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ABSTRACT 
The kinetics and isotherm modeling of adsorption of Rhodamine B (RhB) Dye onto 

chitosan supported zerovalent iron nanocomposite (C-nZVI) was successfully studied 
           in a batch technique. The quantity adsorbed increased with increase in initial 

        concentration  from 49.33  mg  242.37  mg for  200 ppm  to 1000 ppm  and high –
percentage removal efficiency (%RE) of 99.72% attained at 90 minutes contact time. 

         Equilibrium data were analyzed by six isotherm models: Langmuir, Freundlich, 
Temkin, Dubinin-Kaganer-Raduskevich (DKR), Redlich-peterson and Halsey isotherm 

         model. Equilibrium data best fitted to Freundlich  isotherm supported by Halsey 
isotherm model. Langmuir monolayer adsorption capacity (256.41 mg/g) of C-nZVI 

        obtained greater than  most adsorbent reported  for adsorption of RhB.  The mean 
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adsorption free energy, E per molecule evaluated from DKR model was less than 8 
KJmol-1 indicating a physisorption mechanism. The kinetic data best fitted to pseudo 

     second-order  kinetic model  as validated  by sum  of square  error  (SSE) statistical 
model and the mechanism controlled by pore diffusion. The study revealed the great 

           potential of C-nZVI for effective removal of RhB dye. C-nZVI is therefore 
recommended for civic and industrial effluents treatment. 
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1. INTRODUCTION 
Nanotechnology is an upcoming area in the study of Chemistry. In view of the marvelous use 

        of nanotechnology, scientists carry out various studies in this most vital discipline. Nano-
          materials have been reported to be applicable in environmental remediation, catalysis, 

development of optical devices and medicine - . Its application is continually growing and [1 3]
         researchers are exploring the development of novel nano-adsorbents for environmental 

remediation [4].  
The release of dyes into the environment via anthropogenic activities has been a global 

              concern due to some adverse effects posed on the environment. Dyes are mostly used in 
industries such as textile, leather, paper, plastics and cosmetics to impart colour on their final 

            products -6]. The release of coloured wastewater from these industries may present an [5
ecotoxic hazard and introduce the potential danger of bioaccumulation, which may eventually 
affect man and aquatics through the food chain. Wastewater containing even a minute amount 

               of dyes can severely affect the aquatic life due to the reduction of light penetration and 
dissolved oxygen [7].  

         The application  of biopolymers such  as chitosan is one of  the emerging adsorption 
         methods  for  the removal of dyes and heavy metal  ions, even at low  concentrations  [8]. 

           Chitosan is a type of natural polyamino-saccharide, synthesized from the deacetylation of 
chitin, which is a polysaccharide consisting predominantly of unbranched chains of β (1→4)- -
2-acetoamido-2-deoxy-D-glucose. Chitosan is known as an ideal natural support for enzyme 
immobilization because of its special characteristics such as hydrophilicity, biocompatibility, 

           biodegradability, non-toxicity, adsorption properties, etc. [9]. Chitosan can be used as an 
            adsorbent to remove heavy metals  and  dyes due to the presence of amino and hydroxyl 

groups, which can serve as an active site [10]. There are two important advantages of chitosan 
as an adsorbent: firstly, its low cost compared to commercial activated carbon; secondly, its 
outstanding chelation behaviour. Especially in the environmental engineering field. Chitosan 
and its derivative have attained a good reputation as adsorbents for the removal of various 

           contaminants, including heavy metal ions or species, fluorides, dyes, phenol and its 
derivatives, and many other natural or man-made pollutants . [11]

Rhodamine B is the dye under investigation in this research. It is a cationic dye commonly 
used in textile industry due to its good fastness to fabrics and high solubility. However, it has 
been reported to be carcinogenic [12-13]. Although previous researchers have investigated the 

           removal of Rhodamine B dye and other dye types utilizing different nano-adsorbent, 
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       BiOBr/montmorillonite composites [14], Magnetic nanocomposite [15]; NiO nanoparticles 
[16];    Cobalt  nanoparticles-embedded  magnetic  ordered  mesoporous  carbon  [17] treated ;  
epicarp of Raphia Hookerie [18], microwave and chemically treated  leaf [19]Acacia nilotica ; 
activated carbon [20], rice hull-based silica supported iron catalyst [21]. However, there is no 
report on adsorption of Rhodamine B onto chitosan supported zerovalent iron nanoparticles 
(C-nZVI). There is no extensive report on the isotherm and kinetics modeling of adsorption of 
Rhodamine B onto C-nZVI.  

        There are various methods of removing dyes, and they include chemical precipitation, 
membrane process, ion exchange, solvent extraction, electrodialysis, and reverse osmosis [13, 

       22]. These methods are non-economical and have many disadvantages such as incomplete 
dyes removal, high reagent and energy consumption, and generation of toxic sludge or other 
waste products that require disposal or treatment [23]. However, adsorption has proven to be 
superior than other techniques because it is efficient and cost effective. Various methods have 
all been investigated in the removal of Rhodamine B as well as other types of dyes which are 
calcareous, yet to our knowledge, the adsorption of Rhodamine B dye onto chitosan supported 
zerovalent iron nanocomposite -nZVI) has not been reported. The objective of this study is (C
to investigate the modeling of kinetics and equilibrium data vis-à-vis the kinetics, mechanism 

     and  isotherm modeling  of adsorption  of  Rhodamine  B.   The  kinetics was  studied using 
          pseudo-first order, pseudo-second order and intraparticle diffusion models in order to 

determine the rate and mechanism of adsorption process. The equilibrium data were fitted to 
six isotherm models: Langmuir, Freundlich, Temkin, Dubinin-Kaganer-Raduskevich (DKR), 
Redlich-Peterson and Halsey isotherm model. Adsorption kinetics and isotherm models were 
investigated to develop an insight of controlling reaction pathways (e.g., chemisorption versus 

       physisorption),  determine the  mechanisms (e.g. intraparticle diffusion) of the adsorption 
         process, predict the rate at which a  target contaminant  would be  removed from  aqueous 

solutions and quantify the adsorptive capacity of an adsorbent (e.g C-nZVI). The results from 
this study can be used to assess the efficacy of C-nZVI for dyes removal and design a waste 
treatment reactor for industries. 

2. MATERIAL AND METHODS 
2.1. Chemical Reagents  
All the reagents used were of analytical grade mostly purchased from Sigma-Aldrich, USA.  
Sodium Borohydride (NaBH4) (Sigma-Aldrich, USA) was used for the chemical reduction, 

         other reagents used were: Absolute Ethanol (BDH), Ferric Chloride (FeCl3  ), HNO3, 
Rhodamine B Dye all purchased from Sigma-Aldrich, USA.   

2.2. Synthesis of Chitosan Supported Zerovalent Iron Nanocomposite (C nZVI) –

Chitosan supported iron nanocomposite was prepared using bottom-up approach via chemical 
reduction. Firstly, chitosan which served as the base material and one of the precursors was 
prepared following a similar procedure [24]. 4 g of Chitosan was dissolved in 100 mL of 2% 
2% acetic acid; stir the mixture for 4 hours using a magnetic stirrer to ensure homogeneous 

         mixture. Thereafter, zerovalent iron nanoparticle was prepared by chemical reduction 
following a procedure reported by Dada [25  27].  et al. –

               Accurately weighed 10 g of nZVI was mix with 100 mL of 4% chitosan, these were 
stirred thoroughly for another 4 hours with the aid of a magnetic stirrer to ensure that chitosan 
anchors properly into the matrix of the synthesized zerovalent iron nanoscale particles to form 

       C nZVI nanocomposite. The C nZVI was separated using vacuum filtration with 0.45µm – –
Millipore filter paper. Equation of reaction is as stated below:  

C + 4Fe3+ + 3BH4
− + 9H2O → C–4Fe↓+3H2BO3

− + 12H+ + 6H2    ↑   (1) 
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Where C represents Chitosan 

2.3. Preparation of stock solution of Rhodamine B. 
0.01 M Rhodamine B was dissolved in de-ionized water and made up to mark in 1000 mL 

           standard flask. Lower concentrations of the absorbate used for adsorption studies were 
prepared using serial dilution. Working concentrations from 200  1000 ppm were used for –
the study.  

2.4 Batch Adsorption Experiment 
Effect of initial concentration and contact time were studied in a batch technique at pH 3 and 
ambient temperature.  100 mg of the C-nZVI was added to 25 cm3  of RhodamineB (RhB) dye 
of 100  1000 ppm in a 50 cm– 3 conical flask. The mixture was agitated intermittently on the 
regulated mechanical shaker for 3 hrs and the residual concentration of RhB was determined 

          in triplicate using Biochrom Libra PCB 1500 Double Beam UV VIS spectrophotometer. –
Effect of contact time was studied from 10  120 minutes at optimum conditions. Adsorption –
capacities and the removal efficiency were obtained using Eqs.2 and 3 respectively [28]  : 
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        The equilibrium  data were fitted into  ten isotherm models  and the  kinetic  data were 
analyzed using pseudo first-order, pseudo second-order and intraparticle diffusion models. 

3. THEORY  
3.1. Adsorption Isotherm Modeling 
The interaction between RhB and the C-nZVI can be well described using isotherm models. 
In this study ten isotherm models were utilized in describing the equilibrium data vis-à-vis 
Langmuir, Freundlich, Temkin, DKR, Redlich Peterson and Halsey. Presented in Table 1 are 
the linear equations and corresponding parameters plotted in fitting the isotherm models. The 

  evaluated parameters were determined from the slope and intercept of their linear plots as 
portrayed in Table 1 
3.1.1. Langmuir isotherm model 
This model assumes a surface monolayer and homogeneous adsorption that occurred on finite 

            number of identical active sites with uniform energies of adsorption. Each site can 
          accommodate one adsorbate and there is no interaction between neighboring adsorbed 

molecules or atoms [25, 29]. The Langmuir parameters qmax (maximum monolayer coverage 
 capacity, mg.g-1   ) and KL    (Langmuir isotherm constant, L.mg-1     ) were determined from the 
         slope and intercept of the linear plot. The essential feature of Langmuir isotherm may be 
    expressed in terms of  the RL       , which is  referred to as separation  factor or  dimensionless 

constant as seen in Eq. 16 [27]  : 

oL
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                  (16) 
3.1.2. Freundlich Isotherm Model  
The Freundlich adsorption isotherm (Table 1, Eq. 5) gives an expression encompassing the 
surface heterogeneity and the exponential distribution of active sites and their energies. The 
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   Freundlich isotherm constants, Kf          and  indicating the sorption capacity and intensity n
respectively are parameters characteristic of the adsorbent-adsorbate system.  
3.1.3. Temkin Isotherm  
The Temkin isotherm model (Table 1, Eq. 6) describes the adsorbent-adsorbate interaction as 
having the heat of adsorption of all molecules in the layer decreasing linearly with the surface 
coverage [23, 30]. The parameter bT is the Temkin isotherm constant related to the heat of 
sorption and AT is the Temkin isotherm equilibrium binding constant (Lg-1).  
3.1.4. Dubinin-Kaganer-Raduskevich (DKR) isotherm model 
DKR isotherm model (Table 1, Eq. 7) gives insight into the physical and chemical nature of 

 the  adsorption  process.  From  the  linear  equation  in  Table  1, AD-R  is  the  DRK  isotherm 
constant (mol2/kJ2) related to free sorption energy and Qd is the theoretical isotherm saturation 

 capacity  (mg/g).The  mechanism  of the  process  was  judged  from  the  mean  sorption  free 
energy, E per molecule of RhB adsorbate computed by the relationship in Eq. 17 [13, 25, 31]: 


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3.1.5. Redlich-Peterson -  Isotherm model  (R P)
The R-P isotherm model (Table 1, Eq. 8) combines both elements from the Langmuir and 

          Freundlich isotherm models as an empirical isotherm incorporating three parameters. The 
mechanism of adsorption is a mix hence does not obey monolayer adsorption [32-33]. When 
β=1, it reduces to Langmuir equation with B=b (Langmuir adsorption constant (Lmg−1) which 

     is related to  the energy  of adsorption. AR-P  = bqmax where  qmax    is Langmuir  maximum 
adsorption capacity of the adsorbent (mgg−1).  
3.1.6. Halsey isotherm model  
The Halsey isotherm model (Table 1, Eq. 9) is used to evaluate the multilayer adsorption at a 
relatively large distance from the surface. [34-35].  

Table 1 Different adsorption isotherms [3, 4, 23, 33, 36] 

S/N Isotherms 
models 

Linear Equations Equations Plot Evaluated 
Parameters 

1 Langmuir 
 

maxmax

1
q
C

qKq
C e

Le

e 
4 

e

e

q
C vs eC

 maxq , LK
 

2 Freundlich 
 efe ogCn ogKogq  1  5 

ee ogCvsogq   fK , n
1 , and 

n
3 Temkin 

Ce
b
RTA

b
RTq

T
T

T
e  lnln 

6 
eq vs enC

 
TA , Tb , β

 

4 DKR 
 

2RDme Anqnq     7 
enq vs 2 mq , RDA   

5 Redlich-
Peterson PRe

e

e AC
q
C









lnlnln 

8 
e

e

e CvsC lnln 







 PRA ,

 

8 Halsey 
 e

H
H

H
e nC

n
nK

n
 nq  



























11
 

9 
enq vs enC

 
H

H
nn ,1 , K H 

 



Kinetics and Isotherm Modeling of Adsorption of Rhodamine B Dye Onto Chitosan Supported Zerovalent 
Iron Nanocomposite (C-nZVI) 

  http://iaeme.com/Home/journal/IJCIET   1596 editor@iaeme.com 

3.2. Kinetics Modeling and Statistical Validity 
The kinetic data were subjected to pseudo first-order, pseudo second-order and intraparticle 
diffusion models in order to determine the rate and mechanism of the adsorption process.  
3.2.1. Pseudo-First Order Kinetics Model. 
The linear form of pseudo first order equation is generally expressed as: –

303.2
)( 1tk

qLogqqLog ete 
                (10) 

Where qe  is the quantity of RhB adsorbed at equilibrium per unit weight of the C-nZVI 
nano-adsorbent (mg/g), qt is the amount of RhB adsorbed at any time (mg/g) and k1 is the 
pseudo first-order rate constant (min-1). Pseudo first-order parameters were determined from 
the plot of log(qe – qt) against  [37] t
3.2.2. Pseudo-Second Order Kinetics Model 
The linear form of Pseudo second-order rate expression is given by the expression:  

t
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When  tends to 0, ht 2 is defined as: 
2

 22 e qkh                        (12) 
Substituting h2 into Eq.20, it becomes: 

t
qhq

t
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Where h2         is the initial adsorption rate for pseudo second-order. (The pseudo second  –
order parameters determined from the plot of t/qt against  [38]. t 
3.2.3. Intraparticle Diffusivibility 
The intraparticle diffusion equation is expressed as: 

Ctkq idt  5.0

                    (14) 
Where kid is the intraparticle diffusion rate constant (mg.g−1min0.5) and C is the intercept 

indicating the thickness of C-nZVI. The qt is the amount of solute adsorbed per unit weight of 
adsorbent per time, (mg/g), and t0.5 is the half adsorption time [3, 4, 39].  
3.2.4. Validity of the Kinetics Data 

       The suitability, agreement  and  best fit  among the  kinetic models  were judged  using the 
statistical tools such as regression coefficient (R2), sum of square error (SSE) Sum of square 
error (SSE) is the mostly used by researchers. The mathematical expression is given in Eq. 23 
[25, 26, 36, 39]: 

 
  
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3. RESULTS AND DISCUSSI  ON
3.1. Bulk Density, Moisture Content, Point of Zero Charge and FTIR 
Characterization of (C-nZVI)  

     The synthesized Chitosan supported  zerovalent  iron nanocomposite  was  characterized by 
          point of zero charge (PZC), moisture content, and bulk density (Physico-chemical 
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characterization) and FTIR (spectroscopic characterization). The point of zero charge (PZC) 
is defined as the pH at which that surface area has a net neutral charge [25, 40]. The PZC of 
C-nZVI found to be 4. This was significance and suitable for the adsorption of Rhodamine B 
at a pH below the point of zero charge. Moisture content 7.2 and bulk density 0.731 gcm -3 
were indication of good equilibration of the C-nZVI with the adsorbate (RhB) thus preventing 

            floatation [41]. The FTIR analysis of C-nZVI was done using SHIMADZU FTIR model 
IR8400s Spectrophotometer. This was done prior to the adsorption to determine the functional 
groups, molecular environment of the adsorbents and examine the possible sites of interaction 
of Rhodamine B with C-nZVI.  The FTIR spectrum of chitosan supported iron nanoparticles 

         prior to  adsorption is  shown in  the Fig. 1,  the spectra reveals  the characteristic  band at 
3433.29 cm-1 dicating the presence of OH functional group on the surface of the chitosan in –

          supported zero-valent iron. The vibration band at the region of 1641cm-1    indicates the 
presence of C=O, the presence of iron nanoparticle is observed at the region of 698-478 cm -1 

[42]. 

 

Figure 1: FTIR spectrum for C-nZVI 

3.2. Effect of Initial Concentration on Adsorption of Rhodamine B onto Chitosan 
supported Zerovalent Iron Nanocomposite (C-nZVI)  
Concentration plays a key role as a driving force to overcome the mass transfer resistance 
between the Rhodamine B solution and C-nZVI. Fig 2 shows the removal efficiency of RhB 
at  different  initial  concentrations  from  200  ppm  to  1000  ppm.  It  was  observed  that  the 
adsorption capacity and removal efficiency increased with increase in concentration is due to 
the concentration gradient developed at solid-liquid interface. At higher concentration of RhB, 

        the active sites of C-nZVI were bombarded by more of the dye molecules as the process 
continued until a saturated point was reached. The quantity adsorbed increased with increase 
in initial concentration due to the availability of the active sites from 49.33 mg  242.37 mg –
for 200 ppm to 1000 ppm. More so, removal efficiency increased from 98.65% to 99.72% 
until equilibrium was reached between 800  1000 ppm. Advantageously, removal efficiency –
as high as 96% was attained at highest concentration (1000 ppm) indicating the effectiveness 
of C-nZVI in RhB adsorption. This finding is in support with the report in the literature [3, 4, 
43] 
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3.3. Effect of Contact time on Adsorption of Rhodamine B onto Chitosan 
supported Zerovalent Iron Nanocomposite (C-nZVI)  

           Contact time is also  an important factor in all transfer  phenomena such as adsorption. 
Presented in Figure 3 is the contact time at various initial concentrations. The experimental 
conditions are well stated below the plot. It was observed that rate of reaction was rapid from 
10 min and equilibrium was attained at 30 min indicating a fast adsorption enhanced by this 
novel chitosan supported zerovalent iron nanocomposite (C-nZVI) [42, 43]. This is one of the 
advantages of nanoadsorbents. A steady state approximation sets in and a quasi-equilibrium 
situation attained all through from 30 minutes to 120 minutes. 

 
   Figure 2 Figure 3: Effect of Initial Conc.    : Effect of Contact Time at Various Initial Conc 

 Experimental Conditions: C-nZVI Dose=100 mg, Experimental Conditions: C-nZVI Dose = 100 mg 
Tempt= 25o   C, pH = 3, Time = 90 minutes,   T= 25 oC, pH = 3, Stirring Speed = 120 rpm 

  Stirring Speed = 120rpm   

3.4. Kinetics and Mechanism modeling of Adsorption of Rhodamine B onto  
C-nZVI  

     Presented in Figures 4  6 are linear plots of pseudo first-order, pseudo second-order and –
intraparticle diffusion models at various concentrations. Their evaluated are well presented in 
Table 2. From the regression coefficient (R2) point of view, it was clearly observed that the 

  kinetic  experimental data  gave the  best  fits  with  the  pseudo-second  order  kinetic  model 
having a correlation co-efficient of R2>0.99 at all concentrations. Also, the close agreement 

        between the values of experimental and calculated quantity adsorbed,q  e, exp  and q  e, cal 
respectively corroborated that kinetic data were best described by pseudo second-order model. 
This was validated by the lower values of sum of square error (SSE) at all concentrations as 
observed in Table 2. The lower the values of SSE, the better the kinetic model in describing 
the kinetic process [25  28, 44]. Higher values of SSE observed in pseudo first order (Fig. 4) – –
from 2,343.77  55, 774.66 is an indication of poor fitting of pseudo first-order model. –
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   Figure 4 Figure 5 Pseudo first-order kinetic model for    : Pseudo second order kinetic 
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Figure 6: Intraparticle diffusion model plot for adsorption of RhB onto C-nZVI  

The determination of the adsorption rate controlling step enhances understanding of the 
adsorption mechanism. In order to determine the mechanism, kinetic data were tested with 
Weber’s intraparticle diffusion model. From the evaluated parameters in Table 2, close values 
and agreement among experimental, calculated quantity adsorbed, q  e, exp and q  e, cal, and the 

    intercept, C (boundary layer), higher regression coefficient (R2   >0.92) and lower values of 
      SSE  confirmed  that the mechanism  was governed  and controlled  by pore  diffusion. The 

intercept (C) which is the thickness of the surface gives information about the contribution of 
the surface adsorption in the rate determining step. The larger the intercept, the greater the 

         contribution of the pore to adsorption [3]. However, since the intraparticle diffusion plots 
(Figure 6) did not pass through the origin, it therefore indicated that intraparticle diffusion is 
not the only rate determining step [23, 44].  

Table 2: Parameters of different kinetic and mechanism models of RhB dye adsorption onto C-nZVI 

Pseudo First-order 200 ppm 400 ppm 600 ppm 800 ppm 1000 ppm 
k1  0.0389 0.0665 0.00046 0.0333 0.0437 

qe,exp 49.33 99.24 145.222 190.66 241.88 
q e,cal 0.0957 6.3547 49.6935 9.4015 5.7134 

R2 0.9174 0.8251 0.9212 0.3923 0.9875 
SSE 2,343.77 8,627.67 9,125.69 32,854.6 55,774.7 

Pseudo Second-order 200 ppm 400 ppm 600 ppm 800 ppm 1000 ppm 
k2  1.36 0.02 0.02 6.7x10-3  0.02 

qe,exp 49.33 99.24 145.222 190.66 241.88 
q e,cal 49.26 100 147.05 196.07 243.9 
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R2 1 1 1 0.9999 1 
h2 3309.49 196.97 421.77 243.55 1170.11 

SSE 4.9x10 -3  0.57 3.34 29.26 4.08 
Intraparticle 

Diffusion                               200 ppm 400 ppm 600 ppm 800 ppm 1000 ppm 
qe, exp 49.33 99.24 145.222 190.66 241.88 
qe, cal 49.51 122.52 179.05 375.48 325.52 

kip(mg/g/min0.5) 0.0044 0.2546 0.2419 0.9905 0.358 
C 49.295 97.122 143.65 183.49 238.75 
R2 0.9863 0.943 0.8486 0.9635 0.9534 
SSE 0.033162 541.889 1144.042 3,4157.83 6,995.708 

3.5. Adsorption Isotherm Models for the Uptake of Rhodamine B using Chitosan 
Supported Iron Nanocomposite (C-nZVI) 
The interaction between RhB and the C-nZVI was well described using isotherm models. In 
this  research,  six  different  isotherm  models  were  fitted  to  the  equilibrium  data  vis-à-vis 

     Langmuir, Freundlich, Temkin, Dubinin-Kaganer-Radushkevich (D R), Redlich-Peterson, –
and Halsey isotherm models and their corresponding equations as presented in Table 1. Linear 
plots of these isotherm models are depicted in Figure 7(A-J). Specifically, the linear least-
squares method and the linearly transformed equations have been widely applied to correlate 
sorption data. 

          Judging from the correlation coefficient, equilibrium data were fitted to Langmuir 
   isotherm model with R2    = 0.926. LR       Value indicates the adsorption nature to either 

unfavourable or unfavourable. It is unfavourable if LR >1, linear if LR =1, favourable if 0< LR
<1 and irreversible if LR  = 0. The value of the separation factor, RL (Fig 8) ranging from 
3x10-2 - 6.14x10-3which is less than unity is an indication of a favourably adsorption [3, 23, 
45].   

However, based on higher R2 values observed in Freundlich (Fig 7B), Redlich Peterson 
(Figure 7E) and Halsey (Fig. 7F), the adsorption process is physisorption in nature hence a 

   multilayer adsorption. Both kf          and  are Freundlich constant and adsorption intensity n
respectively.  The value of 1/nf is less that unity indicating high heterogeneity of the C-nZVI 
nature, value of n (2.39) lying between one and ten is an indication of normal and favourable 
adsorption [27, 46].  

From Temkin isotherm model (Fig 7C), low value of heat of adsorption is an indications 
of physisorption mechanism and endothermic nature of the adsorption process [28]. Dubinin-

     Kaganer-Raduskevich (DKR) isotherm model (Fig 7D) gives insight into the physical and 
chemical nature of the adsorption process. Since the magnitude of E (free energy of transfer 
of one solute from infinity to the surface of C-nZVI) is less than 8 kJ mol-1 (Table 3), the 

             electrostatic forces coupled with pore diffusion as a result of mass transport played a 
        substantial role  in adsorption process supporting physisorption mechanism. This finding 

corroborated the assertion in Freundlich and Temkin isotherm models [34, 43]. 
Freundlich isotherm adequately described the equilibrium data than Langmuir suggesting 

       a multilayer adsorption process and this is supported by the results from Halsey isotherm 
models parameters (Table 3) [47-48] 
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Figures 7 -F): Linear plots of: (A) Langmuir (B) Freundlich (C) Temkin (D) DKR (E) Redlich (A
Peterson (F) Halsey Isotherm model  

Table 3: Isotherm models parameters for adsorption of RhB onto C-nZVI  

Langmuir Freundlich Temkin 
qmax (mgg-1) 256.41 kf 53.27 bT(J mol -1) 179.77 
KL (Lmg-1) 0.1618 1/nf 0.4177 β(Lg-1) 5 x 10-7 

RL 3x10 -2 - 6.14x10-3 nf  2.3941 AT (Lg-1) 1 
R2  0.926 R2 0.9458 R 2 0.871 

DKR Redlich Peterson Halsey 
qd 179.77 AR-P 1.242x10-3 1/nH -0.4176 

ADKR 5 x 10-7 B R-P 1.668 nH  -2.3946 
E(K  J/mol) 1 qmax 7.45x10-4 KH 7.34 x10-5 

R2 0.871 R2 0.9714 R 2 0.9458 

4. CONCLUSIONS 
Chitosan supported zerovalent iron nanocomposite (C-nZVI) was successfully prepared using 

     a  chemical  reduction method  in  a  single  pot system.  The result from  the  bulk density, 
moisture content and point of zero charge indicated that C-nZVI was suitable in the uptake of 

      Rhodamine B.  They  were  characterized by Fourier Transform infra-red spectroscopy  to 
determine the functional group present. The point of zero- charge (PZC) revealed that these 

              adsorbents are suitable for the removal of cationic dyes from waste water bodies. It also 
further explains the properties of the adsorbents having a strong affinity for the removal of 

           Rhodamine B dye from aqueous solution; their effectiveness depends largely on their 
composition. The adsorption capacities were found to depend on the quantity of adsorbents, 
contact time and initial concentration. The kinetic data were best described by pseudo-second 
order and the mechanism was governed by intraparticle diffusion. The equilibrium data were 
best fitted to Freundlich isotherm model supported by Halsey isotherm models indication a 

     multilayer  adsorption on heterogeneous  surface of  C-nZVI.  The adsorption process  was 
         physisorption as confirmed by the energy values estimated from Dubinin-Kaganer-

Radushkevich model which was found to be less than 8kJ mol -1. Results obtained from this 
study showed that C-nZVI is a potential, effective and efficient adsorbent in the uptake of 
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           Rhodamine dye B (RhB) from aqueous solution. C-nZVI is thereby recommended for 
treatment of civic waste. 
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