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ABSTRACT
Mathematical models provide valuable information for livestock improvement programmes. In this study,
we evaluated the ability of five mathematical models (3P and 4P Gompertz, 3P and 4P logistic and neural
network) to predict the growth of six tropically adapted dual purpose (TADP) chicken breeds (Fulani,
FUNAAB Alpha, Kuroiler, Noiler, Sasso and Shika-Brown) under on-station and on-farm in Nigeria. Data
for body weight were collected every 14 days from 1939 birds reared on-station, and every 28 days
from 58,639 birds reared on-farm. Parameters used to evaluate the growth models were the adjusted
coefficient of determination (AdjR2), Akaike’s information criterion (AIC), Bayesian information criterion
(BIC) and root mean square error (RMSE). The AdjR2 for Gompertz 3P was higher than or equal to the
AdjR2 for logistics 3P, Gompertz 4P and logistics 4P but was equal to or lower than the AdjR2 for the
neural network (NN) for all TADP chickens raised on-station. Based on the goodness-of-fit criteria,
Gompertz 3P had the best predictive values (AdjR2 = 0.989–0.998) for TADP chickens raised on-station,
while logistic 3P was the best-fit model for TADP chickens raised on-farm. In conclusion, non-linear
models and NN models yielded a good fit with the age-weight data of TADP chickens on-station and
on-farm.
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Introduction

Indigenous chickens contribute immensely to food security and
livelihoods of smallholder farmers in the tropics. Despite being
inferior to broilers in body weight, indigenous chickens are pre-
ferred for their survivability, disease resistance, meat quality
and scavenging ability. Growth, defined as an increase in
body size, is a defining parameter of biological systems (Lawr-
ence and Fowler 2002). Body weight is one of the most signifi-
cant traits in poultry production because it is associated with
growth rate, feed conversion efficiency and occurrence of dis-
eases in a flock (Amraei et al. 2017). Poultry growth patterns
have been predicted using different mathematical models
(Darmani et al. 2003; Sengul and Kiraz 2005; Roush and
Branton 2006; Yaya et al. 2019). Several factors both non-
genetic (health, age, welfare, location and feed) and genetic
(breed or strain) have been implicated in the huge variations
in growth curves fitted to the mathematical models (Darmani
et al. 2010).

The application of mathematical models to fit data to the
growth curve in chickens provides parameters that are used
to predict body weight at a specific age and to detect the
beginning of the reduction in growth rate (Yakupoglu and

Atil 2001). Such analysis of the growth curve is highly desirable
in developing countries to assist in the quest for maximization
of genetic gains for improved performance in livestock pro-
duction and attainment of animal protein sufficiency (Abbas
et al. 2014).

Mathematical modelling is useful for optimizing growth
rate, livestock performance, slaughter age, appropriate
feeding and selection (Sariyel et al. 2017). A useful growth
model should be parsimonious and contain parameters that
have biological and physical meaning (France et al. 1996).
The age–weight relationship has been described by many
mathematical models such as logistic model (Grossman and
Bohren 1985; Tsoularis and wallace 2002), Richard model (Kni-
zetova et al. 1991) and Gompertz model (Barbato 1991; N’dri
et al. 2006).

In many studies of Japanese quail growth data, Gompertz,
logistic or von Bertalanffy growth models were used (Tzend
and Becker 1981; Akbaş and Oğuz 1998; Alkan et al. 2009;
Narinç et al. 2010; Narinç and Aygün 2010; Alkan et al.
2012). A common characteristic of these models is the fixed
inflection point. The body weight at the inflection point is
identified as 37% of the asymptotic weight in both the Gom-
pertz and von Bertalanffy models and 50% in the logistic
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model. In fixed growth models, the genetic variations of
asymptotic weight and point of inflection weight are equal,
which constitute a problem for genetic improvement
(Darmani et al. 2010).

Analyses of broiler growth data using the Gompertz growth
models result in a single sigmoidal curve (Wang et al. 2004;
Strathe et al. 2010). Santos et al. (2005) used the Gompertz
model to analyse growth in two slow-growing broiler lines
housed in two different systems. Dourado et al. (2009) used
the Gompertz model to examine the growth of slow-growing
broilers reared in the free-range system. Gompertz, logistic
and Richard models were used by Norris et al. (2007) to
analyse the body weight of indigenous Venda and Naked
Neck chickens of South Africa and growth curve parameters
were estimated and compared.

Several studies, estimating the biological parameters of the
growth curve for chickens, have been reported. Knizetova et al.
(1985) observed age at inflection point values of 63.7, 79.8 and
81.5 days for White Cornish, White Leghorn and New Hamp-
shire cockerels, respectively. The logistic and Gompertz
models have been extensively used in poultry production for
on-the-spot assessment of body weight changes and nutri-
tional challenges (Gous et al. 1999; Darmani et al. 2003; Sako-
mura et al. 2005) because of their robust nature in modelling
growth curve patterns. Yapi et al. (2011) observed that indigen-
ous chickens took longer (51.22 days) to reach the point of
inflection than the commercial genotypes (50.68 days for C-
Nana and 46.91 days for C-nana). Ait and Moula (2013) reported
maturation growth rate (K) of 0.0260 and 0.0294 g d–1 for the
chickens of Kabyle in Algeria, whose values were superior to
the values of 0.0189 and 0.0205 g d–1 reported by Yapi et al.
(2011) for the indigenous chickens in Cote d’Ivoire.

Both Gompertz and logistic models belong to the Richards
family of three-parameter sigmoid growth models (Tjørve and
Tjørve 2017), which have been reported to be adequate in
explaining weight growth in chickens (Zhao et al. 2015;
Michalczuk et al. 2016).

The Neural network model learns the growth parameters of
algorithms automatically from data without resorting to the
underlying biological basis of the equation. Its ability to cope
with high inputs of data, non-linearity and prediction accuracy
of 98–99% is an indication that it can successfully replace the
conventional methodologies (Sivanandam et al. 2008; Milosevic
et al. 2019). Also, it belongs to the group of high-resolution
models, and its flexibility makes it a generalized alternative to
Gompertz and logistic equations (Thornley and France 2007;
Ahmad 2009). Safari et al. (2017) observed that neural
network models are more efficient and reliable in describing
the relationship among parameters than non-linear regression
models.

In meat type chickens, an appropriate body weight is
required for optimal production at the end of rearing. Math-
ematical models have been used to fit growth models, where
biologically relevant parameters could be related to perform-
ance, such as asymptotic weight (Teleken et al. 2017). These
models have three or four parameters and at least one par-
ameter of the model has a biological meaning (Iqbal et al.
2019). Selvaggi et al. (2015) reported that Gompertz 3P
model fitted live weight data more appropriately for male

and female birds than the 4P models in non-descript Italian
chicken breeds. However, most studies have only explored 3P
models with a single asymptote in fitting the growth curves
of indigenous and exotic chickens. These models are prone
to overestimation of predicted data, thereby leading to erro-
neous inferences in estimating genetic gain in breed improve-
ment programmes. However, the use of 4P versions of logistic
(Liao and Liu 2009) and Gompertz (Wellock et al. 2004; Porter et
al. 2010) models might minimize overfitting of the curves.

Studies comparing mathematical models for chicken
growth, using 3P logistic and Gompertz models, have been
widely reported in the literature (Thornley and France 2007;
Zhao et al. 2015; Michalczuk et al. 2016). However, studies, com-
paring the predictive ability of 3P Logistic and Gompertz
models and their 4P versions with neural network model in
TADP chickens, under both on-station and on-farm conditions,
have not been reported. This is the purpose of this report.

The aim of this study was to assess the predictive ability of
different mathematical models (3P and 4P Gompertz, 3P and
4P logistic and neural network) for forecasting the growth of
TADP chickens at 0–20 weeks under on-station and on-farm
conditions in Nigeria. We hypothesize that models that are par-
simonious under on-station conditions will also be under on-
farm conditions. In addition, we expected to observe sexual
dimorphism in TADP chickens for sigmoid growth patterns.

Materials and methods

Experimental site

The on-station test was conducted at Fol-Hope Farms, Ibadan,
Oyo State and the Federal University of Agriculture, Abeokuta
(FUNAAB), located within the Southern Guinea Savanna, and
Dry Lowland Rainforest agro-ecological zones, respectively.
The testing of the birds commenced in May 2016. The on-
farm test was carried out in five agro-ecological zones as
follows: Kebbi State (Sudan and Northern Guinea Savanna),
Kwara State (Southern Guinea Savanna), Nasarawa State
(Southern Guinea Savanna), Imo State (Wet Lowland Rain
Forest and Fresh Water Swamp) and Rivers State (Mangrove
Swamp and Fresh Water Swamp).

Management systems

A total of 1939 d-old chicks of both locally sourced breeds
(Fulani, FUNAAB Alpha, Noiler and Shika-Brown) and imported
breeds (Kuroiler and Sasso) were brooded to 42 days (Table 2).
The birds were sexed at 42 days, and males and females were
grown separately until 140 days under station (intensive pro-
duction system) conditions. The stocking density was
10 chicks/m2, seven birds/m2, and five birds/m2 during 0–42d,
43–91d and 92–140d, respectively. Commercial feed (Chick
mash at 0–42d: 2,993 kcal ME/kg, 22.3% CP and Grower mash
at 43–140d: 3013 kcal ME/kg, 17% CP) and water were available
ad libitum. Birds in both stations were fed the same proprietary
feed. Standard biosecurity measures and vaccination schedules
were observed at the test centres. Body weight was measured
every two weeks. For the on-farm test, a total of 58,639 six-
weeks-old pre-vaccinated chickens were distributed to 2100
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households across five states representing different agro-ecol-
ogies (Table 3). Standard backyard scavenging management
practices were followed by the farmers with the addition of
overnight housing, feed supplementation and vaccination pro-
grammes. Body weight was taken every four weeks.

All applicable veterinary permits were obtained for the
importation and use of the imported breeds for research pur-
poses (Bamidele et al. 2019). Both the on-station and on-farm
studies were approved by the International Livestock Research
Institute (ILRI) Institutional Research Ethics Committee (IREC)
with reference no.: ILRI-IREC2015-08/1, and ILRI Institutional
Animal Care and Use Committee (IACUC) with reference
number: ILRI-IACUC-RC2016.2. Each farmer gave written
informed consent to participate in the study.

Statistical procedures

Repeated measures of individual body weight at different ages
of males and females’ TADP chickens were fitted to 3P and 4P
models, respectively. The 3P models sought to fit a response
that is between zero and the estimated asymptote. The 4P
models sought to fix a response between zero and two esti-
mated asymptotes. The models used in fitting the growth
curves are presented in Table 1.

Neural network computations

The whole datasets for body weight and age were separated at
random into two subsets (training and testing) using a super-
vised neural network. The training set consisted of 75% and
testing subset consisted of 25%. The training sets were used
to train the neural network models, and the testing sets were
used to validate the models. The networks were tested with
100 hidden layers with 320 neurons in each hidden layer to
optimize the body weights. Initial weights and bias matrix
were randomly initialized between −1 and –1. We used a
non-linear transformation (or activation) models tangent
sigmoid as shown below

f (x) = 1
1+ e−ax

to compute the output from the summation of weighted inputs
x of neurons in each hidden layer, where a is a constant. A pure
linear transformation model was used as an output layer for
getting network responses (Sivanandam et al. 2008).

We implemented both the specialized modelling technique
(SMT) and the predictive modelling technique (PMT). The SMT
adopts the fit curve procedures which contain varieties of
inbuilt, non-linear models using ordinary least squares
methods, while the PMT was used to train, test and validate
the neural network for estimating or forecasting age–weight
relationship.

Breed and sex effects were estimated using the general
linear model to compute the summary statistics (Means ± SD).
Significant differences in means were separated using Tukey
test. The growth models (3P and 4P Gompertz; 3P and 4P logis-
tic) were fitted to the measurements of actual body weight
related to age via a non-linear procedure, using the Marquardt
algorithm of J.M.P 13.2 statistical software. On the other hand,
the two-layer fully connected multilayer perceptron algorithm
procedures were used to model the neural network using
default random holdback methods which was set at 0.3333

Table 1. Equations of the non-linear regression growth curve models.

Model Equations Age at inflection point Weight at inflection point

Gompertz 3P Y = a. exp (− exp (− b.(age− c))) ln
b
a

c
e

Logistic 3P Y = c
(1+ exp (− a · (age− b)))

− ln
1
b

( )−a c
2

Gompertz 4P Y = a+ (b− a) · exp (− exp (− c · (age− d))) ln
d
a

( )
a
e
.c

Logistic 4P Y = c+ d − c
(1+ exp (− a · (age− b)))

c+ d
2

d
2

Notes: Y is the estimated weight at age x; a is the maturity index; b is the scale parameter; c is the asymptotic weight; d is the upper asymptote; Gompertz 3P was
referenced from Gompertz (1832); Logistic 3P from Darmani et al. (2010); Logistic 4P from Ratwosky and Reddy (1986); Gompertz 4P from Tjørve and Tjørve (2017).

Table 2. Allocation of strains of chickens tested on-station in Nigeria.

Station Breed Number

IBADAN, Fol-Hope farms Kuroiler 204
Sasso 204
Fulani 50
FUNAAB Alpha 170
Shika-Brown 200
Noiler 150

ABEOKUTA, FUNAAB Poultry Unit. Kuroiler 204
Sasso 204
Fulani 20
FUNAAB Alpha 183
Shika-Brown 200
Noiler 150

Total 1939

Table 3. On-farm experimental allocation of households in Nigeria.

Strain
No. of batches
of distribution

No. of
HH/

breed/
State

Total no. of
households per

breed

Ave. no. of
birds per
household

Fulani 5 36 180 20
FUNAAB
Alpha

5 48 240 20

Kuroiler 2 84 420 25
Noiler 1 84 420 20
Sasso 1 84 420 25
Shika-
Brown

2 84 420 25

Total 420 2,100

Notes: HH: household; Ave: average.
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with hidden nodes of 1000. The models’ performances were
compared based on the AdjR2, RMSE, AIC and BIC. RMSE and
AdjR2 of the models were considered as the calculated good-
ness-of-fit parameters for comparing the different models
across breeds of TADP chickens. We obtained AIC using
n · ln (SSE/n)+ 2k, where n is the number of observations,
SSE is the sum of the square of errors, and k is the number of
parameters. We derived BIC using n · ln (SSE/n)+ 2k · ln(n).
Estimated mean parameters obtained from different models
were used to plot the general growth curves of the TADP
chickens.

Results and discussion

Results on growth performance of the TADP chickens raised on-
station, and on-farm have previously been reported by Bami-
dele et al. (2019), and Ajayi et al. (2020), respectively. Estimated
growth curve parameters of male and female birds raised on-
station are presented in Tables 4 and 5, respectively. Different
growth models of the six TADP chickens used in this study
showed variations in estimated asymptotic weight. The TADP
chickens had higher upper asymptotic weight, except for
logistic 3P (1332.09 g) and 4P (1408.14 g) in Fulani which was
lower, than the Lohmann average of 1500 g of body weight
for laying hens. The weight at the inflection point was lower
than the upper asymptotic weight for all the TADP chickens.

The earlier occurrence of the maturity rate in Gompertz than
in logistic models implies that the Gompertz model is more
sensitive to growth response. The asymptotic weight rep-
resents the maximum growth response for animals which are
mostly affected by genotype and environment interactions
(Narinç et al. 2010). The weight at the inflection point was
above 1000 g for all TADP chickens except for Fulani and
Shika-Brown. Noiler had the lowest scale parameters (5.22
weeks, Gompertz 4P and 9.54 weeks, logistic 3P) followed by
Kuroiler (8.83 weeks, Gompertz 3P and 10.14 weeks, logistic
3P), Sasso (9.76 weeks, Gompertz 3P and 10.92 weeks, logistic
3P), FUNAAB Alpha (8.85 weeks, Gompertz 3P and 10.21
weeks, logistic 3P), Fulani (11.45 weeks, Gompertz 4P and
12.22 weeks, logistic 4P) and Shika-Brown (9.59 weeks, Gom-
pertz 3P and 10.85 weeks, logistic 3P). The age at the inflection
point at 10 weeks (70 days) in Sasso chicken as observed in
Table 4 was lower than the previously reported 74.2–79.8
days in SASSO T44 populations but higher than the 63.7 days
in White Cornish population, as reported by Knizetova et al.
(1985). The difference between Noiler and the other breeds in
the inflection points (age and weight) could be due to the
fact that Noiler birds came into the experiment at 42 d of age
when compared to the other breeds that were monitored
from day old.

For data collected on female birds raised on-station (Table 5),
all the computational models (3P and 4P logistic models, 3P and

Table 4. Estimated growth curve parameters of male birds raised on-station from 0 to 20 weeks.

Breed/Model a b c d Age and weight at inflection point AIC BIC RMSE AdjR2

Noiler
Gompertz 3P 0.15 7.70 2655.67 13;1944.67 89.819 76.804 22.119 0.997
Logistic 3P 0.23 9.54 2463.77 13;1948.67 97.141 84.125 34.954 0.995
Logistic 4P 0.09 8.89 8762.66 3008.00 13;1944.03 102.172 72.569 16.666 0.994
Gompertz 4P 0.09 5.22 4665.65 3032.98 13;1943.34 102.202 72.599 16.697 0.994
Neural network 13;1978.46 4.837 0.995
Kuroiler
Gompertz 3P 0.17 8.83 2780.35 10;1841.10 122.196 117.121 37.637 0.996
Gompertz 4P 0.18 8.89 34.97 2735.53 10;1844.48 128.630 118.619 38.624 0.994
Logistic 3P 0.31 10.14 2442.10 10;1255.99 130.429 125.354 54.721 0.990
Logistic 4P 0.26 9.92 −157.44 2539.96 10;1839.29 131.732 121.721 44.473 0.989
Neural network 10;1839.14 22.383 0.995
Sasso
Gompertz 3P 0.16 9.76 3234.25 10;1841.10 121.270 116.195 36.087 0.996
Gompertz 4P 0.17 9.77 39.36 3166.26 10;1844.48 127.171 117.160 36.146 0.992
Logistic 3P 0.30 10.92 2766.72 10;1204.82 130.038 124.963 53.756 0.990
Logistic 4P 0.26 10.80 −151.75 2884.83 10;1251.54 130.222 120.211 41.523 0.990
Neural network 10;1250.91 34.047 0.993
FUNAAB Alpha
Logistic 3P 0.34 10.21 2021.36 10;1076.42 118.040 112.964 31.158 0.994
Logistic 4P 0.31 10.09 −60.75 2053.46 10;1072.47 120.974 110.963 27.272 0.994
Gompertz 3P 0.19 8.85 2247.64 10;1037.36 120.983 115.908 35.619 0.994
Gompertz 4P 0.21 8.99 53.01 2192.17 10;1044.32 123.863 113.853 31.100 0.992
Neural network 10;1036.72 16.115 0.995
Fulani
Gompertz 3P 0.13 11.57 1698.40 10;518.22 106.435 101.360 18.386 0.996
Logistic 3P 0.27 12.13 1332.09 10;496.11 111.393 106.318 23.033 0.992
Gompertz 4P 0.14 11.45 17.31 1642.36 10;506.23 112.921 102.910 18.912 0.996
Logistic 4P 0.23 12.22 −61.06 1408.14 10;516.13 113.370 103.359 19.302 0.992
Neural network 10; 523.12 17.933 0.995
Shika-Brown
Gompertz 3P 0.17 9.59 1823.49 10;756.98 107.869 102.794 19.624 0.998
Gompertz 4P 0.18 9.65 30.33 1780.58 10; 753.56 110.652 100.642 17.059 0.995
Logistic 4P 0.29 10.73 −60.89 1635.98 10;733.29 111.543 101.532 17.764 0.995
Logistic 3P 0.32 10.85 1594.98 10;723.88 112.335 107.264 24.046 0.990
Neural network 10;746.52 9.154 0.998

Notes: AIC: akaike information criterion; BIC: Bayesian information criterion; RMSE: root mean square error; AdjR2: adjusted coefficient of determination; a is the matur-
ity index; b is the scale parameter; cis the asymptotic weight; d is the upper asymptote. Non-linear model adapted from JMP 13.2 statistical software
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4PGompertz andNeural network) fitted the data satisfactorily. It
is known that the model with the highest AdjR2 and the lowest
AIC value better explains the change in body weight (Keskin

and Dag 2006; Sahin et al. 2014). Neural network had the best
accuracy of reconstructing the body weight across the TADP
chickens with the highest AdjR2 (0.992–0.998) and the lowest

Table 5. Estimated growth curve parameters of female birds raised on-station from 0 to 20 weeks.

Breed/model a b c d Age and weight at inflection point AIC BIC RMSE AdjR2

Fulani
Logistic 4P 0.26 11.35 −38.10 1429.00 10; 452.42 90.350 80.340 6.779 0.995
Logistic 3P 0.28 11.38 1109.22 10; 446.99 95.497 90.422 11.183 0.992
Gompertz 3P 0.14 10.46 1347.86 10; 463.54 99.351 94.276 13.324 0.989
Gompertz 4P 0.16 10.41 24.80 1292.41 10; 461.67 102.561 92.550 11.809 0.988
Neural network 10; 469.75 5.933 0.992
FUNAAB Alpha
Logistic 3P 0.40 10.41 2780.35 10;1030.22 121.831 116.756 37.019 0.994
Gompertz 3P 0.20 9.07 2735.53 10;1070.99 125.555 120.480 43.846 0.990
Logistic 4P 0.30 10.32 −49.12 2247.55 10;1037.22 126.763 116.753 35.482 0.990
Gompertz 4P 0.22 9.21 59.16 2392.08 10;1067.04 128.188 118.177 37.856 0.989
Neural network 10;1084.91 38.829 0.990
Sasso
Gompertz 3P 0.14 10.89 3856.63 10;1240.85 127.704 122.629 48.346 0.997
Gompertz 4P 0.14 10.88 7.06 3838.13 10;1240.36 135.016 125.006 51.633 0.992
Logistic 3P 0.28 11.76 3155.02 10;1192.88 138.815 133.740 80.110 0.988
Logistic 4P 0.23 11.82 −232.47 3412.27 10;1221.52 139.646 129.635 63.726 0.987
Neural network 10;1261.09 38.913 0.997
Kuroiler
Gompertz 3P 0.14 10.40 3725.38 10;1292.28 119.769 114.694 33.706 0.995
Gompertz 4P 0.14 10.43 −23.13 3777.74 10;1293.34 126.740 116.729 35.444 0.991
Logistic 4P 0.21 11.38 −300.25 3385.91 10;1276.43 132.982 122.972 47.074 0.990
Logistic 3P 0.28 11.41 3090.09 10;1246.74 137.304 132.228 74.792 0.985
Neural network 10;1290.89 17.773 0.996
Shika-Brown
Gompertz 3P 0.17 10.09 2088.27 10; 756.01 115.702 110.627 28.016 0.998
Logistic 3P 0.32 11.27 1803.37 10; 722.05 116.621 111.546 29.213 0.998
Logistic 4P 0.29 11.19 −58.62 1847.41 10; 732.26 118.844 108.833 24.756 0.998
Gompertz 4P 0.18 10.13 32.93 2034.90 10; 752.68 120.354 110.343 26.514 0.995
Neural network 10; 712.52 7.287 0.998
Noiler
Gompertz 3P 0.18 7.97 2917.67 13;1955.35 105.461 92.445 58.794 0.992
Logistic 3P 0.27 9.66 30.33 2742.17 13;1959.03 108.221 95.206 69.867 0.990
Logistic 4P 0.13 0.44 −5131.7 3139.89 13;1947.59 122.384 92.781 58.948 0.989
Gompertz 4P 0.12 0.22 −3231.4 3204.77 13;1946.85 122.442 92.839 59.162 0.989
Neural network 13;1916.49 49.327 0.990

Notes: AIC: akaike information criterion; BIC: Bayesian information criterion; RMSE: root mean square error; AdjR2: adjusted coefficient of determination; ais the maturity
index; bis the scale parameter; cis the asymptotic weight; d is the upper asymptote. Non-linear model adapted from JMP 13.2 statistical software.

Table 6. Estimated growth curve parameters of male birds raised on-farm from 6 to 18 weeks.

Breed/Model a b c Age and weight at inflection point BIC RMSE AdjR2

Fulani
Logistic 3P 0.17 10.78 1016.74 12; 563.64 36.204 22.344 0.995
Gompertz 3P 0.09 9.75 1265.43 12; 562.83 37.623 26.682 0.994
Neural network 12; 642.12 0.278 0.997
FUNAAB Alpha
Logistic 3P 0.17 11.19 1428.31 12; 764.51 24.981 5.494 0.992
Gompertz 3P 0.09 10.17 1779.54 12; 765.02 7.205 0.595 0.997
Neural network 12; 751.98 46.771 0.954
Kuroiler
Logistic 3P 0.12 14.32 2156.09 12; 928.19 34.724 18.572 0.997
Gompertz 3P 0.05 17.47 3494.67 12; 923.87 36.024 21.847 0.996
Neural network 12; 938.78 12.086 0.991
Noiler
Logistic 3P 0.13 8.96 1756.81 12; 1044.40 42.410 48.537 0.982
Gompertz 3P 0.07 7.04 2105.78 12; 1043.13 42.846 51.258 0.980
Neural network 12; 1028.25 10.442 0.982
Sasso
Logistic 3P 0.12 15.15 2216.87 12; 895.49 34.093 17.161 0.997
Gompertz 3P 0.05 19.82 3886.69 12; 895.26 35.463 20.368 0.994
Neural network 12; 819.29 0.321 0.997
Shika-Brown
Logistic 3P 0.14 15.92 1516.39 12; 552.75 24.871 5.419 0.996
Gompertz 3P 0.05 21.31 2867.28 12; 553.59 18.237 2.364 0.998
Neural network 12; 481.77 47.673 0.928

Notes: BIC: Bayesian information criterion; RMSE: root mean square error; AdjR2: Adjusted coefficient of determination; ais the maturity index; b is the scale parameter;
cis the asymptotic weight. Non-linear model adapted from JMP 13.2 statistical software
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RMSE (5.993–49.327). The AdjR2 values obtained in this study for
all the models are greater than 0.98 and higher than the values
reported by Cetin et al. (2007) and Yakubu andMadaki (2017) for
linear, quadratic, Gompertz and neural network. The age at the

inflection point of 13 weeks in Noiler was higher than the 10
weeks for Fulani, Sasso, Shika-Brown, FUNAAB Alpha and Kuroi-
ler estimated in female birds raised on-station from 0 to –20
weeks by the prediction profiler (Table 5).

Table 7. Estimated growth curve parameters of female birds raised on-farm from 6 to 18 weeks.

Breed/Model a b c Age and weight at inflection point BIC RMSE AdjR2

Fulani
Logistic 3P 0.09 7.18 1192.26 12; 723.04 25.384 5.778 0.997
Gompertz 3P 0.05 3.85 1373.79 12; 723.15 24.373 5.092 0.998
Neural network 12; 727.91 2.847e-9 0.998
FUNAAB Alpha
Logistic 3P 0.09 14.59 1846.63 12; 811.97 47.805 95.274 0.933
Gompertz 3P 0.08 5.80 1520.89 12; 829.51 49.611 119.400 0.894
Neural network 12; 696.01 6.0297e-6 0.990
Kuroiler
Logistic 3P 0.12 11.02 1875.97 12; 992.40 31.062 11.749 0.995
Gompertz 3P 0.06 10.11 2417.80 12; 992.14 32.653 14.334 0.991
Neural network 12; 925.09 5.876e-5 0.996
Noiler
Logistic 3P 0.10 8.43 1708.59 12; 1007.80 39.106 32.116 0.992
Gompertz 3P 0.06 6.16 2055.12 12; 1007.11 39.457 33.559 0.991
Neural network 12; 1027.10 3.276e-8 0.997
Sasso
Logistic 3P 0.09 16.91 2360.79 12; 924.74 36.244 22.456 0.995
Gompertz 3P 0.03 25.67 4533.37 12; 924.24 36.697 23.764 0.995
Neural network 12; 969.06 7.079e-7 0.996
Shika-Brown
Logistic 3P 0.09 9.89 1253.06 12; 688.54 21.555972 3.580 0.997
Gompertz 3P 0.05 8.11 1563.17 12; 688.47 23.320516 4.464 0.994
Neural network 12; 687.62 37.579 0.897

Notes: BIC: Bayesian information criterion; RMSE: root mean square error; AdjR2 is the Adjusted coefficient of determination; a is the maturity index; b is the scale
parameter; c is the asymptotic weight. Non-linear model adapted from JMP 13.2 statistical software.

Table 8. Estimated growth curve parameters by breed of TADP chickens raised on-station and on-farm.

Breed/Model a b b d Age and weight at inflection point AIC BIC RMSE AdjR2

Fulani
Gompertz 3P 0.12 12.51 2008.60 10;518.22 106.55 101.47 18.48 0.996
Logistic 3P 0.12 9.54 2463.77 10;496.11 108.94 103.87 20.61 0.993
Logistic 4P 0.23 12.86 −58.87 1597.92 10;506.23 109.19 99.18 15.96 0.990
Gompertz 4P 0.13 12.31 18.21 1932.78 10;516.13 112.96 102.95 18.94 0.990
Neural network 10;502.72 9.93 0.994
FUNAAB Alpha
Logistic 3P 0.35 10.42 2235.92 10;1037.36 119.47 114.40 33.26 0.994
Logistic 4P 0.32 10.33 −49.85 2262.82 10;1044.34 124.03 114.02 31.34 0.989
Gompertz 3P 0.19 9.09 2489.17 10;1076.42 126.40 121.33 45.57 0.987
Gompertz 4P 0.21 9.22 61.38 2423.22 10;1839.29 129.76 119.75 40.66 0.988
Neural network 10;1024.32 26.09 0.992
Kuroiler
Gompertz 3P 0.14 10.49 3790.20 10;1300.39 118.39 113.32 31.67 0.998
Gompertz 4P 0.13 10.55 −45.65 3897.82 10;1302.31 124.38 114.37 31.84 0.993
Logistic 4P 0.19 11.45 −339.68 3461.48 10;1204.82 129.70 119.69 40.56 0.993
Logistic 3P 0.27 11.46 3115.45 10;1255.99 136.85 131.78 73.29 0.992
Neural network 10;1333.33 40.74 0.998
Noiler
Gompertz 3P 0.16 7.95 3005.15 10;1076.42 101.24 88.22 45.17 0.996
Logistic 3P 0.25 9.71 2792.96 10;1948.67 102.29 89.27 48.23 0.993
Logistic 4P 0.19 7.62 −852.21 2942.83 10;1944.03 119.30 89.70 48.63 0.996
Gompertz 4P 0.16 7.40 −178.53 3045.92 13;1943.34 119.84 90.24 50.30 0.996
Neural network 13;1928.13 26.23 0.996
Sasso
Gompertz 3P 0.12 12.51 2008.60 10;518.22 106.55 101.47 18.48 0.995
Logistic 3P 0.26 12.71 1511.42 10;496.10 108.94 103.87 20.61 0.992
Logistic 4P 0.23 12.86 −58.86 1597.92 10;506.23 109.19 99.18 15.96 0.989
Gompertz 4P 0.13 12.31 18.21 1932.78 10;516.13 112.96 102.95 18.94 0.988
Neural network 10; 507.13 14.83 0.996
Shika-Brown
Gompertz 3P 0.37 10.01 2282.66 10;1618.32 103.44 91.65 32.14 0.998
Logistic 3P 0.22 11.22 1942.00 10;1426.20 104.67 93.89 25.07 0.995
Logistic 4P 0.27 10.41 −28.33 1682.12 10;1606.45 122.30 94.32 11.22 0.994
Gompertz 4P 0.38 12.56 6.49 1876.26 10;1316.13 112.96 99.14 29.24 0.978
Neural network 10;1211.19 11.81 0.999

Notes: AIC: akaike information criterion; BIC: Bayesian information criterion; RMSE: root mean square error; AdjR2 is the adjusted coefficient of determination; a is the
maturity index; b is the scale parameter; c is the asymptotic weight; d is the upper asymptote. Non-linear model adapted from JMP 13.2 statistical software.
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For the data collected frommale birds raised on-farm from 6
to 18 weeks (Table 6), the 4P models (logistic 4P and Gompertz
4P) had poor iterations and failed to converge in modelling the
growth curves due to optimization problem which made the
parameters not estimable. Our results show huge disagreement
between the observed and predicted male data for 4P models.
The logistic 3P had the highest AdjR2 in Fulani, Kuroiler, Noiler
and Sasso. This implies that logistic 3P fitted the liveweight
data more accurately.

The age at inflection point at 12 weeks (84 days of age) of
male birds raised on-farm from 6 to 18 weeks in this study
was higher than the results obtained in local genotypes of
slow-growing broilers (44.00 and 49.62 days of age) using the
Gompertz model (N’dri et al. 2006; Dourado et al. 2009). The
age at the inflection point in the present study was similar to
those reported by Yapi et al. (2011) for indigenous local eco-
types (savannah and forest) and that of slow-growing broilers
obtained by Narinç et al. (2010) in Hubbard. Logistic 3P had
the best maturity index in TADP chickens.

Estimated growth curve parameters of female birds raised
on-farm from 6 to 18 weeks are presented in Table 7. Logistic
3P had higher scale parameters for Fulani (7.18 weeks),
FUNAAB Alpha (14.59 weeks), Kuroiler (11.02 weeks), Noiler
(8.43 weeks) and Shika-Brown (9.89 weeks) which are similar
to estimates reported by Yang et al. (2006) in Jinghai
(Chinese) yellow chickens.

Thematurity index of 0.03–0.12 for female birds raised on-farm
from 6 to 18 weeks in this study was close to the 0.137 reported
for an Italian nondescript chicken breed from 2 to –24 weeks of
age (Darmani et al. 2010) but higher than the values reported
by Ait and Moula (2013) for chickens of Kabyle in Algeria
(0.0260 and 0.0294 g d−1), and by Yapi et al. (2011) for indigenous
local chickens in Cote d’Ivoire (0.0189 vs. 0.0205 g d−1).

Estimated growth curve parameters by breed in TADP
chickens raised on-station and on-farm are presented in
Table 8 and Figure 1. We advocated for the increase in
power of prediction by pooling the male and female record
to increase the sample size despite the fact that sexual
dimorphism was observed in this study. The highest adjusted
coefficient of determination (0.999) was recorded in ANN
model in Shika-Brown in the pooled data which was higher
than when the sex was considered singularly. The utilization
of the ANN statistical methodology may provide livestock
managers another tool in the evaluation of data to assist in
the development of appropriate TADP chicken management
plans for genetic improvement strategies. Fulani had the
least AIC value across the models (90.35–102.56), followed
by Noiler (105.46–122.44) and Shika-Brown (108.83–111.54).
Gompertz 3P had the best goodness of fit in Sasso, Kuroiler,
Shika-Brown and Noiler, respectively. Gompertz model had a
lower maturity index in all the breeds than logistic models.
Kuroiler had the heaviest upper asymptotic weight
(3115.45–3897.82 g) which was higher than the 675.3–
886 gm for the Kabyle traditional chickens reported by Ait
and Moula (2013), and the 1501.2–2219.5 gm for the local
chicken in Cote d’Ivoire, as obtained by Yapi et al. (2011).
The differences could be attributed to the fact that Kuroiler
is an improved Indian local chicken, while the Kabyle and
Ivorian local chickens are unimproved. In this study, the

improved TADP chickens had an earlier scale parameter
than the unimproved Fulani chickens. This is in agreement
with the report of Mignon and Beaumont (2000) that
animals selected for heavier body weight arrive at the age
at the inflection point and scale parameters earlier.

Conclusion

From the results above, it can be concluded that non-linear
models and neural network model yielded good fit with the

-

Figure 1. Growth curve parameters of the TADP breeds.
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age-weight data of TADP chickens on-station and on-farm.
However, these results validate the fact that neural network
models can compete with non-linear models for modelling of
the body weight data at different ages and thereby expanding
the statistical tool kit available to analyse data andmake predic-
tions in TADP chickens. The stability of biological parameters of
non-linear offers an advantage for effective planning of feed
resources for optimal utilization and breeding improvement
strategy in TADP chickens.
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