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ABSTRACT
The heating/calorific value of municipal solid waste (MSW) is essential in 
selecting or designing the appropriate waste to energy (WTE) systems. 
Experimental evaluation of the heating value of solid fuels is labor intensive, 
costly, and subject to experimental errors. Different models have been 
established to predict the high heating values of MSW and other solid 
fuels, from the ultimate analysis. However, the reliability of OLS estimator 
used in the linear regression model depends on the non-violation of assump-
tions that include independency of the predictor variables and normality of 
the error term. In this study, a new technique of robust estimators is 
employed to solve the problem of non-normality and dependency of the 
predictor variables in the linear regression model. The Robust ridge, robust 
Liu and robust K-L estimators were applied to mitigate the problems of 
multicollinearity and non-normality in the linear regression model. Eight (8) 
models were developed, and the adequacies were evaluated using the 
coefficient of determination (R2), adjusted R2, Akaike criterion (AIC), the 
mean squared error and the Schwarz criterion (SBIC). The eighth model is 
considered as the best because it has the highest adjusted R2 (0.9710), the 
least mean squared error (1.9564), minimum AIC (133.2755) and SBIC 
(145.9437). The selected model with the robust K-L estimator is finally used 
to predict the high heating/calorific value of the ultimate analysis.
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Introduction

Solid municipal waste is the accumulation of undesirable matters/substances that are disposed on 
a day-to-day basis from human beings’ endeavors when they interrelate with materials and their 
surroundings. Environmental problems that encompass air and water pollution, blockage of drainages 
and degradation of land occur due to irrepressible growth in MSW generation that lacks efficient 
management (Ibikunle et al. 2019; Shi et al. 2016). The waste produced in Ilorin (Nigeria) is a huge one 
that the customary waste disposal technique, could not sufficiently manage it, which resulted in 
uncollected wastes left at the collection points and consequently indiscriminate disposal of wastes to 
undesignated sites (Ibikunle et al. 2019, 2020). The MSW produced in Ilorin (Nigeria) includes wastes 
from households, public centers, markets, parks, and institutions; wastes from industries and hospitals 
are excluded. According to Ibikunle et al. (2019), the constituents of MSW generated in Ilorin 
comprise nylon, packaging box (carton), plastic bottle, polypropylene sack, wood, cow-dung, 
Excrement, bones, sand/ash, others, tins/metals, grass/trimmings, paper, leather, rubber, glass/cera-
mics, textiles (rag) and toiletries (spent pampers, sanitary tissues and pads).
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In 2000, facts from global data on MSW generation revealed 680 million tons per year; in 2010 it 
presented 1300 million tons per year, while the prediction for the years 2025 and 2055 was 
2200 million and 4200 million tons per year discretely (Hoornweg and Bhada 2012). The World 
Bank reported the MSW generation in 2016 by the world city to be 2,010 million tons; with 0.74 kg per 
capita per day rate of generation. EPA (2017), presented the waste generated in 2005 by the U.S., to be 
262.4 million tons at 2.03 kg per capita per day. The MSW rate of generation is considered as the major 
environmental indicator for the evaluation of wastes degree of production, to design an efficient waste 
management method. It is also helpful in comparing the degree of waste generation between one 
nation and others. According to IRENA (2018), the waste generated by United States of America in 
2004, was rated at 942 kg per capita per year and it generated 8461000 MWh of electrical power; U. 
K. was able to generate 482 kg/person/annum of MSW to produce 1422000 MWh of electrical power; 
In Switzerland, MSW was generated at 730 kg per capita per day to initiate 1102000 MWh of 
electricity. India’s rate of production was 385 kg per capita per person, to generate power of 
1090000 MWh; while at 624 kg per capita per year rate of waste production, Japan produced power 
of 6574 GWh from MSW; Canada initiated power of about 89000 MWh from waste produced at 
850 kg per person per year; France with MSW rate of generation 511 kg/capita/annum produced 
(IRENA, 2018). Increase in the generation rate of MSW poses a great concern because of the 
management processes (disposal and recycling) required. In 2003, about 12000 tons of MSW were 
generated in the city of Mexico (Baghban and Shamshirband 2019).

Despite power challenges in the developing nations particularly Nigeria, Africa as a continent, is 
still very dawdle in the area of waste to energy (WTE) systems of management, Africa’s WTE power 
plant, built in Addis Ababa the capital of Ethiopia was commissioned in 2018. The plant can incinerate 
1,400 tons of MSW, which is about 80% of the waste generated in the city to produce 185000 MWh/ 
year using two of 25 MW steam turbines. Ghana is projecting for 60 MW thermal energy plant and the 
capacity of the WTE plants in South Africa (SA), exceeds 6.327 GW (UNEP, 2017). Nigeria has an 
average power rating of 0.107 MWh, at 12 W/capita/annum, which is comparably very low to power 
availability in other growing nations. Malaysia has 3.31 MWh with 337 W, SA has 4.347 MWh and 
496 W (Hoornweg and Bhada 2012). According to Ibikunle et al. (2019), 196 million people in Nigeria 
produced 32 million tons of MSW annually, with about 70–80% of the waste left uncollected. In 
Onitsha, above 730412 people produced 370706 MSW tons/year; In Lagos, the commercial capital city 
of Nigeria, about 21 million populace produced more than 10,000,000 kg of MSW/day at 0.5 kg/ 
person/day rate of generation (Maxwell 2010). Ibikunle et al. (2019), predicted the aggregate MSW 
generated in Ilorin metropolis to be 302,000 tons per year with 0.78 kg per person per day rate of 
generation. The waste produced in Ilorin increases tremendously daily due to rural-urban migration, 
industrialization, and demographic growth. Nearly all the designated dumpsites were exhausted, and 
many were already closed, thereby contributing more challenges for the traditional waste disposal 
system, that is practiced in Ilorin (Nigeria). The waste management system in Ilorin is relatively 
inefficient and not sufficient, thereby making the wastes to constitute a nuisance in the city. There is 
a need to incorporate other methods of waste management into the existing one, to engender efficient 
waste management and waste to wealth practices.

The contemporary development in WTE technology in the developed nations is enough to 
encourage the private organizations and the municipalities to venture into energy recovery processes. 
Recovery of energy from MSW is possible through processes that include aerobic digestion, gasifica-
tion, incineration and pyrolysis (Cynthia, Keat, and Moses 2013). Abelha et al. (2003) and Li, Li, and 
Xu (2008), suggested that combustion is the method among the energy recovery technologies that are 
most economically prudent and ecologically friendly. Ibikunle et al. (2018), stated that about 74% of 
the total waste generated, can be consumed via energy recovery processes and Ibikunle et al. (2019), 
established that about 71% of the waste generated in Ilorin were combustible and could be used for 
energy recovery via incineration. To establish any WTE system, the design and the operation of the 
power plant, is dependent upon the heating value of the quantity of the MSW fractions considered. 
However, the heating value (HV) or the calorific value (CV) of the MSW components available in the 
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city must be determined; to efficiently design the capacity of the WTE power plant required in such 
locality. The HV, is one of the paramount qualities, to determine the energy content of MSW as solid 
fuel. According to Reddy (2011), the HV is about an inverse proportional capacity of the WTE 
furnace/boiler and could be obtained by using a combustion calorimeter; or determined by a model 
obtained empirically. It is deprecatory to establish a heating value data that is reliable for the operation, 
maintenance, and design of a waste-to-energy plant. HV can be classified as high and Low heating 
Values (HHV and LHV). HV (or CV) defines the energy and the power potentials of MSW as a solid 
fuel, and it is one of the principal resources required in fuel to obtain a balance of energy, analysis in 
engineering, design modelings, and simulations of conversion systems for heat energy (Parikh, 
Channiwala, and Ghosal 2005). The HV is commonly classified as LHV or HHV. Gross calorific 
value (GCV) also known as HHV, is the heat released during thorough combustion of fuel, presuming 
the water contained in solid fuel before combustion process began and the one produced during 
combustion are present as condensed liquid (Ghugare et al. 2014; Parikh, Channiwala, and Ghosal 
2005). Combustion of MSW is a reliable source of energy recovery since it has significant HHV that is 
required in use as a solid fuel (Alireza and Taghi, 2018). Energy recovery from MSW is possible via the 
combustion of waste components above a temperature of about 1123 K when sufficient air is available 
for the appropriate execution of the procedure (Baghban and Shamshirband 2019).

The HHV can be obtained experimentally, by combusting solid fuel in a high-pressure oxygen 
environment combustion calorimeter; it measures the change in enthalpy between the reactants and 
the products (Cordero et al. 2001; Parikh, Channiwala, and Ghosal 2005). LHV is the net HV, 
produced during combustion when the water present is assumed to be in vapor form when combus-
tion is completed, and it is obtained by deducting the latent heat of vaporization of water from the 
HHV (Vargas-Moreno et al. 2012).

The HHV of MSW resource as a solid fuel, have been predicted using various mathematical models 
that include Dulong’s and Steuer’s models (Ibikunle et al. 2019). The models utilized the values 
obtained from ultimate analysis while other models used the values obtained from proximate analysis 
and physical composition. The fundamental characteristics of fuel that are used to project the HHV 
are revealed through the physicochemical analysis. Ultimate (chemical) analysis determines the 
principal chemical (elemental) components of the samples; these include oxygen (O), sulphur (S), 
hydrogen (H), nitrogen (N) and carbon (C) in weight proportion (wt. %) (Ibikunle et al. 2018; Yin 
2011). Sheng and Azevedo (2005) established that the models developed from ultimate analysis values 
are more reliable compared to others. Yin (2011), also stated that models developed based on values 
from the ultimate (chemical) analysis exhibit better accuracy. Many prefer developing proximate 
analysis-based models, because, elemental analysis required in experimental procedures is very costly 
(Küçükbayrak et al. 1991). The proximate analysis determines, the percentage moisture (M), volatile 
matter (VM), fixed carbon (FC) and ash contents contained in every sample (Ibikunle et al. 2019; Yin 
2011). Proximate analysis is faster, cheaper and easier; it can be performed by any competent 
researcher, scientist, or engineer that is acquainted with familiar laboratory equipment that includes 
digital Top-loading balance, electrical-oven (of � 200 ° C) and electrical furnace (of � 1200o C) 
using standard test methods like European Committee for Standardization (CEN) and American 
Society for Testing and Materials (ASTM) (Demirbas 2003; Ibikunle et al. 2019; Küçükbayrak et al. 
1991).

This study aims is to develop Ultimate-based models to predict the HHV of the combustible 
fractions of MSW using regression models. The proposed regression models are based on elemental 
components of MSW fractions (C, N, H, S and O) obtained from the ultimate analysis, to ensure 
a more accurate model that can be applied to other combustible biomass or biowaste components. We 
carry out regression diagnostics to assess the adequacy of each of the proposed models, and the best 
model will be employed to predict the HHV of the MSW in Ilorin Nigeria. The most suitable 
estimators will be adopted to estimate the parameters in the model. Previous studies have mostly 
adopted the conventional ordinary least squares estimator. However, in this study, we will consider 
some more robust estimators.
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Study area

A case study of Ilorin (Nigeria) was considered for this investigation, due to its demographic 
development and the enormous MSW generated daily. Ibikunle et al. (2019), reported that the 
aggregate waste produced in the metropolis in 2016, was 302,000 tons per year at 0.78 kg per capita 
per day. The population accountable for the generation of waste in 2011 was projected to be 908,490 
people, based on 2006 census (NPC, 2006; Ibikunle et al. 2019), projected the population of people 
responsible for waste generation in 2017 to be 1,087,660. The city comprises municipals that include 
Ilorin east, Ilorin south and Ilorin west. Ilorin is the capital of Kwara State (Nigeria) and is situated on 
latitude and longitude of 80 30ʹN and 40 35ʹE, respectively, on the territory of 100 km2 area of land. It is 
located between the middle belt and South Western part of Nigeria. The principal towns in Ilorin 
metropolis are presented in the map shown in Figure 1(a). Ilorin is divided into zones that consist of 
the traditional settlement, as well as modern urban area. The city Center comprises the Emir’s palace 
zone, the king’s market (Oja-oba) and the Central mosque. The traditional zone encompasses area 
with deteriorating buildings and work man unrestrained zone, that comprises the second procreative 
movement to the city. Another zone accommodates categories of people that comprise, middle class, 
the professionals, and the businessmen. The last is the commuter zone which consists of small 
settlements and villages (Ajadi and Tunde, 2017). The waste management method practised in 
Ilorin is the disposal of MSW into the dumpsite which is insufficient to cater for the enormous 
waste produced; this thereby encourages people to indulge in indiscriminate dumping of garbage to 
wrong locations as shown in Figure 1(b). As at the time of this study, out of about ten dumpsites that 
were approved for MSW disposal, only Lasoju dumpsite of about 20 acres presented in Figure 1(c), was 
operational; the site is about 25 km away from the city, along Lagos – Ilorin express. This study will 
encourage sorting of waste fractions from source as well as an energy recovery system, which will 
provide an acceptable waste management method.

Materials and methods

This study was conducted on municipal solid waste (MSW) fractions from Ilorin metropolis in 
Nigeria. The MSW generated in Ilorin metropolis is a very huge one, comprising nylon, paper, carton, 
plastic bottle, Styrofoam, polypropylene sack, bones, sand/ash, grass/trimmings, food residue, glass/ 
ceramics, textiles (rag), toiletries (pampers, sanitary tissues and pads), cow-dung, excrement, leather, 
rubber, and other biogenic waste. Thirty samples of MSW was characterized at Lasoju dumpsite, 
twelve (12) waste components that were considered combustible were prepared as test samples for 
Laboratory analysis. The high heating value (HHV) of each component was determined using e 2 
k combustion calorimeter, and the Ultimate analysis was performed using Inductively Coupled 
Plasma – Optical Emission Spectrometer (ICP – OES Perkin Elmer 8000). The heating value was 
modeled with the chemical elements obtained from the ultimate (chemical) analysis to determine the 
thermochemical interrelationship between the HV and the composing chemical elements.

Sampling, sorting, and characterization of MSW components

On-site characterization of MSW fractions was performed at Lasoju dumpsite four months. Thirty 
(30) samples of wastes were randomly collected as suggested by Sharma and McBean (2007), from 
different locations of the dump heaps based on ASTM D5231 standard (Ibikunle et al. 2019), and were 
adequately mixed using a shovel to heap it into a cone shape. Later it was divided into four parts, as 
suggested by Abd Alqader and Hamad (2012) Two slices that were opposite in a crosswise direction 
were thrown away, and the remaining were again mixed to give a parent sample of 240 liters of bin 
volume; this process was replicated 30 times (EC Ibikunle et al. 2018; SWA-Tool 2004). Each of the 
samples was poured into the screening table suggested by WHO, made of mild steel of 1.5 by 3 m 
dimensions with sieving mesh of 10 by 10 mm holes as adopted by Ibikunle et al. (2018) and Issam 
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Figure 1. (a): Map Showing the Major Towns in Ilorin Metropolis (Google maps world “Google maps world Gazetteer–Ilorin Nigeria” 
2020). (b): Indiscriminate disposal of MSW into water ways in Ilorin). Lasoju dumpsite along Lagos – Ilorin express way.
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et al. (2010). Individual components were manually sorted into different containers, labeled, and later 
weighed. The20 MSW fractions characterized are paper, carton (packaging box), wood, plastic bottle, 
nylon, polypropylene sack, styrofoam, bones, tins and metals, food residue, grass/trimmings, glass/ 
ceramics, textiles (rag), toiletries (pampers, sanitary tissues and pads), cow-dung, excrement, leather, 
rubber, sand/ash and unidentified biogenic matters. The wastes components were classified into 
combustible and others. Every component that can burn if classified under combustible category 
and the rest were classified as others.

Preparation of laboratory test samples

The available combustible waste components that encompass wood, packaging box, paper, polypro-
pylene sack, nylon, plastic bottle, styrofoam, rags, bones, grass/garden trimmings and food residue and 
other biogenic were prepared for the laboratory analysis. Each sample was shredded and milled into 
smaller particles of less than 1 mm, other than plastic that is larger. Shredding and milling into smaller 
particles will encourage a larger surface area for effortless digestion of the test samples when mixed 
with reactants. The test samples prepared are presented in Figure 2(a – i).

Ultimate analysis of the combustible MSW fractions

The chemical elements are composed of carbon (C), hydrogen (H), nitrogen (N), sulphur (S) and 
oxygen (O) that are present in the MSW test samples. They were determined based on ASTM C1111- 
10 standard test method, with the aid of Inductively Coupled Plasma – Optical Emission Spectrometer 

Figure 2. Three samples of milled MSW fractions prepared for laboratory tests.
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(ICP – OES Perkin Elmer 8000) as suggested by Ibikunle et al. (2018). Step 1: The digestion process 
requires that 1 ml of the sample be digested in tubes and heated to a temperature of 150 o C, it is 
further heated in a Gerhardt – Kjeldatherm digestion machine until the samples become light brown. 
When the digests become a clear yellow-like color, and the temperature was raised to 240 o C until 
dryness; then the digestion tubes were taken out of the block to cool.

Step 2: Elemental analysis by ICP – Spectrometer. The aqueous solution of the sample preparation 
is injected to ICP. It was nebulized to a mist of fine droplets called aerosol, the ICP dissociates the 
sample into component ions by argon plasma, and was stirred to emit typical light wavelength. The 
emitted light wavelength was set into its constituent radiation (through diffracting grating) and 
evaluated using a photomultiplier tube at the specific wavelength for each element. The signal 
produced by the electron was juxtaposed with other intensities measured for related element con-
centration, and it was computed in the system’s data analyzer. The components of mineral in every 
sample was investigated by ICP – Spec. using “WINLAB 32” software. The spectrometer data 
collection parameters were configured, viewed graphically, and the results of the analysis give the 
percentage constituents of the elements in the wastes test samples.

Prediction of the HHV of MSW using linear regression methods

Linear regression model has been employed by several authors to predict the HHV of some solid fuel, 
as presented in the following eaution: 

y ¼ Xβþ ε (1) 

where y is an n� 1 vector of response variable, X is a known n� p full rank matrix of predictor or 
explanatory variables, β is an p� 1 vector of unknown regression parameters, ε is an n� 1vector of 
errors such that EðεÞ ¼ 0 and VðεÞ ¼ σ2In, In is an n� n identity matrix.

The HHV of solid fuels that encompass municipal solid waste, lignite coals, Biomass, Coal, green-
house crop residues, Spanish biofuels and others, had been predicted by researchers that include 
Jiménez and González (1991), Küçükbayrak et al. (1991), Demirbas (2003), Cordero et al. (2001), 
Khuriati et al. (2017), Kathiravale et al. (2003), Sheng and Azevedo (2005), Parikh, Channiwala, and 
Ghosal (2005), García et al. (2014) Özyuguran and Yaman (2017), Nhuchhen and Afzal (2017), Qian 
et al. (2018), Baghban and Shamshirband (2019), and others using linear regression model. The 
authors have employed the ordinary least squares (OLS) estimator defined in equation (2) for their 
prediction, based on either proximate or the ultimate analysis. 

β̂ ¼ X0Xð Þ
� 1X0y (2) 

However, the authors did not take cognizance of the fact that the performance of the OLS estimator, is 
a function of the non-violation of certain assumptions. Lukman and Ayinde (2017), reported that the 
OLS estimator performs best, when there is no violation of assumptions which include none correla-
tion of the predictors. The presence of multicollinearity in a linear regression model reduces the 
efficiency of the OLS estimator (Kibria and Banik 2016; Lukman et al. 2020). The regression estimates 
might exhibit a wrong sign using the OLS estimator when there is multicollinearity (Lukman et al. 
2019a; Qasim, Amin, and Omer 2019; Saleh et al. 2019). The variance inflation factor and the 
condition index are popularly employed to test for the presence of multicollinearity (Gujarati 1995; 
Kibria and Lukman 2020). Alternative estimators have been suggested for parameter estimations in 
the linear regression model. Hoerl and Kennard (1970), developed the ridge regression estimator as 
presented in the folloiwng equation: 

β̂ kð Þ ¼ ðX0X þ kIpÞ
� 1X0y ¼ ðX0X þ kIpÞ

� 1X0Xβ̂ (3) 

where Ipis the identity matrix, k is the shrinkage parameter.
In this study, shrinkage parameter (k), was estimated as presented inthe folloiwng equation : 
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k̂ ¼
pσ̂2

Pp

i¼1
β̂2

i

(4) 

where σ̂2 ¼
Y 0Y� β0X0Y

n� p is the estimated mean squared error from the OLS estimator.
The Liu estimator developed by Liu (1993), to solve the problem of multicollinearity is as presented 

inthe folloiwng equation : 

β̂ dð Þ ¼ ðX0X þ IpÞ
� 1
ðX0yþ dβ̂Þ ¼ ðX0X þ IpÞ

� 1
ðX0X þ dIpÞβ̂ (5) 

where d is the shrinkage parameter and it was estimated in this study, by adopting the folloiwng 
equation: 

d̂ ¼ min
β̂2

i

σ̂2=λi þ β̂2
i

" #

(6) 

where λi is the ith eigenvalue of X0Xmatrix. Recently, Kibria and Lukman (2020), developed the 
K-L estimator to also handle the problem of multicollinearity in the linear regression model. The 
estimator is defined inthe folloiwng equation, as β̂KL: 

β̂KL ¼ ðX
0X þ k�IpÞ

� 1
ðX0X � k�IpÞβ̂ (7) 

where k� is the shrinkage parameter and is estimated in the following equation : 

k̂� ¼ min
σ̂2

2β̂2
i þ σ̂2=λi

" #

(8) 

The scalar mean squared error (SMSE) is adopted for the purpose of comparing the performance of 
these estimators. Estimator with the least mean square error has the best performance. The mean 
square error of the estimators are defined in equations (9–12): 

SMSE β̂
� �
¼ σ̂2

Xp

i¼1

1
λi

(9) 

SMSE β̂ kð Þ
� �

¼ σ̂2
Xp

i¼1

λi þ k2β̂2
i

λi þ kð Þ
2 (10) 

SMSE β̂ dð Þ
� �

¼ σ̂2
Xp

i¼1

λi þ dð Þ
2

λi λi þ 1ð Þ
2 þ

d � 1ð Þ
2β̂2

i

λi þ 1ð Þ
2

 !

(11) 

SMSE β̂KL

� �
¼ σ̂2

Xp

i¼1

ðλi � k�Þ2

λi λi þ k�ð Þ
2 þ 4k�2

Xp

i¼1

β̂2
i

λi þ kð Þ
2

 !

(12) 

Another assumption that is often violated in the linear regression model is the normality of the error 
term (Ayinde, Lukman, and Arowolo 2015; Kibria and Lukman 2020; Lukman, Osowole, and Ayinde 
2015). The robust estimators are employed to solve the problem of non-normality in the linear 
regression model. These include the M-estimator, the MM-estimator, the least absolute deviation 
estimator, the least trimmed mean squared estimator and others (Huber 1973; Rousseeuw and Leroy 
1987; Rousseeuw and Yohai 1984; Yohai 1987).
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The M-estimator is employed in this study because, the estimator is generally preferred when 
there is outlier in the y-direction (Lukman, Arowolo, and Ayinde 2014; Samkar and Alpu 2010). 
Studies have shown that both problems can exist jointly in the linear regression model which is 
a threat to the performance of the OLS estimator (Kan, Ozlem, and Yazici 2013; Lukman et al. 
2019b).

The robust ridge and the robust Liu were introduced in literature to jointly handle the problem of 
multicollinearity and non-normality in the linear regression model (Kan, Ozlem, and Yazici 2013; 
Lukman et al. 2019b). In this study, we employed the robust ridge, robust Liu and the robust 
K-L estimator to mitigate these problems. The robust ridge estimator is defined inthe folloiwng 
equation : 

β̂M
k ¼ ðX

0X þ kMIpÞ
� 1X0Xβ̂M (13) 

where kM is the robust shrinkage parameter and it is estimated in this study using the folloiwng 
equation: 

k̂M ¼
pΩ

Pp

i¼1
β̂2

i;M

(14) 

where Ω is the scaled mean squared error of β̂M , β̂Mis the regression estimate of the M-estimator. The 
robust Liu estimator is defined as 

β̂M
d ¼ ðX

0X þ IpÞ
� 1
ðX0X þ dMIpÞβ̂M (15) 

where dM is the robust shrinkage parameter and it is estimated in this study using the following 
equation : 

d̂M ¼ min
β̂2

i;M

Ω=λi þ β̂2
i;M

" #

(16) 

where λi is the ith eigenvalue of X0X matrix. The robust K-L estimator is defined in the following 
equation as β̂M

KL: 

β̂M
KL ¼ ðSþ k�MIpÞ

� 1
ðS � k�MIpÞβ̂ (17) 

where k�, the shrinkage parameter is estimated as follows: 

k�M ¼ min
Ω

2β̂2
i;M þ Ω=λi

" #

(18) 

Results and discussion

Characterization of MSW into components

The MSW fractions were characterized into 20 components as presented in Table 1. The quantity of 
MSW characterized during this study, was about 1670 kg, with bin volume of 8.312 m3 at a production 
rate of 1.003 kg/capita per day. The characterization revealed that the waste component with highest 
proportion is nylon with 14.01% and production rate of 0.14 kg per capita per day, followed by food 
waste 9.54% with production rate of 0.096 kg per capita per day, plastic bottle 9.0% at rate of 0.090 kg 
per capita per day, and the least is leather with 0.007% at rate of 0.001 kg per capita per day.

ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 9



Thermochemical analysis of MSW components

Thermochemical analysis of twelve (12) combustible components of the twenty (20) waste frac-
tions characterized is presented in Table 2. The typical HHV of the combustible waste components 
is 21.3 MJ/kg. The waste fraction with the highest HHV proportion is plastic with 16.92%, 
followed by 11.10% of rubber, 10.94% of Styrofoam and the least is bone with 5.72%. The average 
proportion of the chemical elements in the combustible waste components reveals that carbon is 
51.80%, oxygen is 33.82%, hydrogen is 7.49%, nitrogen is 1.14% and the least is sulphur with 
0.42%. The carbon constituent in the waste fractions show that plastic has the highest with 80.22%, 
followed by rubber with 67.88% and the least is bone with 33.83%. Hydrogen constituent shows 
that plastic has 14.98%, followed by Styrofoam 8.05%, the least is high density plastic with 5.73%. 
In nitrogen constituent, bone has 4.89%, other biogenic fraction has 2.88% and the least is 0.03% 
plastic. The highest constituent of sulfur is rubber with 1.8%, followed by food residue 1.05% and 
the least is wood with 0.03% while paper has 44.95% oxygen, followed by 43.98% food residue ant 
the least is 4.18% plastic.

Table 1. The waste components showing the quantity characterized and the generation rate.

Waste 
components

Wt. 
(kg)

Wt. 
%

Vol. 
(m3)

kg/capita 
/day

Food residue 159.25 9.54 0.72 0.096
Wood 12.35 0.74 0.06 0.007
Paper 92.85 5.56 0.47 0.056
packaging box 148.80 8.91 0.69 0.089
Grass/trimmings 68.62 4.11 0.36 0.041
Textiles (rag) 136.90 8.20 0.71 0.082
Toiletries 95.20 5.70 0.53 0.057
Excrement 24.20 1.45 0.12 0.015
Cow dung 21.30 1.28 0.11 0.013
Nylon 233.90 14.01 1.24 0.140
Polypropylene-sac 81.76 4.90 0.42 0.049
Plastic bottle 150.35 9.00 0.71 0.090
Styrofoam 133.73 8.01 0.63 0.080
Rubber 2.65 0.16 0.01 0.002
Leather 1.10 0.07 0.00 0.001
Glass/Ceramics 41.15 2.46 0.22 0.025
Bones 13.75 0.82 0.07 0.008
Tins/Metals 72.25 4.33 0.34 0.043
Sand/Ash 45.23 2.71 0.24 0.027
Others 134.50 8.05 0.70 0.081
Grand Total 1669.83 100 8.312 1.003

Table 2. Thermochemical characterization of waste components.

Waste Fractions C % H % N % S % O % ASH % HHV (MJ/kg)

Grass/trimmings 41.01 6.22 0.89 0.25 39.20 12.89 16.01
Styrofoam 57.95 8.05 0.80 0.09 31.35 2.201 27.96
Textile (rags) 48.95 5.95 0.31 0.24 42.98 2.160 17.89
Paper 43.28 6.83 0.16 0.09 44.95 4.990 16.75
Bone 33.83 6.17 4.89 0.24 24.86 30.00 14.61
Plastics 80.22 14.98 0.03 0.05 4.120 2.530 43.24
Other-biogenic 38.85 6.88 2.88 0.60 41.82 10.95 15.13
Rubber 67.88 7.76 0.45 1.81 11.89 14.59 28.37
High Density Plastic 63.00 5.73 0.09 0.13 33.87 0.156 22.99
Wood 46.95 6.77 0.16 0.03 43.55 1.120 17.96
Packaging box 52.10 7.89 0.55 0.45 43.23 6.650 16.49
Food residue 47.58 6.66 2.52 1.05 43.98 3.889 18.21
Typical value 51.80 7.49 1.14 0.42 33.82 7.680 21.30
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Data description and modeling

The twelve (12) waste components that are combustible, were subjected to ultimate analysis. Each test 
sample was replicated, in other to get a reliable typical value for each component. The typical heating 
value of the combustible waste components considered as the dependent variable, was modeled 
against the chemical elements comprising Carbon, Hydrogen, Nitrogen, Sulphur, and Oxygen using 
the linear regression model. Also, we determine the thermochemical correlation between the HHV 
and the elements by adopting the correlation coefficient. The softwares adopted in this study include 
R and GRETL. Figure 3 shows the relationship among the variables using the scatter plot matrix. The 
scatter plot matrix reveals that a positive relationship exist between HHV and the chemical elements: 
C, H and S. A negative relationship exist between HHV and the following element: O and N.

Figure 3 is further supported with the estimation of the correlation coefficient using Pearson 
product moment method. In Table 3, it is established that relationship exist among the variables.

In this study, eight models were developed; the HHV of MSW was modeled using the linear 
regression analysis as presented in equations (19–24). 

Figure 3. Scatter plot matrix of the variables.

Table 3. Correlation coefficient output.

C H N S O HHV

C Pearson Correlation 1 .665** −.611** .115 −.720** .926**
Sig. (2-tailed) .000 .000 .505 .000 .000

H Pearson Correlation .665** 1 −.194 −.091 −.683** .838**
Sig. (2-tailed) .000 .257 .596 .000 .000

N Pearson Correlation −.611** −.194 1 .125 .051 −.397*
Sig. (2-tailed) .000 .257 .466 .766 .016

S Pearson Correlation .115 −.091 .125 1 −.277 .044
Sig. (2-tailed) .505 .596 .466 .101 .798

O Pearson Correlation −.720** −.683** .051 −.277 1 −.817**
Sig. (2-tailed) .000 .000 .766 .101 .000
Sig. (2-tailed) .002 .310 .000 .081 .173 .051

HHV Pearson Correlation .926** .838** −.397* .044 −.817** 1
Sig. (2-tailed) .000 .000 .016 .798 .000

**.Correlation is significant at the 0.01 level (2-tailed)

ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 11



Model1 : y ¼ β0 þ β1C þ β2H þ β3N þ β4Sþ β5Oþ εi (19) 

Model 2 : y ¼ β0 þ β1C þ β2H þ β3N þ β4Sþ εi (20) 

Model3 : y ¼ β0 þ β1C þ β2H þ β3N þ εi (21) 

Model4 : y ¼ β0 þ β1C þ β2H þ εi (22) 

Model5 : y ¼ β0 þ β1C þ εi (23) 

Model6 : y ¼ β0 þ β1C þ β2 C2 þ β3H þ β4N þ β5Sþ β6Oþ εi (24) 

Model7 : y ¼ β0 þ β1C þ β2 C2 þ β3H þ β4H2 þ β5N þ β6N2þ

β7Sþ β8S2 þ β9Oþ β10O2 þ εi
(25) 

Model8 : y ¼ β0 þ β1C þ β2H þ β3N þ β4N2 þ β5Sþ β6S2 þ β7Oþ εi (26) 

where βi; i ¼ 0; 1; 2; 3; 4; 5; . . . ; 10 denotes the regression coefficients, y represent the HV of the 
MSW, C denotes carbon content, H denotes Hydrogen content, N represents Nitrogen content, 
S represents Sulphur content, O represents Oxygen content and εi is the error term that is expected 
to be normally distributed with mean zero and variance, σ2:

Table 4 provides the ordinary least square estimate of equations (1–26). We assess the model 
adequacy using the following criteria: coefficient of determination (R2), adjusted R2, Akaike criterion 
(AIC), the mean squared error and the Schwarz criterion. This was done for the purpose of selecting 
the best model for the ultimate analysis. Model 8 is the best because it possess the highest adjusted R2, 
the least mean squared error, the least AIC and the least SBIC. Research has revealed that adjusted R2 is 
better than the R2 especially when you have to introduce new variables. The adjusted R2 works on the 
limitation of the R2 (Gujarati 1995). The carried out diagnostic check to examine if the assumptions in 
the linear regression model are satisfied. The results are also available in Table 3. Model (7) competes 
favorably with model (8). These shows that the quadratic model (8) fit well to the data. The R2 and the 
adjusted R2 are presented in Table 4, also the parameter estimation and diagnostic check of the best 
model is presented in Table 5.

The diagnostic check shows that there are certain violations in the assumption of the linear 
regression model which makes the OLS estimator not the most efficient estimator for this modeling. 
The Jarque-Bera (JB) test shows that the error term is not normally distributed. The test statistic value 
is 48.2133 with a corresponding p-value of 0.0000. Thus, since the p-value is less than the level of 
significance (α = 0.05) then we conclude the error term is not normally distributed. The white test is 
employed to check if the error term has a constant variance. This shows there is no problem of 
heteroscedasticity. The white test value is 21.007 with a p-value of 0.7860. There is constant variance 

Table 4. Model selection for MSW based on ultimate analysis.

Predictors R2 adj R2 MSE AIC SBIC

Model 1 0.9635 0.9574 2.8789 145.6671 155.1682
model 2 0.9605 0.9554 3.0162 146.5249 154.4425
Model 3 0.9590 0.9551 3.0314 145.8484 152.1825
Model 4 0.9462 0.9429 3.8581 153.6376 158.3881
Model 5 0.8568 0.8526 9.9573 186.8451 190.012
Model 6 0.9655 0.9583 2.8115 145.5932 156.6778
Model 7 0.9771 0.9680 2.1615 138.7848 156.2035
Model 8 0.9768 0.9710 1.9564 133.2755 145.9437
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since the p-value is greater than the level of significance. The other problem exhibited in this model is 
the challenge of multicollinearity since the variance inflation factors for some variables are greater 
than 10. According to Gujarati (1995), there is multicollinearity when the VIF exceeds 10. The 
diagnostic test revealed that the model suffers the problem of non-normality and multicollinearity. 
For the purpose of handling these problems simultaneously, we employed the robust-ridge estimator, 
robust-Liu and robust-KL estimator. The performance of the estimators is compared using the scalar 
mean squared error (SMSE). The results are presented in Table 6 and the estimator with the least 
SMSE is considered best. The robust-KL estimator possesses the least SMSE. Figures 4 and 5 shows the 
graph of the predicted value against the actual value using both the OLS and the robust-KL estimator.

Figures 4 and 5 also shows that model (8) fit well to the HHV data. Though both figures indicate 
that the actual heating values are not far from their corresponding predicted values. However, the 

Table 5. HHV Modeling based on the ultimate analysis using the OLS.

Predictors Coeff. SE t-ratio p-value VIF

β0 −7.9080 4.4692 −1.769 0.0877*
β1 0.4699 0.0519 9.058 0.0000*** 7.938
β2 0.9671 01703 5.678 0.0000*** 2.918
β3 3.8402 0.8588 4.472 0.0001*** 28.178
β4 −0.5763 0.1610 −3.578 0.0013*** 21.902
β5 −12.924 3.9207 −3.296 0.0027*** 55.957
β6 6.8369 2.4096 2.837 0.0084*** 59.770
β7 −0.0609 0.05315 −1.146 0.2617 8.796
R-squared 0.9768 F-test 

(p-value)
168.68 

(0.0000)
Adjusted R-squared 0.9710

White test 
(p-value)

7.4937 
(0.823)

JB-test 
(p-value)

58.244 
(0.0000)

Table 6. OLS and Robust estimators’ output.

Predictors β̂ β̂Mk β̂Md β̂Mkl
β0 −7.9080 −6.3178 −5.3458 −5.2716
β1 0.4699 0.4588 0.4496 0.4489
β2 0.9671 0.9240 0.9117 0.9107
β3 3.8402 3.3389 3.1753 3.1648
β4 −0.5763 −0.5219 −0.5095 −0.5088
β5 −12.924 −9.8073 −8.6217 −8.5418
β6 6.8369 4.8947 4.1551 4.1048
β7 −0.0609 −0.0810 −0.0942 −0.0952
SMSE 41.950 23.3342 18.5338 18.2421

Figure 4. Graph of the predicted and experimental HHV using the OLS estimator.
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formal estimation revealed that the robust-KL is generally preferred to estimate the parameters in the 
best model. In Table 7, the actual values were compared to the values predicted via OLS and Robust- 
KL discretely. Comparing the parameter estimation with some existing models, we observed the 
heating value increase with increases in Carbon, Hydrogen and Sulphur (quadratic term) while 

Figure 5. Graph of the predicted and experimental HHV using the robust-KL estimator.

Table 7. The actual values and the predicted values.

Actual 
values

Precited values 
using OLS

Predicted values 
based on Robust-KL

16 15.41 15.84
16 15.40 15.75
16 15.92 16.18
28 27.07 26.78
28 26.79 26.56
28 26.76 26.56
18 16.89 17.37
18 17.62 17.84
18 16.80 17.23
17 15.75 15.80
17 15.86 15.89
17 14.63 15.07
15 13.88 13.94
15 14.74 14.67
14 15.89 15.77
43 43.54 43.66
43 43.07 43.16
44 43.75 43.79
15 15.58 15.81
15 15.13 15.39
16 14.88 15.05
28 29.86 29.37
28 26.61 27.01
28 28.49 28.58
23 23.47 23.72
23 23.25 23.25
23 21.22 21.89
18 18.41 18.18
18 19.59 19.46
18 18.73 18.68
16 17.71 18.40
16 17.26 17.73
12 17.11 17.75
18 17.94 18.00
19 18.68 18.53
19 19.33 19.15

14 R. A. IBIKUNLE ET AL.



Oxygen and Nitrogen (quadratic term) shows a negative impact. This result agree with the Modified 
Duolong equation adopted by in the study of Tchobanoglous, Theisen, and Vigilintegrated (1993), 
Meraz et al. (2003) and Komilis et al. (2012).

Conclusion

In this study, we developed the linear regression models for the prediction of the high heating values 
based on the ultimate analysis of the municipal solid waste. The heating value of the combustible waste 
components was considered as the dependent variable, modeled against the chemical elements 
comprising Carbon, Hydrogen, Nitrogen, Sulphur, and Oxygen using the linear regression model. 
Eight different models were developed either in the linear or quadratic form. The adequacy of the 
models was evaluated using some criteria, and model (8) was eventually selected as the best, because it 
possesses the highest adjusted R2 of 0.9710, the least mean squared error of 1.9564, the least AIC of 
133.2755 and the least SBIC of 145.9437. The parameters of the selected model were estimated, using 
ordinary least square, the robust ridge, the robust Liu and robust KL estimators. Comparatively, the 
robust KL estimator performs best in terms of lower scalar mean squared error. Finally, the HHV of 
the MSW based on the ultimate analysis was predicted using the robust KL estimator. This study 
provides a more robust method of estimating the parameters in the ultimate based model of the HHV 
of Ilorin MSW as compared to previous studies. We robustly diagnosed the model and provided 
alternative estimators to the conventional OLS estimator. In future research, for more robust results, 
we will adopt other statistical tools such as the artificial neural network, support vector machine 
learning and some other machine learning tools.
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Adjusted R2: Adjusted coefficient of determination
HHV: High heating value
HV: Heating value
ICP-spec: Inductively Coupled Plasma – Optical Emission Spectrometer
JB: Jarque-Bera Test
KLestimator: Kibria-Lukman estimator
LHV: Low heating value
MSE: Mean Squared error
MSW: Municipal solid waste
OLS: Ordinary Least Squared
R2: Coefficient of determination
SBIC: Schwarz information criterion
AIC: Akaike criterion
SE: Standard error
SMSE: Scalar Mean Squared error
VIF: variance inflation factor
WTE: Waste to energy
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