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Abstract
A variety of automatic control systems are increasingly being deployed to assist clinicians to monitor patient functioning
and enhance healthcare delivery during surgical procedures. This article deals with the mathematical design framework of
closed-loop infusion schemes for propofol delivery in general anesthesia. The main emphasis of this research series is to
come up with a better-performing control system which could handle the clinical concerns of automation-based anesthesia
without compromise of safety. Also, the research is geared at studying the performance of these plausible control-based
automatic drug infusion patterns in a computer environment prior to actual clinical implementation. The study advances
the design of effective model-based predictive control (MPC) strategies familiar to engineers in the process industries, as
well as a preliminary design of a proportional–integral–derivative (PID) controller. The consideration of the traditional PID
controller is followed by two linear MPC strategies and a nonlinear one. These varieties of closed-loop infusion strategies
were designed in order to make well-informed comparison and assessment of the promising method(s) of control for the
sought clinical application. The successive linearization technique is being applied in novelty to anesthesia in this work. The
results indicate that the MPC controllers show great promise for adoption for automated drug delivery in anesthesia delivering
better performance. This sets the pace for future investigations which may assess, via pseudo-clinical in silico studies, the
deployment of the controllers.

Keywords Biomedicine · General anesthesia · Propofol · Model predictive control · Drug delivery · Process control · Patient
monitoring · Automation

1 Introduction

Advanced controllers have recorded much success in clini-
cal applications in recent times. In diverse application areas
such as cancer management, diabetes treatment and drug
infusion, engineers have seen their technological tools and
basic engineering skills benefiting patients. From the world
of man-made machines or chemical plants, control engineer-
ing has spread its tentacles to the wards of clinical patients
assisting doctors in performing their healthcare duties in a
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safer fashion. There are a number of these control technolo-
gies which have found their way to the forefront of modern
medical challenges: Among them is model-based predictive
control.

Model predictive control (MPC), reputed to be the most
widely used industrial control technology [1], has been
introduced in recent years to address the spotted control chal-
lenges in anesthesia. The basic concept of MPC is illustrated
in Fig. 1. At a present time instant, MPC uses a model to
predict the process output to a time distance into the future.
Based on the “foreseen future” from the predictions, it then
proposes an optimal sequence of input moves that should be
taken to drive the process to the desired response. The first
move only is implemented and the procedure repeats itself in
the next time instant. The sequence of input moves is arrived
at by solving an optimization problem which often involves
physical constraints imposed by the process.

Anesthesia comprises three components: hypnosis (lack
of consciousness), analgesia (lack of pain perception) and
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Fig. 1 Model Predictive Control

muscle relaxation (lack of movement). Given the importance
and popularity of propofol as an agent of the hypnotic compo-
nent of anesthesia, designing reliable MPC technologies for
its infusion is the major aim of this research. The research’s
limitation lies in the fact that only the hypnotic component of
anesthesia is being considered reducing the control problem
to a single-input–single-output (SISO) problem formulation.
The effect of the other two components of anesthesia, analge-
sia andmuscle relaxation is not captured. Special emphasis is
laid on developing a novel nonlinearMPC strategy (using the
successive linearization technique) with the expectation that
it could provide better sought-after performance for propofol
hypnosis regulation. Therefore, the specific objective pur-
sued is to achieve a comparative evaluation of the nonlinear
MPC scheme relative to other control designs including PID
and linear MPC. The successive linearization technique is
being applied in novelty to anesthesia in thiswork. This paper
covers controller design, tuning and responses.

A number of research teams across the world working on
automation in anesthesia have developed and applied various
MPC algorithms to propofol anesthesia [2–23]. Although
MPC evolved in the 1970s to solve constraints problems
in vast petrochemical plants [24], its application to anes-
thesia is relatively young and developing, being only about
two decades old. The age of the application stirs a call for
increased involvement in the ongoing improvement of the
MPC technology for anesthesia. While the first attempt at
achieving automatic control of the depth of anesthesia was
made by Bickford in the 1950s [25], it was not until 2000
that the first work on the application of MPC to propofol
anesthesia appeared by Rao et al. [12].

It is apparent from these previous works that linear MPC
algorithms have been successfully utilized for propofol hyp-
nosis. These linear algorithms use linear internal prediction

models of different kinds to achieve control. However, the
propofol hypnosis process is intrinsically nonlinear and can
be described by a Wiener-type nonlinear model.

Two reasons have made the use of linear predictive mod-
els commonly appealing. Firstly, the currently popular MPC
algorithms for industrial applicationsmakeuse of linearmod-
els. For example, the dynamic matrix control (DMC) and
the model algorithmic control (MAC) employ linear step
response and linear impulse response models, respectively.
It is easier to adapt these common linear algorithms. More
so, their celebrated industrial success has influenced such
direct import for propofol hypnosis regulation. The MPC
algorithms adopted by Rao et al. (2000) [12] and Yelneedi
et al. (2009) [6] each used linear step response models like
the DMC.

Secondly, the computational burden often associated with
nonlinear algorithms hasmade linearMPC strategies profuse
in comparison with nonlinear MPC approaches. Solving the
online optimization problem in a nonlinearMPC algorithm is
more computationally expensive. The use of simplified linear
models reduces the optimization problem to computationally
convenient forms that can be easily handled by conventional
optimization solution methods.

However, the use of over-approximated linear predictive
algorithms might lead to inaccurate predictions. A marked
mismatch between the prediction and the actual patient
response often results [6]. Although no model can be truly
“perfect” in prediction, closeness to perfection is often a
desirable quality, especially for clinical applications. Just
as in chemical plants, the process–model mismatch and its
resulting safety compromise for clinical patientsmay portend
hazards. A high level of patient safety and non-aggressive
drug infusion pattern are sought in anesthesia automation.
Both of these standards are at risk in the face of pronounced
model inaccuracy. In the MPC algorithm, a large mismatch
would lead to an aggressive control action on the drug infu-
sion rate. In a bid to penalize the observed “wide gap”
between the prediction and set point, the MPC controller
would implement a control action that might be a good deal
above that which is actually required. In this paper, effort
would be made to design MPC algorithms which would
deliver minimal model mismatch in the predictions.

2 Materials andmethods

The methodology employed in this research builds on the
pharmacokinetic–pharmacodynamic (PK-PD) model of the
physiological process to ensure that effective controllers are
designed and implemented for onward “pseudo-clinical” (in
a virtual non-clinical computer environment) testing. Fol-
lowing the standard procedures for conventional controller
designs, this section of the research report first sets out the
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Fig. 2 A schematic of the PK-PD model of propofol hypnosis [6]

clinical problem as a mathematical challenge and articulates
the clinical objectives sought. It then outlines the mathemati-
cal framework of the advanced control schemes proposed for
the regulatory control problem, detailing the internal features
peculiar to each one.

2.1 Mathematical model of propofol hypnosis

Although it is acknowledged that the modeling of physi-
ological systems is quite challenging [1], a semiempirical
approach has been widely adopted for drug delivery pro-
cesses. This “gray-box” modeling approach combines the
use of a theoretical model proposed from mass balances,
with empirical identification of model parameters. The drug
mass balances are written based on “compartments” often
representing the blood, body or tissues “lumped” into “per-
fectly mixed volumes” in the same manner that stirred tanks
are employed to depict chemical processes. This theoretical
modeling paradigm is known as compartmental modeling.
Standard compartmental models describing the relationship
between anesthetic (drug) inputs and patient output indi-
cators (like the bispectral index, BIS) often consists of
two interacting parts: a pharmacokinetic (PK) compartment
model and a pharmacodynamic (PD) model (Beck et al.,
2007) [26]. The model of the BIS response to propofol infu-
sion is a PK-PD model depicted schematically in Fig. 2 [6].
The assessment of hypnotic effect and depth of conscious-
ness are usually derived from the EEG output with a variable
known as the bispectral index (BIS). The BIS scale takes
numerical value between 0 and 100. A state of full con-
sciousness is indicated by a BIS value of 90–100 while 0
corresponds to a flatline EEG signal.

Pharmacokinetics is the study of the dynamic behavior
and distribution of drug concentrations in the blood and tis-
sues [1]. In other words, pharmacokinetics studies “what the
body does to the drug.” PK models predict the disposition

and diffusion of drug through conceptual physiological com-
partments. For the distribution of propofol, three conceptual
compartments are used (Fig. 2).

Compartment 1 is the central compartment which rep-
resents blood plasma. Propofol inflow into the central com-
partment is considered to be supplied directly by the external
intravenous infusion of the drug. After a quick dissolution or
mixing of the drug occurs, its concentration in the compart-
ment gradually decreases due to two main sinks: distribution
and elimination. The distribution of propofol to the other
two compartments results in depletion. Also, propofol leaves
the central compartment as a result of metabolic elimina-
tion or clearance which occurs in the liver. Compartments
2 and 3 represent shallow and deep peripheral compart-
ments, respectively. Compartment 2 is typically thought of
as a group of profusely perfused (vessel-rich) tissues and
organs like the brain and muscle [1, 26]. There is a very rapid
movement of propofol from the central compartment to this
shallow peripheral compartment. It therefore attains steady-
state equilibrium quickly. Compartment 3, on the other hand,
equilibrates slowly, resulting from a very slow transport of
propofol from the central compartment. This deep periph-
eral compartment typically corresponds to sparsely perfused
(vessel-poor) tissues and bone.

Based on Fig. 2, a propofol mass balance in the central
compartment is given by:

(1)

dC1

dt
� w

kV 1
u + k21C2

V 2

V 1
+ k31C3

V 3

V 1

− k10C1 − k12C1 − k13C1

Similarly, for peripheral compartments 2 and 3, the propo-
fol mass balances are given by the following equations.

dC2

dt
� k12C1

V 1

V 2
− k21C2 (2)
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dC3

dt
� k13C1

V 1

V 3
− k31C3 (3)

V1, V2 and V3 [mL] are the respective volumes of the
central compartment, the shallow and the deep peripheral
compartments.

C1, C2 andC3 [μg/mL] are the concentrations of propofol
in the three pharmacokinetic compartments, respectively.

The constants kij (k12, k21, k13 and k31) refer to the rate
constants [min−1] associated with the movement or distribu-
tion of the drug from compartment i to j.

k10 is the metabolism rate constant depicting the speed
of elimination of propofol from the central compartment
[min−1].

u [mg/kg-h] is the normalized propofol infusion rate
dependent on patient weight, w [kg]. k, which is equal to
60 [min/h], is a normalization constant.

The depictive coverage of the PK model is limited to the
kinetics of elimination and distribution of the drug. In order to
reflect the observed clinical effect the drug has on the patient,
another set ofmathematical description is required. These are
known as pharmacodynamic models. Simply put: pharma-
codynamics studies “what the drug does to the body.” PD
models therefore seek to relate the drug’s concentration in
the plasma (central compartment) to the observed clinical
effect. For propofol, the site of observed clinical effect is the
central nervous system (or chiefly the brain) where loss of
consciousness takes effect and the available measurement of
this effect is the BIS. In order to develop a PD model for
propofol hypnosis, the concentration of propofol in the brain
would be needed which is not directly available; it is only
accessible in disguise as the BIS signal.

Awidely used PDmodeling strategy consists of two parts.
Firstly, an effect site compartment is attached to the central
PK compartment to capture the transport time lag of the drug
to the effect site (the brain). This additional compartment
allows for the equilibration of the propofol concentrations in
the plasma and the brain [1, 6]. This is modeled by a linear
first-order ordinary differential equation:

dCe

dt
� ke0(C1 − Ce) (4)

where Ce [μg/mL] is the effect site compartment concentra-
tion of propofol and ke0 [min−1] the associated rate constant
for the equilibration taking place in the compartment.

Secondly, an empirical nonlinear static relationship is
further used to relate the effect compartment propofol con-
centration to the observed BIS response. This relation is a
sigmoidal function known as the Hill equation. Although

Fig. 3 Wiener-type structure of the propofol hypnosis model

the Hill equation is not the only one available to cover and
describe the PD term of the PK-PD model as there are a
number of Hill and Hill-modified equations, the one often
employed for propofol dynamics [6] is presented in Eq. (5).

�BI S � �BI Smax
Cγ

e

Cγ
e + ECγ

50

(5)

where

�BI S � BI S − BI S0 (6)

and

�BI Smax � BI Smax − BI S0 (7)

γ is a dimensionless parameter which expresses the degree of
nonlinearity of the Hill equation. The EC50 [μg/mL] refers
to the concentration of the drug which would produce 50%
of the maximum PD effect in the patient.

The bispectral index (BIS) is an output measure of the
level of hypnosis or unconsciousness of the patient. BIS0
(≈100) represents the BIS value before the start of propofol
infusion when the patient is fully awake while a value of 0
refers to a deep coma state with no electrical brain activity.
According to [6], BI Smax � 0, so that Eq. (7) now becomes

�BI Smax � −BI S0 (8)

Substituting Eqs. (6) and (8) into (5), Eq. (9) is obtained.

BI S � BI S0
ECγ

50

Cγ
e + ECγ

50

(9)

The PK-PD propofol hypnosis model is a type of Wiener
model. A Wiener-type model consists of a linear dynamic
part followed in series by a nonlinear static part. The PK
component of the model above (Eqs. (1) to (3)) and the first-
order time lag Eq. (4) collectively form a system of linear
dynamic equations represented by Eq. (10). This is in series
with the nonlinear static Hill Eq. (9). Figure 3 depicts this
relationship.
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Table 1 PK and PD parameters for the nominal patient

Parameter Value

k10 [min−1] 0.119

k12 [min−1] 0.112

k21 [min−1] 0.055

k13 [min−1] 0.0419

k31 [min−1] 0.0033

V1 [mL] 15.048 × 103

V2 [mL] 30.6 × 103

V3 [mL] 191.1 × 103

ke0 [min−1] 0.349

� 2.561

EC50 [μg/mL] 2.65

⎡
⎢⎢⎢⎣

Ċ1

Ċ2

Ċ3

Ċe

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎣

−(k10 + k12 + k13) k21
V 2
V 1

k31
V 3
V 1

0

k12
V 1
V 2

−k21 0 0

k13
V 1
V 3

0 −k31 0

ke0 0 0 −ke0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C1

C2

C3

Ce

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

w
kV 1

0
0
0

⎤
⎥⎥⎥⎦[u] (10)

The propofol hypnosis model has characteristic model
parameters which are determined empirically. The PK
parameters (k10,k12, k21,k13,k31,V1, V2 and V3) are often
obtained from clinical population studies. They are depen-
dent on patient mass, height, age and sex [5]. The PD model
parameters (ke0, γ, EC50) are also empirically determined.

For a particular 34-year-old patientweighing66kg, thePK
model parameters have been identified in Table 1 by Marsh
et al. (1991) [27]. Included in the table also are the PDmodel
parameters.

2.2 Formulating the control problem

The dynamic action of propofol-induced hypnosis in a clin-
ical patient has been modeled by a set of pharmacokinetic
(PK) and pharmacodynamic (PD) Eqs. (10) and (9).

As presented, the model equations represent a single-
input–single-output (SISO) control problem with states and
output defined as:

x �
[
C1 C2 C3 Ce

]T
(11)

y � [BI S] (12)

This representationof states andoutputswith conventional
algebraic variableswould readily transform the patientmodel
to the generic form

ẋ � Ax + Bu (13)

y � f (x) (14)

where

A �

⎡
⎢⎢⎢⎣

−(k10 + k12 + k13) k21
V2
V1

k31
V3
V1

0

k12
V1
V2

−k21 0 0

k13
V1
V3

0 −k31 0

ke0 0 0 −ke0

⎤
⎥⎥⎥⎦ (15)

B �

⎡
⎢⎢⎢⎣

w

kV1
0
0
0

⎤
⎥⎥⎥⎦ (16)

f (x) � BI S0
ECγ

50

[O1x]γ + ECγ

50

(17)

O1 �
[
0 0 0 1

]
(18)

2.3 Control objectives

It is desirable to achieve a controlled infusion of the
anesthetic, propofol, before and during surgery. As earlier
dynamic studies have shown [28], this is best achieved in a
feedback fashion by allowing the depth of unconsciousness
of the patient, as indicated by the bispectral index (BIS),
to determine the amount of drug to be administered. Not
only does this help achieve a faster induction to “sleep” or
unconsciousness, but it represents a good way of ensuring
that neither “too much sleep” nor “not enough sleep” results.
Both cases, arising fromoverdosing andunderdosing, respec-
tively, are clinical anesthesia crises thatmust be “controlled.”
Besides, more demanding requirements arise during surgery
when the anesthetists strive to keep the patient unconscious.

The control objectives sought for the problem can be artic-
ulated in more specific qualitative and quantitative terms [6].
Firstly, it is desired to track the reference BIS signal as set by
the anesthetist and to keep the BIS response in the safe oper-
ating range of 40 ≤ BIS ≤ 60 as often as possible. Secondly,
it is required to ensure that the plasma propofol concentra-
tion C1 is kept within the clinically acceptable range of 1
≤ C1 ≤ 5 [μg/mL]. Likewise, it is important to ensure that
the delivery of propofol is restricted to the limit 0 ≤ u ≤ 40
[mg/kg-h] to avoid hypnotic crisis and to minimize the con-
sumption of propofol. Lastly, it is desirable for the control
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system to effectively handle surgical disturbances (stimuli)
and measurement noise.

2.4 Steady-state simulation and linearization

Before attempting a dynamic simulation of the nominal
patient model, it might be useful to answer the question:
“What is the required steady-state propofol infusion rate to
maintain a BIS response of 50?” Clinically, a BIS value of
50 is often the desired depth of unconsciousness for anes-
thesia. Answering that question provides an insight into the
operating point at which the anesthesia patient stays induced
to unconsciousness.

To achieve this, the time dependencies of the state vari-
ables are set to zero:

dC j

dt
� 0, j � 1, 2, 3, e

to obtain the following steady-state relationships:

C∗
e � EC50

(
BIS0
BIS∗ − 1

) 1
γ

(19)

C∗
1 � C∗

e (20)

C∗
2 � k12

k21

V 1

V 2
C∗
1 (21)

C∗
3 � k13

k31

V 1

V 3
C∗
1 (22)

u∗ � k̄k10V 1

w
C∗
1 (23)

where the asterisks (*) on the variables denote steady-state
conditions.

Using the nominal patient–model parameters given in
Table 1, the steady-state concentrations corresponding to
BI S∗ � 50 are

C∗
1 � C∗

e � 2.65
μg

mL
; C∗

2 � 2.65374
μg

mL
; C∗

3 � 2.6495
μg

mL

The corresponding steady-state propofol infusion rate u∗
is

u∗ � 4.314
mg

kg.h

It can be observed that the compartment concentrations are
roughly equal under steady-state conditions indicating that
the anesthetic, propofol, has been evenly distributed and has
taken effect around the patient’s body to produce the depth of
unconsciousness desired. The operating infusion rate needed
to achieve this equilibration point at which the patient stays

induced to unconsciousness is 4.314 [mg/kg-h]. This steady-
state value, although slightly lower, compares agreeably with
a reported propofol infusion rate value of 6 mg/kg-h for an
adult 70-kg male (Rowe, 1998) [32].

With this operating point, we can linearize the model
(Eq. (9) precisely) since the linearized model would be used
to design the PID and the linear MPC controllers. Using the
Taylor’s series expansion of the output variable BIS about
the operating point truncated at the second term,

f (x) � f (x0) + f
′
(x0)(x − x0)

the following linearized model is obtained:

BI S − BI S∗ � −γ BI S0EC
γ

50C
∗γ−1
e

(C∗γ
e + ECγ

50)
2 (Ce − C∗

e ) (24)

In terms of conventional deviation variables notation for
states and output, the linearized model is

ẋ � Ax + Bu

y � Cx (25)

where

C �
[
0 0 0 km

]
(26)

km � −γ BI S0EC
γ

50C
∗γ−1
e

(C∗γ
e + ECγ

50)
2 (27)

2.5 Design framework for the PID control scheme

The standard proportional–integral–derivative (PID) control
scheme was the first closed-loop plan explored for the prob-
lem. The PID control law responds to the error difference ε

in the BIS output signal and the reference or target set for it.
It does this in three additive ways: proportionally, integrally
and differentially as expressed in Eq. (28).

u � Kcε +
Kc

τI

∫ t

0
εdt + KcτD

dε

dt
(28)

where the parameters Kc, τI , τD characterize the controller
design. The goal of design is to ensure that the values to
which they are “tuned” achieve satisfactory control of the
process.

There are different tuning strategies, one of the com-
monest being the Ziegler–Nichols open-loop tuning strategy
whichwas adopted here. For this approach, it is a requirement
to obtain a first-order plus time delay approximation of the
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Fig. 4 Closed-loop study of the
propofol hypnosis regulation
problem with a PID controller

Fig. 5 Block diagram of a SISOMPC Toolbox application reproduced
from The MathWorks, 2004 [19]

process. Three parameters which characterize this approxi-
mation are the process gain Kp, the first-order time constant
τ and the time delay td . These parameterswere obtained from
a process reaction curve (PRC) of the system.

A PRC arising from a unit step input was generated using
the linearized model of the nominal patient. It was obtained
that Kp � −14.8178, τ � 21.3068, and td � 2.1307.
According to the Ziegler–Nichols open-loop tuning guide,
the PID settings obtained are: Kc � −0.8098, τI � 4.261,
and τD � 1.065.

A fine-tuning was performed in order to minimize propo-
fol consumption and the initial undershoot in the BIS
response. This yielded Kc � −0.710, τI � 6.261, and
τD � 1.065 as the eventual controller settings. The settings
were implemented in the PID closed-loop SIMULINK con-
figuration of the propofol infusion system shown in Fig. 4. A
saturation block was introduced to satisfy the propofol input
constraint 0 ≤ u ≤ 40 [mg/kg-h].

2.6 The linear model predictive control (toolbox)
strategy

The Model Predictive Control (MPC) Toolbox is a com-
mercial software package providing a graphic user interface

(GUI) for the design, analysis and implementation of linear
MPC controllers [19]. Figure 5 describes the generic single-
input–single-output (SISO) plant model structure employed
in the toolbox. The “plant” refers to the process to be con-
trolled which, in this case, is the patient.

The formulation employed in the MPC Toolbox, as rele-
vant for this particular application (propofol anesthesia), is
described here briefly using the three key elements charac-
terizing any MPC algorithm: prediction model, optimization
problem and control law.

The controller uses a linear discrete state-space prediction
model of the form:

x(k + 1) � Axx(k) + Buu(k) + Bdd(k) (29)

y(k) � Cxx(k) + Ddd(k) (30)

where k stands for the kth sampling time, x(k) is the inter-
nal state vector of the model, u(k) is the manipulated input
(propofol infusion rate),d(k) is the vector of unmeasured dis-
turbances entering the “plant” (patient) and y(k) is the output
(BIS). The unmeasured disturbance d(k) is modeled either
as the output of a LTI (linear time-invariant) system driven
by a random Gaussian-like noise or as the output of an inte-
grator when considered as steplike. The latter was favored
when making specification for design.

Based on the estimation of the states at current sampling
instant, k, the MPC controller solves the following optimiza-
tion problem to determine the control action to take:

min
�u(k|k), ...�u(M−1+k|k), ε J �

P−1∑
i�0

{∣∣λy
i+1[y(k + i + 1|k) − r(k + i + 1)]

∣∣2

+
∣∣λ�u

i �u(k + i |k)∣∣2

+
∣∣λui

[
u(k + i |k) − ut arg et (k + i)

]∣∣2 + ρεε
2
}

(31)
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subject to

umin(i) − εV u
min(i) ≤ u(k + i |k) ≤ umax(i)

+ εV u
max(i) i � 0, . . . , P − 1

�umin(i) − εV�u
min(i) ≤ �u(k + i |k) ≤ �umax(i) + εV�u

max(i)

ymin(i) − εV y
min(i) ≤ y(k + i + 1|k) ≤ ymax(i) + εV y

max(i)

�u(k + h|k) � 0, h � M , . . . , P − 1

ε ≥ 0 (32)

where the notation “(k + i |k)” denotes the predicted value
for time instant k + i made at time instant k. λy

i , λ
�u
i and λui ,

are nonnegative weights for the output, input rate and input,
respectively. Their values are used to indicate which variable
is important to the performance index. utarget is the set point
for the input.

umin , umax, �umin , �umax, ymin and ymax are the
lower/upper bounds on the input, input rate and output vari-
ables. ε is a slack variable. ρε is a weight on the slack variable
to penalize the violation of the constraints. By default,

ρε � 105max
{
λ
y
i , λ�u

i , λui
}

V u
min , V

u
max , V

�u
min , V

�u
max , V

y
min and V y

max are nonnegatives
known as equal concern for relaxation (ECR) used to relax
the corresponding constraints. The MPC Toolbox controller
by default implements hard input constraints and soft output
constraints implying V u

min � V u
max � V�u

min � V�u
max � 0 and

V y
min � V y

max � 1.
P and M are the prediction and control horizons, respec-

tively. P represents the length of time intervals up to which
output prediction is made while M indicates the time dis-
tance (in intervals) into the future for which manipulated
input move is computed to achieve the control objective of
tracking the set point.

The control law indicating the input move to make at each
time instant is obtained by solving the above-constrained
optimization problem—aquadratic programming (QP) prob-
lem. Details can be found in [29] for how related QPmatrices
are generated for the solution.

2.7 Another linear model predictive control strategy

A linearMPC formulation originally developed for an indus-
trial problem in [30]was also applied to the propofol hypnosis
regulation problem [28].

Retaining the earlier notations for the states, input and out-
put variables, the following linear discrete-time state-space
prediction model is used:

x(k + 1) � Axx(k) + Buu(k) (33)

y(k) � Cxx(k) + d(k) (34)

where d(k) is the virtual disturbance at the current sampling
instant k estimated from the difference between the cur-
rently sampled outputmeasurement and the output prediction
made. This strategy is one of many ways used to account for
offset and mismatch in output prediction for improved accu-
racy. Future virtual disturbances over the prediction horizon
(k + i) . . . .(k + P) are then assumed to be the same as the
current virtual disturbance. That is:

d(k + i |k) � d(k) � ym(k) − Cxx(k) for i � 1, . . . ., P
(35)

where ym(k) is the current output measurement and the nota-
tion “(k + i |k)" still denotes the predicted value for time
instant k + i made at time instant k.

Equations (33) and (34) can be used recursively to gener-
ate the prediction as illustrated below [31].

1. At one time step ahead, k + 1, the prediction is:

(36)

x (k + 1|k) � Axx (k) + Buu (k) ;

y (k + 1|k) � Cxx (k + 1|k) + d (k)

2. At k + 2, the two-step ahead prediction is:

x(k + 2|k) � Axx(k + 1|k) + Buu(k + 1|k);

y(k + 2|k) � Cxx(k + 2|k) + d(k) (37)

Substituting (36) into (37) to eliminate x(k + 1|k),

x(k + 2|k) � Ax
2x(k) + Ax Buu(k) + Buu(k + 1|k);

y(k + 2|k) � Cxx(k + 2|k) + d(k) (38)

3. The prediction at k + 3, written from the two-step ahead
prediction (38) is:

x (k + 3|k) � Ax
2x (k + 1|k)

+ Ax Buu (k + 1|k) + Buu (k + 2|k) ;

y(k + 3|k) � Cxx(k + 3|k) + d(k) (39)

And by substituting (36) to eliminate x(k + 1|k),

x (k + 3|k) � Ax
3x (k) + Ax

2Buu (k)

+ Ax Buu (k + 1|k) + Buu (k + 2|k) ;

y(k + 3|k) � Cxx(k + 3|k) + d(k) (40)
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4. This recursive prediction can thus be generalized for i
steps ahead:

x (k + i |k) � Ax
ix (k) + Ax

i−1Buu (k)

+ Ax
i−2Buu (k + 1|k) + · · · + Buu (k + i − 1|k) ;

y (k + i |k) � Cx

[
Ax

ix (k) + Ax
i−1Buu (k)

+ Ax
i−2Buu (k + 1|k) + · · · + Buu (k + i − 1|k)

]
+ d (k)

(41)

In vector–matrix compact notation, the future prediction
up to the horizon P is given by

Y � �x(k) + �U + Ld(k) (42)

where

Y �
[
y(k + 1|k) . . . y(k + P|k)

]T
(43)

U �
[
u(k) . . . u(k + M − 1|k)

]T
(44)

L �
[
1 . . . 1

]T
(45)

M is the control horizon up to which the optimal input
moves are estimated. From M and beyond, the input moves
are kept constant in the prediction.

u(k + h|k) � u(k + M − 1|k), h � M , . . . , P − 1 (46)

� �

⎡
⎢⎢⎢⎢⎣

Cx Bu 0 · · · 0
Cx Ax Bu Cx Bu · · · 0

...
... · · · ...

Cx Ax
P−1Bu Cx Ax

P−2Bu · · · ∑P
i�MCx Ax

P−i Bu

⎤
⎥⎥⎥⎥⎦

(47)

� �

⎡
⎢⎢⎢⎢⎣

Cx Ax

Cx Ax
2

...
Cx Ax

P

⎤
⎥⎥⎥⎥⎦

(48)

The optimization problem seeks to minimize the devia-
tions of the output predictions and input from their respective
set points. While the output reference or set point r(k + i) is
externally supplied, the input reference is internally defined
by

ur (k) � H0(y(k) − d(k)) (49)

where

H0 � Cx(I − Ax)
−1Bu (50)

The optimization problem is

min
u(k|k), ...u(M−1+k|k) J

� 0.5
P−1∑
i�0

λ
y
i+1[y(k + i + 1|k) − r(k + i + 1)]2

+ 0.5
M−1∑
i�0

λui+1[u(k + i |k) − ur (k + i)]2 (51)

subject to

umin ≤ u(k + i |k) ≤ umax; i � 0, . . . , M − 1 (52)

By defining the input and output reference vectors as

Y r �
[
r(k + 1|k) . . . r(k + P|k)

]T
(53)

Ur �
[
ur (k) . . . ur (k + M − 1)

]T
(54)

The input reference vector computation follows from (49)
as

Ur � H(Y r − Ld(k)) (55)

where

H �

⎡
⎢⎢⎢⎢⎣

H0 0 · · · 0 0 · · · 0
0 H0 · · · 0 0 · · · 0
...

... · · · ...
... · · · ...

0 0 · · · H0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

(56)

The optimization problem (51) can therefore be alterna-
tively written in vector–matrix form (57) with the constraint
(52) remaining valid.

(57)

min
U

J � 0.5(Y − Y r )
T Q (Y − Y r )

+ 0.5(U − Ur )
T R (U − Ur )

where the output and input weighting matrices are diagonal
matrices defined as

Q �
⎡
⎢⎣

λ
y
1 · · · 0
...

. . .
...

0 · · · λ
y
P

⎤
⎥⎦ (58)
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R �
⎡
⎢⎣

λu1 · · · 0
...

. . .
...

0 · · · λuM

⎤
⎥⎦ (59)

with the use of Eq. (42), the optimization problem can
be recast to conform to the standard quadratic programming
(QP) problem

min
U

J � 0.5UT SU + UT (X1x(k) − X2(Y r − Ld(k)))

(60)

subject to

U ≤ U ; −U ≤ U
_

(61)

where

S � �T Q� + R (62)

X1 � �T Q� (63)

X2 � �T Q + RH (64)

U �
[
umax . . . umax

]T
(65)

U− �
[
umin . . . umin

]T
(66)

The first row of the optimal solution U obtained from the
optimization problem (60), (61) defines the current manipu-
lated input move (propofol infusion rate) to be applied to the
process (patient). This is the reasonMPC is often regarded as
receding horizon control because only the first optimal move
of the lot computed over the control horizon M is imple-
mented.

For the unconstrained problem, the optimal solution is
obtained analytically as

U � −K 1x(k) + K 2(yr − d(k)) (67)

where

K 1 � S−1X1 (68)

K 2 � S−1X2 (69)

2.8 The nonlinear MPC strategy

The adapted nonlinearMPC strategy forWiener-type nonlin-
ear models which essentially take advantage of the relative
ease of linear MPC uses a local linearization of the non-
linear static component of the Wiener model at every time
instant about the current state resulting in the use of a time-
varying linear state-space prediction model. It is a successive
linearization technique and is being deployed for anesthesia
application in novelty.

The same predictive control algorithm which was utilized
for the second linear MPC controller holds true here. How-
ever, the future output prediction over the prediction horizon
P is obtained from the local successive linearization at the
current time step k.

To obtain the future predictions, a Taylor series approx-
imation of the nonlinear sigmoidal Hill model of Eq. (17)
truncated at the linear term is obtained

y(k + i |k) ∼� f (x)|x�x(k) +
∂ f (x)
∂x

∣∣∣∣
x�x(k)

[x(k + i |k) − x(k)]

y(k + i |k) ∼� nk + Cxx(k + i |k) (70)

where

nk � f (x)|x�x(k) − Cxx(k)

Cx � ∂ f (x)
∂x

∣∣∣∣
x�x(k)

� −γ BI S0EC
γ

50[O1x(k)]γ−1

(
[O1x(k)]γ + ECγ

50

)2 · O1

(71)

while the generic form of prediction model (33), (34)
employed in the last section still applies, the matrix Cx

ceases to be constant, but is now dependent on current state
estimation x(k). It should be also noted that the term nk
becomes absorbed in the virtual disturbance which is still
validly defined as

d(k + i |k) � d(k) � ym(k) − Cxx(k) for i � 1, . . . ., P

The rest of the optimization problem formulation and con-
trol law are as presented above for the second linear MPC.

3 Results and discussions

3.1 PID design implementation

The response produced by the PID controller is depicted in
Fig. 6 for the controlled output BIS, the plasma concentration
C1 and propofol infusion rate. The response was for a BIS
set point change from 100 to 50 at the start of anesthesia.
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Fig. 6 PID performance for BIS, C1 and u during the induction phase

This is typical of the clinical practice where the goal is to
take the patient to a desired level of unconsciousness (BIS
� 50) from his initial fully conscious (BIS � 100) state at
the start of administration of propofol. This is the induction
stage of anesthesia.

3.2 Implementation, results and discussions
of the linear MPC toolbox controller

The LMPC controller design with theMPC Toolbox was ini-
tially performed offline employing the “plant” model using
different scenarios to judge performance. The toolbox pro-
vides interactive interfaces to upload the model, to design a
controller and to test it for scenarios of interest. Thereafter,
fine-tuning online is performed with the actual process.

The linear continuous model of the nominal patient was
supplied to the toolbox. The toolbox would obtain the dis-
crete form from it using the sampling time, Ts provided for
the controller. A sampling time of 0.1[min] was adopted.
The tuning weights used were: λ

y
i � 1.0 for the output and

λ�u
i � 0.1 for the input rate. No weight was supplied for

the input (that is, λui � 0) as there was no desire to penalize
its deviation from a predetermined target utarget . In addi-
tion, an overall weight tuning of 0.5 on a scale of [0, 1] was
preferred. This represents halfway between robustness and
faster response. Further specifications were made to the con-
troller to enable itmodel output disturbance and noise effects.
Output disturbance and noise of step and white types were
selected, respectively, each of magnitude 10.

A prediction horizon P � 30 was found to be minimally
adequate to improve predictive control action. On the other
hand, the control horizon M was tuned to a value of 2. These

were obtained from fine-tuning with the nominal “patient”
online.

3.3 Implementation and design results
for the second linear MPC controller

The aboveMPCstrategywas incorporated in the SIMULINK
model of the patient using an s-function block. As was used
in the MPC Toolbox controller, the linear continuous state-
space model of Eq. (12) was discretized to obtain the discrete
state-space matrices Ax, Bu, Cx which formed part of the
input parameters of the s-function block. The rest of the input
parameters were the tuning weights Q, R and the horizons P
and M. A sample time of 0.1 min was also maintained. The
satisfactory prediction and control horizons were obtained to
be P � 30, M � 2. The output and input weights were kept
uniform over the respective horizons (Q � λ

y
i I ;� λui I) and

tuned as λ
y
i � 1.0, λui � 0.1. The tuning was performed with

the nominal patient online, as was the practice for the earlier
controllers.

3.4 Implementation and design results
for the nonlinear MPC controller

Again, an s-function blockwas used to apply the controller; it
was coupled with the SIMULINK patient model. The chang-
ing Cx at every time step implied the re-computation of the
prediction matrices to arrive at the final controller gains uti-
lized in the unconstrained control law. Further, Cx was kept
in check in order to avert mathematical and computational
errors involved with matrix factorization, especially at the
initial stages when it approaches a null matrix. Online tuning
of parameters with the nominal patient yielded: the predic-
tion horizons P � 30, M � 2; the output and input weights
λ
y
i � 1.0, λui � 0.1. Figure 7 shows the response generated

with the controller over a 30-min induction simulation on the
same axes as the previous three controllers.

3.5 Comparative study over the induction phase

In this article, the designs of four closed-loop systems for
propofol anesthesia have been examined. In addition to a PID
controller which was tuned by the conventional process reac-
tion curve method, two linear model predictive controllers
were also designed: one by the MATLABMPC Toolbox and
the other by an s-function block code. Further, a nonlinear
model predictive control algorithm was applied, in novelty,
to the anesthesia problem. All four controllers have three or
four main tuning parameters as summarized in Table 2 and
were implemented in SIMULINK where the virtual anesthe-
sia patient model is built.

Induction is the first phase of anesthesia covering the
period when the patient starts receiving the anesthetic to the
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Table 2 Summary of the
controllers’ tuning settings Controller Main tuning parameters and final settings

PID Kc � −0.710 τI � 6.261 τD � 1.065

LMPC (Toolbox) P � 30 M � 2 Q � 1.0 R � 0.1

LMPC 2 P � 30 M � 2 Q � 1.0 R � 0.1

NMPC P � 30 M � 2 Q � 1.0 R � 0.1

Fig. 7 Comparative performance of all four controllers during the
induction phase

time when unconsciousness is achieved. Two key objectives
would warrant a special focus on the induction performance
of the controllers [8]. Firstly, the target hypnotic level (in
this case, BIS � 50) should be attained as fast as possible,
with minimal undershoot. Secondly, the closed-loop infu-
sion system should robustly handle the variations existing
in patient conditions and parameters without compromising
patient safety.

A list of 17 patient sets, adopted from [6], is shown inTable
3 representing a broad range of patient sensitivities. The list
of patient variants was generated from the nominal patient
(8th patient) by observing changes in PK and PD parameters
over three levels of parameter variation: minimum, average
and maximum. The list was utilized to vary the parametric
conditions of the anesthesia patient for the patient–model
mismatch study.

The induction phasewas simulated by a step change inBIS
from 100 to 50 at the beginning of simulation. All the four
closed-loop systems were subjected to this condition. It is
worthmentioning again that all the controllers were designed
and tuned with the nominal patient (patient 8) model. For
each closed-loop system, the anesthesia subject or patient
was changed, in succession, while the controller settings

remained unchanged until all 17 patient conditions in Table
3 have been used.

Figure 8 shows the responses produced by the PID con-
troller for the 17 patient sets. The swiftness of the BIS
responses as well as the initial undershoot varies with the
changing patient conditions even as all patients appear to
settle to the set point about 40 min into the induction. From
this figure, it can be observed that patient 1 was most swift
or sensitive in response while patient 17 was the slowest to
respond. Themost undershoot was experienced with patients
14, 15 and 13 in that decreasing order. All three responses
had BIS undershoot below the lower safe limit of 40 by more
than 4.5 units over a longer period of time than the others.
This is easily attributable to the mismatches existing in the
actual patient condition and the controller modeling. Similar
BIS responses generated for the model predictive controllers
(see Figs. 9, 10 and 11) also show certain patient sets with
undershoot responses much below the lower safe limit of 40.
While patients 3, 1, 4 and 14 experienced the most under-
shoot for the MPC Toolbox controller, it was 3, 4 and 14
for the second LMPC strategy and the NMPC controller. In
spite of the patient–model mismatches, the controllers were
still able to drive all the patients to the set point. LMPC2 and
NMPC controllers produced similar profiles for most of the
inter-patient variability largely due to the similar mathemat-
ical structure of their design algorithm. However, obvious
distinctions still exist in their performances with both show-
ing a promising performance.

3.6 Quantitative comparison using performance
indices

To enable effective comparison of the responses produced by
the controllers, it is necessary to utilize some quantitative cri-
teria for the evaluation of the output and input performance.

3.7 Integral of the absolute error (IAE)

A conventional measure of output control performance
known as the IAE (integral of the absolute error) would be
utilized as a major performance measure.
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Table 3 Parameter values for 17 patient sets [6]

Patient number Parameter

k10 [min−1] k12 [min−1] k21 [min−1] k13 [min−1] k31 [min−1] ke0 [min−1] EC50 [μg/mL] γ

1 (sensitive) 0.08925 0.084 0.06875 0.031425 0.004125 0.459 1.6 2

2 0.14875 0.14 0.04125 0.052375 0.004125 0.239 1.6 2

3 0.14875 0.112 0.04125 0.0419 0.004125 0.239 1.6 3.122

4 0.14875 0.14 0.04125 0.052375 0.004125 0.239 1.6 3.122

5 0.08925 0.084 0.04125 0.052375 0.002475 0.459 2.65 2.561

6 0.08925 0.084 0.06875 0.031425 0.002475 0.349 2.65 2.561

7 0.14875 0.112 0.06875 0.031425 0.002475 0.459 2.65 2.561

8 (nominal) 0.119 0.112 0.055 0.0419 0.0033 0.349 2.65 2.561

9 0.119 0.112 0.055 0.0419 0.0033 0.239 2.65 2

10 0.119 0.112 0.055 0.0419 0.0033 0.239 2.65 2.561

11 0.08925 0.084 0.06875 0.031425 0.002475 0.459 3.7 2

12 0.14875 0.112 0.06875 0.031425 0.002475 0.349 3.7 2.561

13 0.08925 0.084 0.06875 0.031425 0.002475 0.239 3.7 2.561

14 0.08925 0.084 0.06875 0.031425 0.002475 0.239 3.7 3.122

15 0.08925 0.084 0.04125 0.052375 0.002475 0.239 3.7 3.122

16 0.14875 0.14 0.04125 0.052375 0.004125 0.349 3.7 2.561

17(insensitive) 0.14875 0.14 0.04125 0.052375 0.002475 0.239 3.7 3.122

Fig. 8 BIS response with the PID
controller 40 min into the
induction test
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Fig. 9 BIS response with MPC
Toolbox controller 40 min into
the induction test

Fig. 10 BIS response with
LMPC2 controller 40 min into
the induction test

The IAE is mathematically defined as:

IAE �
∫ t

0
|∈ (t)|dt (72)

where the error ε is the difference between the instantaneous
BIS measurement and reference signals.

ε � BI Smeasured(t) − BI Sre f erence(t) (73)

3.8 The performance error (PE)

In addition, other statistical indices have appeared in similar
works (Ionescu et al., 2008 [10]; Sawaguchi et al., 2008 [8];
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Fig. 11 BIS response with
NMPC controller 40 min into the
induction test

Moore et al., 2009 [35]; Simanski et al., 2009 [34]; Sreenivas
et al., 2009 [33]) that are based on the performance error (PE).
The PE is a percentage measure of the deviation from the set
point at every time step.

PE(t) � BI Smeasured(t) − BI Sre f erence(t)

BI Sre f erence(t)
× 100% (74)

Expressed for N discrete sampling instants over the anes-
thesia (simulation) period, Eq. (53) becomes:

PE(i) � ym(i) − r(i)
r(i)

× 100%; i � 1, 2, . . . , N (75)

where ym and r refer, respectively, to the measured and ref-
erence BIS values.

The following indices are based on the PE.

3.9 Median of the performance error (MDPE)

The MDPE is a measure of control bias defined statistically
as the median of the sampled PEs over the anesthesia obser-
vation period.

MDPE � median[PE(i); i � 1, 2, . . . , N ] (76)

It could take negative or positive value and does not give
much useful information on the control performance.

3.10 Median of the absolute performance error
(MDAPE)

The MDAPE is a measure of control inaccuracy. Unlike the
MDPE, it takes only positive values and it indicates the per-
formance of the control system.

MDAPE � median[|PE(i)|; i � 1, 2, . . . , N ] (77)

Like the IAE, high MDAPE values reflect poor control
performance.

3.11 Wobble

Wobble measures the intra-patient variability. It expresses
the degree of oscillatory behavior and time-related changes
in the output performance [33]. It is mathematically defined
as the median of the absolute difference between the PE and
MDPE.

Wobble � median[|PE(i) − MDPE |; i � 1, 2, . . . , N ]
(78)

3.12 Input performance index – total variation (TV)

While there are ample output performance indices, not many
have been reported in the literature for checking the input
moves implemented by anesthetic controllers. For this work,
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Table 4 Average performance
indices and standard deviation
(in bracket) for the induction test

Performance index Controller

PID LMPC (Toolbox) LMPC2 NMPC

IAE 232.9 (47.82) 245.9 (54.68) 202.4 (51.09) 194.5 (47.00)

MDAPE 0.5357 (0.2851) 0.2034 (0.1759) 0.5988 (0.2655) 0.6479 (0.2702)

Wobble 0.2954 (0.1454) 0.0839 (0.1012) 0.1078 (0.0909) 0.0658 (0.0522)

Minimum BIS 40.59 (3.480) 42.68 (6.355) 43.24 (4.135) 42.79 (4.618)

TV 39.29 (4.599) 83.72 (3.139) 45.11 (6.620) 49.44 (7.521)

the total variation (TV) [33] defined as the sum of the abso-
lute differences between successive control moves would be
utilized.

TV �
N−1∑
i�1

|u(i + 1) − u(i)|; i � 1, 2, . . . , N (79)

TV measures the smoothness of the input. Good control
moves are indicated by low values of TV.

3.13 Quantitative evaluation and comparison

The performance error, PE, was computed for all time steps
over the 90-min simulation period. The output performance
indices IAE, MDAPE, Wobble as well as the input perfor-
mance indexTVwere calculated for each of the 17 simulation
runs carried out for each controller. Additionally, the least
measured value of the BIS during each simulation period
was also recorded. This is to aid in assessing the extent of
undershoot in the responses.

Table 4 reports the average and standard deviation values
of these performance indices for the 17 patient runs for each
controller. The NMPC led the controllers in best average per-
formance for the induction tests based on the IAE index. It
recorded the least IAE standard deviation of 47 and average
of 194.5. However, the MDAPE criterion twists the tide to
the favor of the linearMPCToolbox controller when taken as
a measure of control accuracy leaving the NMPC controller
as the worst performing. The observed difference might be
explained by the MDAPE’s use of the median of the lot of
values computed for the absolute percentage deviation from
the set point over the simulation period (see Eqs. 75 and
77), whereas the IAE integrates the absolute deviation errors
over the period (see Eq. 72). The NMPC controller and its
corresponding linear counterpart (LMPC2) displayed close
performance for some of the patients as they both offered the
least integral of the absolute deviations from the set point.
This closeness, as earlier established, is not unconnected to
the fact that the nonlinear controller exploits the simple com-
putationally friendly structure of the linear controller to build
its predictive, optimization and control law frameworks.

They all produced averageminimumBIS above 40 to indi-
cate that their average responses to inter-patient variability
would sustain patient safety. This is quite desirable. Intra-
patient variability is indicated by the Wobble index whose
entries in Table 4 also shows that the NMPC returns the
best average result for the time-related changes in individual
patient output performance.

These induction studies have shown the NMPC strategy
to have performed most satisfactorily for the inter-patient
and intra-patient variability using the IAE and Wobble as
indices. The control moves taken to achieve these, however,
ranked next to the worst performance (produced by the MPC
Toolbox controller) in the group of four as indicated by the
total variation, TV. It is fair therefore to state that there is still
room for the improvement for the NMPC algorithm to be
able to address the concerns of anesthesia regulation despite
its promising results.

4 Conclusion

This article deals with the mathematical design framework
of a variety of closed-loop infusion schemes for propofol
delivery in general anesthesia which can be deployed to
assist clinicians to enhance healthcare delivery during sur-
gical procedures. The main aim of the research is to come up
with a better-performing control system which could han-
dle the clinical concerns of automation-based anesthesia
and to study the performance of these closed-loop auto-
matic drug infusion patterns via computer simulations prior
to actual clinical implementation. Specifically, the design
of model predictive control (MPC) strategies and a propor-
tional–integral–derivative (PID) controller were formulated
mathematically. The successive linearization technique of
MPC was also applied in novelty to anesthesia in this work.
It was observed that the MPC control schemes show very
great promise for onward clinical adoption for automated
drug delivery in anesthesia. The direction for future investi-
gations, as a follow-up on the outcome of this research,would
be pseudo-clinical in silico studies which will further test the
robustness of the controllers via computer simulations.
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Future investigations could also attempt to correlate the
performance of the closed-loop infusion systems with the
changing patient conditions. Already a framework exists for
this as certain population models link PK parameters with
mass, height, age and gender of the patients (Niño et al.,
2009 [5]; Ionescu et al., 2008 [10]). The result of such cor-
relative investigations could help develop a decision system
for the controller. Knowing how a specific patient would “be-
have” a priori could assist in making the controller “wiser”
in predicting control actions.
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