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Abstract—This study investigated the computational effect of a 

Convex Hull subtour on the Nearest Neighbour Heuristic. Convex 

hull subtour has been shown to theoretically degrade the worst-

case performances of some insertion heuristics from twice optimal 

to thrice optimal, although other empirical studies have shown 

that the introduction of the convex hull as a subtour is expected to 

minimize the occurrences of outliers, thereby potentially 

improving the solution quality. This study was therefore conceived 

to investigate the empirical effect of a convex-hull-based initial 

tour on the Nearest Neighbour Heuristic vis-a-vis the traditional 

use of a single node as the initial tour. The resulting hybrid Convex 

Hull-Nearest Neighbour Heuristic (CH-NN) was used to solve the 

Travelling Salesman Problem. The technique was experimented 

using publicly available testbeds from TSPLIB. The performance 

of CH-NN vis-à-vis that of the traditional Nearest Neighbour 

solution showed empirically that Convex Hull can potentially 

improve the solution quality of tour construction techniques. 

Keywords— Travelling Salesman Problem, Nearest Neighbour 

Heuristic, Convex Hull, Node-based heuristics. 

I. INTRODUCTION 

This paper is an extension of the work originally presented 

at the 2020 International Conference in Mathematics, 

Computer Engineering, and Computer Science [1].  

The scientific task of finding the optimized solutions to 

combinatorial problems is often approached using either exact 

or heuristic techniques. While they do not necessarily produce 

optimal solution, heuristic techniques drastically cut down the 

solution space to obtain acceptable solution in polynomial time 

p [2]. Heuristics have been classified by re-searchers based on 

divergent criteria in previous studies. For instance, studies by 

[3], [4], [5], and [6] classified heuristics into three, based on the 

atomicity of solutions procedure namely, Tour Construction, 

Improvement / Local Search Heuristics, and Compound Heu-

ristics. Tour Construction heuristics iteratively construct based 

on specified criteria, fol-lowing three steps namely, 

initialization, selection and insertion. Improvement heuristics 

iteratively refine solutions until it is impossible to obtain a 

better solution [7, 8]. Compound heuristics deploy a cocktail of 

techniques and obtain the best performing combina-tion [9, 10, 

11, 12, 13].  

Heuristics have also been classified based on their solution 

paradigms into space-partitioning-based, edge-based, and 

node-based heuristics [14, 15]. Node-based heuristics build 

their tour by expanding the nodes one at a time till all the nodes 

have been inserted. Node-based heuristics must first decide 

which node to be used as the initial node, then determine the 

succeeding node to explore in each iteration, and where it will 

be inserted. heuristics. Node-based heuristics are chiefly Tour 

Construction techniques as well.  

Constructive heuristics can effectively generate suitable 

heuristic solutions as well as very efficient initial solutions [16]. 

They are therefore often integrated with popula-tion-based 

heuristics in order to obtain very efficient initial solutions. 

Consequently, re-searches that model and generate high 

performing node-based/ tour construction solu-tions have been 

on the increase. In this regard, analytical studies have provided 

the requi-site scientific basis for some empirical findings, while 

others are being investigated. In particular, this study was 

inspired by the need to investigate the effect of convex-hull sub-

tour on the Nearest Neighbour (NN) Heuristic, against the 

analytical standpoint that starting some insertion tours (also 

node-based like the NN) with convex hull theoretically 

degrades their worst case from twice optimal to thrice optimal 

[17]. Thus, this study in-vestigated the empirical effect of a 

convex-hull-based initial tour on the Nearest Neighbour 

Heuristic vis-a-vis the traditional use of a single node as the 

initial tour. The resulting hy-brid Convex Hull-Nearest 

Neighbour Heuristic (CH-NN) was used to solve the Travelling 

Salesman Problem. The performance of this technique was then 

comparatively evaluated with respect to two classic node-based 

techniques, namely Nearest Neighbour (NN) and Nearest 

Insertion (NI), using parameters such as solution quality and 

computation speed. 

The article is organized into six sections. Among other 

things, section one includes a background to the study, 

motivation for the study, the goal of the study as well as the 

significance of the study. The second section includes an 

elucidation of, and a review of relevant literature on the Nearest 

Neighbour technique. Section three includes a formulation of 

the classic Travelling Salesman Problem. The fourth section 
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describes the proposed method vis-à-vis the state-of-the-art 

Nearest Neighbour and Nearest Insertion Heuristics. The fifth 

section discusses the result and evaluation of the used 

techniques. The sixth section include the concluding statement. 

II. THE NEAREST NEIGHBOUR HEURISTIC 

The Nearest Neighbour starts with a city/node and builds the 

re-maining tour by joining the node closest to the starting node 

to the tour. This process is iterated for all the nodes that are not 

yet part of the tour until the tour is fully built and a Hamiltonian 

circuit is formed. This pro-cess is greedy in nature; thus, the 

performance is relatively poor [18]. The pseudocode for the 

Nearest Neighbour Heuristic is as follow: 

 

Algorithm 1: Nearest Neighbour Heuristic 

Input: set of nodes 𝑉𝑛=1,2,…,𝑛 

Output: Path 𝑻 

 

Start 

Select an arbitrary node 𝒌 ∈ 𝑽 

Set 𝑃𝑎𝑡ℎ ← 𝑘 

while {𝑃𝑎𝑡ℎ} ≠ {𝑉} do 

 Find node 𝑘 + 1 𝑃𝑎𝑡ℎ such that  

𝑑𝑖𝑠𝑡(𝑃𝑎𝑡ℎ, 𝑘 + 1) is minimal 

set 𝑃𝑎𝑡ℎ ← 𝑘 + 1 

  

end while 

𝑇 ← 𝑝𝑎𝑡ℎ  

return 𝑇 

End 

   

 

Figure 1. depicts the NN process in a flowchart as follow: 

 

Figure 1. Flowchart of the Nearest Neighbour Heuristic 

Analytically, [19] had shown that for a TSP instance of 

nodes 𝑛, the approximation ratio/solution quality of the Nearest 

Neighbour Heuristic is at most 

 
𝑓𝑠

𝑓𝑂𝑃𝑇
⁄ =

1

2
[log(𝑛)] +

1

2
 of the optimal length,  

where 𝑓𝑠 is the length of a tour by the solution and 𝑓𝑂𝑃𝑇 is the 

optimal tour length.  

The worst-case complexity is 𝑇(𝑛) = 𝑂(𝑛2).  

However, in practice, the Nearest Neighbor Heuristic can 

solve the TSP in good time, with much better solution quality. 

Experimentally, the NN typically yields much better solutions 

than the worst-case suggests. NN often yields tour quality that 

is within 25%-30% of the Held-Karp lower bound [20]. The 

performance of NN greatly suffers from a phenomenon called 

the “curse of dimensionally” resulting from its greedy approach 

to solving the TSP. NN adds the lowest cost nodes as a priority, 

and consequently as the search space and nodes increase, more 

and more outliers are seen. Recent studies focus on how to 

minimize the incidences of outliers in order to circumvent the 

“curse of dimensionally”. Other studies have equally used the 

Nearest Neighbor either as part of a hybrid method as in [1, 15, 

21, 22] or as a seed technique in a metaheuristic for building 

initial solutions. We review some of these below. 

Reference [23] used the Nearest Neighbour heuristic to build 

an initial tour in their experimental survey of some leading 

techniques. They identified important implementation success 

factors and experimented a total of nine high performing 

heuristics on different instances of both symmetric and 

asymmetric TSPs. These methods included four derivatives of 

the Lin-Kernighan technique and two stem and cycle (S&C) 

variants technique for the implementation of the Symmetric 

TSP; while three generalized LK and S&C methods were used 

for implementation on the Asymmetric TSPs. All the 

generalized methods’ implementation used the Nearest 

Neighbour Heuristic to build their initial tour. Their findings 

revealed that S&C methods had better solution quality than the 

generic LK methods, while the LK performed better in terms of 

time. Reference [24] developed a hybrid metaheuristic 

algorithm for solving large-scale vehicle routing problem, the 

algorithm was a combination of Nearest Neighbour and TABU 

algorithms. The Nearest Neighbour was used to generate the 

initial routes while the TABU was used for the intra and cross-

exchange routes. The testbed used in the experiments carried out 

was from a dataset of 6772 customers in the central and suburb 

of Suizhou city and from the evaluation, it was seen that the 

proposed algorithm was efficient in providing minimum cost for 

delivery. Reference [25] introduced an extension of the 

Traveling Salesman Problem (TSP), called problem quadratic 

TSP (QTSP). Three Exact algorithms (an exact approach based 

on a polynomial transformation to a TSP, branch-and-bound 

algorithm and branch-and-cut) and seven approximate 

algorithms (Cheapest-Insertion Heuristic (CI), Nearest-

Neighbour Heuristic(NN), Two-Directional Nearest-Neighbour 

Heuristic (2NN), Assignment-Patching Heuristic (AP), Nearest-

Neighbour-Patching Heuristic (NNP), Two-Directional 

Nearest-Neighbour-Patching Heuristic (2NNP) and Greedy 

Heuristic (GR)) were used to solve the QTSP. From 

computational evaluation, the branch-and-cut approach was 
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seen to be capable of solving large real-world instances with up 

to 100 nodes and provided optimality in a reasonable time of 

about ten minutes. Although the running times of exact 

algorithms were reasonable, they were not as fast as heuristics 

which took less than or equal to ten seconds to solve the largest 

instances. The variants of the Nearest Neighbour presented did 

well in terms of computational speed but fell short in 

comparison to the exact methods in terms of solution quality. 

Authors [26] modified the Nearest Neighbour heuristic and 

hybridized it with the Greedy technique. The resulting 

hybridized method (NNDG) was implemented using some 

benchmark instances. NNDG generated a better solution. 

Authors [27] developed a hybrid technique comprising both the 

Nearest Neighbour and Nearest Insertion heuristics. method to 

form the NN-IN. They showed analytically that the hybridized 

NN-IN will produce a better solution. They then experimented 

their method on several TSP benchmarks. Their technique 

performed better than both the Nearest Neighbour and Insertion 

technique in more than 89% of cases. Authors [28] developed a 

hybridized ‘adaptive-type’ neural network (Convex-Elastic Net 

- CEN) and a non-deterministic iterative (NII) algorithm. The 

CEN initial solution was iteratively refined by the NII to obtain 

a ‘near-optimal’ result which outperformed similar techniques. 

Theoretically, the introduction of the convex hull as a 

subtour is expected to minimize occurrences of outliers, thus 

circumventing the problem of “curse of dimensionality”. To the 

best of our knowledge, the empirical possibility of this has not 

been explored in any study.  

III. PROBLEM FORMULATION 

First formulated in the nineteenth century and enhanced in 

the 1930s by M.M. Flood, the Travelling Salesman Problem has 

become the benchmark for several other techniques of 

optimization [1]. The TSP is a shortest tour (or path) problem 

to find the optimal route while visiting a set of cities (or nodes), 

ensuring each city (or node) is visited exactly once and 

regarding the Hamiltonian circuit, return to the start node or city 

[18]. The Travelling Salesman must traverse cities 1 𝑡𝑜 𝑛 in a 

Hamiltonian cycle that is; Start from city 1 and traverse the 

remaining 𝑛 − 1  cities in arbitrary order, and return to the 

starting point with the objective of touching the cities once at a 

minimal cost. The distance 𝑑(𝑖,  𝑗) depicts the distance from 

city 𝑖 𝑡𝑜 𝑗. Thus TSP is formally defined as below;   

F = min ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                     (1) 

 ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1; 𝑖 = 1,  … ,  𝑛                        (2)           

 ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1; 𝑗 = 1,  … ,  𝑛                         (3) 

  

The objective function is marked with F.  With a 

limitation, 

 𝑥𝑖1𝑖2
+ 𝑥𝑖2𝑖3

+  … +  𝑥𝑖𝑟𝑖1
≤ 𝑟 − 1 

𝑥𝑖𝑗 𝑥𝑖𝑗  are the binary variables 

 𝑥𝑖𝑗 =

{
1      𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗                    
0      𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑙𝑒𝑠𝑚𝑎𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗  

  (4) 

 𝑑𝑖𝑗  is the distance from city i to city j. 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈Ε

                              (5) 

The objective is to obtain a minimal value in equation (4), 

given that the salesman traverses all the nodes at most once and 

the tour must be a complete graph. 

Thus, TSP is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑𝑎𝑏𝑥𝑎𝑏

(𝑎,𝑏)∈Ε

                                         (6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑎𝑏 = 2   ∀𝑖 ∈ 𝑽

𝑏∈𝑉

                            (7) 

                 ∑ 𝑥𝑎𝑏 ≤ |𝑆| − 1  ∀𝑆 ⊂ 𝑉, 𝑆 ≠ ∅        (8)

𝑎.𝑏∈S,a≠b

 

                 𝑥𝑎𝑏 ∈ {0,1} 

 

IV. THE PROPOSED TECHNIQUES 

A hybrid of Convex Hull and Nearest Neighbour heuristic 

(CH-NN) is proposed in this study. This was motivated by 

studies by conducted by authors [14, 15, 20] suggesting that 

node-based techniques which are based on the use of polygons 

as their initial tour produce superior tour. The Nearest 

Neighbour Heuristic is a node-based technique which builds 

circuits on a node-by-node basis. The Nearest Neighbour tour 

begins with a single, fixed or random city/node and iteratively 

adds unvisited nodes closest to the tour, terminating only when 

there are no more unvisited nodes.  

The hybrid technique starts by constructing a convex initial 

tour and completing the cycle by applying the Nearest 

Neighbour principle. Thus, given a set of specified vertices, the 

method begins by constructing the convex hull associated with 

the nodes, start the tour from a point in the edge, then inserts the 

nearest neighbor of subsequent nodes not already on the tour. 

The Convex Hull 𝑃 of a set of points (𝑆) in the Euclidean plane 

is the minimum convex polygon that encompasses all the points 

in 𝑆 . It is generally used to build initial points of an 

approximation technique [29].  

Thus, given the Convex Hull subtour, the Convex Hull Nearest 

Neighbour (CH-NN) technique is depicted in the pseudocode 

below: 
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Algorithm 2: The Convex Hull-Nearest Neighbour (CH-

NN) Algorithm 

1. Start with a partial tour formed by the convex hull of all cities 

2. For each city not yet inserted in the partial tour find the edge 

(𝑖, 𝑗), belonging to the partial tour, that minimizes𝐶𝑖𝑘 + 𝐶𝑘𝑗 −

𝐶𝑖𝑗 find the city 𝑘 + 1 that is not yet in the tour and that is closer 

to k 

3. Insert 𝑘 + 1 at the end of the partial tour 

4. If all cities are inserted then  

STOP 

else  

go back to 2 

end 

5. End 

    

 

V. PERFORMANCE EVALUATION AND DISCUSSION 

The hybrid algorithm (CH-NN), as well as the Nearest 

Neighbour (NN) and Nearest Insertion Heuristics (NI), were 

experimented on ten (10) benchmark instances from TSPLIB, 

made available by Heidelberg University on 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/. 

The algorithms were implemented using Python programming 

language running on Intel Pentium Core i7 3GHz, Windows 10 

(64bit). The experimental evaluation was undertaken using two 

criteria namely computational speed and solution quality. Table 

1 shows the computational speed evaluation of the CH-NN vis-

à-vis the NN and NI.  

Table I. Computational speed evaluation of CH-NN, NN, and NI 

S/N Instances 𝑻𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝑺) 

NN NI CH-NN 

1 berlin52 0.0059 0.0054 0.0034 

2 bier127 0.0306 0.0279 0.0166 

3 ch130* 0.0427 0.0401 0.028 

4 ch150 0.043 0.0400 0.0230 

5 d493* 0.4688 0.435 0.2508 

6 d657* 0.8425 0.7824 0.4454 

7 d1291 3.4465 3.2159 1.8268 

8 pcb442 0.3647 0.3387 0.1983 

9 pr76* 0.0185 0.0178 0.0135 

10 pr144 0.0461 0.0433 0.0277 

  

For all the ten benchmark instances considered, the CH-NN, 

outperformed both the NN and the NI in terms of computational 

speed. Thus, it can be inferred that the introduction of Convex 

Hull as subtour for the Nearest Neighbour Heuristic 

significantly reduces the time of computational.  

 In evaluating the solution quality of the heuristics, the 

following parameters were deployed: 

Percentage Error (𝜹): the percentage error of the heuristics’ 

solution quality is the percentage deviation of the solution from 

the optimal tour solution. This is computed as: 

𝑠𝑜𝑙𝜂 − 𝑜𝑝𝑡

𝑜𝑝𝑡
× 100%                    (6) 

where 𝑠𝑜𝑙𝜂 is the solution cost obtained by each heuristic, and 

𝑜𝑝𝑡 is the optimal solution cost. This is the same thing as the 

performance ratio for non-optimal heuristics 

Quality impr. ( 𝚺 ): this the improvement of the CH-NN 

method’s solution quality with respect to NN and NI. This is 

computed by:  

Ε𝑁𝑁 − Ε𝐶𝐻−𝑁𝑁                                (7) 

where Ε𝑁𝑁𝐻 is the percentage error of the NN and Ε𝐶𝐻−𝑁𝑁 is 

the percentage error of the CH-NN. 

Goodness Value (𝓰): this is also referred to as accuracy. This 

is the inverse of error and is computed as  

(1 −
𝑠𝑜𝑙𝜂−𝑜𝑝𝑡

𝑜𝑝𝑡
) 100%                       (8) 

Table 2 displays the benchmark instances with their optimal 

tour cost and the maximum number of solutions while Table 3 

displays the percentage error, quality impr and goodness value 

of CH-NN, NN, and NI on the ten benchmark instances. 

 
Table II. Benchmark instances with their optimal tour cost and maximum 
number of solutions 

S/N Instances Solutions Optimal Tour 

Length 

1 berlin52 52 7542 

2 bier127 127 118282 

3 ch130* 130 6116 

4 ch150 150 6528 

5 d493* 493 35002 

6 d657* 200 48912 

7 d1291 100 50801 

8 pcb442 442 50778 

9 pr76* 76 108159 

10 pr144 144 58537 

 
Table III. The percentage error, quality impr and goodness value of CH-NN, 
NN, and NI on the ten benchmark instances. 

Instance 𝚺 𝜹(%) 𝓰 (%) 

CH-

NN 

NN NI CH-

NN 

NN NI 

berlin52 12.7 4.9 17.6 16.5 95.1 82.4 83.5 

pr76* 33.4 9.8 43.2 5.3 90.2 56.8 94.7 

bier127 25.8 0.1 25.9 14.3 99.9 74.1 85.7 

ch130* 14.2 9.1 23.3 6.9 90.9 76.7 93.1 

pr144 8 2.9 10.9 7.7 97.1 89.1 92.3 

ch150 5.2 9.4 14.6 10 90.6 85.4 90 

pcb442 8.6 16.3 24.9 15.4 83.7 75.1 85.6 

d493* 21 3.2 24.2 11 96.8 75.8 89 

d657* 21.9 11.3 33.2 12.7 88.7 66.8 87.3 

d1291 1.2 21.1 22.3 21.4 78.9 77.7 78.6 

 

 The result of the CH-NN is further compared with similar 

study on hybridized Nearest Neighbour and Nearest Insertion 

TSP solution by [21]. Table 4 shows the Percentage Error (𝜹) 

of the CH-NN and the NN-NI on some benchmark instances. 
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Table  IV. The percentage error of CH-NN and NN-NI [21] on some 
benchmark instances. 

Instance 𝜹(%) 

CH-NN NN-NI 

berlin52 4.9 13.38 

pr76* 9.8 9.7 

bier127 0.1 4.58 

ch130* 9.1 11.60 

pr144 2.9 1.66 11 

ch150 9.4 14.10 

pcb442 16.3 18.72 

d493* 3.2 8.76 

d657* 11.3 11.68 

d1291 21.1 21.42 

 

 The results show that CH-NN outperformed the Nearest 

Neighbour (NN) and the Nearest Insertion (NI) heuristics in 

terms of closeness to optimality (as depicted by their respective 

Percentage Error (𝜹)) except in three (3) instances (ch130, 

pcb442, and pr76) where NI performed better in terms of 

closeness to optimal solution only. The CH-NN equally 

performed better in comparison to similar study on hybridized 

Nearest Neighbour and Nearest Insertion TSP solution by [21] 

as shown in Table 4.0. On the average, the NN tour quality was 

24.01% worse than the optimal tour. Equally, the average 

performance of NI for the instances considered was 12.12% of 

the Held-Karp lower bound. The Nearest Neighbour Heuristic 

reached a peak of 43.2% and a base value of 10.9%. The Nearest 

Insertion Heuristic reached a peak of 21.4% and a base value of 

5.3%. These performances are consistent with documented 

findings about NN and NI in literature [30, 31]. On the other 

hand, the performance of CH-NN was on average, 8.81% worse 

than the optimal tour length. On average, the hybrid CH-NN has 

a significant quality improvement average of 15.2% over NN. 

Figure 2 shows a chart of the percentage deviation of NN, NI, 

and CH-NN from the optimal tour length. 

 

 

 

Fig. 2. Percentage error of NN, NI and CH-NN on ten benchmark instances 

  

 The hybrid CH-NN consistently outperformed the Nearest 

Neighbour and Nearest Insertion Heuristic across a wide 

spectrum of benchmark instances with statistical significance of 

as much as 33% at some point as highlighted by the shaded area 

of quality improvement in Figure 2.0. The average goodness 

value of the hybrid CH-NN was 91.19% compared to 87.88% 

for the Nearest Insertion and 75.99% for the Nearest Neighbour 

Heuristic. This is displayed in Figure 3. 

 

Figure 3. Measure of goodness value of CH-NN, NN and NI 

 

 This means that the introduction of the convex hull as a 

subtour for the Nearest Neighbour Heuristic is computationally 

more efficient and accurate than the traditional use of a single 

node as an initial tour for the Nearest Neighbour Heuristic.  
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VI. CONCLUSION 

 

In this study, the computational effect of a convex hull 

subtour on the Nearest Neighbour Heuristic was investigated. 

An earlier study has posited that convex hull subtour 

theoretically degrades the worst-case performances of some 

insertion heuristics from twice optimal to thrice optimal. Other 

studies showed empirical promises that the introduction of the 

convex hull as a subtour is expected to minimize the 

occurrences of outliers, thereby circumventing the problem of 

“curse of dimensionality”. To the best of our knowledge, the 

empirical possibility of this, as it pertains to the Nearest 

Neighbour Heuristic has not been explored in any study. Thus, 

the hybrid CH-NN was experimented on some benchmark 

instances from TSPLIB vis-à-vis the Nearest Neighbour and the 

Nearest Insertion Heuristics. The result showed that the hybrid 

heuristic outperformed NN and NI in terms of quality of results 

and computational speed. Thus, it can be inferred that the 

introduction of Convex Hull as subtour for the Nearest 

Neighbour Heuristic significantly improves the complexity and 

performance of the Nearest Neighbour Heuristic. Future 

research may include the integration of the polygon subtour to 

new improved construction heuristics to generate tours with 

better solution quality. Future works may also include the 

introduction of complexities curtailing techniques to further 

improve the computation speed. 
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