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Unveiling the drives 
behind tetracycline adsorption 
capacity with biochar 
through machine learning
Pengyan Zhang 1,2, Chong Liu 1,2, Dongqing Lao 1,3*, Xuan Cuong Nguyen 4, 
Balasubramanian Paramasivan 5, Xiaoyan Qian 1,2, Adejumoke Abosede Inyinbor 6, 
Xuefei Hu 1,2, Yongjun You 1,2 & Fayong Li 1,2

This study aimed to develop a robust predictive model for tetracycline (TC) adsorption onto biochar 
(BC) by employing machine learning techniques to investigate the underlying driving factors. Four 
machine learning algorithms, namely Random Forest (RF), Gradient Boosting Decision Tree (GBDT), 
eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), were used to model the 
adsorption of TC on BC using the data from 295 adsorption experiments. The analysis revealed that 
the RF model had the highest predictive accuracy  (R2 = 0.9625) compared to ANN  (R2 = 0.9410), GBDT 
 (R2 = 0.9152), and XGBoost  (R2 = 0.9592) models. This study revealed that BC with a specific surface 
area (S (BET)) exceeding 380  cm3·g−1 and particle sizes ranging between 2.5 and 14.0 nm displayed 
the greatest efficiency in TC adsorption. The TC-to-BC ratio was identified as the most influential 
factor affecting adsorption efficiency, with a weight of 0.595. The concentration gradient between the 
adsorbate and adsorbent was demonstrated to be the principal driving force behind TC adsorption by 
BC. A predictive model was successfully developed to estimate the sorption performance of various 
types of BC for TC based on their properties, thereby facilitating the selection of appropriate BC for TC 
wastewater treatment.

Abbreviations
ML  Machine learning
RF  Random forest
RMSE  Root mean square error
PCC  Pearson correlation coefficient
GBDT  Gradient boosting decision tree
XGBoost  XExtreme gradient boosting
D  Particle size
S (BET)  (m2·g−1)  Brunauer–Emmett–Teller surface area
V  (cm3·g−1)  Total pore volume
C0 (mmol·g−1)  Initial concentration ratio of tetracycline to biochar
Qe (mg·g−1)  Equilibrium adsorption capacity of tetracycline on biochar
TC  Tetracycline
BC  Biochar
PDP  Partial dependence plots
C  Total carbon in the biochar
pH_H2O  pH of the biochar in water
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pH_sol  Solution pH
(O + N)/C  Molar ratio of oxygen and nitrogen to carbon
H/C  Molar ratio of hydrogen to carbon
Ash  Ash content
ANN  Artificial neural networks

Tetracycline (TC) is extensively employed as an antimicrobial agent and feed supplement in agriculture and 
animal  husbandry1. However, researchers have recently paid significant attention to the issues of incomplete 
metabolism and TC  emissions2,3. Due to its persistence as an organic pollutant, TC is frequently detected in 
surface water, groundwater, and drinking water. TC can induce endocrine disruption in target organisms and 
can also contribute to the dissemination of antibiotic resistance genes, thereby posing serious human health 
concerns and environmental  hazards4,5. Given the inhibitory effect of TC on microorganisms, the removal of TC 
from water bodies using conventional biological water treatment methods proves  challenging6.

Currently, the principal methods for treating TC in wastewater include chemical oxidation, biological treat-
ment, and physical  removal2. Adsorption, on account of its inherent advantages, such as simplicity, low cost, 
and high efficiency, is viewed as an excellent technology for the treatment of TC. Among the various adsorbents, 
biochar (BC) has been extensively researched as an adsorbent for removing pollutants from wastewater due to its 
unique characteristics, such as a large specific surface area, uniform pore distribution, and high concentration 
of surface functional  groups7.

The uptake of tetracycline onto biochar mainly involves physical interactions such as van der Waals forces and 
hydrogen bonding, as well as chemical reactions including covalent and ionic  bonding8. Therefore, the adsorp-
tion process primarily depends on the properties of biochar, adsorption conditions, and the ratio of adsorbate 
to absorbent. Several traditional kinetic and isothermal adsorption models have been extensively evaluated 
in previous  studies9–11. Findings suggest that the possible adsorption mechanisms include π–π interactions, 
electrostatic interactions, and chemisorption. Although a typical controlled-variable experimental approach 
can determine the relationship between each influencing factor and the amount of sorption within the same 
framework, traditional batch sorption experiments are time-consuming and inefficient when selecting suitable 
 biochar12. Therefore, there is an urgent need to develop practical tools for predicting adsorption efficiency, opti-
mizing process parameters, and comprehending the adsorption mechanism.

Machine learning (ML)-assisted modeling has been proposed as a potential approach to reduce the cost and 
time associated with laboratory contaminant removal processes. Previous research has utilized machine learn-
ing (ML) algorithms on selected carbon-based materials to adsorb tetracycline (TC)13,14, yet the accuracy of the 
models could be enhanced. Zhu et al.’s13 study employed carbon-based materials such as activated carbon and 
biochar, which have distinct compositions. Thus, developing prediction models for both materials represents 
a significant challenge due to the high variability; in addition, the study has a limited database, and the highest 
achieved  R2 value was only 0.8944, highlighting the necessity to optimize the machine learning (ML)  model15,16. 
This study will also use the results of the machine learning model to explore the driving factors for the adsorp-
tion of tetracycline on biochar. To evaluate the prediction effectiveness, generalized adsorption models must be 
utilized to predict TC adsorption on a single biochar, particularly integrated learning models. Ensemble learning 
is a typical ML algorithm that integrates the modeling outcomes of all models by building multiple models from 
the  data17. The most typical ensemble learning algorithms used in assessing TC adsorption on biochar include 
random forest (RF), gradient boosting decision tree (GBDT), and eXtreme gradient boosting (XGBoost)18. In 
addition to ensemble learning, this study will also incorporate the most popular deep learning algorithms as a 
point of comparison.

The integration of machine learning as an advanced algorithm within the field of environmental remediation 
employing biochar remains in its nascent stage, considering the widespread occurrence, substantial ecological 
risk, and unique properties of toxic compounds (TC) in the environment. This research was conducted with 
the aims of: (i) devising universal machine learning models to forecast the sorption capacity of TC on biochar 
(BC), contingent on BC attributes and sorption conditions; (ii) investigating the primary factors contributing 
to BC adsorption of TC; (iii) assessing the impact of various factors on the relative significance of BC sorption 
capacity and ascertaining the combined effect of each factor on BC sorption capacity; and (iv) constructing an 
accessible web-based user interface for engineers. The machine learning-driven model devised in this investi-
gation establishes a theoretical foundation for the pragmatic treatment of TC, delivering an all-encompassing 
comprehension of TC sorption on biochar relative to its features and sorption milieu.

Materials and methods
Cum biochar sorption capacity predictions layout. Experimental data for the adsorption of tetra-
cycline by biochar were collected from ten papers, including 22 biochar species and 295 sets of experimental 
adsorption  data9,19–28. Without author bias, the related articles were selected randomly and data were extracted 
from published papers using Plot Digitizer v3 (https:// plotd igiti zer. com/# downl oad)29. Detailed data are pro-
vided in the supplementary materials (Tables S1, S2).

To predict the sorption capacity of BC for TC, expressed as the equilibrium sorption capacity  Qe (mg·g−1), 12 
critical factors were considered and divided into three categories: (i) biochar properties: Brunauer–Emmett–Teller 
surface area [S (BET),  m2·g−1], pH of the biochar in water  (pH_H2O), total carbon in the biochar (C, w%), molar 
ratio of oxygen and nitrogen to carbon [(O + N)/C], molar ratio of oxygen to carbon (O/C), molar ratio of hydro-
gen to carbon (H/C), ash content (Ash, w%), pore volume (V,  cm3·g−1), and biochar pore diameter (D, nm); (ii) 
adsorption conditions: adsorption temperature (T, °C) and solution pH (pH_sol); and (iii) initial concentration 
ratio of tetracycline to biochar  (C0, mmol·g−1). In the ML section, data not provided in the published paper were 

https://plotdigitizer.com/#download
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replaced with K-Nearest Neighbor (KNN) Algorithm, while  pH_H2O and ash were missing more often than the 
other values and was decided to remove them. The TC characteristics are listed in Table S3.

The following equation was used to obtain C0
30:

where CTC (mg·L−1) is the initial concentration of TC and CBC (g·L−1) is the initial concentration of BC.

Pre-processing of data. The linear correlation between any two randomly selected variables or between 
variables and target values was measured using the Pearson correlation coefficient using the following 
 equation30,31:

where x and y denote the mean of variable x or y.

Construction of ML models. Ensemble learning is a popular machine-learning algorithm that integrates 
multiple models (base estimators) to form an ensemble estimator that solves complex problems with specific 
 rules17,32. Integrated models act as an integrated platform to automatically manage the weaknesses and enhance-
ments of individual models to achieve higher prediction accuracy. Three integration algorithms exist: bagging, 
boosting, and stacking.

RF is a representative bagging integration algorithm and is the most commonly used algorithm for predicting 
poorly understood  processes33. The outcome of an RF prediction is a combination of the predicted outcomes 
of each decision tree, so the critical step in Random Forest prediction is the formation of a decision tree and a 
forest. This principle is depicted in Fig. S1.

The Gradient Boosted Decision Tree (GBDT) algorithm, an iterative decision tree algorithm, consists of 
multiple decision trees, and the conclusions of all the trees are summed to arrive at the final answer. As shown 
in Fig. S2, the GBDT algorithm uses the negative gradient value of the loss function of the base model in round i 
as an approximation of the loss value of the base model in that  round34. The next step is to construct round i + 1 
of base models based on this approximation to make the solution of the objective function more  convenient34.

XGBoost is an improved version of GBDT. It has an engineering goal of pushing the computational power 
of boosting trees to a limit to achieve fast computation and superior  performance35. With many improvements 
over traditional gradient boosting algorithms, XGBoost can be performed faster than other comprehensive 
algorithms that use gradient boosting and is recognized as an advanced evaluator with ultrahigh performance 
in both classification and regression.

In this study, Artificial Neural Network (ANN) was utilized due to its ability to simulate the connections and 
signal propagation between neurons, allowing the adjustment of weights using the backpropagation algorithm 
to learn patterns and relationships in the data. ANN consists of an input layer, hidden layers, and output layer, 
making it suitable for various tasks such as prediction, classification, and pattern recognition.

All machine-learning algorithm codes were obtained from the open-source Scikit-learn library. All datasets 
were divided into training and test data at a ratio of 70:30, with the random state set to 40. Tenfold cross-
validation was used to select the best hyperparameters from the data. The test data were used to evaluate model 
performance. All data were normalized before training. All input and output parameters in this study are listed 
in Table S4.

Modeling performance evaluation. The performance of the model was assessed using the coefficient of 
determination  (R2) and the root mean squared error (RMSE)13,30,35.

where Yexp
i  and Ypred

i  are the experimental and predicted values, and Yexp
ave  is the average of the experimental values.

Results and discussion
Statistical results of biochar characteristics. This study utilized a combination of box plots and nor-
mal distribution curves to illustrate the distribution patterns of continuous data (see Fig. 1). The composite 
plot comprises two sections—the left segment illustrates the box plot, whereas the right segment manifests the 
normal distribution curve of the data. The box plot depicts the median, signified by a white dot, the interquartile 
range, denoted by the box, and the whiskers, which represent the remaining data. Outliers are designated by cir-
cular points or alternative symbols. The probability density of data at each value is displayed on the right portion 
of the plot, with elevated values indicating a comparatively higher probability of data occurrence at that point. 
Please refer to Table S5 for specific values.
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The majority of biochars exhibit alkalinity in water, a phenomenon predominantly correlated with the deple-
tion of acidic functional groups and an augmentation in aromatic carbon at elevated temperatures, but also 
linked to the accumulation of alkaline ions such as  Na+,  Ca2+,  K+, and  Mg2+ in the  biochar30. The mean pH of all 
biochar samples was 9.14. Nevertheless, a minority displayed weak acidity, which can be accounted for by the 
incomplete liberation of alkali salts from the biochar matrix at lower pyrolysis  temperatures36,37. Given that pH 
exerts a significant impact on the adsorption of tetracycline onto biochar, the pH of the solution was adjusted 
using either an acid or a base in all experiments selected for this investigation. Consequently, subsequent analyses 
will disregard the pH of the biochar in an aqueous solution  (pH_H2O) and instead utilize the pH of the solution 
(pH_sol) during batch adsorption studies.

As depicted in Fig. 1, biochar exhibits a high carbon content, with an estimated average of approximately 60% 
and a maximum value of 92%. Existing research has demonstrated that the carbon content escalates in correla-
tion with increasing pyrolysis temperatures within a specified  range20,23,38. Consequently, the pyrolysis process 
concentrates carbon within the biomass  feedstock39,40. The H/C, O/C, and (N + O)/C ratios serve as indicators 
of aromaticity, hydrophilicity, and polarity indices,  respectively39,40. The H/C, O/C, and (N + O)/C ratios indicate 
the aromaticity, hydrophilicity, and polarity indices,  respectively41. A lower H/C ratio in BC corresponds to 
higher aromaticity; a lower O/C ratio indicates reduced hydrophilicity; and an elevated (N + O)/C ratio signifies 
increased  polarity42,43. The median O/C and H/C ratios were 0.14 and 0.2, respectively. According to the Inter-
national Biochar Initiative (IBI) Standards, the H/C ratio for biochar should be less than 0.7. Therefore, values 
exceeding 0.7 in the dataset can be eliminated to enhance the accuracy of biochar data analysis. Nevertheless, 
Table S2 contains only limited data.

It has been posited that an increased S (BET) is advantageous for TC adsorption onto biochar, while D and 
V exhibit minimal direct influence, though an optimal range for each exists. The ash content of biochar samples 
exhibited a broad range, spanning from 1.50% to 55.27%, attributable to variations in feedstock type and pyrolysis 
conditions, which alter the physicochemical properties and spatial distribution of organic  matter30. However, 
the role of ash in TC adsorption onto biochar remains a subject of debate.

Figure 1.  Visualization of biochar properties through box plots and normal distribution curves.
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Statistical outcomes of data correlation analysis. Figure 2 demonstrates that there exists a significant 
positive correlation between  C0, S (BET), and V with respect to Qe. This relationship can be elucidated by the 
transfer equation: when the adsorption value remains constant, an increase in the amount of adsorbent leads to 
a higher adsorption capacity per unit mass of adsorbed material. Research conducted by Wang et al., Zhu et al., 
and Kim et al.20,23,30 substantiates the connection between S (BET) and Qe, suggesting that an elevated specific 
surface area permits more adsorbates to be adsorbed per unit mass of the adsorbent. Additionally, a higher 
number of pores per unit of adsorbent contributes to an increased adsorption capacity, as evidenced by the cor-
relation between V and Qe.

Moreover, in accordance with prior research  findings30, S (BET) displays a positive correlation with carbon 
content, yet a negative correlation with ash content. This observation implies that elevated carbon content results 
from the removal of volatile substances, while a higher ash content can cause micropore filling, consequently 
reducing the surface  area6,13. Furthermore, the inverse correlation between S (BET) and D lends support to pre-
vious studies suggesting that an increase in S (BET) corresponds to a decrease in D. The correlation coefficient 
between ash and carbon was − 0.91, and the correlation coefficients between (O + N)/C and O/C were 1. Thus, 
one variable from each pair must be excluded to prevent collinearity.

Selection of machine models for tetracycline adsorption on biochar. In order to assess the poten-
tial of machine learning in predicting the adsorption of tetracycline on biochar, a tenfold cross-validation was 
executed to determine hyperparameters. Figure  3 depicts the two most significant parameter combinations, 

Figure 2.  Correlation coefficients and corresponding significant levels.
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‘n_estimators’ and ‘max_depth’ (‘hidden layer’ and ‘learning rate’) with the color on the surface model represent-
ing the model’s performance quality. The redder the color, the higher the model’s accuracy, as per the hyperpa-
rameter selection principle. The parameters selected in this study were determined to be equal to or greater than 
the threshold value of two.

As shown in Table S4, the highest mean  R2 value of 0.9625 was achieved by Random Forest (RF), followed 
by XGBoost at 0.9592, while Gradient Boosted Decision Trees (GBDT), had the lowest score of 0.9152, and the 
artificial neural network (ANN) had the second-to-last score of 0.9410. The RMSE values for RF, GBDT, ANN, 
and XGBoost were 18.02, 25.97, 22.42, and 20.99, respectively. As illustrated in Fig. 4, both the training and test 
sets exhibited  R2 and RMSE values of 0.9703, 0.9625, and 14.91, and 18.02, respectively, for RF and XGBoost. 
The model did not appear to be overfitted. Although XGBoost is generally regarded as the superior model, in this 
study, RF outperformed XGBoost. One possible explanation is that the results were influenced by the features 
and the nature of the problem. Therefore, while XGBoost is among the better models, it may not always be the 
optimal choice, exemplifying the “no free lunch theorem”.

According to Fig. 3, the predicted values for all data ranged from 0 to 350 mmol·g−1. The RMSE of the RF 
model (18.02 mmol·g−1) accounted for 0.0542 of the predicted range (0 to 350 mmol·g−1), indicating a high 
level of accuracy. Combining the accuracy of  R2 and RMSE, the RF model was selected for subsequent analysis 
since it provided higher accuracy than the XGDT and XGBoost models. The best parameters for each model 
are listed in Table S4.

Feature importance analysis. This section is based on the RF model. Feature importance analysis serves 
as a potent instrument for discerning the relevance of input features in target prediction. Employing machine 
learning to comprehend tetracycline (TC) adsorption on biochar (BC) can substantially curtail the time-con-
suming and costly experimental design process by leveraging feature importance to select a limited number of 
features for model training, thereby reducing time and cost while enhancing  accuracy44,45. Although machine 
learning models are formidable tools for generating precise predictions, they frequently function as “black box” 
models, rendering the comprehension of their inner mechanisms and decision-making processes arduous. Nev-

Figure 3.  Schematic illustration of hyperparameter selection (a RF, b GBDT, c XGBoost, d ANN).
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ertheless, feature importance analysis offers an efficacious approach for pinpointing the most crucial input vari-
ables in a model and comprehending their contributions to the output.

A primary advantage of employing SHAP (SHapley Additive exPlanations) for feature importance analysis 
is its ability to furnish a visual representation of each feature’s contribution to the output prediction. Figure 5a 
exhibits a SHAP feature importance visualization, supplying an in-depth dissection of the weight and influence 

Figure 4.  Scatter plot of RF-model-predicted adsorption values and experimental data (a training data, b 
testing data).

Figure 5.  Relative importance of input variables on sorption capacity using SHAP (a SHAP value; b feature 
importance).
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exerted by each input feature on the predicted outcome. This information can be harnessed to identify vital 
control parameters, optimize the experimental design process, and bolster model accuracy.

Figure 5b displays the specific values of feature importance derived from SHAP. The results suggest that  C0 
(0.695) is the most critical factor affecting Qe, signifying that BC’s adsorption capacity for TC predominantly 
depends on the TC-to-BC ratio. This phenomenon, referred to as the value transfer process, implies that the 
concentration gradient between the adsorbate and the adsorbent constitutes the principal driving force for TC 
adsorption by BC.

In examining the biochar characteristics, surface area (S (BET)), (O + N)/C, and H/C ratios displayed notably 
significant effects (0.162, 0.036, and 0.032, respectively), suggesting that S (BET) is the most crucial factor influ-
encing biochar’s adsorption properties. It can be deduced that the sites provided by S (BET) also play a vital role 
as driving factors in the adsorption of target compounds (TC) by biochar (BC). Concerning adsorption condi-
tions, temperature (T) and pH_sol contributed to 0.14 and 0.06 of the characteristic importance, respectively. 
The impact of each factor on Qe is discussed in “Analysis of partial dependence plots (PDP)” section.

Analysis of partial dependence plots (PDP). Figure  6(A1) presents the single-factor PDP, which 
reveals a partial dependence of the initial concentration  (C0) on the equilibrium adsorption capacity (Qe), dem-
onstrating an initial increase in the adsorption rate followed by stabilization. This trend can be attributed to the 
gradual filling of adsorption sites on the biochar surface as the relative content of TC increases. Upon reach-
ing  C0 = 2 mmol·g−1, the adsorption sites on the biochar surface become fully occupied, resulting in maximum 
adsorption capacity. The saturation of adsorption sites limits any further increase in the removal rate. These 
findings highlight the critical role of biochar surface area and capacity in effective pollutant  removal21.

Biochar’s adsorption efficacy is contingent upon its specific surface area (S (BET)). As depicted in Fig. 6(A2), 
a rapid rise in adsorption capacity is observed, followed by a gradual increase. The enhancement in the number 
of sorption sites with an increase in S (BET) leads to a higher sorption uptake capacity of biochar. Nonetheless, 
the adsorption efficacy of biochar is constrained by other factors, such as the initial concentration of the target 
compound  (C0), when there is a certain increase in the number of adsorption  sites20,21. S (BET) predominantly 
affects the driving force of chemisorption occurring between BC and TC. A larger S (BET) results in a more 
significant number of chemisorption sites, thus leading to higher adsorption efficiency. Furthermore, the indirect 
influence of biochar’s specific surface area on physical adsorption should not be overlooked. The adsorption of the 
target compound (TC) on biochar is the result of various driving forces. Based on Fig. 6(A2), it can be inferred 
that biochar with an S (BET) greater than 380  cm3·g−1 offers superior adsorption efficiency.

The distribution of tetracycline (TC) species is influenced by the pH value. Table S3 presents the dissociation 
constants (pKas) of TC as 3.3, 7.7, and 9.7. Within the pH range of 2–3.3,  TC+ is the predominant form of TC; 
at pH 3.3–7.7,  TC0 is prevalent; at pH 7.7–9.7,  TC− dominates, and at pH above 9.7, TC converts to  TC2−. Fig-
ure 5(B1) illustrates that the adsorption of TC on biochar (BC) is most favorable when the solution pH (pH_sol) 
is approximately 5.5. Intriguingly, these findings contradict a report by Ref.21, which posited that biochar and tet-
racycline primarily undergo electrostatic adsorption. Despite the biochar’s negative charge, it assumed a positive 
charge when the pH ranged between 3 and 3.3. Figure 6(A3) indicates that, in addition to electrostatic adsorp-
tion, hydrogen bonding and π–π electron donor–acceptor interactions influence TC adsorption on  biochar19–21.

The adsorption efficacy of biochar is also partially dependent on the D value. Figure 6(B2) indicates that 
adsorption efficiency increases, stabilizes, and then significantly decreases. Biochar with a D value of 2.5–14.0 nm 
demonstrates a higher tendency to adsorb TC. Nonetheless, this change is insignificant when compared to other 
factors. This study affirms the findings of Zhang et al.21 that the adsorption performance of adsorbents is optimal 
when the molecular size of the adsorbent’s D is 1.7–3.0 times larger than that of the adsorbate. However, these 
outcomes should be interpreted with caution.

Data for this investigation were gathered at temperatures between 15 and 40 °C (Fig. 6(C1)), with temperature 
fluctuations displaying minor, partially dependent variations from 15 to 35 °C. The adsorption efficiency’s partial 
dependence on temperature increases substantially within a higher temperature range of 35–40 °C, which aligns 
with previous findings that the adsorption process is thermodynamically favorable at elevated  temperatures6,24,25. 
This phenomenon may be attributed to the diffusion of TC and enhanced interfacial chemistry.

The adsorption efficiency’s partial dependence on the chemical composition factors C, H/C, and (O + N)/C 
is relatively insignificant (Fig. 6(C2–D2)) and exhibits considerably less variation compared to changes in other 
factors. Consequently, this aspect will not be further explored in the present study.

A two-factor analysis was also employed to investigate the impact on TC adsorption, a representative depic-
tion of which is provided in Fig. 7. (i) At a fixed specific surface area (S (BET)), the partial dependence increases 
with initial concentration  (C0) and tends to stabilize when  C0 > 2 mmol·g−1. (ii) The effect of pH_sol was less 
pronounced when comparing the partial dependences of  C0 and pH_sol. (iii) At a fixed  C0, the partial depend-
ence tends to rise sharply when the temperature exceeds 35 °C.

Significance and drawbacks of this study. The investigation of biochar preparation for tetracycline 
(TC) adsorption employing cost-effective biomass has recently emerged as a focal point of research, owing to its 
robust capacity to eliminate organic contaminants from aqueous media. Typically, controlled-variable experi-
mental methodologies are employed to ascertain factors such as material characteristics and adsorption condi-
tions. Nonetheless, conventional batch experiments are labor-intensive, expensive, and lack generalizability. In 
this study, Random Forest (RF) was demonstrated as a beneficial machine learning (ML) instrument for predict-
ing the quantity of TC adsorbed by biochar, thereby showcasing its potential to directly forecast experimental 
outcomes based on pre-established conditions. Moreover, discerning the most crucial factors impacting TC 
sorption and their influence on the process offers invaluable insights for selecting or devising TC removal tech-
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niques. Consequently, the requisite number of experiments can be considerably diminished, and the exploration 
of biochar (BC) applications for TC adsorption can be markedly expedited.

This research revealed that the RF algorithm provides a reasonable prediction of TC adsorption quantities by 
biochar. However, the predictive performance of ML was hindered by data imbalance and scarcity, and several 
considerations must be addressed. The data utilized for model training solely predicted the sorption of TC by 
biochar, without accounting for the sorption of other antibiotics by the same material.

Figure 6.  The PDP of TC adsorption on significant variables (spikes on the x-axis represent data density).
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Conclusion
This study successfully established a model for biochar adsorption of tetracycline (TC) using a comprehensive 
learning-based approach. The principal findings are as follows:

(1) The Random Forest (RF) algorithm proved to be an accurate and effective predictor of TC adsorption by 
biochar (BC), achieving a coefficient of determination  (R2) value of 0.9625, slightly outperforming the 
GBDT, ANN, and XGBoost algorithms.

(2) The ratio of tetracycline to biochar significantly influenced the sorption process, with a weight of 0.595.
(3) The primary driving force for the adsorption of TC by BC is the concentration gradient between the adsorb-

ate and the adsorbent.
(4) Biochar with initial concentration  (C0) greater than 2 mmol·g−1, specific surface area (S (BET)) exceeding 

380  cm3·g−1, and adsorbent diameter (D) ranging from 2.5 to 14.0 nm exhibited the highest propensity for 
adsorbing TC.

The model developed in this study has significant implications for minimizing redundant experimentation 
and facilitating the selection of appropriate biochar. Moreover, it will guide the proper application of biochar in 
tetracycline wastewater treatment technologies.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.

Figure 7.  Bivariate PDP of TC adsorption on any two significant input variables and the interaction between 
the two variables.
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