Optimization of Lead Adsorption on Rice-Husk Supported Zerovalent Iron Nanoparticles Using Response Surface Methodology

Article Preview

Abstract:

In this study, the Pb(II) ions adsorption unto nanoscale zerovalent iron particles (nZVI) supported on rice husk has been carried out. The challenge of nanoparticles agglomeration makes immobilising them on rice husk desirable. Optimization of process parameters, pH (4 – 10), adsorbent dose (0.5 – 2.0 g) and contact time (60 – 300 min), was carried out using response surface methodology (RSM) based on Box-Behnken design. Optimum condition for maximum Pb(II) ions of 98.74% was predicted at contact time of 60.12 min, pH of 4.01 and adsorbent dose of 0.5 g. At these optimized conditions, 97.23% removal was achieved experimentally. Analysis of variance carried out on the experimental data showed that the model was significant with a R2 of 0.9883. The synthesised adsorbent was characterized with Fourier transform-infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM showed that RH-nZVI has a very porous surface structure. Amine, carboxyl and hydroxyl groups were some of the identified functional groups present in the adsorbent for adsorption. This study suggests that nZVI supported on rice husk is a viable low-cost adsorbent for removing Pb(II) ions from wastewater.

Info:

Periodical:

Edited by:

Dr. Amir Al-Ahmed

Pages:

1-11

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] M. Soleymanzadeh, M. Arshadi, J.W.L. Salvacion, F. SalimValid, A new and effective nanobiocomposite for sequestration of Cd (II) ions: Nanoscale zerovalent iron supported on sineguelas seed waste, Chem. Eng. Res and Des. 93 (2015) 696–709.

DOI: 10.1016/j.cherd.2014.06.006

[2] X. Yang, X. Cui, Adsorption characteristics of Pb (II) on alkali treated tea residue, Water Res. and Ind. 3 (2013) 1–10.

[3] H. Turkyilmaz, T. Kartal, S. Yigitarslan Yildiz, Optimization of lead adsorption of mordenite by response surface methodology: characterization and modification, J. Env. Health Sci. and Eng. 12 (2014) 5.

DOI: 10.1186/2052-336x-12-5

[4] Z.N. Garba , I. Bello, A. Galadima, A.Y. Lawal, Optimization of adsorption conditions using central composite design for the removal of copper (II) and lead (II) by defatted papaya seed, Karbala Int. J. Modern Sci. 2 (2016) 20–28.

DOI: 10.1016/j.kijoms.2015.12.002

[5] M. Naushad, Z. A. ALOthman, M. R. Awual, M. M. Alam, and G. E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics 21(2015) 2237–2245.

DOI: 10.1007/s11581-015-1401-7

[6] A. B. Albadarin, M. N. Collins, M. Naushad, S. Shirazian, G. Walker, and C. Mangwandi, Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue, Chemical Engineering Journal, vol. 307, p.264–272, Jan. (2017).

DOI: 10.1016/j.cej.2016.08.089

[7] T. Amirianshoja, R. Junin, A.K. Idris, O. Rahimani, A comparative study of surfactant adsorption by clay minerals, J. Pet Sci. and Eng. 100 (2013) 21-27.

DOI: 10.1016/j.petrol.2012.10.002

[8] H. Z. Mousavi, A. Hosseynifar, V. Jahed, S.A.M. Dehghani, Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent, Brazilian J. of Chem. Eng. 27 (2010) 79–87.

DOI: 10.1590/s0104-66322010000100007

[9] A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chem. Rev. 110 (2010) 3767–3804.

DOI: 10.1021/cr9003902

[10] E. Kumar, A. Bhatnagar, U. Kumar, M. Sillanpa, Deflouridation from aqeous solutions by nano alumina: characterization and sorption studies, J. Hazard Mater. 186 (2011) 1042-1049.

[11] A.A. Farghali, M. Bahgat, A. Enaiet Allah, M.H. Khedr, Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures, Beni - suef University J. Basic and Appl. Sci. 2 (2013) 61 -71.

DOI: 10.1016/j.bjbas.2013.01.001

[12] S.T.M. Attia, X.L. Hu, D.Q. Yin, Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution, J. Exp Nanosci. 9 (2014) 551–560.

DOI: 10.1080/17458080.2012.677549

[13] A.O. Dada, F.A. Adekola, E.O. Odebunmi, A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies, Appl. Water Sci. 7(3) (2015) 1409 -1427.

DOI: 10.1007/s13201-015-0360-5

[14] A. Gopalakrishnan, R. Krishnan, S. Thangavel, G. Venugopal, S.J Kim, Removal of heavy metal ions from pharma effluents using graphene-oxide nanosorbents and study of their adsorption kinetics, J. Ind. Eng. Chem. 30 (2015) 14–19.

DOI: 10.1016/j.jiec.2015.06.005

[15] G. Asgari, B. Roshani, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice, J. Hazard Mater. 217 (2012) 123–132.

DOI: 10.1016/j.jhazmat.2012.03.003

[16] Y. Goksungur, S. Uren, U. Guvenc, Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomas, Bioresources Technol, 96 (2005) 103 – 109.

DOI: 10.1016/j.biortech.2003.04.002

[17] N.E. Davila-Guzman, F.J. Cerino-Córdova, M. Loredo-Cancino, J.R Rangel-Mendez, R Gómez-González, E. Soto-Regalado, Studies of adsorption of heavy metals onto spent coffee ground: equilibrium, regeneration, and dynamic performance in a fixed-bed column, Int. J. Chem. Eng. 2016 (2016) 1-11.

DOI: 10.1155/2016/9413879

[18] W. Nakbanpote, B.A. Goodman, P. Thiravetyan, Copper adsorption on rice husk derived materials studied by EPR and FTIR, Colloids Surf. A Physicochem. Eng. Asp. 304 (2007) 7 - 13.

DOI: 10.1016/j.colsurfa.2007.04.013

[19] X. Li, W. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles. A study with high resolution x-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. 111 (2007) 6939–6946.

DOI: 10.1021/jp0702189

[20] W. Liang, C. Dai, X .Zhou, Y. Zhang, Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions, PLoS ONE 9 (2014) e85686.

DOI: 10.1371/journal.pone.0085686

[21] S. Klimkova , M. Cernik, L. Lacinova, J. Filip, D. Jancik , R. Zboril, Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching, Chemosphere 82 (2011) 1178–1184.

DOI: 10.1016/j.chemosphere.2010.11.075

[22] A. Siciliano, Use of nanoscale zero-valent iron (nzvi) particles for chemical denitrification under different operating conditions. Metals. 5 (2015) 1507-1519.

DOI: 10.3390/met5031507

[23] A.R. Esfahani, A.F. Firouzi, G. Sayyad, A. Kiasat, Isotherm study of cadmium adsorption onto stabilized-zerovalent iron nanoparticles. Int. J. of Agronomy and Plant Production. 4 (2013) 3444-3454.

[24] L. Alidokht, A.R. Khataee, A. Reyhanitabar, S. Oustan,, Reductive removal of Cr(VI) by starch-stabilized FeO nanoparticles in aqueous solution, Desalination. 270 (2011)105-110.

DOI: 10.1016/j.desal.2010.11.028

[25] F. He, M. Zhang, T. Qian, D. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media column experiments and modeling, J. Colloid. Interf. Sci. 334 (2009) 96-102.

DOI: 10.1016/j.jcis.2009.02.058

[26] J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol. 42 (2008) 6949–6954.

DOI: 10.1021/es800924c

[27] H.K. Boparai, J. Meera, M.O. Dennis, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Harzard Mater. 186(1) (2010). 458–465.

DOI: 10.1016/j.jhazmat.2010.11.029

[28] T.J.I. Edison, M.G. Sethuraman, Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol, Spectrochimica Acta Part A: Mol Biomol Spectrosc 104 (2013) 262–264.

DOI: 10.1016/j.saa.2012.11.084

[29] A. Saldana-Robles, R. Guerra-Sanchez, M.I. Maldonado-Rubio, J.M. Peralta-Hernandez, Optimization of the operating parameters using RSM for the Fenton oxidation process and adsorption on vegetal carbon of MO solutions, J. Ind. and Eng. Chem. 20 (2014) 848–857.

DOI: 10.1016/j.jiec.2013.06.015

[30] A. Fakhri, Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles, J Saudi Chem Soc. 18 (2014) 340-347.

DOI: 10.1016/j.jscs.2013.10.010

[31] M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arabian J. Chem. 10 (2014) S3292–S3302.

DOI: 10.1016/j.arabjc.2013.12.028

[32] O.A. Adesina, Okewale, A. Olalekan, Comparative studies of response surface methodology (RSM) and artificial neural network (ANN) predictive capabilities on enzymatic hydrolysis optimization of sweet potato starch, Int. J. Adv. Research 2(10) (2014) 849-860.

DOI: 10.4028/www.scientific.net/jera.30.125

[33] X.S. Wang, L. He, H.Q. Hu, J. Wang, Effect of temperature on the Pb(II) removal from single aqueous solutions by a locally natural mordenite: equilibrium and kinetic modelling, Separ. Sci. Technol. 43 (2008) 908-922.

DOI: 10.1080/01496390701870697

[34] M.R.R. Kahkha, M. Kaykhaii, G. Ebrahimzadeh, Optimization of affective parameter on Cadmium removal from an aqueous solution by Citrullus colocynthis powdered fruits by response surface, Health Scope. 4 (2015) e20667.

DOI: 10.17795/jhealthscope-20667

[35] D. Park, Y. Yun, J.M. Park, The past, present, and future trends of biosorption, Biotechnology and Bioprocess Eng. 15 (2010) 86-102.

DOI: 10.1007/s12257-009-0199-4

[36] N.K. Mondal, A. Samanta, S. Dutta, S. Chattoraj, Optimization of Cr(VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies, J. Genetic Eng. and Biotech. 15 (2017) 151–160.

DOI: 10.1016/j.jgeb.2017.01.006