RESOURCE ALLOCATION IN CLOUD COMPUTING USING A GENERALIZED KNAPSACK ALGORITHM

Dr. D. R. Aremu draremu2006@gmail.com
Abiodun K. Moses, abbeykmos@yahoo.com
Oluwasogo, Samuel Ayodeji samueloluwasogo@yahoo.com
Department of Computer Science, University of Ilorin, Ilorin, Nigeria
ABSTRACT

The idea behind Cloud Computing is to transform a bigger segment of the IT market, making software and hardware a more attractive service and redefining the use of IT hardware and software for effective resource allocation and scheduling. Allocation of resources in Cloud Computing environment however, is an extremely very challenging task according, hence the need for efficient algorithms for effective allocation of resources. A variety of strategies for scheduling task and allocating resources in cloud computing environment have been discussed in the literature. For example, the Max-Min algorithm. The Max-Min algorithm select tasks with maximum execution time on a faster available machine or resources that is capable of giving minimum completion time. The concern of this algorithm is to give priority to tasks with maximum execution time, thereby executing them first before assigning those with the minimum execution time for the purpose of minimizing computational time. The drawback of Max-Min algorithm is that, the execution of tasks with maximum execution time first may increase the total response time of the system and leads to a delay in executing tasks with minimum execution time, hence the need to improve on the current Max-Min algorithm to mitigate the delay in executing tasks with minimum completion time. This paper presents Resource Allocation in Cloud Computing using a Generalized Knapsack Algorithm. The main aim of this paper is to develop Knapsack based Cloud Computing Resource Allocation Model. The specific objectives are to: review the existing resource allocation model; design the Knapsack allocation model; evaluate the Knapsack model by using the dynamic programming approach; and implemente the model by using Java Programming language.

KEYWORDS: Cloud-Computing, Grid-Computing, Schedulimg, Quality of Service, Knapsack- Problem, Resource- Allocation
1.0
INTRODUCTION
The concept of utility computing, grid computing and visualization through which cloud computing emerged has brought significant advantages for the development and transformation of businesses, organizations and individuals by providing reliable, customized, quality of service (QoS) and cost beneficial Information Technology (IT) services to business entities, academic institutions, organizations and the general public on demand in daily basis via internet [1]. There are many Computer resources in the cloud environment that offer users the opportunity to have access to processing power, bandwidth, storage, etc. Cloud computing is widely accepted in the world because it offers a varied array of IT services [2] to users with the vision of utility and grid computing, where users access and pay for services offered them in a ways similar to paying for household utilities such as water, telephones, electricity and gas [3]. The idea behind Cloud Computing is to transform a bigger segment of the IT market, making software and hardware a more attractive service and redefining the use of IT hardware and software for effective resource allocation and scheduling. Allocation of resources in Cloud Computing environment however, is an extremely very challenging task according to [4], hence the need for efficient algorithms for effective allocation of resources. A variety of strategies for scheduling task and allocating resources in cloud computing environment have been in the literature. For example, the Max-Min algorithm. The Max-Min algorithm select tasks with maximum execution time on a faster available machine or resources that is capable of giving minimum completion time. The concern of this algorithm is to give priority to tasks with maximum execution time [5], thereby executing them first before assigning those with the minimum execution time for the purpose of minimizing computational time. The drawback of Max-Min algorithm is that, the execution of tasks with maximum execution time first may increase the total response time of the system [6] and leads to a delay in executing tasks with minimum execution time, hence the need to improve on the current Max-Min algorithm to mitigate the delay in executing tasks with minimum completion time. This paper presents Resource Allocation in Cloud Computing using a Generalized Knapsack Algorithm. The main aim of this paper is to develop Knapsack based Cloud Computing Resource Allocation Model. The specific objectives are to: review the existing resource allocation model; design the Knapsack allocation model; evaluate the Knapsack model by using the dynamic programming approach; and implemente the model by using Java Programming language. The rest part of the paper is organized as follows: Section 2 presented the related work; section 3 discussed the methodology for resource allocation in a Cloud Computing environment using A Generalized Knapsack Algorithm; while section 4 discussed the implementation of the Knapsack design model; and section 5 summarized and concluded the paper.
2.0
RELATED WORK
This section presents Coud Computing Models together with a variety of strategies for scheduling task and allocating resources in cloud computing environment as discussed in the literature.
2.1
Cloud Services Models
Cloud computing is a web based technology that provides infrastructure to users as a service (IaaS), platform as a service (PaaS), and software as services (SaaS), [7]. SaaS is a cloud service model which is hosted on the server to provide consumers with cloud applications running on its infrastructure. Customers have no control over the management of the services. Examples of SaaS applications are: content management systems, customer relationship management offerings, video conferencing and e-mails communication systems [8]. In PaaS, customers are provided with the opportunity to develop and run web applications using programming languages, services, libraries and tools supported by the cloud providers. The consumer has no power of managing or controlling the deplored infrastructure, but has control over the deployed applications and can possibly configure the settings. IaaS is a cloud platform that provides some fundamental computer resources like processing power, memory, networks and other computer resources on demand to customer/users to deploy and run their applications on them. Customers can only run their application on the cloud resources, but have no control over the management of the infrastructures.

2.2
Types of Cloud Computing
In cloud computing technology, huge amounts of computer resources are connected for the purpose of sharing and propagation information. This can be done through public, private, community and hybrid cloud.
Public Cloud: These are cloud computing services that are made available and accessible to the doorsteps of the broad-spectrum of the public by public cloud service providers who host and maintain the infrastructure. Public cloud may be owned, managed and controlled by academic institutions, business organizations, government organizations or a combination of these. Examples of cloud services aimed at the general public may include online storage services, e-mail services, social networking sites and Apps (such as Facebook, WhatsApp, and Viber) [9]. Figure 4 below depicts the summary of public cloud providers.

Hybrid Cloud: It is a cloud computing platform that uses a combination of two or more different cloud infrastructure (public, private or community) with unique entities that allows the movement of workloads between the two cloud providers to enable data and application portability. E.g. cloud bursting for load balancing between clouds [10].
Private Cloud: This is a cloud computing platform owned, managed and operated by private organizations, third parties or amalgamation of both to delivers IT as a service rather than a product to customers with a reduced cost. It offers customers higher efficiency with improved innovative business models that are attractive and recommended for the development and transformation of their businesses in this technological era [11].

Community cloud:
[12] defines community cloud as a multi-tenant platform that falls between public and private cloud with respect to their market segment that provide cloud infrastructure to some group of individuals or customers within an organization with a similar interest or requirement (e.g., mission, security requirements, policy, and compliance considerations). In community cloud, the cost of accessing the cloud infrastructure is less expensive as compared to public and private cloud because it is shared among the organizations.
2.3
Resource Allocation Strategies in Cloud Computing Environment
A variety of strategies for scheduling task and allocating resources in cloud computing environment as discussed in the literature are presented as follows:.
RandomAlgorithm: The random algorithm is static [13] in nature, It selects the node of a system randomly by making use of a random number generator [14]. The processes are then said to be handled by node n with a particular probability p [13]. The allocation order of the processes is maintained for each processor. Though the algorithm works well with equally loaded processes, there may be some problem in case the loads are of different computational complexities. The issue is also that the algorithm follows no deterministic approach.

FCFS: The First Come First Serve algorithm [15] is a simple load balancing technique wherein each load balancer maintains a job queue in which job waits for its turn to get executed. The advantages of FCFS are a result of its being fast and simple. But it results in a poorer overall response time in case smaller tasks have to wait for longer time because of being at a later place in the queue.

Round Robin: The Round Robin algorithm [13] allocates the nodes to fulfill the requests in a round robin manner for a definite time slice, i.e. according to the process allocation order that is maintained locally. This serves the advantage of fast response in case of equal workload distribution amongst the processes. However, the job processing time for different processes is not the same. So, some nodes may be heavily loaded while some others may remain idle.

Weighted RR: In this method, a ration weight is defined for each machine. According to this algorithm [14], the number of connections that each machine receives over time is proportionate to the defined ratio weight. This algorithm improved the Round Robin because whenever we define weighted assignments like “Machine 1 is able to serve 3x the load that machines 2 and 3 are able to handle”; three requests are sent by the load balancer to machine 1 for each request to the others. This algorithm works smoothly but has a problem because of the static definition of the weights in the beginning

Dynamic Round Robin: This algorithm [14] is quite similar to Weighted Round Robin; the difference being that the servers are continuously monitored and the weights keep on changing. This is a dynamic load balancing method. It makes use of various aspects of real-time server performance analysis, like the current number of connections per node or the fastest node response time to distribute the connections. The only issue with this algorithm is that it is rarely available in a simple load balancer, because of its dynamic nature.

Least connections: In this dynamic load balancing method, the load balancer records the connection number of each server, increasing the number when a new connection is dispatched to it, and decreasing the count when connection finishes or timeout happens (10). Using this algorithm, the system passes a new connection to the server that has the least number of current connections. As this method is dynamic in nature, it distributes connections based on various aspects of real-time server performance analysis, like the current number of connections per node or the fastest node response time. Least Connections method [14] works best in the environments where the servers or other equipment that are being load balanced have similar capabilities. This Application Delivery Controller method is rarely available in a simple load balancer.

Observed: This algorithm [14] makes use of a combination of the logic used in the Least Connections and Fastest algorithms. Using this method, servers are ranked based on a combination of the number of current connections and the response time. Servers possessing a better balance of fewest connections and fastest response time receive a greater proportion of the connections. This load balancing method is generally not available in a simple load balancer.

Equally spread current execution load: This algorithm [16] requires continuous monitoring of jobs which are present for execution in order to queue up the jobs and hand them over to different virtual machines. The load is distributed randomly by checking the size and thereby transferring the load to that virtual machine which is lightly loaded or can handle that task easily and takes less time, while giving maximum throughput.

Throttled load balancing algorithm: In this algorithm [17], whenever a client request is received, the load balancer tries to find a suitable Virtual Machine to perform the required operation. The algorithmic process starts by maintaining a list of the entire available VMs. Indexing is performed in order to speed up the lookup process. The request from a client is accepted if a match is found on the basis of size and availability of the machine. The VM is then allocated to the client. If, however VM that matches the criteria is available, then the load balancer queues up the request.

Min-Min Algorithm: This algorithm[13] begins by finding the minimum completion time for all tasks. Then amongst these minimum times, the minimum value among all the tasks on any resource is selected and accordingly the task is scheduled on the corresponding machine. Thereafter, the execution time of the assigned task is added to the execution times of other tasks on that machine to update the execution time on that machine. The assigned task is then removed from the list of tasks that are yet to be assigned to the machines. This procedure is followed until all the tasks are assigned on the resources. The major drawback of this method is that it can lead to starvation [18].

Max-Min Algorithm: Max-Min algorithm [18] is similar to the min-min algorithm except that after finding out minimum execution times, the maximum value is selected. This is the maximum time among all the tasks on any resources, according to which the task is scheduled on the corresponding machine. Thereafter, the execution time of the assigned task is added to the execution times of other tasks on that machine to update the execution time on that machine. The assigned task is then removed from the list of tasks that are yet to be assigned to the machines. This procedure is followed until all the tasks are assigned on the resources.

Token Routing: The algorithm [13] was designed with an aim of minimizing the system cost by moving tokens around the system. Due to communication bottleneck, agents can not possess enough information of distributing workload. The drawback of this algorithm can be removed with the help of heuristic approach of token based load balancing, thereby providing fast and efficient routing decisions. Here, agents do not need to have complete knowledge of their global state and neighbour’s working load, but make their own decisions on where to pass the token by actually building their own knowledge base. In this approach no communication overhead is generated as the knowledge base is actually derived from the previously received tokens.
3.0
Methodology
This section presents methodology for resource allocation in a Cloud Computing Environment using A Generalized Knapsack Algorithm.
3.1
Problem Formulation

The General Assignment Problem (GAP) is best described using knapsack problems [2]. Given n set of tasks to be done in the Cloud and m Cloud resources, with
[image: image18.png]140

120

100

80

60

40

20 +

W Seriesl
m Series2
i Series3
W Series4

m Series5

 as the profit associated with assigning task j to resources r,
[image: image2.wmf]rj

w

as the weight of assigning task j to resources r, and
[image: image3.wmf]rj

c

as the capacity of resource r, assign each task j to exactly one resource r, not exceeding resource capacities. Defining
[image: image4.wmf]1

=

rj

x

 if task j is assigned to resource r = 0 otherwise, the GAP can be formulated as:

[image: image5.wmf]å

å

=

=

=

=

m

r

n

j

rj

rj

x

p

z

Maximize

1

1

(1)
 Suject to

[image: image6.wmf]{

}

{

}

capacities

knapsack

respect

m

M

r

c

x

w

r

n

j

rj

rj

.

.

.

,

1

1

=

Î

£

å

=

(2)

[image: image7.wmf]{

}

{

}

assigned

tasks

all

n

N

j

x

n

j

rj

.

.

.

,

1

1

1

=

Î

=

å

=

(3)

[image: image8.wmf]{

}

N

j

and

M

i

all

for

x

ij

Î

Î

Î

1

,

0

where

[image: image9.wmf]i

resource

allocated

is

j

task

if

otherwise

ij

x

1

0

=

3.4
SOLUTION DESIGN APPROACH

This section presents design for implementing the presented Knapsack Model by adopting Dynamic Programming solution approach:
Step 1: Decompose the problem into smaller problems.

The research constructed array Z[0..m, 0..n], for 0< r < m, 0 < j < n, the entry Z[r,j] will store d maximum (combined) total profit of items {1,2,3…,j} of combined size at most Cr. If we compute all the entries of this array, then the array entry Z[M,N] will contain the maximum total profit of items that can be assigned into the knapsack/resources, that is, the sub-solution to our problem.
Step 2: Recursively define the value of an optimal solution in terms of solutions to smaller
 problems.

[image: image10.wmf][

]

[

]

case

illegal

r

for

j

r

Z

item

no

m

r

for

r

Z

set

setting

Initial

0

,

,

,

0

,

0

0

,

:

<

¥

-

=

£

£

=

Recursive Step: Use

[image: image11.wmf][

]

[

]

[

]

[

]

(

)

[

]

[

]

[

]

[

]

[

]

[

]

;

0

,

1

1

,

1

,

,

1

,

max

,

r

W

r

C

r

C

and

r

C

j

i

w

if

and

if

m

r

n

j

for

j

r

Z

j

r

P

j

r

Z

j

r

Z

-

=

<

£

£

£

£

-

-

+

-

=

Step 3: Bottom-up computing
[image: image12.wmf][

]

j

r

Z

,

using iteration. Bottom:
[image: image13.wmf][

]

0

0

,

=

r

Z

 for all

[image: image14.wmf]m

r

£

£

0

Computing of table using :

[image: image15.wmf][

]

[

]

[

]

[

]

(

)

1

,

1

,

,

1

,

max

,

-

-

+

-

=

j

r

Z

j

r

P

j

r

Z

j

r

Z

 row by row
Table 3.1 Tabular Representation of Dynamic Programming Concept
	Z[r,j]
	J = 0
	1
	2
	3
	…
	…
	N

	r = 0
	0
	0
	0
	0
	…
	…
	0

	 1
	[image: image1.wmf]rj

P

	
	
	
	
	
	

	2
	
	
	
	
	
	
	

	:

.
	
	
	
	
	
	
	

	M
	
	
	
	
	
	
	

 Up

 bottom

4.0
IMPLEMENTATION
This section presents the implementation of the Dynamic programming approach to solving The generalized Knapsack Scheduling algorithm using Java programming language for the implementation.
4.1
THEORETICAL EXPERIMENT
The algorithm stated above was experimented with the example given below.
Example1: Given, the value of n (set of tasks) is 4; m (set of Cloud resources) is 5
	R
	1
	2
	3
	4
	5

	Cr
	50
	40
	45
	30
	60

Cr (Capacity of the Cloud resources) =

Wrj (weight of task j if assigned to resource r) Prj (profit of task j if assigned to resource r),
	Wrj
	j = 1
	2
	3
	n = 4

	r = 1
	5
	6
	7
	8

	2
	3
	12
	4
	5

	3
	6
	7
	9
	10

	4
	4
	8
	6
	2

	m = 5
	2
	11
	14
	13

	Wrj
	j = 1
	2
	3
	n = 4

	r = 1
	20
	15
	60
	70

	2
	50
	40
	30
	20

	3
	10
	15
	20
	25

	4
	15
	40
	55
	50

	m = 5
	60
	65
	10
	5

Compute the optimal solution

Applying the Dynamic programming approach to the problem stated in the example above the researcher constructed an array
[image: image16.wmf][

]

n

j

and

m

r

Z

£

£

£

£

0

0

,

4

....

0

...

0

 such that the maximum of the profits of tasks {1, 2, 3, 4}and capacity Cr
Our interest is to find

[image: image17.wmf][

]

[

]

[

]

[

]

(

)

[

]

[

]

[

]

[

]

[

]

[

]

;

0

,

1

1

,

1

,

,

1

,

max

,

r

W

r

C

r

C

and

r

C

j

i

w

if

and

if

m

r

n

j

for

j

r

Z

j

r

P

j

r

Z

j

r

Z

-

=

<

£

£

£

£

-

-

+

-

=

That is we must be sure that the W[i][j] is not greater than capacity C[r]

Case when:
r= 0, j = 1 , Z[0,j] = 0 for all j member of N

r = 1, j = 1, Z[1,1] = max { 0, 20 + 0} > 0? = 20

r = 1, j = 2, Z[1,2] = max { 0, 15 + 0} > 20? = 20

r = 1, j = 3, Z[1,3] = max {0, 60 + 0} > 20? = 60

r = 1, j = 4, Z[1,4] = max {0, 70 + 0} > 60? = 70

r = 2, j = 1, Z[2,1] = max {0, 50 + 0} > 0? = 50

r = 2, j = 2, Z[2,2] = max {0, 40 + 20} > 50? = 60

r = 2, j = 3, Z[2,3] = max {0, 30 + 20} > 60? = 60

r = 2, j = 3, Z[2,4] = max {0, 20 + 60} > 50? = 80
If we continue in that maner,

Also we obtain the corresponding values
	Z[r,j]
	j = 0
	1
	2
	3
	4

	r = 0
	0
	0
	0
	0
	0

	1
	0
	20
	20
	60
	70

	2
	0
	50
	60
	60
	80

	3
	0
	10
	65
	80
	85

	4
	0
	45
	50
	120
	130

	5
	0
	60
	110
	110
	125

we obtain a table as shown below for Z[r,j]
for Xrj as shown in the table below; The value

 Xrj = 1 if the task j is assign to the resource r.
	Xrj
	j = 0
	1
	2
	3
	4

	r = 0
	0
	0
	0
	0
	0

	1
	0
	1
	0
	1
	1

	2
	0
	1
	1
	0
	1

	3
	0
	1
	1
	1
	1

	4
	0
	1
	1
	1
	1

	5
	0
	1
	1
	0
	1

The optimal solution for Z[r,j] is obviously 130.
4.3
COMPUTATIONAL EXPERIMENT
The result of the computational experiment is as shown below:

Read in the N set of tasks to be done: 4

Read in the m Grid of knapsacks or resources to store items: 5

The capacity of knapsack: 60 50 55 40 45

The weight of assigning task to knapsack:

The cost of assigning task to knapsack: The result table for the maximum profit computed is:

The result table for the X(r,j) is:

0 0 0 0 0
0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

0 1 1 1 1

0 1 1 0 1

The maximum total computed Profit of 6 items that can be assigned to the 5 knapsack is: 225

Optimal Solution is at Position: Z[4,4]
Graph 4.1: Graphical representation of
 Graph 4.2: Graphical representation of

the output for theoretical experiment

 the output for Computational experiment
4.4
DISCUSSION OF RESULT
Graph 4.1 and Graph 4.2 show the results of the theoretical computation and the experimental computational respectively. The results show that the presented Knapsack Model compared favorably with the theoretical model. Thus the The Knapsack Model is appropriate for allocating Cloud Computing resources.
5.0
SUMMARY AND CONCLUSION
SUMMARY
Allocation of resources in Cloud Computing environment is an extremely challenging task, hence the need for efficient algorithms for effective allocation of resources. A variety of strategies for scheduling task and allocating resources in cloud computing environment have been discussed in the literature, However, a number of these allocation model still suffer some drawback. This study presented Resource Allocation Model in Cloud Computing using a Generalized Knapsack Algorithm. The aim of the paper was to develop Knapsack based Cloud Computing Resource Allocation Model. The specific objectives are to: review the design the Knapsack allocation model.

The methodology used include: first evaluate the Knapsack model by using the dynamic programming approach; and secondly implement the model by using Java Programming language. Comparison study of the theoretical computation result and the experimental result were carried out.

The finding from the study shows that the result of the Knapsac Model compared favourably the theoretical result.
5.1
CONCLUSION

The result from the study shows that the Knapsac Model compared favourably with the result from the theoretical model hence The Knapsack Model is an appropriate model for resouece allocation in Cloud Computing.
REFERENCES
[1]. N. Ajith Singh, M. Hemalatha, “An approach on semi distributed load balancing

 algorithm for cloud computing systems” International Journal of Computer Applications

 Vol-56 No.12 2012.
[2]. Thomas, A., Krishnalal, G., & Raj, V. J. (2015). Credit based scheduling algorithm in

 cloud computing environment. Procedia Computer Science. Vol. 46, pp. 913-20.
[3]. Elghoneimy, E., Bouhali, O., & Alnuweiri, H. (2012). Resource allocation and
Scheduling in cloud computing. International Conference on Networking and Communications

 (ICNC). Pp. 309-314.
[4]. Buyya, R., & Sukumar, K. (2011). Platforms for building and deploying applications for
 cloud computing. ArXiv Preprint arXiv:1104.4379.

[5]. Elzeki, O., Rashad, M., & Elsoud, M. (2012). Overview of scheduling tasks in distributed
 computing systems. International Journal of Soft Computing and Engineering. Vol.
 2(3), pp. 470-475.
[6]. Santhosh, B., & Manjaiah, D. (2014). An improved task scheduling algorithm based on

 max min for cloud computing.
 [7].Agarwal, D., & Jain, S. (2014))
[8]. (Deyo, J. (2008)).
[9] (Mell, P., & Grance, T. (2011))
[10] Mell, P., & Grance, T. (2011)).
[11] (Hogan, M., Liu, F., Sokol, A., & Tong, J. (2011)).

[12] Goyal, S. (2014)
[13]. Analysis of Load Balancing Techniques in Cloud Computing. K, Sidhu A and Kinger,
 Supriya. 2, Fatehgarh Sahib : International Journal of Computers & Technology, April
 2013, International Journal of Computers & Technology, Vol. 4. ISSN 2277-3061.
[14]. Load Balanced Min-Min Algorithm or Static Meta-Task Scheduling in Grid Computing. T, Kokilavani and G, Amalarethinam D I. 2, 2011, International Journal of Computer Applications, Vol. 20. 0975-8887.
[15]. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable
 Virtual Organizations. International Journal of High Performance Computing

 applications, Vol. 15, No.3, pp. 200-222, 2001.

0 0 0 0 0

0 20 20 60 70

0 50 60 60 80

0 10 65 80 85

0 45 50 120 130

0 60 110 110 125

20 15 60 70

50 40 30 20

10 15 20 25

15 40 55 50

60 65 10 5

4

_1592188962.unknown

_1592191454.unknown

_1592193407.unknown

_1592194888.unknown

_1592206313.unknown

_1592193161.unknown

_1592193312.unknown

_1592193366.unknown

_1592193211.unknown

_1592192426.unknown

_1592190376.unknown

_1592190712.unknown

_1592189302.unknown

_1592188725.unknown

_1592188784.unknown

_1592188661.unknown

