,
Savings Heuristics, and so on. The Improvement/ Local Search Methods combine
two or more techniques and iteratively improve solutions until a better solution is not
feasible. Compound Heuristics are a hybrid of both the tour construction and local
search methods. In this approach, two or more tour heuristics are applied indepen-
dently, while a selection routine is deployed to determine the best of the solution.
Additionally, authors [6, 7] classified heuristics based on their solution paradigm into
space-partitioning-based heuristics, edge-based heuristics, and node-based heuris-
tics. The space-partitioning-based heuristics build solutions by first splitting the
nodes into subsets (S, Sz, ... S,) based on their paired distances, the nodes within
the same subset are then connected into a Hamilton path, after which the Hamilton
circuit for S is obtained by coupling the Hamiltonian paths of subsets (S}, S2, ... S,).
Examples of heuristics under this category are Strip and Hilbert. Edge-based heuris-
tics build solutions by first determining the edge with the smallest distance and then
placing it into the circuit. Most heuristics under the edge-based category are all built
on the Minimum Spanning Tree (MST); they include multiple fragment heuristic,
double-MST (DMST), and the Christofides algorithm (Chris). In the third category,
the node-based heuristics build the tour by expanding the nodes one at a time till all
the nodes have been inserted. Node-based heuristics must first decide which node to
be used as the initial node, then determine the succeeding node to explore in each
iteration, and where it will be inserted. Examples of node-based heuristics include the
nearest-neighbour heuristics, the insertion heuristics, the convex hull-based insertion
heuristics, the addition heuristics, and the augmented addition heuristics. Apparently,
node-based heuristics are chiefly Tour Construction techniques as well.

In this study, two node-based heuristics namely Nearest Neighbour and Nearest
Insertion are studied in relation to Convex Hull. The Convex Hull P of a set of points
(S) is the Euclidean plane which is the minimum convex polygon that encompasses
all the points in S. The Convex Hull is generally used to build initial points of an
approximation technique. Thus, against the findings by [8] that the worst-case perfor-
mances of some insertion heuristics are theoretically degraded from twice optimal to
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thrice optimal when started with a convex hull, there is a need to evaluate the exper-
imental performance of Convex Hull Nearest Neighbour and Convex Hull Nearest
Insertion vis-a-vis the classic Nearest Neighbour and Nearest Insertion Heuristics
in order to determine the experimental effect of Convex Hull on node-based heuris-
tics. These techniques are experimented on some benchmark instances from TSPLIB
using the Python Programming Language as the implementation tool.

2 The Problem Formulation

First formulated in the nineteenth century and enhanced in the 1930s by M. M.
Flood, the Travelling Salesman Problem has become the benchmark for several other
techniques of optimization [9]. The TSP is the shortest tour (or path) problem to find
the optimal route while visiting a set of cities (or nodes), ensuring each city (or node)
is visited exactly once and regarding the Hamiltonian circuit, return to the start node
or city [10]. The Travelling Salesman must traverse cities 1 fo n in a Hamiltonian
cycle that is, Start from city 1 and traverse the remaining n—1 cities in arbitrary
order, and return to the starting point with the objective of touching the cities once
at a minimal cost. The distance d(i, j) depicts the distance from city i to j Thus, TSP
is formally defined as follows:

F = miniidﬁxﬁ

i=1 j=1

n
Zx,-jzl;jzl,...,n
j=1

ix,-jzl;jzl,...,n
i=1

The objective function is marked with F. With a limitation,
Xiyiy + Xigiy + 0+ Xy =7 — 1
xij x;; are the binary variables

[ 1 if the salesman travels from city i to city
/""" | 0 if the salesman is not travelling from city i to city j

d;;d;; 1s the distance from city i to city j.
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The TSP has applications in several areas, most especially in varying areas of trans-
portation. Despite being an NP-hard problem, which is easily understood but compu-
tationally difficult to solve, TSP has several solution algorithms broadly categorized
into Exact Algorithms and Approximate Algorithms (heuristics).

3 The Proposed Technique

This study experiments the performance of two node-based heuristics in relation to
their convex hull counterpart. Node-based heuristics build circuits on a node by node
basis as follows [7]:

Input: Q: a TSP query of a set of points
Output: T: the TSP for Q

1. begin

2. T « init(Q);

3. while T does not contain all nodes in Q do
4. v < select(Q, T);

5. insert(v, T);

6. return T;

The Nearest Neighbour heuristic is a classic node-based tour construction heuristic
for solving the Travelling Salesman Problem. The Nearest Neighbour Heuristic tries
to solve the Travelling Salesman Problem using a greedy approach [10]. The Nearest
Neighbour starts with a city/node and builds the remaining tour by joining the node
closest to the starting node to the tour. This process is iterated for all the nodes that
are not yet part of the tour until the tour is fully build and a Hamiltonian circuit is
formed. This process is greedy in nature, thus the performance is relatively low. The
solution quality of the Nearest Neighbour Heuristic is evaluated as follows:

1 1
fs/fOPT = 5[10{;(11)] + 5

while the worst-case complexity is 7'(n) = O (nz)

Where f; is the length of a tour by the solution and fyp7 is the optimal tour
length of the NNH. Generally, the Nearest Neighbour Heuristic can solve the TSP
in good time, with less than optimal solution quality. Thus, recent literature focuses
on using the Nearest Neighbour either as part of a hybrid method asin [1, 7, 11, 12]
or as a seed technique in a metaheuristic for building initial solutions.
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The Nearest Insertion Heuristic, on the other hand, chooses the next node x* =
argmin,¢7,{Vx; € T;}. The following pseudocode depicts the workings of the Nearest
Insertion Techniques.

1. Start the tour from an arbitrary nodei
2. Add a node jnearest to ito form a partial circuitT =i—j—i

3. Find a node knot in the partial circuit for which the
distance to any of the nodes in the subtour is shortest,
dk,T)=mind(i, T)

i¢T

4. Find an edge [i, jlof the partial circuit to insert k, such
that Af =c¢jy +cxj —¢;jis minimial and insert k.
5. Iterate step 3 until a Hamiltonian cycle is formed

The solution quality of Nearest Insertion is evaluated as follows:

fs/ fopr < 2 while the worst-case complexity is T (n) = O (n?)

Where f; is the length of a tour by the solution and fpp7 is the optimal tour
length of the NIH.

The Convex Hull P of a set of points (S) is the Euclidean plane which is the
minimum convex polygon that encompasses all the points in S. It is generally used
to build initial points of an approximation technique [13].

Given a set of specified vertices, the Convex Hull Nearest Neighbour (CHNN)
method begins by constructing the convex hull subtour associated with the nodes,
start the tour from a point in the edge, then inserts the nearest neighbour of subsequent
nodes not already on the tour. Equally given the Convex Hull subtour, the Convex
Hull Nearest Insertion Technique is depicted in the pseudocode below:

1. Begin with the Convex Hull subtouri
2. Add a node jnearest to ito form a partial circuitT =i—j —1i
3. Find a node jnot in the partial circuit for which the
distance to any of the nodes in the subtour is shortest,
dk,T)=mind (i, T)

i¢T

4. Find an edge of the partial circuit to insert j, such that
Afis minimal and insert k(Afis the increment in the subtour
length).

5. Iterate step 3 until a Hamiltonian cycle is formed

4 Computational Results

The NNH, NIH, CHNN, and CHNI were implemented on eleven (11) benchmark
instances from TSPLIB made available by Heidelberg University on http://comopt.
ifi.uni-heidelberg.de/software/TSPLIB95/tsp/. Table 1 shows the performances of the
methods (NNH, NIH, CHNN, and CHNI) on eleven instances, in terms of solution
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Fig. 1 Percentage deviation of (NN, NI, CHNN, and CHNI) solutions from optimal tour length

quality and computational speed. The percentage deviation of the methods from the
optimal solution was also depicted graphically in Fig. 1.

CHNN outperformed NNH in terms of quality in all instances except for pr2392.
The speed of computation was also reduced for all instances. CHNN did better in
terms of speed with relation to NIH also in all instances although NIH performed
more competitively with CHNN than NNH in terms of solution quality. The perfor-
mance of NIH in relation to that of NNH is consistent with findings in literature [7,
11] that the Nearest Insertion Heuristic performs better than the Nearest Neighbour
Heuristic, in terms of closeness to optimality. Consequently, CHNI outperformed
CHNN, Nearest Neighbour, and Nearest Insertion. This is consistent with findings
by [8] that although Convex Hull tends to theoretically degrade the worst case of
insertion heuristics, the experimental performance of insertion heuristics is in fact
enhanced. Our findings show that Convex Hull tends to relatively improve perfor-
mances of node-based insertion. Figure 1 shows the percentage deviation of NNH,
NIH, CHNN, and CHNI from the optimal solution.

The Nearest Neighbour Heuristic deviated the most. This is perhaps due to its
greedy technique which results in curse of dimensionality. The chart also shows that
the Convex Hull has the potential of enhancing solution quality.

5 Conclusion

In this study, we have investigated the experimental effect of Convex Hull on two
node-based heuristics namely, Nearest Neighbour and Nearest Insertion. This was
against the background that starting some insertion tours with convex hull theoret-
ically degrades their worst case from twice optimal to thrice optimal. The derived
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heuristics Convex Hull Nearest Neighbour (CHNN) and Convex Hull Nearest Inser-
tion (CHNI) as well as Nearest Neighbour and Nearest Insertion were experimented
on eleven benchmark instances from TSPLIB using Python Programming Language.
Experimental results showed that the performance of both the Nearest Neighbour
and Nearest Insertion Heuristics were improved in terms of Computational speed
and solution quality. Future work may involve the inclusion of more node-based
heuristics such as Addition heuristics to arrive at a broader conclusion.
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