
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 171 (2020) 2532–2540

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Third International Conference on Computing and Network
Communications (CoCoNet’19).
10.1016/j.procs.2020.04.274

10.1016/j.procs.2020.04.274 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Third International Conference on Computing and Network
Communications (CoCoNet’19).

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and Computational
Intelligence 2019

Third International Conference on Computing and Network Communications (CoCoNet’19)

COMPARATIVE STUDY OF TWO DIVIDE AND CONQUER
SORTING ALGORITHMS: QUICKSORT AND MERGESORT

Oladipupo, Esau Taiwoa, Abikoye Oluwakemi Christianahb, Akande Noah Oluwatobic*,
Kayode Anthonia Aderonkec, Adeniyi Jide kehindec

aComputer Science Department, The Federal Polytechnic, Niger State, Nigeria
bComputer Science Department, Univeristy of Ilorin, kwara State, Nigeria

cComputer Science Department, landmark University, Kwara State, Nigeria

Abstract

Divide and Conquer is a well-known technique for designing algorithms. Many of the existing algorithms are a product of this
popular algorithm design technique. Such include Quick sort and Merge sort sorting algorithms. These two algorithms have been
widely employed for sorting, however, determining the most efficient among the two has always been a contentious issue. Most of
the existing literature have compared these algorithms using machine dependent factors such as computational complexity but few
have employed machine independent factors such as internal/external sorting, algorithm complexity: best, average, and worst cases,
memory usage, stability etc. This study intends to contribute to this discuss using both machine dependent and independent factors.
The implementation was carried out in MATLAB programming environment and the internal system clock was set to keep track
of the time required for sorting. Results obtained revealed that in terms of computational speed using array of small sizes, Quick
sort algorithm is faster, though Merge sort algorithm is faster with array of large sizes. Also, both algorithms are of O(nlogn) best
case and average case complexity while the worst case for quicksort is O(n2) and that of merge sort remains unchanged. In terms
of stability, Quick sort is stable while Merge sort is not. Despite the excellent performance of Merge sort algorithm, the need for
an auxiliary memory for sorting makes it less preferable than Quick sort algorithm for applications where a good cache locality is
of paramount importance.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and
Computational Intelligence 2019

* Corresponding author. Tel.: +2347063673645;

E-mail address: adeniyi.jide@lmu.edu.ng

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and Computational
Intelligence 2019

Third International Conference on Computing and Network Communications (CoCoNet’19)

COMPARATIVE STUDY OF TWO DIVIDE AND CONQUER
SORTING ALGORITHMS: QUICKSORT AND MERGESORT

Oladipupo, Esau Taiwoa, Abikoye Oluwakemi Christianahb, Akande Noah Oluwatobic*,
Kayode Anthonia Aderonkec, Adeniyi Jide kehindec

aComputer Science Department, The Federal Polytechnic, Niger State, Nigeria
bComputer Science Department, Univeristy of Ilorin, kwara State, Nigeria

cComputer Science Department, landmark University, Kwara State, Nigeria

Abstract

Divide and Conquer is a well-known technique for designing algorithms. Many of the existing algorithms are a product of this
popular algorithm design technique. Such include Quick sort and Merge sort sorting algorithms. These two algorithms have been
widely employed for sorting, however, determining the most efficient among the two has always been a contentious issue. Most of
the existing literature have compared these algorithms using machine dependent factors such as computational complexity but few
have employed machine independent factors such as internal/external sorting, algorithm complexity: best, average, and worst cases,
memory usage, stability etc. This study intends to contribute to this discuss using both machine dependent and independent factors.
The implementation was carried out in MATLAB programming environment and the internal system clock was set to keep track
of the time required for sorting. Results obtained revealed that in terms of computational speed using array of small sizes, Quick
sort algorithm is faster, though Merge sort algorithm is faster with array of large sizes. Also, both algorithms are of O(nlogn) best
case and average case complexity while the worst case for quicksort is O(n2) and that of merge sort remains unchanged. In terms
of stability, Quick sort is stable while Merge sort is not. Despite the excellent performance of Merge sort algorithm, the need for
an auxiliary memory for sorting makes it less preferable than Quick sort algorithm for applications where a good cache locality is
of paramount importance.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and
Computational Intelligence 2019

* Corresponding author. Tel.: +2347063673645;

E-mail address: adeniyi.jide@lmu.edu.ng

2 Author name / Procedia Computer Science 00 (2019) 000–000

Keywords: Quick sort, Merge sort, Divide-and-Conquer, sorting, worst case, Best case

1. Introduction

Sorting entails arranging or organizing the elements of a list (1D Array) in a specified manner 3. The "way" in
which any two items are compared for the purpose of sorting is defined by the sort order. A common and obvious
example where sorting is always applied is a list of items. However, in computer science, there are many problems in
which it is less obvious that sorting is required 2. Some of the factors that are normally put into consideration when it
comes to the choice of sorting algorithm to be used include: format of input, amount and nature of data as well as
machine specific criteria 10. Of all the algorithm design techniques, divide and conquer technique is the most widely
employed technique 12. It employs the following approach:
a) It divides a problem into a number of sub-problems of the same type and mostly of equal sizes.
b) These sub-problems are sorted recursively
c) Most times the resulting solutions in b) are combined to get a final sorting solution to the original problem.

Two perfect examples of sorting algorithms that are a product of divide and conquer algorithm design technique
are Merge sort and Quick sort algorithms. They have been widely employed to solve numerous real life sorting
problems, however, the choice of the more preferred of these two algorithms have always resulted in heated arguments
and contentions. This is responsible for the different comparison that have been carried out by researchers. Most of
these comparison have been implemented on virtual and real computers using different number of inputs. However,
most works have not employ large range of data to examine the true behavior of the two algorithms. Also, as rightly
observed by Kazim (2017)10, the computational needs and configurations of computing devices nowadays keeps
evolving, therefore, manufacturing companies often change the specifications of their devices. This connotes that
machine dependent comparative studies of these sorting algorithms many not be applicable to all computing devices.
Therefore, this comparative study of Quick sort and Merge sort algorithms employ machine dependent and
independent factors. For machine independent factors, the running time of the two algorithms were purely compared
and analyzed from generic point of view as a mathematical entity. The machine dependent factor carefully selected
the range of the data sizes in order to really understand the true behavior of the two algorithms for both small and large
data sizes. The factors such as time complexity, stability memory space and the actual time taken when each of the
algorithms is implemented are used as the basis of comparison. The two algorithms are implemented in MATLAB
programming environment. The program is tested with various sizes of input 2-D array. The duration for completion
of sorting for each of Merge sort and Quicksort algorithm are measured using system clock.

2. Review of Related Works

Performance evaluation metrics such as time complexity, stability and memory consumption have been widely
employed to compare Merge sort and Quicksort algorithms. Time complexity measures the time needed by an
algorithm to execute and complete a task while stability checks if an algorithm maintains the order of the input and
output data before and after sorting1,6. The memory requirements and consumption during sorting could also be
captured with the memory consumption metric. Shuang et al. (2016)14 recommended internal sorting, external sorting,
system complexity, Computational complexity, memory usage and stability as the common parameters for classifying
sorting algorithm. A comparison between the Grouping Comparison Sort (GCS) and conventional algorithm such as
Selection sort, Quick sort, Insertion sort, Merge sort and Bubble sort was carried out by Levforiting (2012)11.
Performance analysis of these algorithms were carried out using execution time. For the same number of elements
(10000, 20000, 30000), it was reported that the techniques have similar results for small data while for large data,
Quick sort is the fastest with selection sort being the slowest. Also, the time complexity of comparison sort algorithm
for average and worst case scenarios is the same with that obtained from selection, insertion and bubble sort. Kazim
(2017)10 observed that most of the comparative study carried out on sorting algorithms were machine specific. As such
the findings have limited application because computer manufacturers are changing computer specification and
devices from time to time. So, his comparative study of sorting algorithms was independent of machines. The
performance of selection sort and insertion sort algorithm was carried out by Fahriye (2016)5. The study discovered
that the running time of full sorted arrays with insertion sort algorithm is faster than that of selection sort but in terms
of running time, selection sort is faster than insertion sort. Khalid et al. (2013)15 carried out database sorting of a hybrid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.04.274&domain=pdf

	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540� 2533

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and Computational
Intelligence 2019

Third International Conference on Computing and Network Communications (CoCoNet’19)

COMPARATIVE STUDY OF TWO DIVIDE AND CONQUER
SORTING ALGORITHMS: QUICKSORT AND MERGESORT

Oladipupo, Esau Taiwoa, Abikoye Oluwakemi Christianahb, Akande Noah Oluwatobic*,
Kayode Anthonia Aderonkec, Adeniyi Jide kehindec

aComputer Science Department, The Federal Polytechnic, Niger State, Nigeria
bComputer Science Department, Univeristy of Ilorin, kwara State, Nigeria

cComputer Science Department, landmark University, Kwara State, Nigeria

Abstract

Divide and Conquer is a well-known technique for designing algorithms. Many of the existing algorithms are a product of this
popular algorithm design technique. Such include Quick sort and Merge sort sorting algorithms. These two algorithms have been
widely employed for sorting, however, determining the most efficient among the two has always been a contentious issue. Most of
the existing literature have compared these algorithms using machine dependent factors such as computational complexity but few
have employed machine independent factors such as internal/external sorting, algorithm complexity: best, average, and worst cases,
memory usage, stability etc. This study intends to contribute to this discuss using both machine dependent and independent factors.
The implementation was carried out in MATLAB programming environment and the internal system clock was set to keep track
of the time required for sorting. Results obtained revealed that in terms of computational speed using array of small sizes, Quick
sort algorithm is faster, though Merge sort algorithm is faster with array of large sizes. Also, both algorithms are of O(nlogn) best
case and average case complexity while the worst case for quicksort is O(n2) and that of merge sort remains unchanged. In terms
of stability, Quick sort is stable while Merge sort is not. Despite the excellent performance of Merge sort algorithm, the need for
an auxiliary memory for sorting makes it less preferable than Quick sort algorithm for applications where a good cache locality is
of paramount importance.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and
Computational Intelligence 2019

* Corresponding author. Tel.: +2347063673645;

E-mail address: adeniyi.jide@lmu.edu.ng

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and Computational
Intelligence 2019

Third International Conference on Computing and Network Communications (CoCoNet’19)

COMPARATIVE STUDY OF TWO DIVIDE AND CONQUER
SORTING ALGORITHMS: QUICKSORT AND MERGESORT

Oladipupo, Esau Taiwoa, Abikoye Oluwakemi Christianahb, Akande Noah Oluwatobic*,
Kayode Anthonia Aderonkec, Adeniyi Jide kehindec

aComputer Science Department, The Federal Polytechnic, Niger State, Nigeria
bComputer Science Department, Univeristy of Ilorin, kwara State, Nigeria

cComputer Science Department, landmark University, Kwara State, Nigeria

Abstract

Divide and Conquer is a well-known technique for designing algorithms. Many of the existing algorithms are a product of this
popular algorithm design technique. Such include Quick sort and Merge sort sorting algorithms. These two algorithms have been
widely employed for sorting, however, determining the most efficient among the two has always been a contentious issue. Most of
the existing literature have compared these algorithms using machine dependent factors such as computational complexity but few
have employed machine independent factors such as internal/external sorting, algorithm complexity: best, average, and worst cases,
memory usage, stability etc. This study intends to contribute to this discuss using both machine dependent and independent factors.
The implementation was carried out in MATLAB programming environment and the internal system clock was set to keep track
of the time required for sorting. Results obtained revealed that in terms of computational speed using array of small sizes, Quick
sort algorithm is faster, though Merge sort algorithm is faster with array of large sizes. Also, both algorithms are of O(nlogn) best
case and average case complexity while the worst case for quicksort is O(n2) and that of merge sort remains unchanged. In terms
of stability, Quick sort is stable while Merge sort is not. Despite the excellent performance of Merge sort algorithm, the need for
an auxiliary memory for sorting makes it less preferable than Quick sort algorithm for applications where a good cache locality is
of paramount importance.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 4th International Conference on Computer Science and
Computational Intelligence 2019

* Corresponding author. Tel.: +2347063673645;

E-mail address: adeniyi.jide@lmu.edu.ng

2 Author name / Procedia Computer Science 00 (2019) 000–000

Keywords: Quick sort, Merge sort, Divide-and-Conquer, sorting, worst case, Best case

1. Introduction

Sorting entails arranging or organizing the elements of a list (1D Array) in a specified manner 3. The "way" in
which any two items are compared for the purpose of sorting is defined by the sort order. A common and obvious
example where sorting is always applied is a list of items. However, in computer science, there are many problems in
which it is less obvious that sorting is required 2. Some of the factors that are normally put into consideration when it
comes to the choice of sorting algorithm to be used include: format of input, amount and nature of data as well as
machine specific criteria 10. Of all the algorithm design techniques, divide and conquer technique is the most widely
employed technique 12. It employs the following approach:
a) It divides a problem into a number of sub-problems of the same type and mostly of equal sizes.
b) These sub-problems are sorted recursively
c) Most times the resulting solutions in b) are combined to get a final sorting solution to the original problem.

Two perfect examples of sorting algorithms that are a product of divide and conquer algorithm design technique
are Merge sort and Quick sort algorithms. They have been widely employed to solve numerous real life sorting
problems, however, the choice of the more preferred of these two algorithms have always resulted in heated arguments
and contentions. This is responsible for the different comparison that have been carried out by researchers. Most of
these comparison have been implemented on virtual and real computers using different number of inputs. However,
most works have not employ large range of data to examine the true behavior of the two algorithms. Also, as rightly
observed by Kazim (2017)10, the computational needs and configurations of computing devices nowadays keeps
evolving, therefore, manufacturing companies often change the specifications of their devices. This connotes that
machine dependent comparative studies of these sorting algorithms many not be applicable to all computing devices.
Therefore, this comparative study of Quick sort and Merge sort algorithms employ machine dependent and
independent factors. For machine independent factors, the running time of the two algorithms were purely compared
and analyzed from generic point of view as a mathematical entity. The machine dependent factor carefully selected
the range of the data sizes in order to really understand the true behavior of the two algorithms for both small and large
data sizes. The factors such as time complexity, stability memory space and the actual time taken when each of the
algorithms is implemented are used as the basis of comparison. The two algorithms are implemented in MATLAB
programming environment. The program is tested with various sizes of input 2-D array. The duration for completion
of sorting for each of Merge sort and Quicksort algorithm are measured using system clock.

2. Review of Related Works

Performance evaluation metrics such as time complexity, stability and memory consumption have been widely
employed to compare Merge sort and Quicksort algorithms. Time complexity measures the time needed by an
algorithm to execute and complete a task while stability checks if an algorithm maintains the order of the input and
output data before and after sorting1,6. The memory requirements and consumption during sorting could also be
captured with the memory consumption metric. Shuang et al. (2016)14 recommended internal sorting, external sorting,
system complexity, Computational complexity, memory usage and stability as the common parameters for classifying
sorting algorithm. A comparison between the Grouping Comparison Sort (GCS) and conventional algorithm such as
Selection sort, Quick sort, Insertion sort, Merge sort and Bubble sort was carried out by Levforiting (2012)11.
Performance analysis of these algorithms were carried out using execution time. For the same number of elements
(10000, 20000, 30000), it was reported that the techniques have similar results for small data while for large data,
Quick sort is the fastest with selection sort being the slowest. Also, the time complexity of comparison sort algorithm
for average and worst case scenarios is the same with that obtained from selection, insertion and bubble sort. Kazim
(2017)10 observed that most of the comparative study carried out on sorting algorithms were machine specific. As such
the findings have limited application because computer manufacturers are changing computer specification and
devices from time to time. So, his comparative study of sorting algorithms was independent of machines. The
performance of selection sort and insertion sort algorithm was carried out by Fahriye (2016)5. The study discovered
that the running time of full sorted arrays with insertion sort algorithm is faster than that of selection sort but in terms
of running time, selection sort is faster than insertion sort. Khalid et al. (2013)15 carried out database sorting of a hybrid

2534	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540
 Author name / Procedia Computer Science 00 (2019) 000–000 3

storage system using precise as well as approximate storage. A sorted sequence of 95% with 40% total write latencies
reduction was achieved. Furthermore, a new model of bubble sort algorithm was designed and implemented by Jyoti
(2016) 9. The model was compared with the existing bubble sort algorithm by testing on random data of various ranges
from small to large. The findings show that the new approach gave better results in terms of execution time. Similarly,
a comparative study between selection sort, bubble sort, insertion sort, and merge sort algorithms was carried out by
Jyoti and Pal (2015) 8. The result obtained revealed that bubble sort outperforms other sorting algorithms. While most
comparative analysis of sorting algorithms has focused on computational time as evaluation metric, this article presents
a comparative analysis of quicksort and mergesort algorithms using internal sorting, external sorting, system
complexity, computational complexity, memory usage, stability and size of input as evaluation metrics.

3. Comparative Study of Merge sort and Quicksort Algorithm

The comparative study of the two algorithms can be studied using factors that are machine dependent and machine
independent. Machine dependent factors are factors that can be measured and compared on specific machine
configurations. Computational complexity where the time taken by each algorithm to carry out sorting operation is
measured is considered as machine dependent factor. Machine independent factors are the factors that can be measured
and compared from generic point of view using mathematical entity or based on the behavior of each algorithm.
Factors such as internal/external sorting, system complexity which measures metrics such as worst case, average case
and best case, memory usage and stability are examples of machine independent factors. The factors considered in
this paper are defined as follows:

a) Internal Sorting: this examines the mode of sorting carried out in the main memory. This could be direct or

indirect.
b) External Sorting: this examines the mode of sorting carried out in the auxiliary memory.
c) System complexity: these can be classified using metrics such as: worst, average and best case scenarios.
d) Computational complexity: this could be measured using the number of swaps carried out by the algorithm

during the sorting process.
e) Memory Usage: each algorithm has different memory requirements. This can be used to differentiate them.
f) Stability: this measures the state of the input and output records as shown by the order of its elements before

and after sorting.
g) Size of input: different sizes of arrays are used to test the program where the two algorithms are implemented

3.1. System Complexity of Merge Sort Algorithms

 Given a set of data items stored in an array with n-elements, the Merge sort algorithm will employ the following
steps to sort its elements:

a) Partition the array into two
b) Sort each half recursively.
c) Combine the two sorted elements in b) as a single sorted list.

4 Author name / Procedia Computer Science 00 (2019) 000–000

Fig. 1. Example Illustrating Merge Sort Operation

For instance, with a list containing elements: 5,8, 4, 10, 9, 1, 3, 2, Merge Sort algorithm will employ master’s theorem
illustrated in Fig 1 to sort the elements. The analysis of Merge Sort algorithm requires the use of master’s theorem.
The Master’s theorem is given as follows:
Given function f (n) with constants 𝑐𝑐 ≥ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 >1; then function T(n) could be termed non-negative integers with
the recurrence 𝑇𝑇(𝑛𝑛) = 𝑐𝑐𝑐𝑐(𝑛𝑛 𝑑𝑑⁄) + 𝑓𝑓(𝑛𝑛) where 𝑛𝑛 𝑑𝑑⁄ is interpreted to mean either 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛 𝑑𝑑⁄) or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 𝑑𝑑⁄). Then T(n) can be
asymptotically bounded as:

a) If 𝑓𝑓(𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐−𝜖𝜖) for any constant 𝜖𝜖 > 0, then T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐).
b) If f (n) = (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑛𝑛) for any constant k ≥ 0, then T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘+1𝑛𝑛).

c) If 𝑓𝑓(𝑛𝑛) = Ω (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐+𝜖𝜖) for any constant 𝜖𝜖 > 0, and

d) if 𝑚𝑚𝑚𝑚(𝑛𝑛 𝑑𝑑⁄) ≤ 𝑚𝑚𝑚𝑚(𝑛𝑛) for some constant m< 1 and all sufficiently large n, then T (n)= Θ(f (n)).
Let the worst-case time needed by merge sort to sort a n-element array be T(n). Splitting the array will require a
linear time O(n) i. e. T(n) = O(n) while a linear time O(n) i.e. T(n) = O(n) will be required to merger consumes pre-
sorting solutions. The recurrence for Merge Sort algorithm is therefore = 2T(n/2) + O(n).

Case 2 of Mater’s Theorem applies i.e. T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘+1𝑛𝑛) where c = d = 2 and k = 0. So 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐 = 1

T (n)= Θ(𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙0+1𝑛𝑛) = Θ(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛), therefore, runtime complexity of merge sort gives. T(n) = Θ(nlogn). This runtime
complexity is consistent irrespective of the size of the data and the arrangement. The runtime complexity of best,
average and worst case are the same.

3.2. System Complexity of Quick Sort Algorithms

Quicksort algorithm is a general purpose sorting algorithm. Jules (2010)7 ascribes its popularity to three factors:
easy implementation, general purpose and requirement of least resources for implementation. The main aspect of
Quicksort algorithm employs the following procedure in carrying out its sorting:

a) The existence of an index i that has element t[i] at its final position
b) Elements t[l], ..., t[i-1] must be less or equal to t[i]
c) Elements t[i+1], …, t[r] must be greater or equal to t[i].

3 2

5 8 4 10 9 1 3 2

1 2 3 4 5 8 9 10

5 8 4 10 9
1

9 1 3 2

5 8 4 10 9 1

5 8 4 10 9 1 3 2

5 8 4 10 1 9 2 3

4 5 8 9 10 1 1 2 3 9

	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540� 2535
 Author name / Procedia Computer Science 00 (2019) 000–000 3

storage system using precise as well as approximate storage. A sorted sequence of 95% with 40% total write latencies
reduction was achieved. Furthermore, a new model of bubble sort algorithm was designed and implemented by Jyoti
(2016) 9. The model was compared with the existing bubble sort algorithm by testing on random data of various ranges
from small to large. The findings show that the new approach gave better results in terms of execution time. Similarly,
a comparative study between selection sort, bubble sort, insertion sort, and merge sort algorithms was carried out by
Jyoti and Pal (2015) 8. The result obtained revealed that bubble sort outperforms other sorting algorithms. While most
comparative analysis of sorting algorithms has focused on computational time as evaluation metric, this article presents
a comparative analysis of quicksort and mergesort algorithms using internal sorting, external sorting, system
complexity, computational complexity, memory usage, stability and size of input as evaluation metrics.

3. Comparative Study of Merge sort and Quicksort Algorithm

The comparative study of the two algorithms can be studied using factors that are machine dependent and machine
independent. Machine dependent factors are factors that can be measured and compared on specific machine
configurations. Computational complexity where the time taken by each algorithm to carry out sorting operation is
measured is considered as machine dependent factor. Machine independent factors are the factors that can be measured
and compared from generic point of view using mathematical entity or based on the behavior of each algorithm.
Factors such as internal/external sorting, system complexity which measures metrics such as worst case, average case
and best case, memory usage and stability are examples of machine independent factors. The factors considered in
this paper are defined as follows:

a) Internal Sorting: this examines the mode of sorting carried out in the main memory. This could be direct or

indirect.
b) External Sorting: this examines the mode of sorting carried out in the auxiliary memory.
c) System complexity: these can be classified using metrics such as: worst, average and best case scenarios.
d) Computational complexity: this could be measured using the number of swaps carried out by the algorithm

during the sorting process.
e) Memory Usage: each algorithm has different memory requirements. This can be used to differentiate them.
f) Stability: this measures the state of the input and output records as shown by the order of its elements before

and after sorting.
g) Size of input: different sizes of arrays are used to test the program where the two algorithms are implemented

3.1. System Complexity of Merge Sort Algorithms

 Given a set of data items stored in an array with n-elements, the Merge sort algorithm will employ the following
steps to sort its elements:

a) Partition the array into two
b) Sort each half recursively.
c) Combine the two sorted elements in b) as a single sorted list.

4 Author name / Procedia Computer Science 00 (2019) 000–000

Fig. 1. Example Illustrating Merge Sort Operation

For instance, with a list containing elements: 5,8, 4, 10, 9, 1, 3, 2, Merge Sort algorithm will employ master’s theorem
illustrated in Fig 1 to sort the elements. The analysis of Merge Sort algorithm requires the use of master’s theorem.
The Master’s theorem is given as follows:
Given function f (n) with constants 𝑐𝑐 ≥ 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 >1; then function T(n) could be termed non-negative integers with
the recurrence 𝑇𝑇(𝑛𝑛) = 𝑐𝑐𝑐𝑐(𝑛𝑛 𝑑𝑑⁄) + 𝑓𝑓(𝑛𝑛) where 𝑛𝑛 𝑑𝑑⁄ is interpreted to mean either 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛 𝑑𝑑⁄) or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛 𝑑𝑑⁄). Then T(n) can be
asymptotically bounded as:

a) If 𝑓𝑓(𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐−𝜖𝜖) for any constant 𝜖𝜖 > 0, then T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐).
b) If f (n) = (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑛𝑛) for any constant k ≥ 0, then T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘+1𝑛𝑛).

c) If 𝑓𝑓(𝑛𝑛) = Ω (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐+𝜖𝜖) for any constant 𝜖𝜖 > 0, and

d) if 𝑚𝑚𝑚𝑚(𝑛𝑛 𝑑𝑑⁄) ≤ 𝑚𝑚𝑚𝑚(𝑛𝑛) for some constant m< 1 and all sufficiently large n, then T (n)= Θ(f (n)).
Let the worst-case time needed by merge sort to sort a n-element array be T(n). Splitting the array will require a
linear time O(n) i. e. T(n) = O(n) while a linear time O(n) i.e. T(n) = O(n) will be required to merger consumes pre-
sorting solutions. The recurrence for Merge Sort algorithm is therefore = 2T(n/2) + O(n).

Case 2 of Mater’s Theorem applies i.e. T (n)= Θ(𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑

𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘+1𝑛𝑛) where c = d = 2 and k = 0. So 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
𝑐𝑐 = 1

T (n)= Θ(𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙0+1𝑛𝑛) = Θ(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛), therefore, runtime complexity of merge sort gives. T(n) = Θ(nlogn). This runtime
complexity is consistent irrespective of the size of the data and the arrangement. The runtime complexity of best,
average and worst case are the same.

3.2. System Complexity of Quick Sort Algorithms

Quicksort algorithm is a general purpose sorting algorithm. Jules (2010)7 ascribes its popularity to three factors:
easy implementation, general purpose and requirement of least resources for implementation. The main aspect of
Quicksort algorithm employs the following procedure in carrying out its sorting:

a) The existence of an index i that has element t[i] at its final position
b) Elements t[l], ..., t[i-1] must be less or equal to t[i]
c) Elements t[i+1], …, t[r] must be greater or equal to t[i].

3 2

5 8 4 10 9 1 3 2

1 2 3 4 5 8 9 10

5 8 4 10 9
1

9 1 3 2

5 8 4 10 9 1

5 8 4 10 9 1 3 2

5 8 4 10 1 9 2 3

4 5 8 9 10 1 1 2 3 9

2536	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540
 Author name / Procedia Computer Science 00 (2019) 000–000 5

The operation of Quicksort algorithm on the list 5, 8, 4, 10, 9, 1, 3, 2 is illustrated in Fig. 2. In the Figure partitioning
of the array is done around the numbers in bold.

Fig. 2. Example Illustrating Quick Sort Operation

a) Average Case of Quicksort Algorithms
In average case, each partition splits array in halves. This is with the assumption that all elements are distinctive and
that all rearrangements are equally apparent. Function T(n) is used to verify the number of comparisons such that:

𝑇𝑇𝑛𝑛 = 1
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖 − 1) + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖))

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

Where 𝑛𝑛 ≥ 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇(1) = 𝑇𝑇(0) = 0. There are n+1 comparisons are made with each of the elements in the list with
each element i having a probability of 1 2⁄ to be chosen as pivot. There are two sub-arrays with sizes i-1 and n-i
respectively. Therefore, there will be arrays of sizes i-1 and n-i to be sorted, such that:

𝑇𝑇𝑛𝑛 = 1
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖 − 1) + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖))

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

∑ 𝑇𝑇(𝑖𝑖 − 1)
𝑛𝑛

𝑖𝑖=1
= 𝑇𝑇0 + 𝑇𝑇1 + 𝑇𝑇2 + ⋯ + 𝑇𝑇𝑛𝑛−3+𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−1

∑ 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 𝑇𝑇𝑛𝑛−1 + 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−3 + ⋯ + 𝑇𝑇2 + 𝑇𝑇1 + 𝑇𝑇0. Therefore, ∑ 𝑇𝑇(𝑖𝑖 − 1)𝑛𝑛

𝑖𝑖=1 = ∑ 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . 𝑇𝑇𝑛𝑛 =

1
𝑛𝑛 ∑ 2𝑇𝑇(𝑖𝑖 − 1)𝑛𝑛

𝑖𝑖=1 + 𝑛𝑛 + 1

𝑇𝑇𝑛𝑛 = 2
𝑛𝑛 ∑ 𝑇𝑇(𝑖𝑖 − 1)

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

𝑇𝑇𝑛𝑛 = 2
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖)

𝑛𝑛−1

𝑖𝑖=0
) + 𝑛𝑛 + 1

Multiplying both sides by n we have
𝑛𝑛𝑇𝑇𝑛𝑛 = 2 ∑ (𝑇𝑇(𝑖𝑖)𝑛𝑛−1

𝑖𝑖=0) + 𝑛𝑛(𝑛𝑛 + 1) (i)

Similarly,
(𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 2 ∑ (𝑇𝑇(𝑖𝑖)𝑛𝑛−2

𝑖𝑖=0) + 𝑛𝑛(𝑛𝑛 − 1) (ii)

Subtracting (ii) from (i) gives:
𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 𝑛𝑛(𝑛𝑛 + 1) − 𝑛𝑛(𝑛𝑛 − 1) + 2𝑇𝑇𝑛𝑛−1

Note:

 1 2 3 4 5 8 9 10

5 8 4 10 9 1 3 2

5 4 1 3 2 10 9

1 2 5 4 9

 1 5

1

6 Author name / Procedia Computer Science 00 (2019) 000–000

∑(𝑇𝑇(𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=0
) − ∑(𝑇𝑇(𝑖𝑖)

𝑛𝑛−2

𝑖𝑖=0
) = (𝑇𝑇(0) + 𝑇𝑇(1) + ⋯ + 𝑇𝑇(𝑛𝑛 − 2) + 𝑇𝑇(𝑛𝑛 − 1)) − (𝑇𝑇(0) + 𝑇𝑇(1) + ⋯ + 𝑇𝑇(𝑛𝑛 − 2))

𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 𝑛𝑛2 + 𝑛𝑛 − 𝑛𝑛2 + 𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 2𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1 + (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + 𝑇𝑇𝑛𝑛−1(𝑛𝑛 − 1 + 2)
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + (𝑛𝑛+1)𝑇𝑇𝑛𝑛−1

Divide both sides by n(n+1) we have
𝑇𝑇𝑛𝑛

𝑛𝑛+1 = 2
𝑛𝑛+1 + 𝑇𝑇𝑛𝑛−1

𝑛𝑛 = 𝑇𝑇𝑛𝑛−2
𝑛𝑛−1 + 2

𝑛𝑛 + 2
𝑛𝑛+1 = 𝑇𝑇𝑛𝑛−3

𝑛𝑛−2 + 2
𝑛𝑛−1 + 2

𝑛𝑛 + 2
𝑛𝑛+1 … = 𝑇𝑇2

3 + ∑ 2
𝑖𝑖+1

𝑛𝑛
𝑖𝑖=3

Therefore, 𝑇𝑇𝑛𝑛

𝑛𝑛+1 = 2 ∑ 1
𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = ∫ 2

𝑘𝑘
𝑛𝑛

1 𝑑𝑑𝑑𝑑 = 2 ln(𝑛𝑛) . 𝑇𝑇𝑛𝑛 = 2(𝑛𝑛 + 1) ln(𝑛𝑛). Therefore, it can be concluded that the
runtime complexity of Quicksort algorithm in the average case is 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛).

b) Worst case of Quicksort Algorithm
Sorting with Quicksort algorithm entails using the largest element in the list as a pivot. In this case, given an array A
with k elements, k + 1 comparisons will be required. Should the largest element be A[r], then, the sorting will involve
two steps: the first will have elements greater than t[r] while the second will contain elements with k−1 elements.

𝑇𝑇𝑛𝑛 ∑ 𝑇𝑇(𝑖𝑖 + 1) =
𝑛𝑛

𝑖𝑖=1

(𝑛𝑛 + 1)(𝑛𝑛 + 2)
2 = 𝑂𝑂(𝑛𝑛2)

3.3. Computational Complexity of the Two Algorithms

 In order to find the computational complexity, a simple program where the two algorithms were implemented
was developed using Matrix Laboratory (MATLAB) programming language. The internal system clock was set to
measure the elapsed time for sorting array of different sizes. The code (in part) that implements the two algorithms is
given below:

function arrA = mergesorting (arrA)

 matrixsize = length(arrA);
 if matrixsize >1

 matrixmid = floor(matrixsize/2);
 farrA = arrA (1: matrixmid);
 sarrA = arrA (matrixmid +1: matrixsize);
 farrA = mergesorting (farrA);
 sarrA = mergesorting (sarrA);
 arrA = merge (farrA, sarrA, arrA);

 end

function arr = merge(wi,wk,sw)

m=1; c=1; t=1;
h1 = length(wi);
h2 = length(wk);
h3 = h1+h2;

while(c<=h1 && t<=h2)
 if(wi(c) <= wk(t))
 sw(m) = wi(c);
 c= c+1;

 else
 sw(m) = wk(t);

	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540� 2537
 Author name / Procedia Computer Science 00 (2019) 000–000 5

The operation of Quicksort algorithm on the list 5, 8, 4, 10, 9, 1, 3, 2 is illustrated in Fig. 2. In the Figure partitioning
of the array is done around the numbers in bold.

Fig. 2. Example Illustrating Quick Sort Operation

a) Average Case of Quicksort Algorithms
In average case, each partition splits array in halves. This is with the assumption that all elements are distinctive and
that all rearrangements are equally apparent. Function T(n) is used to verify the number of comparisons such that:

𝑇𝑇𝑛𝑛 = 1
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖 − 1) + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖))

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

Where 𝑛𝑛 ≥ 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇(1) = 𝑇𝑇(0) = 0. There are n+1 comparisons are made with each of the elements in the list with
each element i having a probability of 1 2⁄ to be chosen as pivot. There are two sub-arrays with sizes i-1 and n-i
respectively. Therefore, there will be arrays of sizes i-1 and n-i to be sorted, such that:

𝑇𝑇𝑛𝑛 = 1
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖 − 1) + 𝑇𝑇(𝑛𝑛 − 𝑖𝑖))

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

∑ 𝑇𝑇(𝑖𝑖 − 1)
𝑛𝑛

𝑖𝑖=1
= 𝑇𝑇0 + 𝑇𝑇1 + 𝑇𝑇2 + ⋯ + 𝑇𝑇𝑛𝑛−3+𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−1

∑ 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 𝑇𝑇𝑛𝑛−1 + 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−3 + ⋯ + 𝑇𝑇2 + 𝑇𝑇1 + 𝑇𝑇0. Therefore, ∑ 𝑇𝑇(𝑖𝑖 − 1)𝑛𝑛

𝑖𝑖=1 = ∑ 𝑇𝑇(𝑛𝑛 − 𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . 𝑇𝑇𝑛𝑛 =

1
𝑛𝑛 ∑ 2𝑇𝑇(𝑖𝑖 − 1)𝑛𝑛

𝑖𝑖=1 + 𝑛𝑛 + 1

𝑇𝑇𝑛𝑛 = 2
𝑛𝑛 ∑ 𝑇𝑇(𝑖𝑖 − 1)

𝑛𝑛

𝑖𝑖=1
+ 𝑛𝑛 + 1

𝑇𝑇𝑛𝑛 = 2
𝑛𝑛 ∑(𝑇𝑇(𝑖𝑖)

𝑛𝑛−1

𝑖𝑖=0
) + 𝑛𝑛 + 1

Multiplying both sides by n we have
𝑛𝑛𝑇𝑇𝑛𝑛 = 2 ∑ (𝑇𝑇(𝑖𝑖)𝑛𝑛−1

𝑖𝑖=0) + 𝑛𝑛(𝑛𝑛 + 1) (i)

Similarly,
(𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 2 ∑ (𝑇𝑇(𝑖𝑖)𝑛𝑛−2

𝑖𝑖=0) + 𝑛𝑛(𝑛𝑛 − 1) (ii)

Subtracting (ii) from (i) gives:
𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 𝑛𝑛(𝑛𝑛 + 1) − 𝑛𝑛(𝑛𝑛 − 1) + 2𝑇𝑇𝑛𝑛−1

Note:

 1 2 3 4 5 8 9 10

5 8 4 10 9 1 3 2

5 4 1 3 2 10 9

1 2 5 4 9

 1 5

1

6 Author name / Procedia Computer Science 00 (2019) 000–000

∑(𝑇𝑇(𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=0
) − ∑(𝑇𝑇(𝑖𝑖)

𝑛𝑛−2

𝑖𝑖=0
) = (𝑇𝑇(0) + 𝑇𝑇(1) + ⋯ + 𝑇𝑇(𝑛𝑛 − 2) + 𝑇𝑇(𝑛𝑛 − 1)) − (𝑇𝑇(0) + 𝑇𝑇(1) + ⋯ + 𝑇𝑇(𝑛𝑛 − 2))

𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 𝑛𝑛2 + 𝑛𝑛 − 𝑛𝑛2 + 𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 − (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1 = 2𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + 2𝑇𝑇𝑛𝑛−1 + (𝑛𝑛−1)𝑇𝑇𝑛𝑛−1
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + 𝑇𝑇𝑛𝑛−1(𝑛𝑛 − 1 + 2)
𝑛𝑛𝑇𝑇𝑛𝑛 = 2𝑛𝑛 + (𝑛𝑛+1)𝑇𝑇𝑛𝑛−1

Divide both sides by n(n+1) we have
𝑇𝑇𝑛𝑛

𝑛𝑛+1 = 2
𝑛𝑛+1 + 𝑇𝑇𝑛𝑛−1

𝑛𝑛 = 𝑇𝑇𝑛𝑛−2
𝑛𝑛−1 + 2

𝑛𝑛 + 2
𝑛𝑛+1 = 𝑇𝑇𝑛𝑛−3

𝑛𝑛−2 + 2
𝑛𝑛−1 + 2

𝑛𝑛 + 2
𝑛𝑛+1 … = 𝑇𝑇2

3 + ∑ 2
𝑖𝑖+1

𝑛𝑛
𝑖𝑖=3

Therefore, 𝑇𝑇𝑛𝑛

𝑛𝑛+1 = 2 ∑ 1
𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = ∫ 2

𝑘𝑘
𝑛𝑛

1 𝑑𝑑𝑑𝑑 = 2 ln(𝑛𝑛) . 𝑇𝑇𝑛𝑛 = 2(𝑛𝑛 + 1) ln(𝑛𝑛). Therefore, it can be concluded that the
runtime complexity of Quicksort algorithm in the average case is 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛).

b) Worst case of Quicksort Algorithm
Sorting with Quicksort algorithm entails using the largest element in the list as a pivot. In this case, given an array A
with k elements, k + 1 comparisons will be required. Should the largest element be A[r], then, the sorting will involve
two steps: the first will have elements greater than t[r] while the second will contain elements with k−1 elements.

𝑇𝑇𝑛𝑛 ∑ 𝑇𝑇(𝑖𝑖 + 1) =
𝑛𝑛

𝑖𝑖=1

(𝑛𝑛 + 1)(𝑛𝑛 + 2)
2 = 𝑂𝑂(𝑛𝑛2)

3.3. Computational Complexity of the Two Algorithms

 In order to find the computational complexity, a simple program where the two algorithms were implemented
was developed using Matrix Laboratory (MATLAB) programming language. The internal system clock was set to
measure the elapsed time for sorting array of different sizes. The code (in part) that implements the two algorithms is
given below:

function arrA = mergesorting (arrA)

 matrixsize = length(arrA);
 if matrixsize >1

 matrixmid = floor(matrixsize/2);
 farrA = arrA (1: matrixmid);
 sarrA = arrA (matrixmid +1: matrixsize);
 farrA = mergesorting (farrA);
 sarrA = mergesorting (sarrA);
 arrA = merge (farrA, sarrA, arrA);

 end

function arr = merge(wi,wk,sw)

m=1; c=1; t=1;
h1 = length(wi);
h2 = length(wk);
h3 = h1+h2;

while(c<=h1 && t<=h2)
 if(wi(c) <= wk(t))
 sw(m) = wi(c);
 c= c+1;

 else
 sw(m) = wk(t);

2538	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540
 Author name / Procedia Computer Science 00 (2019) 000–000 7

 t = t + 1;
 end

 m = m +1;
end

 if (c>h1)
 sw(m:h3) = wk(t:h2);
 elseif (t>h2)
 sw(m:h3) = wi(c:h1);
 end
arr = sw;

function y = quicksort(tarrA)
n = length(tarrA);
if n < 2
 y = tarrA;
 return
else
 [x1, x2] = partitioning(tarrA);
end
 y = [quicksort(x1) tarrA(n) quicksort(x2)];

function [x1,x2] = partitioning(arr)
n = length(arr);
x1 =[];
x2 = [];

 for i = 1:n-1
 if arr (i) < arr(n)
 x1 = [x1 arr (i)];
 else
 x2 = [x2 arr (i)];
 end
 end

4. Results and Discussion

4.1. Results of System Complexity for Quicksort and Merge Sort Algorithms

An overview of the system complexity, stability and internal versus external characteristic of quicksort and merge
sort algorithms is provided in Table 1. Considering the system complexity, the best and average cases for both
quicksort and merge sort are the same and is given by O(nlogn) while the worst case for quicksort is O(n2) and that of
the worst case for merge sort still remains as O(nlogn). Quicksort algorithm does not keep elements with equal values
in the same relative order in the output as they were in the input (unstable) while merge sort does (stable). Also, Quick
Sort does not require auxiliary memory therefore it is an in-place (internal) algorithm while merge sort requires
auxiliary memory (external). [12] explains this as an advantage that quicksort has over merge sort, the fact that
quicksort does not need additional storage space makes it exhibits good cache locality.

Table 1. Comparative Study of Quicksort and Merge Sort Algorithms

S/N Parameters Quicksort Mergesort
1 System Complexity Best Case O(nlogn) O(nlogn)
 Average Case O(nlogn) O(nlogn)
 Worst Case O(n2) O(nlogn)
2 Stability Unstable Stable
3 Internal vs External Internal External

8 Author name / Procedia Computer Science 00 (2019) 000–000

4.2. Results of Sorting Time between Quicksort and Merge Sort Algorithms

 The time taken by both algorithms to sort data of different sizes were documented. Small data sizes between 10
and 500 were first evaluated before large data sizes between 1000 and 1000000 were evaluated. The division is done
in order to observe the true behaviour of the two algorithms in the divided sections. Table 2 and Table 3 show the
recorded time for both small and large data sizes respectively. While Figure 3 and Figure 4 show the graphical
representation of data in Table 2 and Table 3 respectively.

Table 2: Sorting Time for Data Sizes between 10 to 500
Number of Inputs (n) Quicksort(s) Merge sort (s)

10 0.000989 0.001383

15 0.001813 0.002013

20 0.002692 0.003340

25 0.002677 0.003564

50 0.005854 0.007322

100 0.010904 0.013661

200 0.024704 0.026567

500 0.069018 0.067672

Table 3: Sorting Time for Data Sizes between 1000 to 1000000

Number of inputs (n) Quicksort (s) Merge sort (s)
1000 0.14937 0.14123
2000 0.31736 0.27309
3000 0.47618 0.40654

10000 0.47618 0.40654
20000 3.6413 2.6879
40000 6.6647 2.5012
90000 16.1045 6.6277

1000000 85.0534 46.551

Fig. 3. Sorting Time of Quicksort and Merge Sort Algorithms Fig. 4. Sorting Time of Quicksort and Merge Sort Algorithms
(n<=500) (1000<=n<=1000000)

Quick sort algorithm sorting time as shown in Fig. 3, revealed that lesser time is required for data sizes less than

400 elements while for data sizes of 400 and above, merge sort seems to require lesser time than quicksort. The graph
in Fig. 4 clearly shows that merge sort is faster than quicksort algorithm in all cases for data sizes in the range 1000
to 1000000. These results are consistent with those reported by Mandeep (2018) 12. However, this result does not agree
with that reported by Khalid et al. (2013)15 where Quicksort algorithm was adjudged the fastest among selection,

	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540� 2539
 Author name / Procedia Computer Science 00 (2019) 000–000 7

 t = t + 1;
 end

 m = m +1;
end

 if (c>h1)
 sw(m:h3) = wk(t:h2);
 elseif (t>h2)
 sw(m:h3) = wi(c:h1);
 end
arr = sw;

function y = quicksort(tarrA)
n = length(tarrA);
if n < 2
 y = tarrA;
 return
else
 [x1, x2] = partitioning(tarrA);
end
 y = [quicksort(x1) tarrA(n) quicksort(x2)];

function [x1,x2] = partitioning(arr)
n = length(arr);
x1 =[];
x2 = [];

 for i = 1:n-1
 if arr (i) < arr(n)
 x1 = [x1 arr (i)];
 else
 x2 = [x2 arr (i)];
 end
 end

4. Results and Discussion

4.1. Results of System Complexity for Quicksort and Merge Sort Algorithms

An overview of the system complexity, stability and internal versus external characteristic of quicksort and merge
sort algorithms is provided in Table 1. Considering the system complexity, the best and average cases for both
quicksort and merge sort are the same and is given by O(nlogn) while the worst case for quicksort is O(n2) and that of
the worst case for merge sort still remains as O(nlogn). Quicksort algorithm does not keep elements with equal values
in the same relative order in the output as they were in the input (unstable) while merge sort does (stable). Also, Quick
Sort does not require auxiliary memory therefore it is an in-place (internal) algorithm while merge sort requires
auxiliary memory (external). [12] explains this as an advantage that quicksort has over merge sort, the fact that
quicksort does not need additional storage space makes it exhibits good cache locality.

Table 1. Comparative Study of Quicksort and Merge Sort Algorithms

S/N Parameters Quicksort Mergesort
1 System Complexity Best Case O(nlogn) O(nlogn)
 Average Case O(nlogn) O(nlogn)
 Worst Case O(n2) O(nlogn)
2 Stability Unstable Stable
3 Internal vs External Internal External

8 Author name / Procedia Computer Science 00 (2019) 000–000

4.2. Results of Sorting Time between Quicksort and Merge Sort Algorithms

 The time taken by both algorithms to sort data of different sizes were documented. Small data sizes between 10
and 500 were first evaluated before large data sizes between 1000 and 1000000 were evaluated. The division is done
in order to observe the true behaviour of the two algorithms in the divided sections. Table 2 and Table 3 show the
recorded time for both small and large data sizes respectively. While Figure 3 and Figure 4 show the graphical
representation of data in Table 2 and Table 3 respectively.

Table 2: Sorting Time for Data Sizes between 10 to 500
Number of Inputs (n) Quicksort(s) Merge sort (s)

10 0.000989 0.001383

15 0.001813 0.002013

20 0.002692 0.003340

25 0.002677 0.003564

50 0.005854 0.007322

100 0.010904 0.013661

200 0.024704 0.026567

500 0.069018 0.067672

Table 3: Sorting Time for Data Sizes between 1000 to 1000000

Number of inputs (n) Quicksort (s) Merge sort (s)
1000 0.14937 0.14123
2000 0.31736 0.27309
3000 0.47618 0.40654

10000 0.47618 0.40654
20000 3.6413 2.6879
40000 6.6647 2.5012
90000 16.1045 6.6277

1000000 85.0534 46.551

Fig. 3. Sorting Time of Quicksort and Merge Sort Algorithms Fig. 4. Sorting Time of Quicksort and Merge Sort Algorithms
(n<=500) (1000<=n<=1000000)

Quick sort algorithm sorting time as shown in Fig. 3, revealed that lesser time is required for data sizes less than

400 elements while for data sizes of 400 and above, merge sort seems to require lesser time than quicksort. The graph
in Fig. 4 clearly shows that merge sort is faster than quicksort algorithm in all cases for data sizes in the range 1000
to 1000000. These results are consistent with those reported by Mandeep (2018) 12. However, this result does not agree
with that reported by Khalid et al. (2013)15 where Quicksort algorithm was adjudged the fastest among selection,

2540	 Oladipupo Esau Taiwo et al. / Procedia Computer Science 171 (2020) 2532–2540
 Author name / Procedia Computer Science 00 (2019) 000–000 9

insertion, merge sort, quick sort, bubble sort and Group Comparison Sort (GCS) algorithms. A close look at the range
of the data size used by Khalid et al. (2013) 15 shows that the behavior of the two algorithms was not closely studied
as the sizes of data used did not spread over a very wide range. This could be the reason for this difference.

5. Conclusion

A comparative study of the two sorting algorithms that employ divide and conquer technique is done in this study.
The analysis of the two algorithms were carried out based on System complexity (where the best, average and worst
cases were considered independent of machine from mathematical point of view), stability, internal versus external
memory requirement and computational complexity (where a program was developed using MatLab programming
language to measure the actual time required for sorting data of different sizes). Quicksort is faster than merge sort
when the data size is small while merge sort is faster when the data size is large. Although merge sort is faster, it needs
an additional memory space of O(n) for storing the extra array while quicksort needs space of O(logn). If there is
therefore the need to choose between Quicksort and Merge sort algorithms for faster computation, quicksort is
preferred to Mergesort when the size of the data is small (below 400 element) while Mergesort is recommended for
data of large sizes. However, where there is the need to make use of cache locality, Quicksort is preferred for all data
sizes. It is believed that the information given in this paper will be of great value to programmers in the choice of
when and where to use each the two algorithms.

Acknowledgements

Authors appreciate Landmark University Centre for Research and Development, Landmark University, Kwara State,
Nigeria for fully sponsoring the publication of this research article.

References

1. Aditya, DM., Deepak, G. Selection of Best Sorting Algorithm. International Journal of Intelligent Information Processing. 2008;
 363-368.
2. Anonnymous. Sorting and Efficient Searching. Lecture Note. Unpublished. 2008
3. Ashima, G. Implementation and Application of Bubble sort in 2-D Array" International Journal for Scientific Research &
 Development (IJRD). 2016; 4(5): 50-51.
4. Cormen, T., Leiserson, C., Rivest, R., Stein, C. Introduction to Algorithms (Third ed.). McGraw Hill. 2009
5. Fahriye, GF. A comparative Study of Selection Sort and Insertion Sort Algorithms. International Journal of Engineering and
 Technology (IRJET). 2016; 3(12): 326-330.
6. Goodrich, M., Tamassia, R. Data Structures and Algorithms in Java (4th ed.). John wiley & sons.2010
7. Jules, RT. Algorithms and Complexity Theory. Durban. 2010
8. Jyoti, M. Pal, B. Minimizing Execution Time of Bubble Sort Algorithm. International Journal of Computer Science and Mobile
 Computing. 2015; 4(9):173-181.
9. Jyoti, T. Review on Execution Time of Sorting Algorithms- A Comparative Study. International Journal of Computer Science and
 Mobile Computing. 2016; 5(11):158-166.
10. Kazim, A. A Comparative Study of Well Known Sorting Algorithms. International Journal of Advanced Research in Computer
 Science. 2016; 8(1):277-280.
11. Levforiting, A. Introduction to the Design and Analysis of Algorithms (3rd ed.). New Jersey, USA: Pearson Education. 2012
12. Mandeep, S. Why Quicksort is better than Mergesort? Retrieved May 14, 2019, from Geeksforgeeks: http:// www.geekforgeeks.org
13. Neelam, Y., Sangeeta, K. Sorting Algorithms. International Research Journal of Engineering and Technology. 2018; 3(2):528-531.
14. Shuang, C., Shunning, J., Bingsheng, H., Xuenyan, T. A Study of Sorting Algorithms on Approximate Memory. San Francisco. 2016
15. Khalid, SAK., Ibrahim, MA., Abdallah, MI., Nabeel, IZ. Review on Sorting Algorithms A Comparative Study.
 International Journal of Computer Science and Security. 2013; 7(3):120-126.

