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A numerical model for simulating and predicting blood flow dynamics in diseased arterial vessels has been 
developed. The time-dependent one-dimensional hyperbolic system of quasilinear partial differential equations 
which incorporates a diagnostic disease descriptor (𝑘𝐷) was used to simulate transient flow distribution for 
idealized healthy and diseased states. Blood flow simulations in the iliac arteries over about 125% of a cardiac 
cycle were generated and calibrated using the 𝑘𝐷 values from 0 to 3 representing hypothetical diseased 
states. Early results indicate that disease conditions induce abnormal flow in the artery, generating disorder 
and increased amplitude of blood pressure, flow and distensibility with increasing numerical values of the 
disease factor 𝑘𝐷 . More so, the prospective use of the 𝑘𝐷-approach with documentation of in vivo adverse flow 
visualizations for diagnostic purposes was decisively discussed.
1. Introduction

Arterial diseases are renowned precursors to killer cardiac condi-

tions like strokes and heart attacks. With a great number of human 
mortalities in the developed world attributed to abnormal blood flow 
in arteries (Liu, 2000), investigative studies on the pathological flows 
in arterial vessels are being increasingly pursued by researchers in re-

cent times (Cornet, 2018; Gamilov et al., 2019; Bunonyo et al., 2020; 
Bertaglia et al., 2020; Lopes et al., 2020; Leguy, 2019). Besides in-

vestigations which contribute to elucidating the complex physiologic 
processes involved in the genesis and progress of these deadly vascu-

lar diseases, others that offer potential clinical assistance for their easy 
diagnosis and treatment are especially important.

While the pathological flow of blood is now widely studied, hydro-

dynamic investigations of the flow of blood under normal physiologic 
conditions provided directions for descriptive studies on diseased flow 
systems; this is an adventure with a long history. Quarteroni (2001a) 
chronicled the important studies and mathematical developments in 
cardiovascular flow research of several centuries that led to the evolu-

tion of its present-day sophisticated methods and models. It was noted 
that the now popular Bernoulli and Poiseuille equations in fluid me-

chanics owe credits to the 18th and 19th century inquiries into blood 
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flow of these great scientists respectively. With progressive research, the 
quantitative study of vascular flows in the Sixties was approached from 
the electrical analogy perspective (Formaggia et al., 1999) enabling in-

vestigators to build complex network models to simulate macroscopic 
flow in the circulatory system (see, for example, Westerhof et al., 1969). 
However, animal experiments held out in the Seventies as the main 
mode of cardiovascular investigations (Quarteroni, 2001a).

Now, numerical and computational techniques have the day, in-

creasingly being employed to expound vascular hemodynamics. With 
the advent of sophisticated computing technologies is the unfolding of 
the finest models for adverse flow representation in diseased vascular 
regions. Several models of different scales and complexities coupled to 
depict flows in large parts or the whole sections of the cardiovascu-

lar system are now being simulated via the aid of computational tools 
– a procedure known as multiscale modelling. Geometrical multiscale 
modelling, as reviewed by Team REO (2004), is a numerical modelling 
concept advanced by the need for accurate description of flow in sen-

sible pathological vascular regions as well as the critical requirement 
of boundary conditions for such regions. While Formaggia et al. (1999) 
provided a preliminary analysis of the multiscale model; Quarteroni and 
Veneziani (2003) did explore some of its applications.
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Besides aiding in the understanding of poorly understood disease 
processes of flow, computational studies of blood flow are also being 
used to predict the outcome of vascular surgeries and in the develop-

ment of treatment plans. In their paper, Taylor et al. (1999) promul-

gated the new paradigm of “predictive medicine”, a simulation-based 
medical planning procedure through which alternative treatment plans 
for a patient are tested in a virtual environment. Quantitative stud-

ies which furnish mathematical models and numerical simulations of 
disease-induced transient arterial flows are geared towards this end; 
this goal is further progressed in this work. A numerical blood flow 
model incorporating a diagnostic disease descriptor 𝑘𝐷 is introduced to 
calibrate diseased states in arteries for clinical diagnosis procedures and 
treatment. This new concept has been demonstrated using a simulation 
software utilized with published physiologic data on the iliac arteries.

2. Model development and numerical analysis

Although the complex three-dimensional Navier-Stokes model equa-

tions can provide full details of an arterial flow field, a major drawback 
is that they are computationally expensive (Quarteroni, 2001b). Three-

dimensional numerical models can deliver full flow-field simulations of 
blood flow across and along the three spatial directions but this comes 
at a very high computational cost of simulation and power.

As such, the use of one-dimensional models which are of interme-

diate level of complexity to simplify calculations and save computing 
costs are on the increase (see, for example, Canic et al., 2006; Formag-

gia et al., 2003; Matthys et al., 2007; Olufsen et al., 2000; Perdikaris and 
Karniadakis, 2014; Reymond et al., 2009; Smith et al., 2002; Canic et 
al., 2004; Formaggia et al., 1999). Likewise, dynamic flow in an artery 
is here modelled by one-dimensional continuity and flow motion equa-

tions obtained by applying basic mass and force balances to a short 
differential segment of blood. Detailed mathematical analysis leading 
to the derivation of these is presented elsewhere (Oshin, 2006).

Although there are other one-dimensional models for arterial flow 
in literature, none of the models proposed or incorporated a numerical 
index which can help to indicate the progress and influence of disease 
on the flow.

The nomenclature and list of symbols used in the mathematical anal-

ysis that follows in this section is given in Table 1.

2.1. Model development

The continuity model for the flow is obtainable as equation (1):

1
𝐴

𝜕𝐴

𝜕𝑡
+ 1
𝐾

𝑑𝑝

𝑑𝑡
+ 1
𝐴

𝜕𝑞

𝜕𝑥
= 0 (1)

The internal blood pressure 𝑝 and the flow rate 𝑞 are both dependent on 
time 𝑡 and the distance 𝑥 along the artery measured from the upstream 
end; 𝑝 = 𝑝(𝑥, 𝑡) and 𝑞 = 𝑞(𝑥, 𝑡). 𝐾 is the bulk modulus of elasticity of 
blood. The cross-sectional area of the artery, 𝐴 is related to the net 
pressure on the arterial wall 𝑝 − 𝑝0 by

√
𝐴 =

√
𝐴0 + 𝑎𝐴0(𝑝− 𝑝0) (2)

with 𝑝0 representing the external pressure on the wall and 𝐴0 the 
cross-sectional area at zero net pressure. The zero-order equation (2), 
obtained by considering the static equilibrium of the arterial wall in the 
radial direction, is one in a family of structural models used to depict 
the elastic behaviour of vascular walls. Other models with higher com-

plexity and order have been used by researchers; for instance, the Voigt 
model which takes into account viscoelastic behaviour was employed 
by Formaggia et al. (1999).
2

Table 1. List of mathematical symbols.

Symbol Meaning

𝑎 Constant defined in equation (3)

𝐴 Artery cross-sectional area

𝐴0 Cross-sectional area of artery in the un-

stretched state

𝐵 Constant in equation (49)

𝑐 Variable defined in equation (21)

𝐶 Characteristic curve

𝐷 Artery diameter

𝐷0 Diameter of artery in the unstretched 
state

𝑒 Arterial wall thickness

𝐸 Young’s modulus

𝐹 Variables defined in equations (32) and 
(34)

𝐺 Variables defined in equations (33) and 
(35)

𝑘0 Constant defined by equation (19)

𝑘𝐷 Disease factor

𝐾 Blood bulk modulus of elasticity

𝐾∗ Combined modulus of elasticity

𝐿 Length of artery

𝐌 Matrix in equation (9)

𝐌′ Matrix in equation (13)

𝐍 Matrix in equation (10)

𝐍′ Matrix in equation (14)

𝑝 Internal blood pressure

𝑝0 Extravascular pressure

𝑝𝑠𝑠 Steady state flow pressure

𝑞 Flow rate

𝑞𝑠𝑠 Steady state flow rate

𝑡 Time

Δ𝑡 Time increment

𝑇 Cardiac period

𝜈 Variable defined by equation (20)

𝑥 Longitudinal dimension

Δ𝑥 Increment in length

𝐘 Variable vector in equation (8)

Greek symbols

𝜆 Variable defined in equations (22) and 
(23)

𝜇 Blood viscosity

𝜌 Blood density

𝜎 Poisson ratio

𝜏0 Wall shear stress

Superscripts

+ Pertaining to slope of characteristic 
curve

− Pertaining to slope of characteristic 
curve

Subscripts

𝑖 Referring to grids along vessel length

The Poisson ratio 𝜎, Young’s modulus 𝐸 and wall thickness 𝑒 of the 
artery are absorbed by the constant 𝑎 in (2) above defined by equation 
(3) thus:

𝑎 = (1 − 𝜎2)√
𝜋𝑒𝐸

(3)

Now, an equivalent bulk modulus 𝐾∗ which expresses the combined 
elasticity of the blood and the vessel wall, indicated by the first and 
second terms of equation (4) respectively, is defined as:

1
𝐾∗ = 1

𝐾
+

2𝑎𝐴0√
𝐴

(4)

so that the continuity equation takes the final form

𝜕𝑝

𝜕𝑡
+ 𝐾∗

𝐾

𝑞

𝐴

𝜕𝑝

𝜕𝑥
+ 𝐾∗

𝐴

𝜕𝑞

𝜕𝑥
= 0 (5)

Furthermore, the flow motion model is presented as equation (6)
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𝜕𝑞

𝜕𝑡
+ 𝑞

𝐴

𝜕𝑞

𝜕𝑥
+ 𝐴

𝜌

𝜕𝑝

𝜕𝑥
+ 8𝜋𝜇

𝜌

𝑞

𝐴
= 0 (6)

where 𝜌 and 𝜇 retain their usual identities as density and viscosity re-

spectively.

The relevant simplifying assumptions made in arriving at (6) include 
that

1. The artery is horizontal, parallel to the chosen horizontal datum.

2. The frictional resistance for unsteady flow and hence the shear 
stress at the vascular wall can be substituted for by that for laminar 
steady flow obtained from the Poiseuille equation.

𝜏0 =
8𝜇𝑉
𝐷

= 8𝜇𝑞
𝐴𝐷

The continuity and flow motion equations: (5) and (6), constitute 
the model describing the transient one-dimensional flow of blood in an 
artery both of which can be jointly written in vector-matrix form of 
equation (7) (Oshin, 2006):

𝜕𝐘
𝜕𝑡

+𝐌(𝐘) 𝜕𝐘
𝜕𝑥

=𝐍(𝐘) (7)

where 𝑌 , 𝑀(𝑌 ) and 𝑁(𝑌 ) are as defined in equations (8), (9) and (10) 
respectively:

𝐘 =
[
𝑝

𝑞

]
(8)

𝐌(𝐘) =
⎡⎢⎢⎢⎣
𝐾∗

𝐾

𝑞

𝐴

𝐾∗

𝐴
𝐴

𝜌

𝑞

𝐴

⎤⎥⎥⎥⎦ (9)

𝐍(𝐘) =
⎡⎢⎢⎣

0

−8𝜋𝜇
𝜌

𝑞

𝐴

⎤⎥⎥⎦ (10)

The system (7) is sufficient to capture normal haemodynamic changes; 
however, the forcing effect of progressing vascular disease on the flow 
has not been reflected. Not only is it necessary to provide a model mod-

ification for sufficiently accurate simulation of disease-induced adverse 
blood dynamics, it is also required that such a model simulation be able 
to deliver an acceptable measure of disease quantification.

In clinical routines, many indices used for diagnosis often give false 
estimations, there are anticipations that numerical simulations may give 
indications to define new indices, simple enough to be used in clin-

ical examinations, but more precise than those currently used (Team 
REO, 2004). In this work therefore, a new index is introduced for the 
calibration, diagnosis and numerical quantification of vascular disease. 
This is a dimensionless diagnostic disease descriptor which is used to 
modify the one-dimensional dynamic model of flow in an artery pre-

sented above in (7). This approach was employed by Abhulimen and 
Susu (2004, 2007) in modelling leak in liquid pipelines.

If there is a disturbance causing instability of blood flow in the 
artery, incorporating an arterial disease descriptor 𝑘𝐷 to the artery 
flow system (7) results in a modified form of the model equations re-

presented as

(1 + 𝑘𝐷)
𝜕𝐘
𝜕𝑡

+𝐌(𝐘) 𝜕𝐘
𝜕𝑥

=𝐍(𝐘) (11)

Dividing equation (11) by 
(
1 + 𝑘𝐷

)
results in equation (12)

𝜕𝐘
𝜕𝑡

+𝐌′(𝐘) 𝜕𝐘
𝜕𝑥

=𝐍′(𝐘) (12)

where 𝑀 ′(𝑌 ) and 𝑁 ′(𝑌 ) are as defined by equations (13) and (14):

𝐌′(𝐘) = 1
1 + 𝑘𝐷

⎡⎢⎢⎢
𝐾∗

𝐾

𝑞

𝐴

𝐾∗

𝐴
𝐴 𝑞

⎤⎥⎥⎥ (13)
⎣ 𝜌 𝐴 ⎦
3

𝐍′(𝐘) =
⎡⎢⎢⎣

0

− 8𝜋𝜇
𝜌(1 + 𝑘𝐷)

𝑞

𝐴

⎤⎥⎥⎦ (14)

These modified one-dimensional quasilinear partial differential equa-

tions describe blood flow in a diseased artery.

2.2. Numerical analysis

The method of characteristics solution of transient flow equations 
has been derived and well-documented in standard literatures and book 
monograms (see Douglas et al., 1995; Streeter et al., 1998). When this is 
applied to the hyperbolic flow model (12) assuming ideal incompress-

ibility of blood so that the elasticity moduli become,

1
𝐾

= 0; 1
𝐾∗ =

2𝑎𝐴0√
𝐴

the result is these pairs of ordinary differential equations:

𝑑𝑞

𝑑𝑡
+ 𝜆+

𝑑𝑝

𝑑𝑡
+

2𝑘0
1 + 𝑘𝐷

𝜈 = 0 (15)

subject to

𝑑𝑥

𝑑𝑡
= 𝜈 + 𝑐

1 + 𝑘𝐷
(16)

And

𝑑𝑞

𝑑𝑡
+ 𝜆−

𝑑𝑝

𝑑𝑡
+

2𝑘0
1 + 𝑘𝐷

𝜈 = 0 (17)

subject to

𝑑𝑥

𝑑𝑡
= 𝜈 − 𝑐

1 + 𝑘𝐷
(18)

This analysis generated new variables, hybrids of the key ones, worth 
defining for their physical significance to the understanding of the flow 
phenomenon. They are as defined in equations (19)–(23).

𝑘0 =
8𝜋𝜇
𝜌

(19)

𝜈 = 𝑞

2𝐴
(20)

𝑐 =

√(
𝑞

2𝐴

)2
+

√
𝐴

2𝑎𝜌𝐴0
(21)

𝜆+ =
−𝑎𝐴0√

𝐴

𝑞 +

√√√√√(
𝑎𝐴0√
𝐴

)2

𝑞2 +
2𝑎𝐴0
𝜌

(√
𝐴

)3
(22)

𝜆− =
−𝑎𝐴0√

𝐴

𝑞 −

√√√√√(
𝑎𝐴0√
𝐴

)2

𝑞2 +
2𝑎𝐴0
𝜌

(√
𝐴

)3
(23)

The variables 𝜈 and 𝑐 have comparable features to the flow and sonic 
velocities respectively. They have been so defined for ease of analysis. 
The variable pair 𝜆+ and 𝜆− with pseudo-eigenvalue identities satisfy 
the linear combination of the flow motion and continuity equations in 
a manner defined thus by equation (24):

Ψ=Ψ1 + 𝜆Ψ2 = 0 (24)

where Ψ1 = equation of motion and is given by equation (25)

Ψ1 = (1 + 𝑘𝐷)
𝜕𝑞

𝜕𝑡
+ 𝑞

𝐴

𝜕𝑞

𝜕𝑥
+ 𝐴

𝜌

𝜕𝑝

𝜕𝑥
+ 8𝜋𝜇

𝜌

𝑞

𝐴
= 0 (25)

and Ψ2 = equation of continuity which is given by equation (26)

Ψ2 = (1 + 𝑘𝐷)
𝜕𝑝

𝜕𝑡
+ 𝐾∗

𝐾

𝑞

𝐴

𝜕𝑝

𝜕𝑥
+ 𝐾∗

𝐴

𝜕𝑞

𝜕𝑥
= 0 (26)

It is essential to know that equations (15) and (17) are only valid along 
the characteristics curves described by (16) and (18) respectively; these 
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Fig. 1. Characteristic curve in the 𝑥-𝑡 plane.

Fig. 2. Characteristic solution in the x-t grid for an arterial vessel.

are labelled C+ and C− in Fig. 1. The numerical technique is such that 
the sought transient flow simulation in the diseased arterial vessel in the 
x-t plane is achieved by dividing it into an even number of 𝑁 sections, 
each of length Δ𝑥 = 𝐿∕𝑁 (Fig. 2). It is projected that flow measure-

ments between two numerical nodes in the diseased artery will give 
flow signatures different from those received from healthy arteries so 
that the characteristic distance-time curve is used to simulate the sickly 
conditions of flow at regular time steps Δ𝑡 defined by equation (27).

Δ𝑡 =
1 + 𝑘𝐷(

𝜈𝑅 + 𝑐𝑅
)
max

Δ𝑥 (27)

The general equations therefore for computing flow rate, 𝑞 and pres-

sure, 𝑝 at each space-time nodes from 2 to N derived from the discretiza-

tion via a first-order finite difference approximation of equations (15) 
to (18) are[
𝑞𝑖
]
− 𝑞𝑖−1 + 𝜆+

𝑖−1
([
𝑝𝑖
]
− 𝑝𝑖−1

)
+ 2𝑘0Δ𝑥∀+𝑖−1 = 0 (28)[

𝑞𝑖
]
− 𝑞𝑖+1 + 𝜆−

𝑖+1
([
𝑝𝑖
]
− 𝑝𝑖+1

)
− 2𝑘0Δ𝑥∀−𝑖+1 = 0 (29)

where ∀+ and ∀− are defined by equations (30) and (31) respectively

∀+ = 𝜈

𝜈 + 𝑐
(30)

∀− = 𝜈

𝜈 − 𝑐
(31)

The terms in [] refer to conditions at time 𝑡+Δ𝑡 and subscript 𝑖 refers 
to the artery section number. For compactness, 𝐹+ and 𝐺+ combine 
𝑖−1 𝑖−1

4

Fig. 3. Boundary conditions. (a) Upstream end. (b) Downstream end.

known upstream variables at a previous time node as given by equations 
(32) and (33):

𝐹+
𝑖−1 = 𝑞𝑖−1 + 𝜆+

𝑖−1𝑝𝑖−1 (32)

𝐺+
𝑖−1 = 2𝑘0Δ𝑥∀+𝑖−1 (33)

While 𝐹−
𝑖+1 and 𝐺−

𝑖+1 similarly bring together flow variables at an ad-

jacent downstream node one time-step earlier according to equations 
(34) and (35):

𝐹−
𝑖+1 = 𝑞𝑖+1 + 𝜆−

𝑖+1𝑝𝑖+1 (34)

𝐺−
𝑖+1 = 2𝑘0Δ𝑥∀−𝑖+1 (35)

Now, equations (28) and (29) become respectively thus:[
𝑞𝑖
]
= 𝐹+

𝑖−1 −𝐺+
𝑖−1 − 𝜆+

𝑖−1
[
𝑝𝑖
]

(36)[
𝑞𝑖
]
= 𝐹−

𝑖+1 +𝐺−
𝑖+1 − 𝜆−

𝑖+1
[
𝑝𝑖
]

(37)

With 𝜆+
𝑖−1, 𝜆

−
𝑖+1, 𝐹

−
𝑖+1, 𝐺

−
𝑖+1, 𝐹

+
𝑖−1 and 𝐺+

𝑖−1 known, the solution of equa-

tions (36) and (37) is given by equation (38):

[
𝑝𝑖
]
=

(
𝐹−
𝑖+1 +𝐺−

𝑖+1

)
−
(
𝐹+
𝑖−1 −𝐺+

𝑖−1
)

𝜆−
𝑖+1 − 𝜆+

𝑖−1
(38)

The flow simulation consists of finding 𝑝 and 𝑞 for alternate grid points 
along 𝑡 =Δ𝑡, then proceeding to 𝑡 = 2Δ𝑡, and so on, until the desired time 
duration has been covered. End or boundary conditions of the vessel are 
introduced every other time step after the initial conditions.

At the end of the artery only one of the compatibility equations is 
available in the two variables. At the upstream end (Fig. 3(a)), equation 
(37) holds along the C− characteristic, and for the downstream end 
(Fig. 3(b)), equation (36) is valid along the C+ characteristic. These are 
linear equations in 

[
𝑝𝑖
]

and 
[
𝑞𝑖
]
. Each conveys to its respective boundary 

the complete behaviour and response of blood in the artery during the 
transient. An auxiliary equation is needed in each case, which specifies 
𝑝, 𝑞 or some relation between them. Such supplementary equation is 
the boundary condition. Although boundary condition specification has 
been noted to be one of the most challenging issues in modelling blood 
flow (Taylor, 2000), end conditions were carefully formulated for the 
sample simulation in the iliac artery that follows.

3. Computer simulation of flow in a diseased iliac artery

The authors chose to apply the developed model for the simula-

tion of blood flow in the iliac artery due to overwhelming information 
which established it as a pathological region and the available data 
on its anatomic and physiologic parameters. Clinically, it is observed 
that atherosclerotic disease develops first in the abdominal aorta, and 
is much more common in this section of the aorta below the diaphragm 
than the segment of the aorta above the diaphragm, the thoracic aorta 
(Taylor, 2000). As an extension of the abdominal aorta, plaque deposi-

tion would normally occur also in either of the iliac arteries supplying 



T.A. Oshin and K.E. Abhulimen Heliyon 8 (2022) e09992
Fig. 4. Iliac artery narrowed by plaque (Society for Vascular Surgery, 2007).

blood to the legs, which is a cause of lower extremity occlusive disease 
as shown in Fig. 4 (Society for Vascular Surgery, 2007).

To achieve the simulation, a total of four boundary conditions are 
required; a possible list includes the following indicated by equations 
(39) to (42):

(a) Initial conditions

𝑝(𝑥,0) (39)

𝑞(𝑥,0) (40)

(b) Boundary conditions

𝑞(0, 𝑡) (41)

𝑝(𝐿, 𝑡) (42)

(a) The initial conditions of pressure and flow rate in each of the ves-

sels can be obtained from the steady-state analysis. Under steady state 
condition, the transient equations of continuity and motion respectively 
become equations (43) and (44):

1
2𝑎𝐴0

√
𝐴

𝑑𝑞

𝑑𝑥
= 0 (43)

𝑞

𝐴

𝑑𝑞

𝑑𝑥
+ 𝐴

𝜌

𝑑𝑝

𝑑𝑥
+ 8𝜋𝜇

𝜌

𝑞

𝐴
= 0 (44)

Integrating equation (43) through the entire length of the vessel informs 
equation (45)

𝑞𝑠𝑠 = constant (45)

where the superscript “ss” signifies steady state. To obtain this constant 
rate of flow at steady state, information about the cardiac output is re-

quired. Cardiac rate and stroke volume can be taken as 72 beats/min 
and 70 ml/beat respectively (Ganong, 2003), so that the cardiac out-

put is 5040 ml/min or 8.4×10−5 m3/s which is the amount of blood 
delivered by the left ventricle and conveyed by the aorta. It would be as-

sumed that about half of this enters the abdominal aorta. Taylor (2000) 
also reported that under resting conditions, nearly 30% of the blood that 
enters the abdominal aorta flows down the infrarenal segment through 
the bifurcation into the legs, the iliac arteries. So the steady state flow 
through the vessel 𝑞𝑠𝑠 is taken as 1.26×10−5 m3/s.

The initial condition of pressure is given as equation (46)

𝑑𝑝

𝑑𝑥
= −8𝜋𝜇𝑞

𝐴2 (46)

When this is integrated using exit condition, the following nonlinear 
relation (equation (47)) results:

𝑝𝑠𝑠 + 2𝑎
√
𝐴0

(
𝑝𝑠𝑠 − 𝑝0

)2 + 2𝑎2𝐴0
(
𝑝𝑠𝑠 − 𝑝0

)3 + 𝑎3𝐴1.5
0

(
𝑝𝑠𝑠 − 𝑝0

)4
+0.2𝑎4𝐴2 (𝑝𝑠𝑠 − 𝑝

)5 = 𝑝 +𝐵(𝐿− 𝑥)
(47)
0 0 0

5

Table 2. Parameters for the iliac arteries (Canic et al., 2004).

PARAMETERS VALUES

Characteristic diameter, 𝐷0 0.005 m

Characteristic length, 𝐿 0.065 m

Wall thickness, 𝑒 0.002 m

Young’s modulus, 𝐸 105

Poisson ratio, 𝜎 0.5

Dynamic viscosity, 𝜇 3.5x10−3 kg/m-s

Blood density, 𝜌 1050 kg/m3

where 𝐵 is given by equation (48)

𝐵 = 8𝜋𝜇𝑞𝑠𝑠

𝐴2
0

(48)

(b) Pulsatile flow boundary condition, derived from Womersley theory, 
is prescribed for the inflow boundary by equation (49):

𝑞(0, 𝑡) = 𝑞𝑠𝑠
{
1 + sin

(2𝜋𝑡
𝑇

)}
(49)

where 𝑇 is the time period in seconds per heart beat (≈0.8s).

Zero net pressure boundary condition is imposed at the outflow 
boundary as found in (Taylor, 2000) according to equation (50):

𝑝(𝐿, 𝑡) − 𝑝0 = 0 (50)

The anatomic dimensions of the iliac arteries and the properties of the 
blood through them (Table 2) were obtained from (Canic et al., 2004).

The extra-vascular pressure, 𝑝0 may be assumed to be essentially 
equal to the atmospheric environmental pressure (Sandquist et al., 
1982). So 𝑝0 = 101325 Pa.

After the careful resolution of all the required parameters and 
boundary conditions as spelt out above, the computer program “ART-

SIM” depicted by the flowchart of Fig. 5 was utilised to simulate the 
transient blood flow in the iliac artery over a period of about 125% of 
a cardiac cycle at zero and integer values of the disease quantification 
factor 𝑘𝐷 to reveal remarkable results discussed below.

4. Results and discussion

4.1. Pressure and flow variation with disease progression

The manner in which arterial disease, here quantified by 𝑘𝐷, af-

fect flow of blood in arteries was typified by the simulation results. 
At each node position considered, the pressure wave at 𝑘𝐷 = 0 (which 
is equivalent to a no-disease normal flow situation) has an initial pe-

riod of irregular propagation which smoothens out eventually to give a 
smooth wave. With increasing 𝑘𝐷, as can be observed from Figs. 6a to 
6d, irregularity in flow escalates depicting increasing turbulence. The 
turbulence in flow with increasing 𝑘𝐷 is also accompanied by increas-

ing pressure wave amplitude. This reveals that with progress of disease, 
arterial blood pressure increases, a common effect readily observable in 
patients with vascular diseases such as the narrowing down of arterial 
lumen by plaques (atherosclerosis).

From Figs. 6a to 6d, it can also be observed that at a given hy-

pothetical disease state (indicated by a given numerical value of 𝑘𝐷), 
the pressure decreases along the length of the artery from upstream 
to downstream. This is typical of arterial flows where pressure change 
drives blood flow from the upstream end to the downstream end.

The proposed index (𝑘𝐷) for the quantification of disease in arterial 
flows holds prospect as a useful index for a scaled calibration of extent 
of disease in arterial flow. It is a simple “grading scale” of arterial flow 
abnormality proposed such that very low, moderate and high 𝑘𝐷 val-

ues respectively depict mild, medial and maximally-developed diseased 
conditions of flow. It is projected that the 𝑘𝐷 can be utilized clinically 
for diagnosis using it with already established methods and techniques 
of performing in vitro visualizations of in vivo vascular flows. Since ab-

normal flow visualizations and measurements in diseased arteries may 
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Fig. 5. Simulation Program ARTSIM.
be electronically documented; such rich clinical observatory databank 
correlated and calibrated with a simple index as the disease factor 𝑘𝐷
proposed here holds great prospect for easy diagnosis of arterial disease.

The modifying factor 𝑘𝐷 is introduced into the model equation as 
a diagnostic disease descriptor to capture the changes induced into the 
flow phenomenon by progressing disease. While the changes may be 
specific or generic in nature, it is only captured hypothetically or ide-

ally and not specific to a named disease or specific patient. As such, 
the work is rather a rough initial trial of a novel method of study-

ing or quantifying the effect of disease on arterial blood flow. Future 
work will be devoted to a more expansive study on the quantification 
of the effects of disease on key components or physical terms of the 
model equations using the same methodology of introducing hypotheti-

cal modifiers or weighting parameters to capture the pathology-induced 
flow in an artery.
6

4.2. Variation of distensibility with disease progression

Distensibility is a measure of the stiffness or rigidity of an artery. Its 
influence on the flow of blood through the artery lumen is important 
especially in disease conditions such as atherosclerosis. Mathematically, 
distensibility is defined as

𝑑 = 1
𝐴

𝑑𝐴

𝑑𝑝

Using the structural model depicting the elastic behaviour of the arterial 
wall, equation (2), distensibility can be written in terms of flow pressure 
as

𝑑 =
2𝑎𝐴0√

𝐴0 + 𝑎𝐴0
(
𝑝− 𝑝0

)
The numerical estimates of the distensibility is as shown in Figs. 7

and 8. With increasing kD values, the Figures show that distensibil-
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Fig. 6a. Flow Pressure comparison for different 𝑘𝐷 values at 𝑥 = 0.00000 m.

Fig. 6b. Flow Pressure comparison for different 𝑘𝐷 values at 𝑥 = 0.01625 m.
ity increases confirming that with the progression of disease, the artery 
becomes more stiff or rigid. Fig. 9 depicts the relationship between dis-

tensibility and the disease factor kD. The curve fits well to a quadratic 
relationship with R2 value of 0.9936 showing that arterial stiffness or 
rigidity is amplified by progressing disease.

5. Conclusion

This work has established that arterial disease can be quantified in 
scaled degrees, generating simulations for the gradual deterioration of 
flow. A numerical index was introduced to quantitatively indicate the 
presence and progression of arterial disease and its interference with 
7

normal hemodynamic flow. It has also put forth a direction of research 
for which a simple “grading scale” of arterial flow abnormality is sought 
to be designed so that very low, moderate and high 𝑘𝐷 values respec-

tively depict mild, medial and maximally-developed diseased conditions 
of flow. With established methods and techniques for performing in vitro

visualizations of in vivo vascular flows already existent, most accurate 
of which include the photochromic dye tracer technique (Ojha et al., 
1988; Couch et al., 1996), abnormal flow visualizations and measure-

ments in diseased arteries may be electronically documented. Such rich 
clinical observatory databank correlated and calibrated with a simple 
index as the disease factor 𝑘𝐷 proposed here holds great prospect for 
easy diagnosis of arterial disease.
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Fig. 6c. Flow Pressure comparison for different 𝑘𝐷 values at 𝑥 = 0.03250 m.

Fig. 6d. Flow Pressure comparison for different 𝑘𝐷 values at 𝑥 = 0.04875 m.
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Fig. 7. Plot of Numerical estimates of distensibility over numerical range of time for 𝑘𝐷 = 0 and 𝑘𝐷 = 1.0.

Fig. 8. Plot of Numerical estimates of distensibility for different time node points for 𝑘𝐷 = 2.0, 3.0 and 5.0.
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Fig. 9. Correlation of distensibility and disease factor 𝑘𝐷 .
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