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MECHANICAL ENGINEERING | RESEARCH ARTICLE

Modeling energy content of municipal solid 
waste based on proximate analysis: R-k class 
estimator approach
Rotimi Adedayo Ibikunle1, Adewale Folaranmi Lukman2*, Isaac Femi Titiladunayo3 and 
Abdul-Rahaman Haadi4

Abstract:  In the Ilorin metropolis, there are power challenges. Energy supplied by 
Power Holding Company of Nigeria is insufficient for the social, technological, and 
industrial requirements of the metropolis. Moreover, the huge municipal solid waste 
(MSW) produced daily that supposed to be converted to energy is only constituting 
a nuisance. In waste to energy (WTE) procedures, the heating value (HV) of the MSW 
generated is pertinent in the selection or design of an appropriate waste to energy 
(WTE) technology required for waste conversion. The HV determination using ulti-
mate analysis is tedious, expensive, and requires specialized equipment. 
A proximate analysis method that is less tedious and cheaper was adopted to 
obtain the dependent variables for the modeling of the HV. The high heating value 
(HHV) of MSW components was determined using a bomb calorimeter, and prox-
imate analysis was used to determine the typical values for fixed carbon (FC), 
volatile matter (VM), Ash, and moisture (MC) to be 32%, 37%, 13%, and 5% corre-
spondingly. The typical HV was estimated to be 24 MJ/kg. The heating value 
obtained from the bomb calorimeter was modeled against the dependent variables 
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from proximate analysis. The conventional ordinary least squares (OLS) estimator is 
popularly used to estimate the model parameters. However, the performance of the 
estimator suffers a setback when the predictor variables are correlated. 
Alternatively, the ridge estimator (RE) and the principal component regression 
estimator (PCE) can be adopted. In this study, we combined PCE and RE to form the 
r-k class estimator for effective modeling. The estimators’ performances are 
assessed using the mean squares error (MSE) criterion. The estimator with the 
smallest MSE is generally preferred. The result, the MSE of OLSE, ridge, PCE, and 
r-k are 581.84, 2.56, 523.69, and 0.239, respectively. The r-k class estimator out-
performs other estimators considered in this study and is employed for the mod-
eling. With a unit increase in the volatile matter and fixed carbon, heating values 
increased by about 21% and 36%, respectively. Also, the heating values decrease by 
about 0.2% and 40%, respectively, with a unit increase in Ash and Moisture.

Subjects: Mathematics & Statistics for Engineers; Mechanical Engineering; Power & Energy  

Keywords: Municipal solid waste; proximate analysis; heating values; modeling; principal 
component regression and r-k class estimators

1. Introduction
Municipal Solid Waste (MSW), otherwise called garbage or trash, consists of household wastes, 
institutional wastes, street wastes, market waste, and waste from business centres. It excludes 
hazardous waste from hospitals and industries. According to Ibikunle et al. (2018), MSW includes 
food residue, glass/ceramic wastes, plastics, textiles, metals/tins, paper, wood, leather, nappies, slug, 
ash, etc. The extent of waste generation in different urban centres depends on population growth, 
change in fashion, consumption pattern, and technological development in such nations (Titiladunayo 
et al., 2018; Tozlu et al., 2016; Omari et al., 2014). Most municipals in the developing nations find it 
difficult to establish an efficient and sufficient waste management system, because of the financial 
implications on equipment and the expertise required, lack of reliable data that to be used in taking 
management decisions, unconsciousness, and inability to venture into WTE system (Ibikunle et al., 
2020b, 2020a). Akdag et al. (2016) and Khuriati et al. (2017) also reported that efficient MSW 
management has become a principal environmental challenge in the metropolitan areas.

Increase in population, economic, and urbanization growth, and rise in standard of living have 
evidently contributed to the aggregate of waste generated in a metropolis. The disposal of MSW 
generated poses a significant problem, because of its enormous magnitude that may surpass the 
capacity of the environment (Khuriati et al., 2017). Burning and energy recovery has become one of 
the common methods to reduce the capacity of the waste (Khuriati et al., 2017). The thermal 
decomposition procedures obtainable for the treatment of solid MSW include combustion, pyro-
lysis, and gasification. The principal parameters required in the thermal procedures of MSW involve 
its composition and higher heating value (Zhou et al., 2014). HHV is the quantity of chemical 
energy contained in a fuel that is liberated during combustion (Erol et al., 2010). According to 
Ghugare et al. (2014) and Parikh et al. (2005), HHV, that is also known as the gross calorific value 
(GCV), is the heat energy produced during combustion of solid fuel, assuming the water content 
present in the fuel before and during combustion process as condensed liquid.

In the developed nations, waste components are valuables for the production sector and energy 
generation sector (SWM, 2015). Recovery of energy from waste is made possible, when non- 
recyclable waste components are converted into fuel, heat, and electrical energy through different 
processes that include gasification, combustion, pyrolysis, anaerobic digestion, and recovery of gas 
from the landfill (Reza et al., 2021). These processes are called WTE procedures. MSW can be a source 
of economic valuables if the processes or procedures involved in the conversion are understood and 
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undertaken. It could be utilized as fuel for waste-to-energy (WTE) technology or as a material to 
produce other chemical products (Ibikunle et al., 2020). The conversion of MSW fractions to valuables 
could be through biochemical, thermochemical, or incineration processes. Psomopoulos et al. (2009) 
and Shi et al. (2016) submitted that incineration is still considered as the broadly used process in the 
conversion of MSW to energy. Laith et al. (2017) and Ayodele et al. (2017) reported that majority of 
the growing countries, do not have adequate technology to process the waste generated, or to 
recover its energy, to meet the demand for effective waste management and the pressure for energy.

Deficient waste management system has grossly increased environmental pollution, degrada-
tion of natural resources and also contributed to energy inadequacy. Furthermore, the waste 
generated are indiscriminately dumped and burnt in the open by the road or in an unscientific 
dump site, resulting in environmental consequential effects. They are hazardous to human health 
through unsightly scenes, surface, and underground water pollution. Also, as a source of green-
house gases (GHGs) emission, it contributes to the depletion of Ozone layer. Therefore, sufficient 
and efficient management, exploitation, and conversion of MSW to useful energy are the optimal 
process to ameliorate carbon emission and ensuring a sustainable and ecological-friendly solution 
to bridging the gap between energy and the environment.

In 2014, Sweden was able to convert about 5.7 million tons of combustible waste fractions into 
16,600 kWh of energy with 33 WTE plants, installed in the country. Electrical energy takes about 
2000 kWh of the total energy, and the remaining 14,600 kWh was for heating (Akhator et al., 2016; 
SWM, 2015). In 2018, America combusted about 34.6 million tons of MSW fractions for energy 
recovery. Food waste took about 22%. Textiles, leather, and rubber took over 16%, while plastics 
and others were about 16%, paper and paperboard made about 12%. Other fractions were less 
than 10% (US EPA, 2018). In 2016, World Bank reported that the global waste generation was 
about 2010 million tons. And the generation projection for year 2055 is about 3400 million 
tons (Kaza et al., 2018). Abhishek et al., (2021), reported that MSW generated in India in 
the year 2016 was about 52 million tons, with generation rate of about 0.14 million tons per day.

In Nigeria, notwithstanding the availability of renewable and non-renewable resources for energy 
generation, that include biomass, natural gas, coal, solar, hydro, and fossil fuels; Nigeria is still faced 
with the electricity crisis. This crisis has impeded both the nation’s socio-economic and technological 
development, which resulted in the shutdown of some companies, and relocation of others to the 
nearby countries. The forecast for national power demand for 2016 was put at 17,520 MW, and the 
capacity of the available power plant is just about 11,165.4 MW (Nnodim, 2016). The maximum power 
generation recorded thus far in Nigeria is about 5074.70 MW and the highest daily energy available is 
109,372 MWh (Akhator et al., 2016). Nigeria generates almost 14 million tons of combustible MSW 
annually (Uchendu, 2008). These wastes are disposed to dumpsite because of insufficient knowledge 
and lack of interest in modern WTE technology. This waste could be conveniently converted to 
electrical energy of about 4400 GWh per year via combustion processes and would have helped 
ensure efficient waste management that engenders a clean environment (Akhator et al., 2016). In 
2016, Ibadan Electricity Distribution Company (IBEDC) predicted that the availability of a 270 MW 
stable power supply will successfully cater for the power demand in the whole Kwara State (Ibadan 
Electricity Distribution Company (IBEDC), 2016). The quantity of MSW generated in Ilorin in 2016 was 
predicted to be about 320,000 tons in a year, with a generating rate of 0.78 kg/capita/day. It was also 
forecasted that 584 tons/day of combustible MSW in Ilorin with 21 MJ/kg heating value has the 
potential of 3200 MWh heat energy, 41 MW electrical energy, and 27 MW of power to the grid, which 
would have catered for 15% of the power demand for Kwara State if utilized (Ibikunle et al., 2019).

The demand for energy globally is on increase due to growth in the world population, and 
a considerable increase in the world economy (Smallbone et al. (2020) and Haller et al. (2020)). 
This demand is a great concern and challenge for the generation, distribution, economic- 
development, and sustainability of energy worldwide. Sustainable energy technologies contributed 
immensely to the provision of an alternative source of energy to reduce the burden of energy demand 
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(Alkasrawi (2004) and Salameh et al. (2020)). Pyrolysis of MSW is a reliable technology for transform-
ing MSW into chemicals and biofuels. MSW incineration can be replaced by Pyrolysis, to provide 
a clean energy (Song et al., 2020). One of the thermochemical processes that can be used to 
transform carbon-based organic waste into syngas by incomplete oxidation of waste in a reactor is 
called gasification (Arif et al., 2019). Prior to the conversion of MSW to gas, the waste is first pelletized 
to ensure a steady size and moisture content (Bosmans et al., 2013). Biochemical conversion of MSW 
into methane, ethanol, and other valuable products requires digestion of biomass with microorgan-
isms and their enzymes. Biochemical process of energy generation is cost-effective and ecological- 
friendly. Anaerobic digestion and fermentation are the common biochemical conversion processes for 
waste to energy (Beyene et al., 2018; Chhotu et al., 2021). Zhang et al. (2018) also reported that 
anaerobic digestion (AD) is an economical biotechnology for the treatment of biodegradable waste 
and recovery of bioenergy. It can be used to convert organic matter into biogas of about 50–70% CH4 

and about 20–75 40% CO2. Fertilizer can be produced from the organic residue of AD. AD is not 
suitable for refractory organic wastes such as woods, because it does not degrade easily by AD 
directly due to high amount of cellulose, lignin, or hemicellulose components. It has to be pretreated 
to break the refractory compounds to biodegradable matters before they could be digested.

To quantify and characterize MSW for energy production, the source of waste, the type of 
materials, and the inherent physical compositions are important. Nevertheless, to design WTE 
facility, it is very important to consider factors, like the moisture content, the volatile matter 
content, the fixed carbon content, the proportion of combustible and non-combustible waste 
fractions, and the percentage of sulfur content. These properties are essential in choosing tech-
nology, capacity determination for power plant equipment, and the auxiliary facilities’ design, like 
the equipment to clean the flue gas (Shi et al., 2016). The heating or calorific value is one of the 
most important characteristics of MSW in determining the fuel’s energy content. It is almost 
inversely proportional to the capacity of a WTE furnace/boiler (Reddy, 2011) and is either measured 
by a bomb calorimeter or calculated using an empirical model. Fuel characteristics such as heating 
value (HV), proximate properties, and elemental composition should be considered to design an 
efficient system for the combustion of biomass for energy production (Sheng & Azevedo, 2015; Yin, 
2011). The HV (or CV) refers to the heat released during the complete combustion of fuel (Ghugare 
et al., 2014), and it defines the energy content of fuel which is essential in the design analysis, 
simulations of thermal conversion systems and energy balance (Nhuchhen & Afzal, 2017).

The HHV of MSW can be determined experimentally by combusting the fuel in a high-pressure 
oxygen ambience in a bomb calorimeter; this measures the enthalpy change between the reac-
tants and the products (Cordero et al., 2001; Parikh et al., 2005). The process involving an analogue 
bomb calorimeter is tedious, and using digital calorimeter is costly. Nevertheless, mathematical 
models based on the proximate characteristics of MSW can also be used to determine the HV. The 
weight percentage of volatile matter and fixed carbon must be considered to develop the model. 
Amin and Yang (2012) reported that using characteristic values obtained from proximate analysis 
to develop models for predicting heating value is advantageous because, it is based on sample 
sizes and it gives an accurate estimation of the calorific values (Lawal et al., 2014). Various models 
that include Steuer’s and Dulong’s models have been used to predict MSW components’ HV 
(Ibikunle et al., 2019). These models utilized the percentage of elemental components obtained 
from the ultimate analysis, some models used the values from proximate analysis, and others 
used physical composition. Yin (2011) reported that models based on the ultimate (chemical) 
analysis exhibit more appropriate accuracy.

WTE is a feasible alternative method for MSW management. The heating value of MSW has 
a major impact on the application of WTE techniques. MSW consists of heterogeneous material, 
thereby making the measurement of direct heating value not readily feasible (Khuriati et al., 2015). 
Many prefer the models based on proximate analysis; because, the experimental procedures 
involved in the ultimate analysis are tedious and costly (Ibikunle et al., 2020b; Küçükbayrak 
et al., 1991). In this paper, the heating value of MSW was described by the development of 
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empirical model based on the values of proximate analysis conducted on the waste components 
because the proximate analysis is cheaper and faster. Engineer or scientist that is familiar with 
laboratory equipment such as digital top-loading balance, digital oven (of about 200°C) and digital 
furnace (of about 1200° C) based on standard test methods like American Society for Testing and 
Materials (ASTM) can conduct the experiment (Demirbas, 2003; Ibikunle et al., 2019; Küçükbayrak 
et al., 1991). The proximate analysis determines the moisture content (MC), volatile matter (VM), 
fixed carbon (FC) and ash contents (Ash) contained in MSW components (Ibikunle et al., 2019; Yin, 
2011).

Few studies have shown us that the predictor variables in the modeling of HHV are correlated. 
Thus, the performance of the conventional ordinary least squares estimator will suffer 
a breakdown. The ridge estimator (RE) and the principal component regression estimator (PCE) 
are generally preferred to mitigate this problem. The two estimators were combined as a single 
estimator called the r-k class estimator. The estimator combines the advantage of both the ridge 
estimator and the principal component regression estimator.

This study aims at developing a proximate-based model that can be used to model the HHV of 
the combustible waste fractions by adopting regression analysis. Also, to adopt a more robust 
technique to estimate the coefficient in the model for effective prediction. The proposed models 
are based on physicochemical characteristics of MSW fractions (FC, VM, MC, and Ash) obtained 
from the proximate analysis, to ensure availability of reliable model that can predict the HV of 
MSW, combustible biowaste or biomass that prevents the rigours and cost involved in ultimate 
analysis procedures. The following estimators were considered in this study: the ordinary least 
squared estimator (OLSE), principal component estimator (PCE), ridge estimator (RE), and PCE- 
Ridge Estimator (r-k class estimator).

Figure 1. Map showing spatial 
pattern of solid waste genera-
tion in Ilorin.
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2. Study area
A case of Ilorin, Kwara State Nigeria, was surveyed for this study because of its population growth 
and, consequently, the massive MSW generated daily. Ilorin is the capital town of Kwara State 
comprising three municipals: Ilorin East, West, and South Local Government Areas. Ibikunle et al. 
(2019) estimated the quantity of MSW generated in Ilorin in 2016 to be 302,000 tons per year at 
0.78 kg per capita per day. The people responsible for the waste generation was predicted to be 
1,055515, with Ilorin West having the highest population of 493,001 people, followed by Ilorin 
South with 282,465 people and Ilorin East with 280,049 people. The city is located on latitude 80 

Figure 2. Map of ilorin metro-
polis showing locations of 
dumpsters (ow-row bins).
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30ʹN and longitude 40 35ʹE, on land of about 100 km2 area. It is situated between Southwestern 
and middle belt parts of Nigeria.

Ilorin is divided into zones of traditional settlement and modern area. The center of the city 
comprises the palace zone, the king’s market, and the central mosque. The traditional zone 
encompasses the ancient settlement with old buildings. Another zone is a settlement for middle- 
class people, businessmen, and the professionals. The other zone comprises the neighboring 
villages. During this study, the Lasoju dumpsite of about 20 acres perimeter area was the only 
functional dumpsite; it is about 25 km away along Lagos—Ilorin expressway. Figure 1 is the Ilorin 
map showing the spatial study of MSW generation in Ilorin by Adedibu in 1985. Figure 2 shows 
some row-row bins (dumpsters) locations for collecting MSW in Ilorin metropolis (Ajadi & Tunde, 
2010; Ibikunle et al., 2019). This study will encourage the prediction of MSW heating value for the 
procedures required to design WTE technology for energy generation.
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The MSW generated in Ilorin is too enormous to be handled by the existing system of collection and 
disposal to the dumpsite. The MSW generation rate in Ilorin is very alarming and constituting a great 
challenge for the government to manage; because of the increasing daily population of the metro-
polis (Ajadi & Tunde, 2010). The insufficient waste management system in Ilorin is quite evident by 
some piles of uncollected waste bags along the streets and some illegal acts of indiscriminate 
disposal of wastes by the public to underdeveloped sites and waterways (Ibikunle et al., 2019, 
2020). The MSW components produced in Ilorin, according to Ibikunle et al. (2019), are huge 
comprising food residue, nylon, plastic bottle, bones, glass/ceramics, packaging box (carton), poly-
propylene sack, wood, cow-dung, excrement, sand/ash, others, tins/metals, grass/trimmings, paper, 
leather, rubber, textiles (rag), and toiletries (pampers, tissues and pads). Despite the day-to-day 
development in the WTE technological sector, Ilorin’s massive MSW is yet to witness conversion for 
other purposes. Rather, it still constitutes a nuisance to the public and various challenges to the 
management system.

3. Materials and method
In this paper, a survey on the municipal solid waste (MSW) fractions generated in Ilorin munici-
palities, Nigeria, was conducted. The MSW produced in Ilorin is an enormous one. Ibikunle et al. 
(2019) and (Ibikunle et al., 2020) reported the composition of waste generated in Ilorin from 
households, institutions, event centres, market centres, parks, business centres, and yards, include 
paper, carton, sand/ash, grass/trimmings, nylon, plastic bottle, food residue, textiles (rag), cow- 
dung, leather, toiletries (sanitary pads), glass/ceramics, polypropylene sack, excrement, rubber, 
bones, leather metal/tins, and other biogenic waste. Eleven combustible fractions subjected to 
Laboratory analysis, out of the 19 fractions identified, were randomly selected at Lasoju dumpsite 
(about 20 km away from Ilorin) along Lagos-Ilorin expressway. Each sample presented for experi-
mental tests was prepared in triplicates. The high heating or calorific value (HHV/HCV) of the 
selected components was determined using a digital bomb calorimeter. The Proximate analysis of 
each component was also performed using the digital oven furnace of models DHG 9053 and TWD, 
respectively. The HHV of the waste fractions was later modeled with the physicochemical proper-
ties obtained from proximate analysis to ascertain the thermal and chemical relationships 
between the HHV and the proximate characteristics.

3.1. Sampling of the MSW
In this study, a random sampling procedure adopted by Abdellah and Balla (2013) was used to 
collect samples from Lasoju dumpsite of Ilorin metropolis. The aggregate MSW dumped on the 
site was very huge; therefore, few heaps of waste were selected randomly from which samples 
were drawn for physical characterization after pooling as suggested by NT ENVIR 001, (2005) 
and Issam et al. (2010). Random subsets of waste sample were collected and poured on 
a large mat made of polypropylene sac. The subsets were mixed properly with shovel, later 
heaped to a shape inform of a cone, and were divided into four slices as suggested by Slavko 
et al. (2012) and Sudhir et al. (2010). Two of the slices that are diagonally opposite were 
discarded and the others were mixed again to obtain a sample representing the parent 
population of the MSW. Each sample is 240 l of a bin waste volume (EC SWA-Tool, 2004). 
Thirty (30) samples was suggested as being sufficient for waste characterization by Sharma 
and McBean (2007), nevertheless 62 samples were considered in this study within the period of 
eight months of characterization to avoid error that may occur due to insufficient samples. 
Each of the 240 l of waste components were hand-sorted differently into components, and 
each component identified is kept in designated receptacle, and weighed.

3.2. Tests samples preparation
The eleven waste samples prepared for Laboratory analysis were sun-dried in the open air for 
five days shredded into particles of less than 30 mm (Omari, 2015). They were later milled into 
smaller particles to permit a larger surface area for easy digestion with reactants’ aid (Ibikunle 
et al., 2020a).
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3.3. Laboratory analysis of MSW samples

3.3.1. Determination of moisture content
Percent moisture content of the waste samples was determined, by measuring three test 
samples of about 5-g each into crucibles and was dried for 1 h at 110°C in a digital oven 
(DHG 9053 model), based on ASTM D1348. It was later withdrawn into a desiccator to cool. The 
percentage moisture content (MC) of each test sample was calculated as a loss in weight 
fraction of sample before and after drying as presented in Equation (1; Ibikunle et al., 2019; 
Vairam & Ramesh, 2013). 

%moisturecontent MCð Þ ¼
W2 � W3

W2 � W1
� 100 (1) 

where W1 is the mass (g) of empty crucible, W2 is the mass(g) of crucible + test-sample, W3 is 
the mass (g) of empty crucible + test-sample after heating, W2 � W3 is the moisture content.

3.3.2. Determination of volatile content
The percentage volatile matter of the waste components was carried out by heating the test 
samples whose moisture test have been performed at a temperature of 950° C for about 7 min in 
a muffle furnace based on ASTM D3175-11. After that the crucibles were cooled inside the 
desiccator and weighed. The percentage mass loss in the samples except that of percentage 
moisture gives the percentage volatile matter as presented in Equation (2) according to 
Adekunle et al. (2015). 

%volatilematter VMð Þ ¼
W2 � W3

W2 � W1
� 100 � MCð Þ (2) 

where is the mass (g) of empty crucible, W2 is the mass(g) of crucible + test-sample before 
heating, W3 is the mass (g) of empty crucible + test-sample after heating and MC, is the percen-
tage moisture content.

(i)Determination of Ash content

Determination of the percentage Ash content that is in a waste fraction is to establish how much 
non-combustible residue is left in such component after combustion process. Percentage Ash 
content was determined by combusting the test-samples left in the crucible after having deter-
mined the percentage volatile matter. The crucible containing the test sample was not covered 
with lid, and the sample was combusted in the furnace at 750° C for 30 min based on ASTM D5468- 
02. The test samples were withdrawn and cooled. The residue left is the ash content presented in 
Equation (3) according to Kuleape et al. (2014). 

%Ashcontent Ashð Þ ¼
W3 � W1

W2 � W1
� 100 (3) 

where W3 is the mass (g) of empty crucible, W2 is the mass(g) of crucible + test-sample before 
heating, W3 is the mass (g) of empty crucible + residue and W3 � W1, is the ash content.

3.3.3. Determination of Fixed carbon
The percentage composition of the fixed carbon (FC)of each test sample was determined by 
subtracting the sum of the percentage contents of ash, moisture, and volatile matter from the 
total percentage as given in Equation (4) following Ibikunle et al. (2021). 
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% FC ¼ 100--- % ASH þ % MC þ % VMð Þ (4) 
3.3.4. Determination of the HHV or HCV
The HHV or HCV of the MSW fractions was determined, using a digital bomb calorimeter according 
to Titiladunayo et al. (2018), Ibikunle et al. (2019), and Ibikunle et al., 2020aa) based on ASTM 
D5865M-19 standard (Mushtaq et al., 2020). About 0.5 g of the test sample was introduced to the 
cylinder of the bomb calorimeter and the value of the mass was inputted to the system through 
a data logger connected to the calorimeter; at high-pressure oxygen ambience, the test sample 
was combusted. After the combustion is complete, the result was presented on the screen. The 
typical value (result) of the experiments on the replicated samples was considered as the heating 
value (MJ/kg) for every sample.

3.4. Statistical methodology
The Linear regression model has been adopted in many studies to model the HHV of municipal solid 
waste, biomass, and others (García et al., 2014; Khuriati et al., 2017; Akhtar et al., 2017; Özyuguran & 
Yaman, 2017; Nhuchhen & Afzal, 2017; Qian et al., 2018; Baghban & Shamshirband, 2019; Ayinde et 
al. 2020 and Lukman et al. 2020b,; Baghban & Ebadi, 2018; Ibikunle et al., 2020a, 2020b and others). 
The model is defined as follows: 

y ¼ Xβþ ε (5) 

where y is an n� 1 vector of response variable, X is a known n� p full rank matrix of predictor or 
explanatory variables, β is an p� 1 vector of unknown regression parameters, ε is an n� 1 vector 
of errors such that EðεÞ ¼ 0 and VðεÞ ¼ σ2In, In is an n� n identity matrix.

The parameter β in model (1) is commonly estimated using the ordinary least squares (OLS) 
estimator which is defined in equation (6). 

β̂ ¼ X0Xð Þ
� 1X0y; (6) 

Most work on the modeling of the HHV of MSW earlier mentioned adopted the ordinary least 
squares estimator. Literature has shown that the predictor variables might be correlated, which 
gives rise to multicollinearity. The OLS estimator suffers a setback when there is multicollinearity 
(Lukman & Ayinde, 2017; Lukman et al., 2019a, 2019b). The consequences of multicollinearity to 
the OLS estimator include large variance, insignificant t-test, wider confidence interval, wrong 
regression coefficients, and others (Ayinde et al., 2018; Dawoud & Kibria, 2020; Lukman & Ayinde, 
2017; Qasim et al., 2019). Multicollinearity can be tested using the following methods: variance 
inflation factor, condition number, condition index, eigenvalues, and others (Aslam & Ahmad, 
2020; Ibikunle et al., 2020b, 2020a). Different estimators have been proposed to estimate the 
parameter when there is multicollinearity. These include the principal component regression 
estimator (PCRE) by Massy (1965), the ridge estimator by Hoerl and Kennard (1970), the Liu 
estimator by Liu (1993), the modified Liu estimator by Lukman et al. (2020a), and the 
K-L estimator by Kibria and Lukman (2020).

The principal components of some of the estimators mentioned above have been combined in 
some studies. For instance, the r − k class estimator was proposed by combining the ridge 
estimator (RE) and the PCRE to form a single estimator (Baye & Parker, 1984). This new estimator 
is better than PCRE and RE using the mean-squared error (MSE) criterion. The r-d class estimator 
was developed by combining the PCRE and the Liu estimator (Kaciranlar & Sakallioglu, 2001).

Limited studies on the modeling of MSW have adopted some of these alternative estimators to 
modeling the high heating values of MSW. It is important to diagnose the model to be free of 
multicollinearity. Few studies have revealed the possibility of multicollinearity in the regression 
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modeling of HHV values (Ibikunle et al., 2020b, 2020a; Sun & Chungpaibulpatana, 2017). Noori 
et al. (2009) and Sun and Chungpaibulpatana (2017) employed the principal component regression 
estimator to forecast MSW in Tehran and Bangkok. Ibikunle et al. (2020a) adopted the ridge 
regression estimator to model both the ultimate and proximate MSW HHV analysis. Ibikunle 
et al. (2020b) employed the robust version of the ridge estimator, the Liu and K-L estimator to 
model the MSW HHV based on the ultimate analysis. There is presently no study where they have 
combined the principal components with the ridge estimator.

In this study, we will consider the r-k class estimator. The estimator is discussed in the next 
session.

3.4.1. R-k class estimator
Model (1) is transformed as follows: 

y ¼ XVV0βþ ε ¼ Zαþ ε; (7) 

where Z ¼ XV, α ¼ V0β and V ¼ ðv1; v2; . . . ; vpÞ ¼ ðVr;Vp� rÞ is a p � p orthogonal matrix with 

ðVr;Vp� rÞ
0X0XðVr;Vp� rÞ ¼ Λ

¼ Λr 0
0 Λp� r

� �

where 0<r � p; Λ
¼

diag v1; v2; . . . ; vp
� �

;Λr ¼ diag v1; v2; . . . ; vrð Þ;Λp� r ¼ diag vrþ1; vrþ2; . . . ; vp
� �

and 
v1 � v2 � . . . � vp>0 are the ordered eigenvalues of X0X: By definition, Z ¼ XV ¼ Zr; Zp� r

� �
is the n 

� p matrix of the principal components (PCs), where zi ¼ Xvi is the ith PC. Let Zp� r contains PCs 
corresponding to near zero eigenvalues, Z can be portioned as Zr and Zp� r; such that Zp� r will be 
eliminated. Model (2.2) can further be written as 

y ¼ Zrαr þ Zp� rαp� r þ ε: (8) 

The PCR estimator of β is 

β̂PCR ¼ Vr V0rX0XVrð Þ
� 1V0rX0y: (9) 

Baye and Parker (1984) defined the r—k class estimator of β as 

β̂r ¼ Vr V0rX0XVr þ kIrð Þ
� 1V0rX0y ¼ VrV0rβ̂ðkÞ; (10) 

where β̂ðkÞ ¼ ðX0X þ kIpÞ
� 1X0y is the ridge estimator. 

k̂ ¼
pσ̂2

∑i¼1
p α̂2

i

(11) 

For more detail on the principal component procedure employed in this study (see, Saito et al., 
2001; Sun et al., 2015a). The criterion for evaluating the best estimator is the mean-squared error 
(MSE). The estimator with the lowest MSE is generally preferred.

4. Result and discussion

4.1. Physicochemical analysis of MSW components
The physical characterization of MSW in Ilorin presented in Table 1 was generated from the 
seasonal (wet and dry) description of MSW components conducted by Ibikunle et al. (2019) and 
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(Ibikunle et al., 2020a). Physicochemical analysis of the eleven (11) combustible fractions, selected 
out of the 19 MSW components identified in Table 1 is presented in Table 2.

The physicochemical properties of the waste components are obtained from the proximate 
analysis. Table 2 shows that the proximate analysis’s highest typical value is possessed by 
a volatile matter of 37.35%, followed by a fixed carbon of 32.72%, followed by ash content of 
12.55%, and moisture content 4.82%. The HHV presented in Table 2 is considered as an approx-
imate inverse proportion to a WTE power plant (Reddy, 2011) and was determined via a bomb 
calorimeter. The typical heating value of the components was determined to be 24 MJ/kg; nylon 
fraction has the highest HHV of 46 MJ/kg, followed by poly-sac with about 39 MJ/kg also a plastic 
bottle with 37 MJ/kg and the least is bones with about 15 MJ/kg. The nylon fraction having the 
highest HHV could be due to its lowest moisture content of 0.01%, which implies that not much 
heat energy would be lost to the component’s combustion’s vaporization effect. The bone fraction 
with the lowest percentage of HHV could be due to its highest percentage of ash (64.7%), which 
has non-combustible characteristics (Sun et al., 2015b).

Wood fraction and trimmings have high moisture contents of about 13% and 10%, respectively, 
and consequential low heating value of 6.8 and 6.6 MJ/kg correspondingly, compared to 13.8 and 

Table 3. Result of correlation coefficient
VM Ash M HHV FC

VM 1 0.521 0.529 −0.537 −0.958**

Ash 0.521 1 0.075 0-.475 −0.648*

M 0.529 0.075 1 −0.754** −0.463

FC −0.958** −0.648* −0.463 0.612* 1

HHV −0.537 −0.475 −0.754** 1 0.612*

Table 4. Total variance explained
Component Initial Eigenvalues

Total % of Variance Cumulative %
1 2.687 67.181 67.181

2 .936 23.391 90.573

3 .349 8.720 99.292

4 .028 .708 100.000

Table 5. Regression estimates using different estimators
Predictors OLS PC Ridge r-k VIF
β0 −0.695 27.788 1.391 0.160

VM 0.476 −0.103 0.453 0.212 16.348

Ash −0.147 −0.108 −0.155 −0.002 2.283

Moisture −2.049 −0.401 −2.049 −0.403 1.506

FC 0.380 0.081 0.359 0.359 19.497

MSE 581.84 523.69 2.563 0.239
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17.15 MJ/kg for plastic bottle and nylon fractions sequentially. This could be because the evapora-
tion period of MSW as fuel was extended, thus, weakening the combustion process; the increase of 
moisture content would reduce the potential of the heating (Saito et al., 2001; Sun et al., 2015a).

4.2. Regression modeling
The correlation matrix in Table 3 revealed that the variables are correlated. The variance inflation 
factor shows that there is multicollinearity. According to Kibria and Lukman (2020), there is multi-
collinearity if the VIF is greater than 10. Table 4 shows that PC1 explains about 67.181% of the total 
variance while PC2 and PC3 explained about 90.53% and 99.292%, respectively. The percentage 
variation explained by PC1 is low. Therefore, we decided to select PC2. The value of k is obtained to be 
0.0629 with sample size n = 44.

Table 5 shows that the performance of the OLS estimator drops when there is multicollinearity. The 
mean square error of the estimator is very high as compared to the other estimator. PCE and r-k both 
have a smaller mean-squared error, and the intercept term for both estimators is positive. According 
to Lukman and Ayinde (2017), one of the consequences of multicollinearity on the OLS estimator is 
that the coefficient occasionally exhibit a wrong sign. For instance, the intercept term of OLS estimator 
in this study is negative while ridge and r-k estimators show a positive coefficient. The result for the 
principal component is not too far from the OLS estimate. It is evident that combining the principal 
component with ridge provides a great improvement to the result. The positive intercept terms show 
that some other estimators can positively influence high heating values that are not considered in this 
study while the OLS estimator says something contrary. However, we recommended the r-k class 
estimator for efficiently modeling because it possesses the smallest mean-squared error. The regres-
sion model is as follows: 

HHV̂ ¼ 0:160þ 0:212VM � 0:002Ash � 0:403Moistureþ 0:359FC (8)  

Every one-unit increase in volatile matter and fixed carbon, heating values increased by about 21% 
and 36%, respectively. For every one-unit increase in ash and moisture, heating values decrease by 
about 0.2% and 40%, respectively. The result agrees with the findings of the following study (Saito 
et al., 2001; Sun et al., 2015a; Adekunle et al., 2015; Motghare et al., 2016). The result in Table 5 
revealed that r-k class estimator helps to efficiently model the HHV. Figures 3 to 6 are the graph of 
the actual value of HHV against the respective predicted value produced by each estimator. In 
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terms of prediction, Figure 6 shows that the r-k estimator gave a better prediction in terms of the 
coefficient of determination (R2) followed by the ridge estimator.

5. Conclusion
The ordinary least squares estimator (OLSE) is famous for modeling municipal solid waste’s high 
heating values. A recent study has shown that the variables that act as predictors for the HHV can 
be correlated a condition called multicollinearity. When this happens, the efficiency of the OLSE 
breakdown by possessing high variance. Some alternative estimators are available as alternatives 
to the OLSE. These include the principal component regression estimator, the ridge estimator, and 
the r-k class estimator. In this study, we build a linear regression model based on the proximate 
analysis of municipal solid waste to predict the HHV. The combustible waste components’ heating 
value is the dependent variable, while the following variables are the predictors: Volatile matter, 
ash, moisture, and fixed carbon. We diagnosed the model and observed that the predictor vari-
ables are related (multicollinearity exists). Thus, the conventional OLSE will not provide a reliable 
estimate. Hence, we estimate using a few alternative robust estimators and judge their perfor-
mances using the mean-squared error. The estimator with the minimum mean-squared error is 
generally preferred. The MSE of OLSE, ridge, PCE, and r-k are as follows: 581.84, 2.56, 523.69, and 
0.239, respectively. The result shows that the r-k class estimator outperforms other estimators 
because it possesses the minimum mean-squared error. We provide a more efficient method of 
estimating the regression coefficients of the ultimate-based model of the HHV of Ilorin MSW. In 
a future study, we will combine the principal components with machine-learning tools such as the 
artificial neural network, support vector regression, and random forest regression.
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