Elsevier

MethodsX

Volume 7, 2020, 100976
MethodsX

Method Article
Bottom-up approach synthesis of core-shell nanoscale zerovalent iron (CS-nZVI): Physicochemical and spectroscopic characterization with Cu(II) ions adsorption application

Under a Creative Commons license
open access

Highlights

CS-nZVI was synthesized under anaerobic condition via bottom-up approach.

Physicochemical characterization, Surface functionality and morphology revealed the unique properties of CS-nZVI.

Effective adsorption was achieved in a batch technique while isotherm and kinetic models were statistical validated.

Abstract

Single pot system in chemical reduction via bottom-up approach was used for the synthesis of core shell nanoscale zerovalent iron (CS-nZVI). CS-nZVI was characterized by a combination of physicochemical and spectroscopic techniques. Data obtained showed BET surface area 20.8643 m2/g, t-Plot micropore volume 0.001895 cm3/g, BJH volume pores 0.115083 cm3/g, average pore width 186.9268 Å, average pore diameter 240.753 Å, PZC 5.24, and pH 6.80. Surface plasmon Resonance from UV-Vis spectrophotometer was observed at 340 nm. Surface morphology from SEM and TEM revealed a spherical cluster and chain-like nanostructure of size range 15.425 nm −97.566 nm. Energy Dispersive XRF revealed an elemental abundance of 96.05% core shell indicating the dominance of nZVI. EDX showed an intense peak of nZVI at 6.2 keV. FTIR data revealed the surface functional groups of Fe–O with characteristics peaks at 686.68 cm−1, 569.02 cm−1 and 434 cm−1. In a batch technique, effective adsorption of endocrine disruptive Cu(II) ions was operational parameters dependent. Isotherm and kinetics studies were validated by statistical models. The study revealed unique characteristics of CS-nZVI and its efficacy in waste water treatment.

Method name

Physicochemical and Spectroscopic Characterization of CoreshellnZVI with Application in Endocrine Disruptive Cu(II) ions Adsorption

Keywords

Core shell nZVI
Characterization
Surface chemistry
Morphology
Remediation
Endocrine disruptive compounds
Isotherms
Kinetics
Statistical validity